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Abstract

In this paper, we continue our investigation of the high-frequency and subsonic limits
of the Klein-Gordon-Zakharov system. Formally, the limit system is the nonlinear
Schrodinger equation. However, for some special case of the parameters going to
the limits, some new models arise. The main object of this paper is the derivation

of those new models, together with convergence of the solutions along the limits.

Résumé

Du systeme de Klein-Gordon Zakharov vers un systeme de Schrédinger nonlinéaire

sigulier.

Dans cet article, on continue l'investigation des limites haute fréquence et sub-
sonique du systeme de Klein-Gordon-Zakharov. Formellement, le systeme limite
est le systeme de Schrodinger nonlinéaire. Cependant, pour un cas particulier des
parametres, on trouve un nouveau modele qui contient un terme sigulier. L’objet
de ce papier est de donner une derivation rigoureuse de ce moele et de montrer la

convergence dans ’espace d’énergie.
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1 Introduction

The Klein-Gordon-Zakharov system in nondimensional variables reads:

(1.1)

¢ 2E — AE + ?F = —nE,
a % — An = A|EP,

where F : R — R3 is the electric field* and n : R'*? — R, is the density
fluctuation of ions, ¢? is the plasma frequency and « the ion sound speed. This
system describes the interaction between Langmuir waves and ion sound waves in a
plasma (see Dendy [9] and Bellan [3]). It can be derived from the two-fluid Euler-
Maxwell system (see Sulem and Sulem [23], Colin and Colin [7] and Texier [24, 25]
for some rigorous derivations). We also refer to [16, Introduction] for the rescaling
with physical constants.
The system (1.1) has the following conserved energy

SV 1
/021312 +|VEP? +c 3 E? + §\|avy*1n|2 + 5|n|2 + n|E|dx. (1.2)

Notice that this energy is at least O(c?) due to the first term when ¢ goes to infinity,
so it is not useful by itself to get uniform bounds when ¢ goes to infinity and does
not give a conserved quantity for the limit system.

To explain the main contribution of this paper, we start by some formal consid-
erations. Taking F = ¢'E, system (1.1) becomes

¢ 2F + 2F — AF = —nF,
2 ) (1.3)
a i — An = A|F|°.
Its formal limit as ¢, « — oo is given by the nonlinear Schrédinger equation:
2F — AF = |F|*F, n=—|F* (1.4)
If we take the limit ¢ — oo first, we get the usual Zakharov system:
2iF — AF = —nF,
(1.5)
a”*h — An = A|F)?.

If we take the limit o — oo first in (1.1), we get the nonlinear Klein-Gordon

system :

¢?E - AE+ *F = —|E|’E. (1.6)

*In our results the range of £ may be R? or C? with arbitrary d.



It is classically known that the limit when « goes to infinity in the Zakharov
system (1.5) leads to the cubic nonlinear Schrédinger equation (1.4) and that the
limit when ¢ goes to infinity in the cubic nonlinear Klein-Gordon system (1.6) also
leads to the cubic nonlinear Schrédinger equation.

However a more precise analysis involving the two different modes of oscillations
of (1.1), namely writing £ = Eje "t + Eye” shows that these two limits do
not commute. Indeed, the non-relativistic limit of the nonlinear Klein-Gordon was
studied in [13, 14]. In [14] we proved that the limit system is a coupled nonlinear

Schrodinger system

{2¢E1 — AE; — ([Ei[* + 2[Eo[*)E; =0, (1.7)

2Ey — ARy — (|Eyf* + 2|Ey[>)Ey = 0

which differs from the one we can derive from the Zakharov system or the one
derived in [16] where we took a simultaneous limit requiring that o < ¢ where the

limit system was

(1.8)

2ZE1 - AEl - (‘El‘z + ’EQ’Q)El — 0,
2iEy — AR,y — (|Eof* + |Ei[*)Ey = 0.

In this paper, we will study the case where ya = 2¢? for some fixed constant +.
At the limit we will get a singular Schrédinger system (1.11). Formally, we see that
when v goes to infinity we recover the nonlinear Schrédinger system (1.8) derived
in [16], and when v goes to zero we recover the nonlinear Schrodinger system (1.7)
derived in [14].

To write our limit system, we need the following operators, defined as functions
of [V| = v/—A (by using the Fourier transform)

V| V| .
R\ :PV( )— S(IV| =),
7T V= 4+ 06 v—~) " (V=)
B V|
AL = , 1.9
T V4 (1.9)
1 L |V|2 iym
A = §(AV+A7)—PV<|V|2_72 - ZR8(191 =),

where PV denotes the principal value. Our main result is as follows.

Theorem 1.1. Let (E°,n°) be a sequence of solutions for (1.1) such that ¢ — oo
with v = 2¢®/a > 0 fived, and initial data satisfying
(E*(0),¢*I.E*(0)) — (p,¢) in H',

1.10
(n°(0), |aV|~'n°(0)) bounded in L*. (1.10)
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Let T¢ be its maximal existence time. Let E® = (E°,E) be the solution of the

following nonlinear Schrodinger type system
2E — AE = [E’E + A, (E, - E)E

B 1.11
E(0) Z%(so—w,@—w), )

where B+ = (Ey,Ey). Let T™ be the mazimal existence time for E®. Then in the

limit ¢ — oo with Yo = 2¢%, we have liminf T¢ > T°°, and for any T < T,
E° — (€'E + e “'EF) — 0 in C([0,T); HY). (1.12)

We have asymptotic formula also for E*, n¢ and n¢, which we will give in a more
precise and general version of the above theorem (see Theorem 3.1). Here we just
remark that the singular part in the equation for E* actually comes from singular
behavior of n¢ and n°.

Remark that in the limit system (1.11), the L? norm of the solution decreases
in ¢ by the nonlinear interaction of [E; - [E5 at the frequency of size 7, because of the

dissipative part of AY, i.e. SAT = —ymd(|V] —7):

B = s |
MBI =~ [

This property is used in a forthcoming paper [18] to study the limit when v goes

2

/ (Ey - Ey)(t, &)e ™ da| dE. (1.13)

to infinity in (1.11). A similar phenomenon is known in the context of stability
of nonlinear bound states, to cause the radiation damping [22] in the nonlinear
Klein-Gordon equation (the linear ground state decays by the nonlinear resonance),
and the relaxation of excited states [26] in the nonlinear Schrédinger equation (the
excited states decay by the nonlinear resonance). In those cases, the operator .Aj
involving a potential gives decay in the ODE governing the amplitude of the bound
states. But as far as the authors know, the above theorem seems the first observation
with a rigorous proof for a nonlinear resonance leading to decrease of energy for the
limit wave functions.

The rest of the paper is organized as follows: First in the next section, we will
rewrite our equation into a first order system such that we can formally derive the
limit system. Then we restate our main result in Section 3 in the new variables,
allowing more general initial data, which can introduce some additional singular
terms into the limit system. After preparing some notations and tools in Section 4,
we prove first a set of uniform estimates in Section 5, and then prove the convergence
in Section 6.



We conclude the introduction with some notations used throughout the paper.

(@) = (+1a) 2, {a8) =R(a D),
Fla)i= [ Ga)gledds, (ulo), = [ @] ve),d

where a, b, f, g, v and v may be scalar or vector valued. We denote by F; the d

(1.14)

dimensional Fourier transform. In particular, the space and the space-time Fourier

transform are denoted by

Fap = (&) = /

RS

o(x)e ™ dr,  Fuu =u(r,§) :/ u(t, v)e” T dtdr. (1.15)

R1+3
For any function ¢, we define the Fourier multiplier o(V) := F; 'p(£)Fs. We will

use the following multipliers repeatedly:

I:=(V/e)™", Ari=—=20(V), w(€):=c(c)—1). (1.16)

2 Reduction of equations

In this section we rewrite the Klein-Gordon-Zakharov system (1.1) into first order
equations in time and also decompose n into different time oscillations, from which
one can easily obtain the limit system. The reduced systems will be suited also to
get uniform estimates as well as the convergence.

First we define (we will remove the ¢ dependence from E¢ and n°)
E, = % {E—ic’I.O,E}, E_:= % {F —ic’I.0,E},
E:=e B, E_), N :=n —i|aV| 5.
We also define Et = (Ey, E;) and E* := e~ 2E" for any E = (Eq,Ey). The original
functions are given by
E =Ry 4+ ¢ Ry, E =i (R — e UR,),
n = RN, n=—3(|aV|N),

where R and & represent the real and imaginary parts. Hence, the system (1.1) is

reduced to
{2@2 ~ AE = —In(E+E"), 1)
iN + |aV|N = —|aV|(E,E + E*).
¢ From now on, we will concentrate on system (2.1). Further we rewrite it into

integral form as

E = e *A/2E(0) — Spl.n(R + E), (2.2)
N = "VEN(0) — S, |aV|(E,E + E*), (2.3)



where the space-time operators Sg and S,, are defined by

1

t ) 1 t )
Spf = % / e B2 () ds, S, f = - / e1oVI=9) £ (5)ds. (2.4)
0 0

Next we decompose N into components with different time phases
N=N/ +N 4+ Nt + N,
N7 .= eloVIEN(0),

N%:= —S,|aV||E]?, (2.5)
Nt = -5, " aV|(E,; - Ey),
N~ = =S, ™"aV|(E, - Ey),

where the oscillation ayt = 2¢?t is coming from E* in the equation for N. Integrating

ia(|V|£7)(t—s)

on the phase e in s, we get

N = — [E]2(t) + e*VE[(0) + iS,0,|E|%,
Nt = — " A(E; - Eo)(t) + VAT (E; - Ey)(0) + iAT S, 0,(Er - E),  (2.6)
N~ =—e A (Ey - Eo)(t) + VI AT (By - E2)(0) + iAS S,0,(Er - Ea).

The second and the third terms on each line will go to zero in the limit due to

dispersion of e?l*VIt (

the decay for the singular operator ei‘o‘v‘t.Af; is given in Lemma
4.3). Hence plugging each first term into the nonlinearity for E, we get the leading

terms
E+E* ———]EZIE——l E,-Eq) + A (E, - Ey)|]E + + 2.7
n( ) |E| 2[.47( 1 Eo) .A,Y( 1 Eo)] osc. + o(1), (2.7)

where osc. represents those terms with rapid oscillation ¥ or e=2®7 and hence

goes to zero weakly in time. Thus we arrive at the limit system (1.11).

3 Main result

Now we restate our main result in terms of the new variables (E, N) introduced
in Section 2, slightly extending the initial data space for N. For that purpose, we
introduce the Banach space W*? on R3 for p > 2 and k € Z by the norm

itV

[ellwrr := sup [ oye. (3.1)
t>0

Theorem 3.1. Let (E¢, N¢) be a sequence of solutions to (2.1), such that ¢ — oo
with v = 2¢*/a > 0 fized, and ||E(0)|| g1 + [[N¢(0)|| z2owwr bounded for some p >
3 and k > 1. Let T¢ be the mazimal existence time of (E°, N¢). Then there is



T > 0, depending only on the size of the above initial norm, such that T¢ > T and
NE(E) ||z + [INC(E)|| 2y is uniformly bounded on [0,T] for large c.
Moreover, assume that the initial data satisfies as ¢ — o0

E°(0) — 30> in H*,

o 3.2
efo'wz'ytez\aVHNc(O) _ Elluaoo in D/(<0, OO) % R?,)’ ( )

for o =0,4+. Let E® be the solution of the following limit system
2E® — AE® = [[E®|> + Ru*®E® + [A, (B - EX) + ut>/2] B~ 5.3

E>(0) = &*.
Let T > 0 be the maximal existence time of E>. Then we have a lower bound

liminf 7¢ > T°°, and for all T < T we have uniform convergence
E® —E® — 0 in C([0,T); H'), (3.4)

and also, by decomposing N¢ = N7¢ + N% + N*t¢+ N=¢ according to (2.6),
N% 4+ |E®|? — N — 0 in C([0,T]; L?),
N~ + " A (EF - E) — N~ — 0 in C([0,T]; L?), (3.5)
N*e 4 e M ATER - EX) — N — 0 in C([0, T); L* + W*P),
for all p > 3, where
Nfe = eilaVitne(),  NUIe = ellaVitgee|2, 56
NHe = VAT (@5 95), N7'° = *VIA (97 - OF). '

Moreover, we have

lim ||€is‘v|(Nc — N7)(#)[| L2wrr = 0 (3.7)

uniformly for t € [0, T] and for large c.

Remark 3.2. The uniform bound of N¢(0) implies that the convergence to u’* in
(3.2) actually holds *-weakly in L*°(0, oo; L? + W*?), so that we can make sense of

the products with ;7 in the limit system.

Remark 3.3. (3.7) implies that the singular parts u?> are preserved for later time,

namely
e—ioa'yteia(t—toﬂv\Nc(to) N /Laoo‘ (38)

In other words, the singular initial layer N /¢ does not affect these terms (neither do
the regular ones N%¢ and N~1¢). This follows from the decay property of eitw'.A;r ,

see Lemma 4.3.



In particular, if we start with initial data N¢(0) bounded in H? for some o € R,
then we will never encounter p*>, because for any xy € C5°(R?) we have

Ix(z/R)e "V EN(0) | r2me S v/ R/ N(0) |11, (3.9)

see [16, Lemma 8.1].

Hence nontrivial ¢*>* can be created only from singular (in the Fourier space)
initial data. For example, if pJ and pud are bounded complex-valued measures on
0,0) and (a,b) x S? respectively, then

Ne(0) = 7 / €726(1¢] — /)l (r)dr

o/ 3.10
750 [ 60l = v~ )i (7€ lehr (310
= Fy alePug(elé]) + F5tapg (a(l€] =), €/1€])
is bounded in W* for any k € N, and the limit profiles are given by
b
p<(6) = (2m)° [ eu(rdr = (2m) 2 (o)
0 (3.11)

preet) = Fy o (lel - 7)/ e g (1,6/1€)dr = Fy o (1] — 7)mg (7, €/1€D)-

Note that 1" and ;7 do not see each other because of the rapid oscillation e~
If we choose N¢(0) = N(0) independent of ¢, then the convergence (3.2) implies that
u%> is a constant, and p*° is time-independent with Fourier support on {|¢| = ~}.
We remark that o = —1 in (3.2) would give always 0 in the limit because of the

oscillation e**(VI+"! which is uniformly rapid for all frequency €.

Remark 3.4. For the uniform bounds, we can sharpen the W*? norm by replacing
LP with the Lorentz space L.

Remark 3.5. Theorem 1.1 easily follows from the above theorem by transforming
the variables back to the original (F,n), in the case N¢(0) is bounded in L? and
hence ;% = p+°° = 0. However the singular part W¥? is needed even for the proof
in this case. Indeed, to prove the above result, we will work on some small time
interval (0,7}) on which we can prove some uniform estimates, then we will pass
to the limit. Then, to extend the convergence to the maximal existence interval
(0,7%), we need to iterate the same argument on some interval (77, 7%). We notice
that at the time Ty, N*¢(T}) contains the singular part

NFE(TY) — — AT (EX(TY) - ESS(T1)), (3.12)

which is bounded in W*® 4+ L2 for all p > 3 and k& € N by Lemma 4.3, but does not
belong to L? in general.



Our first order system (2.1) is not exactly invariant for time shift, because of the
oscillation factors eiiCQt, but for the modulated translation

(B, N) — (“OE(t + to), N(t + to)), (3.13)
for any ty € R. Correspondingly, we have an immediate

Corollary 3.6. In the above theorem, assume instead of (3.2)

e~ RES(0) — 3O in H,

| ' (3.14)
efoza'y(t+to)ez|aV|th<0) N Huooo in D/(<O, oo) X ]R?)))

for some ty € R. Then we have the convergence

eTCNES —E® — 0, N +|E*]* - N — 0,
N—¢ + eia’y(ttho)A;(W) _ Nﬁlc N O’ (315)
N*e 4 emionlthto) g+ . ) — N+ — 0,

in the same topologies and with the same E> and N*I¢ as above.

Proof. Assume by contradiction that one of the convergences fails. Extracting a
subsequence of ¢, we may assume in addition that ¢t — ¢ for some # € R. Then
we can apply the above theorem replacing ®>* with e?®> and ;7> with €27 7.

Since the limit system is invariant with respect to the “gauge transform”
(EOO,MU) s <€i9Eoo, eQm‘GILLcr)7 (316)

the theorem gives all the desired convergences for this subsequence, a contradiction.
O

Strictly speaking, we will be using the above logic implicitly in the proof of the
above theorem when extending the convergence from the first time step 7 to the
maximal existence time T°°. Namely, we should apply the above argument to the
modulated translation (e’ E(t +T1), N(t +T})) to get the convergence in the next
time step (cf. (3.8) for the persistence of (3.14)). We will not repeat this in the
proof given below.

4 Preliminaries and notations

Before starting the proof, we prepare basic settings and estimates together with

some notations.



4.1 Frequency decomposition

Let x € Cg°(R?) satisfy 0 < x < 1, x(£) = 1 for |¢] < 4/3 and x(§) = 0 for || > 5/3.
For any a > 0 and any function ¢, we denote

f<a - f<a/2> (a > 1)
o = x(|V/al)f, o =f—f<a, foi=<"7 = . 4.1
f<a =x(IV/aDf, foa =T fear f {f@’ (a<1) (4.1)
Hence we have the inhomogeneous Littlewood-Paley decomposition
f:Zf]’ D:: {1,2722723,24...} (42)
jeD
In addition, we denote the non-resonant frequency part by
Nx =N —N,. (4.3)

We note that the singularity of Afy“ is only around || =« in the Fourier space, and
so it is regular in the physical space.
For bilinear interactions, we denote frequency trichotomy by

fo=9)a+ (f9)ur+ (f9)uu,

= i+ Y f+ Y figp (4.4)

I<h/4 h>4l 4i>5>i/4

where 4, 7, k, [, h run over the dyadic numbers D, and LH, HL and H H respectively
indicate low-high, high-low and high-high frequency interactions.

If no ambiguity can occur, we often abbreviate such as (fg)y; := ((fg)y ) and
(f9)y+z = (f9)y + (fg)z where Y, Z = HH,HL or LH and [ = a,> a,< a. For
example, (EF)prx = (EF)uL)x, (EF)pnsa = (EF)nm)>a, etc.

4.2 Strichartz norms

We briefly recall the Strichartz estimate for e=#4</2 and ¢*1°Vl on R? (see [10, 13]).
For the Klein-Gordon equation, we have

HeiitAC/QQO”IC_*‘LP(]R;B&’(R3)) S llella, (4.5)

where B, := By , denotes the inhomogeneous Besov space (cf. [5]), provided that

00,1, pe(2,00], (p,0)F#(2,0),

1 1 1 6 0—1 1 20 4.6
—= -4 =14 — M:—(1+—), (4.6)
qg 2 p 3p D P 3
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where 6 = 0 corresponds to the Strichartz estimate for the wave equation, and 6 = 1
without I, is for the Schrodinger equation. Moreover, for n, we have

”eit‘av‘SDHa*l/PLP(R;Bg(H@)) S llellzes (4.7)

where Bg = B;z denotes the homogeneous Besov space, provided that

1 1 1 2
2<p<o0, —+-==, o=—-. (4.8)
P q 2 P

For the Duhamel terms we have similarly

1SEf sy, S 1 f sty 190 f s, S 1Flsrov;, (4.9)

where for each ST(E); (resp. ST(N);) we could choose any space in (4.5) (resp. in

(4.7)), but for the sake of concreteness we choose the following specific exponents:

ST(E), = L*H' N I7?°L*Bly,. N 1723 B}°,
ST(E); = L'H' + 12/ L 735/7+13/ 2L By, (4.10)
ST(N)3 = L®L*Na ' AL3B;*?, '

(

)3
ST(N); = L'L* + o' L3 B2 + oML/ By,

where # = 1 for the second, the fifth, and the sixth spaces, and 8 = 0 for the third

one. In applying the Strichartz estimates, we will write these exponents explicitly.

4.3 Fourier restriction norms
For any s € R and any interval I C R, we define

X0 = (e A (r) | w € (T HY)), .
vl = {eloVity(t) | u e HNI; H?)}. '

with the norms

iAot /2

[ yoi@ = e @) g ). (4.12)

Xs1(I) = e U(t)HHg(I;H;)a v

Those norms on the whole line ¢ € R can be represented by the Fourier transform

xea@m = r = (@) allyz . o]

[l vorr) = (T = alg)(€) 0llrz,.  (4.13)

The distance from the characteristic surface, such as |7 — w(&)| for X*! plays an
essential role in using those norms. So, we consider an explicit extension from (0, T')

to R. We define an extension operator pr for any T € (0,1) by
pru(t) = x(H)u(ur(t)), (4.14)

11



where pp(t) := max(t,27 — ¢,0) and x € C3°(R) satisfies x(¢) = 1 for [¢t| < 2 and
x(t) =0 for |t| > 3. It is clear that pru(t) = u(t) for t € (0,7), and pr is bounded
on H}(0,T; H*) — H} H*(R'") uniformly for s € R and 0 < T < 1.

For the bilinear estimates using those norms, we introduce decomposition with
respect to the distance from characteristic surface. For any $: R* — R and § > 1

and any function u(t,z) on R x R3, we define

Pr—pe)<su = Fy x((1 = B(£))/0) Fau,

(4.15)

Pr-pg>st 1= u = Pr—p(g)|<su-

Estimating in the Fourier space, we easily obtain
1P wisstll s S 0" lullxor, (4.16)
1P —afeyssull 2ms S 0 lullysr, (4.17)

We can derive similar estimates in L{° setting without bypassing X*® spaces:

Lemma 4.1. We have

Smin(6™ D) £ e ). (4.18)
L (R;.X)

or / (Prosf)(s)ds

uniformly for any 6 > 1, any T > 0 and any Banach space X .

Proof. The left hand side is bounded by

| [ oesnoras

: (4.19)
ITeb(6t) * fIoll e o.rix) S 07 I Nl

where we denoted ¥(t) := F'771(1 — x(7)) € L'(R). We note here that the proof
is simpler than that of lemma 2.3 of [16] due to the different order of the integration

< B fllvorx) S Tz,
Le(OT:X)

and the extension pr. O

4.4 Singular decay estimate

Here we derive some estimates on the singular operator A;“ together with the wave
propagator. First, we have a pointwise decay estimate:

Lemma 4.2. For any ¢ € S(R?) with symmetry o(x) = ¢(|z|), we have

(@) e —lal) ™" (2l <),

(o) (2] > 1), (4:20)

VAT o ()] S {
uniformly for t > 0 and x € R3.

12



Proof. By the Laplace transform, we have

eithIA;rgp(x) — etV slirfo |v|eis(|v|_7+,-5)¢ds
° (4.21)
= —ie" lim ||V 1= 0+9) o .
e—+0 J,

Let |x| = r. By the Fourier transform, the expression before the limit is equal to

(271_)72 / / pei(P*'Y+i€)(t+s)f3¢(p>Mp2dpd5. (422)
0 0

pr
Define f(t) by Fif(p) = p*Fsep(p) for p > 0, and F, f(p) = 0 for p < 0. Then

(4.22) = /oo flEtrts) = fE=1+5) Grreers gy
0

2mir
L L oo (4.23)
= —/ / f'(t+ 0r + s)e” ) gsqg.
) -1Jo
Since Fif € W2t and F, f = ipF.f € W3, we have
OISO OIS (4.24)
Hence we have for r < t,
@ISO [ fe-res s S ) =) (4.25)
0
and for any r > 0,
1(4.22)] < <r>71 sup/ (t+0r + s>72ds < (7‘>71, (4.26)
0I<1JR
both uniformly in € > 0. Thus we get the desired bound by ¢ — +0. m

Applied to the Littlewood-Paley decomposition, the above estimate immediately
implies the following LP decay.

Lemma 4.3. If¢>1,p<o0, 1/g—1/p > 2/3 and (p,q) # (3,1), (00,3/2), then
we have

€A% 0, oy S VT2 1, (127
In addition, we have
[ AT o ooy S lloallresy, €M AT @5 llewe) S Ny llpvmacas),  (4:28)

where LP1 denotes the Lorentz space.
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Proof. Let ¢ € S(R?) be radially symmetric and F31 (&) = 1 for €] < v+1 including
supp F3¢p-, so that we have

eit‘v‘.,él;rgp7 = (py * e”'le;F@D. (4.29)
Hence by the Young inequality for the Lorentz space, we have for the first case,
e AT 0 10 S llpn el ™ ATV (4:30)
where 1/r =1/p—1/q¢+ 1 € [3, 00|, and applying the above lemma to v,
eV AT Y || o S #7300 1/P72/5), (4.31)

The second case is just the critical case for the Young inequality. O]

We will mainly use the above LP decay with ¢ = 1. From (4.23), it is clear that
the pointwise estimate for » > ¢ can not be improved, and hence e”'V'Ajcp does not
belong to L3(R?) in general.

5 Uniform estimates

In this section and the next one, we prove the main theorem 3.1. The main part of
the proof consists in estimating the following norms uniformly in ¢ (and «) and for
small T" > 0.

IEN == [[Ellsuer 0,y + 1Bl x0.1),

(5.1)
"N" = ||N||[Str”(

1/2
2,00

0,7)+L5° (0,T; B3/ 2 )NV (0,T)+L5° (0,T;Wk-p)?

for arbitrarily fixed k > 1 and p > 3, where Str”, Str™, X and ) are defined by

Strf == {u € L®(H") | uze € L*(Blys), use € cPLY(BY*)},
St = LOO(L2> N 0671/31‘/3(36—2/3)7 (52)
X = [0X0L, Y = [y,

Note that in the Str norm, the frequencies lower than c are estimated in the second
space in (4.10) and the higher part in the third space.

The uniform estimate will be done in this section, while Section 6 will be devoted
to the convergence proof. Let us outline the proof for the uniform bounds. First in
Section 5.1, we derive the estimates in the space-time Fourier spaces X and ) by

simple product estimates, from the Strichartz and energy bounds.
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To estimate the Strichartz norm of £, we decompose

E =e 2R (0) — Spln,F + (nxF<o) nn+Ln + Z(nX(sf?k/c)Fk)]

k>c

(5.3)
- SEIC[Z(TLX(>'W€/C)FI<:)LH + (nx )i

k>c

where ' = E + E* and 4 = «/e with ¢ > 0 given in Lemma 5.4. The terms
appearing on the first line of (5.3) will be treated in Proposition 5.2 using only
Strichartz bounds. The terms on the second line of (5.3) require the use of the
nonresonant property and are treated in Proposition 5.5.

To estimate Ny in Str™ + Lo BL/?

2 o0, WE Write

N =e*VIN(0) = SplaV| > Y (Br, E+E7),

k j<ik/c

— SaV| > " (B, E+EY);.

k j>Fk/c

(5.4)

For the part where j < A4k/c, we cannot use the nonresonant property but we can
gain powers of ¢ because j is much smaller than k. This part can be treated only
by Strichartz in Proposition 5.3. The part j > k/c, is treated in Proposition 5.6
using the nonresonant property of the interaction.

Finally, the estimate on N, € L= (W*?) is done in Section 5.4 by integrating by

parts in time.

5.1 X x ) bounds from Strichartz bounds

Now we start the actual proof of theorem 1.1, or the general version 3.1. Here we
derive the X and Y type estimate from the Strichartz type bounds. We have the
following Proposition.

Proposition 5.1. For any functions n, E and F on (0,T) x R, we have

ISELenE| xor) S TYOIN| 2 0z5e24win | Ellsuwe o)

(5.5)
1SulaV (E, F)llyo1r) S TYCNE oo 0,502 |1 F llse 0.1

Proof. Decompose N = N; + N, such that N; € L*L? and N, € L°WF+P. We use
by Sobolev that Str? C L3L® + ¢ V3LAL®, WP C L™, and that L'8 x L? ¢ H~/¢
to deduce that

In Bl sp2qe1rsps-1e S ([ Nil| o2 || Bl g

(5.6)
[n2E || o2 S ([ NallLoopoo || Bl zoer2 S [ Nallpoowrn | Bl oo L2
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Since ¢ V6H-1/6 Ic_l/GLZ, we obtain the first estimate.
ISelenEllxory S TN Loz iwim | Ellgys- (5.7)
For N, we get exactly in the same way
IVCE, F)ll a2 se-1spsm-1s S IV E| L2l Fllsyr + IV F[[poe 2| Ellgier, — (5.8)

by putting the low frequency in the Strichartz space and hence we obtain the second
estimate. [

5.2 Strichartz estimate for regular interactions

To derive H' x L? and Strichartz bounds for E and Ny, we decompose the bilinear
terms into frequencies as in (4.4). Those interactions where the less regular function
has lower or similar frequency are relatively more regular. In [16], these term were
treated only by the Strichartz estimate. Here, due to the low regularity, we have to
treat some of those terms using their nonresonant property. We have the following
estimates, which will be used with £, F' = [E or E*

Proposition 5.2. For any functions E and n defined on (0,T) x R®, we have

1Selc(nB<e) nmsrllsuror S TVl e 0,002 | Ellswr om)
||SE‘[C(nE> ||StrE(0,T) f§ T””HLOO(O,T;WLP) HE||L°°(O,T;H1)7
1S5 ) (nesnreE)lsus o 1) (5.9)

k>c

1/2 -1/2
,S (T+T C )||n’||Str”(0,T)+L°°(0,T;Bé{;)||E||SU¢E'

Proof. For the first estimate, we use the Sobolev and the Strichartz estimate, hence
it is bounded by

H(nEgc)HHHHHLl?/?Bg §T1/4||n||L°°L2HEHStrE' (5.10)

/7
The second estimate easily follows from the energy inequality and
1nE| peort S Inllgewiny | Bll o (5.11)

For the third estimate, we decompose n = w + w such that w € Str" and
u € L“leffo. For the part in Str", we have

I LewsspreBi)lin £ (/R |1 Bl ok,
ke k>e (5.12)

S ) L
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Integrating in time, we get

1S5 ) (wesnseBi)llsur S T2 N0l s s poass| Bocll ooz (5.13)

k>c

For the part in L=BY?  we have

2,007
| ;Ic(us&k/cEk)HHl S ||H(C//f)usak/c||L°°HEka||,Z%>C S HUHB;(;HEHHI- (5.14)
Integrating in time, we get
1551 3 (wzsureBR) s S Tl gy 1Bl (5.15)
k>c

O

For the estimate of S,a|V[(E, F)) in Str" + L*By? where E,F = E,E*, we

2,00

have to use the nonresonant property for almost all the interactions. However, there
is a resonant case where we can only use the Strichartz estimate. The resonance
we have here is actually less severe than the one at the frequency ~. This is the
case when ¢j ~ k ~ [ and EF = E and F = [E*. For this case, we use the following
proposition

Proposition 5.3. For any functions E, F on (0,T) x R®, we have

S Z a|V(FER) <irsellsumory S T2 Fllswe o | Ellswe o) (5.16)
kzc

Proof. Here we use that they are HH interactions. Hence,

150l VI(EER); s S afl (L)l goso oo
5 a2/3j5/3|| (EEk)] ||L3/2L6/5
5 042/3j5/3071/6171k72/3“F‘lHLQHl HEkHC,

S e /PP Bl gz || Bl

(5.17)

2/3

1/6LGB3

- 2/3
|C 1/6 6 B2/

which can be summed in (30,0} (cj < k ~ 1), using the Young inequality for convo-
lution in Z (cf. [16, Lemma 2.6]), and yields a factor ¢~/2. O
5.3 Bilinear estimate for nonresonant interactions

The remaining terms can not be estimated simply by using the Strichartz estimates.
We need to take into account the nonresonance property and use the X** norms.

Here nonresonance means the following simple trichotomy: one of three interacting
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functions (including the output) must be away from the characteristic surface in the
space-time Fourier space. The X spaces give a gain for functions away from the
characteristics as in (4.16), (4.17) and (4.18).

Now we make the above statement into precise estimates. We estimate interac-
tions of the form (R(N)E | F),, for N € Y(R) and E,F € X(R), splitting each
function with respect to the distance from the characteristic surfaces. Using (4.15),
we define

N = Prajgj<sN, B = Pr_wgi<sE, B = Priuioraci<sE",

. . (5.18)
N¥ = Pr_ag>s N, EY = Pr_ue)»6E, E*F = Py 12256 E%,

where ¢ > 0 will be determined according to Lemma 5.4. We denote n’" := R(NT),
n® := R(NC). Notice also that E*¢ = E¢* = ¢ 2<(ES ES). Then the non-

resonance property is expressed in the following way.

Lemma 5.4. Let ay = 2¢* for some fized v > 0. There exists € > 0 (one can take
e =1/80), such that we have the following (i) and (ii) for large ¢ (say ¢ > 2(y+1)).
Let j, k,l € D be dyadic numbers.

(i) If 6 <eaj and j > 1, then we have (n§E{ | FF) = 0.

t,x

(ii) If 0 <eaj and min(k,l) <e2j, then we have (n§,EC 1 FE), =0.

t,x

Proof. By the Plancherel identity in space-time, we have

(nJCEkC | Flc>m = /njCEkCEC(t, x)dtdz

~ ~ —~_ (519)
= C// nf(T(J,fo)E;?(Thél)F}c(T, §)d§1d7'1dfd7-
(10,€0)+(71,61)=(7,€)

For the proof of the first point, we want to show that the set

A = Supp(nf (10, &) B (11, ) F7 (7€) N{ (70, &) + (11, &1) = (7,€)} = 0. We denote
the distance from each characteristic surface in the integrand on the right hand side

by
do = |10 F l&ol|, dv = |1 —w(&)|, d =1 —w(§)], (5.20)

where we denote w(&) = ¢2((|€]/c)—1). Assume that A # @ and let (79, &, 71, &1, 7, €) €
A. By the constraint (79, &) + (11,&1) = (7,€), we have

60 > do + dy +d > || — [w(é) — w(&)]

5.21
> aléo] — cleo] > aléol, 2
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since @ = 2¢?/y > ¢ when c is large. Hence, by choosing € small enough, we have
60 > do + di +d > /] > %&j since j > 1, and we get a contradiction. Hence,
A = () and (i) is proved.

For the proof of the second point, we argue in a similar manner. We use that
the characteristic surface for E* is 7 + ¢*({¢/c) + 1) = 0, so the distance from the
characteristic is given by

dy = |1+ ({1 )c) +1)). (5.22)
Hence we have
do+dy +d > |al&] — 26 —w(é) — w(§)]. (5.23)
Since |&o| 7% 7, we have
|aféol — 2¢*[ ~ aléo| +2¢* 2 ay, (5.24)

where we used the fact that if j =1 > || then v > 1 by the support of F3nx and
hence 2¢> = ay > o = aj. The condition on k and [ implies that

w(&r) +w(§) < c(|G] +1¢]) < e(2min(|&], [€]) + |Sl) < (ea + 2¢)5. (5.25)

Hence we get a contradiction if ¢ is small enough and «, ¢ are large. This ends the
proof of (ii). O

Now we proceed to bilinear estimates. We start by looking at Sgl.(nE).

Proposition 5.5. For any functions N and E on (0,T) x R3, we have

I1SEle(nx E) i llswr o) (5.26)
S(TY0 + )| Nx |l oo 2 0090w 0,0 | Ellste 0.090 0.1

||5EIC[Z(”X(>&k/c) Ek)LH ||StrE(0,T)
k>c (527)

S (T + V) |INx |l oo 200000, 1 Ellste 0. myn 0.1
where n .= RN and £ =FE or E*.

Proof. In order to apply Lemma 5.4, we first extend those functions to R by using
(4.14):

E,(t) = e—itAc/2pTeitAc/2E(t)7 N/(t) _ ez‘\awtpTe—z’\aV\tN(t)’ (5.28)
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which does not effect them nor the output on (0,7"), and we have

IEx@ S IEllxor), [N lye S INllyoz), (5.29)
IE ooy S Bl ooy, N[z r2@y S NNV || Lo 0,7:22)-

In the following, we do not distinguish (E’, N’) and (E, N).

We decompose each function into dyadic pieces as (n;Ey);, and let § := eaj as
in Lemma 5.4. Either by HL or by j > 4k/c, the condition of the lemma holds for
both cases with £ = E or £ = E*, for sufficiently large ¢. Hence applying to nFE

the same decomposition as for F, we have
(njEx) = (nf Ex)i+ (nSEL )i+ (nS EY) (5.30)

Each term is estimated as follows, where we regard ¢ just as a constant.
First we prove (5.26), hence k < j ~ [. Using the Sobolev embedding 3%8/5 +

c1BBY c 13 BYS we have

1Se1:(n] Bilillsws S (1) 1] Bilill oo
/) UnT Nzeal Bl 2 roe

1, a N (5.31)
{{/c) 1l(J/C>1/6a—jHNijTl/6<k/0>l/3/f YON Ellsus 0.1

S
S
S (/)P OR YO IN |y | Bl
which can be summed in 67}, (k < j ~ 1) and gives
ISEL(n" E) il S TSIV [y |Ellgr (5.32)
Similarly, by using L? C B? we have

I1SEL(n§ B Millss < {1/€) M UING 202k (k /€)™ ()~ [ Exl|x

(5.33)
S (/) k)0 (R f)* e IN Y 22| [E
This can be summed in £} 30, (k < j ~ 1) and gives
IS8 LnC EX)G sl S V22N oo ooy 1Bl (5.34)
Now, using Lemma 4.1 and the Sobolev embedding, we have
162005 B Nemsimas S 06 40/e) PPN itk B N

S (D)UY T PR N | oo 2 | El| e,

which can be summed in €3£, (k < j ~ 1). We then use the fact that 0*1[/0‘3337/02O C

¢ 128tr¥ | deducing
1867nC B e S €N L g [Ell s (5.36)
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Next we concentrate on (5.27), hence we have ¥k/c < j < k ~ [ and k > c.
Using the Strichartz estimate, we have

ISEL(n] Eollsue < <l/0>_1||(nfEk)zHIg/2Lm/7B;0/

— . . a
STY5(1/e) 1/239/10<J/C>1/6a—jHNHyHEHsuEa

7(0,T)

which can be summed in £}¢50;(j < k ~ 1 2 ¢), and yields a factor T%/°.
In the same way as (5.33), we have

1S Le(n§ EDllsur S (1) G INS |p2na (/€)™ ()~ Bl

5.38)
S (/e N 2 | B s (
which can be summed in £}6.0}(j < k ~ [) and we get a factor ¢=/2T"/2,
Finally, in the same way as (5.35), we have
1 - ,
1SpIe(nf ) Nle-tpemsre S prAUA 2N | oo 2| B o (5.39)

which can be summed ;05 (j < k ~ 1). We then use that c‘lLooBgfi C /28",
getting a factor ¢—1/2. O

Next we consider the nonresonant term in the equation for n.

Proposition 5.6. For any functions E and F on (0,T) x R?, we have

”S”Z Z a|v‘<Ek’F+F*>XjHStr”(O,T)-i-LO"(O,T;B;,/fo)
b g>k/e (5.40)

S ||]E||StrE(0,T)nX(0,T) ”FHStrE(O,T)ﬂX(O,T)

Proof. We will denote £ = E and F' = F or F*. Decomposing into dyadic pieces,
we consider interactions of the form (Ej, Fy); for N with j > yk/c. Hence,

(Ex, Fi); = (Ef, B + (Bx, '), — (BEFF), + (B FE), (5.41)
By using the Strichartz estimate, we have
1SulaVIE, Fi),llsun < OéJ'H(E;fE)jHalmLs/sB;;g
< aja O B [l P Pl s e (5.42)

aj . — _
S 2G93k 1 P Bl Pl

~Y
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This is summable in 3¢} ¢} for | < j ~ k and for j <k ~ [. The above term can be

bounded also by

(B F)llree < ad T PE oo (/)P Fill o g
| (5.43)
S R T Rl My

which is summable in Ejl-éllﬁ,lg for k <1~ j, yielding a factor 7"/6.
For (Ey, F"),, we have just to switch the roles of k and I. For (E[, F}"),, we

have a better bound
1Sn| @V (B, FF) llsur < ajll (B Bl e

5.44
af) M (kDY (& /)71 e) B Pk .

S
S

which is summable for all j, k, I and gives a factor ¢~/2,

Finally, for the last term of (5.41), we have
F aj 3. -
1SulaVIES, FO); e 7]83/231/2(/?1) N Ewl| oo | F | oo o (5.45)

where s = min(j, k,1). This can be summed in ¢ ¢} for k <1~ j, 1 <k~ jand
1/2
2,00°

k ~ 12 j and gives a result in L>*B
O

5.4 The resonant part of N

To estimate the resonant frequency part N, we integrate by parts as in (2.6). Then
the estimate on the boundary terms follows from Lemma 4.3. The estimate on the

integral terms use the following proposition

Proposition 5.7. For any functions E and F, we have
[Sn(E, F). Nzoore S TIE| oo -1 [|F|| oo a1,
A5 S0 (B )l S TUE] st [l e (5.46)
AL S (B, F*)_ || ooy S TNEl poo g1 |F || oo e

Proof. For the proof of the first two estimates, we have just to use that

I(FE), |22 S I(FE), |2

. . .4
S ST F Bl e S IF ot [ -1, (5.47)
k~l

and then apply the energy estimate. For the last term, we use the above L! bound
together with Lemma 4.3 to deal with A7 O

We then use that ||E|| ep1 < |E|| e + |E|| oot [| N || oo 2410
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5.5 Concluding the estimates

Applying the propositions of the previous subsections, we can estimate all the terms
appearing in (5.3) and (5.4). Recall ||E|| and || N|| defined in (5.1).

Proposition 5.8. If (E, N) is a solution of (2.1) on (0,T'), then we have the fol-

lowing a priori bound

IEN S IEO) | + (T 4+ VHINNIE],

(5.48)
INI S INO)] 22w + BN (1 + TN

Hence, it is clear that there exists a ¢y big enough and there exists a uniform
time 7" such that the equation can be solved for ¢ > ¢y on the time interval (0, 7).

6 Passage to the limit

In this section, we prove the convergence towards the limit system. We denote

NOoo _ —|E°°|2,

+o0 ioyt A+ (oo | oo —0o0 1yt A= (E® . EP (6.1)
N7 = —e"TAT(EF-EF), N =-—c A (B ER),
EY = e i A Mt/2gee - Now.— No% 4 NI forg =0, +, (6.2)

where NI = N°I¢ were defined in Theorem 3.1. We also denote
Noo — NOoo +N+oo _i_Nfoo’
N =Nf + N ¢ Nt N7 (6.3)
NY = N®° 4+ NI = N% 4 Nt 4 N,

Taking the real value, we define also nf = RN,

n = RN = —[EX[ — R[EA, (B - B, (6.4)

and n¥ = RNY = n>® + nl.
We will argue in a similar way as in [16] with the difference that here we have
to estimate the whole Strichartz norm. For any Banach space Z for space-time

functions on (0,7) x R? or space functions on R?, we will denote by
o(Z), O(Z), (6.5)
those sequence of functions which tends to 0 as ¢ — oo in the Z norm, and those

sequence of functions bounded as ¢ — oo in the Z norm, respectively. We want to
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prove that
E —E* € o(Str"),
E - E* € o(X) + O(1.X""),
N — N¥ € o(Str" + L®(By2 + Wh?)),
(N = N)x €0()),
for any p > 3, under the assumption that E(0) = E>(0) + o(H') and N/(0) €
O(L* + Wk»),
For the limit solution, we obtain E® € L*H' N L?B} in the same way as for

(6.6)

the usual NLS, using the Strichartz estimate together with the following nonlinear
estimates
IAVEE)y + pX)Gllreem S IEF)y[[poerr + (17 zoewrn] |Gl Lo
S WEN e | Fllzeemn + (|22 [ poowr o] (|Gl o,
| (EF)xGllgzgy , S TV IEF || ey |Gl oo
STV E| oo s | Fll oo s |Gl oo (6.7)
A (EF)x Gl S TV EF||pawn |Gl pagsynee)
S TN Ell e |F | posincoo) | Gllpaminr=)
S TV ot |1F 2 s VN e NG i |G

L>H? L2B} L>H? L2B}’

where in the last step we used the real interpolation (L8, B§)1/21 = Bé{f C L*°, and
in all cases we used Lemma 4.3 to treat A;r. Since e (A<=A) ig strongly convergent
to 1 on H! uniformly for ¢ € [0, T], we deduce that

E“ = E® +o(Str?), E* e O(X"), N e O(L>wWkr +yoh. (6.8)
Denote [E] := E + E* and E+ = (Ey, E;). We decompose
E-E“=FE'+E*+E*+E* 4+ E°, (6.9)
where each E7 is defined by the following:
B = e S2(E(0) — E*(0)),
E? = Spl, {[|IE°°|2 — RUC)ES + [A (B EF) 4yt /Q]E“}
— Spe A2 JIE=|2 - RO 4 [ A, (B - B5Y) + /2B |
E? := —SpI.n|[E — E¥] — Sgl.(n — n®)[E“], (6.10)
E* = —Spl.(n'[E¥] — Ru"E* — ,u+°°EWL/2),
B’ = Sple ™t E*PE" — %SEICeWAV(E‘fO - E°)E

1 S 1 ot
. §SEICe—za'ytAy(E<1>o . Ego)Ew . §SE]c€_2m7t«47(]E‘f° ] E?)E J_‘
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We treat each E7 one by one. We denote the small factor by
k=TS, (6.11)
First we have immediately from the initial convergence,
| xus = o(1). (6.12)

Next using the estimates (6.7) together with the Strichartz estimate as well as the

i(Ae—A)t

strong convergence of e , we get

1E2lsueny = 0(1), B lgeersx10 = O(1). (6.13)
Using Propositions 5.2 and 5.5, we get

HE?)HStrE SRHE - EwHStrE + ’%HN - NwHSt?erLOO(Wl p+Bl/2)

. (6.14)
+R[[(N = N¥)xlly +o(1),
and using Proposition 5.1,
12l S KIE = E¥[lge + 6N = N?|| oot r2). (6.15)

For F, and FEs5, we use their rapid oscillation in time. For the higher frequency
Nih, we integrate by parts after cutting the high frequency of E. For any € > 0,
there exists K > 1 such that [|E¥ . ||g,.2nx < € and so by Propositions 5.1, 5.2 and
5.5, as well as (6.7), we have

w oW comw-L
1SpLe(n' B ] = Ru*¥ES o — 1Bl /2)lswmnn S € (6.16)

~

ilaV|t

Hence we may replace E* by EZ; in E*. Integrating on e , we get

25ple >27]EZK = [ B2, { [aV[~'N >2’y EﬁK}]
—2iSpl. {(JaV|™'N >27 )JOEL  } (6.17)
+ SpAL (0¥ N B )

Since |aV|["'NZ, is bounded in o' L™ (H'+W??), the first two lines are bounded in
I. X1 For the last term, we need to integrate once more, which yields similar terms
but with one more |[aV|~! and A.. Since A%l < O(a??|V|) and A2 < O(a|V|?) on
H*, and |aV|7?NZ, is bounded in o 2L>(H? 4 W??), those terms after the second
integration are bounded in c‘lstr Na tXx.

The other terms including N
+ilaV|¢

o2, Or EZ% are treated in the same way, integrating

on the phase e or e &FVI=7)  The denominators are never singular thanks to
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the frequency restriction > 2v. Actually it is not needed for the term NE*. Also, the

same argument applies to E° without any low frequency cut-off, just by integrating

tiant —2iayt

on the phase e or e . Thus we obtain

1E°lseer = o(1). (6.18)

It remains to estimate the part in E* with Né% and EZ;, which we further
cut-off in the physical space. Fix x € C§°(R?) satisfying x(z) = 1 for |z| < 1 and
x(w) = 0 for |z| > 2. There exists R > 1 such that [|(1 — x(2/R))ELy||peern < €
and so

Lo, [(1 = X/ R)EL [l + [17°(1 = X(2/R) Bl S (6.19)

Hence its contribution to E* is O(e) in I.X "'
Thus we may replace E<x further by x(z/R)E<k. For the singular part, we
may replace N by N/ because (N! — Nf)co, — 0 in L®WHkP by LP decay for
eVl and Lemma 4.3. Then the Fourier and physical cut-offs together with the time
integration provide compactness for the convergence in (3.2) such that
1Splex(x/R)(nky, — RuP)E| Lo — 0,

ia N (6.20)
|Sel.x(z/R)(e WtNéQ,Y — utVE || peorn — 0,

which implies also the decay in Str? by interpolation. These terms might not go to
0 in X, but are bounded in I, X'!'. Thus we conclude that

E* € o(Str®) N [o(X) + O(I.X")]. (6.21)

Gathering the above estimates, we obtain
|E - E* - B' = E|lx S K| — E[lgye + £V — N¥[l ez somny + olL),
B — E*[lsr S KIIE = E*[gm + 5|[N — N®
+A[[(N = N¥)xlly + o(1).

HStr”—f—LDO(WLP—i-B%,/OZO) (6.22)

Next, we estimate N — N“. We will only concentrate on N* — N*“ since the

other terms are easier. Integrating by parts for the lower frequency part
(EE)“ = (El)SCI/S . (EQ)SCI/?” (623)
as in (2.6), we get
Nt — Nt = — S, |aV|e" [E; - E; — (EE),]
+ " AT[(EE)y — Ef° - EY)
— VI AT[(EE)(0) — Ef° - E5(0))
+iAT S, e O (BE)y = N' + N> + N* + N*.

(6.24)
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For the ) norm, first we have

INZlly S a M IEr - By — EY - B pere S a7,

1 w (6.25)
IN“Nly S BB amllswe S £lIE = E*||g,= + o(1),
by using Proposition 5.1. For the time derivative term, we use
]2 S CllEllm + clnBllas S e, (6.26)
and also Str” C L3(L*® + ¢ /3 L'®) to deduce
10,(BE) |22 S KIElser Bl oo 12 S ek (6.27)
By the same product estimate, we have
|EE| 2 S K||E[|Z,,2- (6.28)
Using these bounds, we get
IN% Iy < a7 1(@0: + [aV )N llz2r2 S o(1) + £[|E — E?||g,e, (6.29)
IN%ly S a |O(EE)|p2r2 S ¢
Thus by adding them up,
I(NT = N™)xlly S KIIE — E*|lgz + o(1). (6.30)
For the Strichartz-type norms, by using Propositions 5.3 and 5.6, we have
IN gy s ooz S NEscsllses
Str" 4L By/2 >cl/3 llstrnx (6.31)

S B = E¥flgpe + |E —E* — E* — E?||x + o(1),

where E¥, E* and E® are negligible for the higher frequency > ¢'/3. Decomposing
into the resonant frequency and the rest, we have
HN2 + NBHLOO(W’W—&-HUQ) 5 ”(EE)H - Efo ’ EgOHLOO(LlﬂHl/Q)

} (6.32)
S E = E[|gy= +o(1),

where W*? and L' were used for Ni, and H'/? for Ngf. Using the « gain in the

wave Strichartz, we have

INX llsec < [10:(EE)ull

al/3L3/2B)8 S O‘_I/SCS/QTHat(EE)ll||L°°Bg/15 (6.33)
ST E s |l g1 [Beoa|l oo S ¢k
Also, by Lemma 4.3 with 1/q =2/3 + 1/p, we have
i|la 1/3+2 2/3-2
AT Vol < lpa I3l 126" (6.34)
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Hence combining it with the same Strichartz estimate as above, we get

INAoowir S 0B url}arsP | 0/(BE ) ugl 2"

2/3
a1/3L3/2B6/5

(6.35)
Gathering the above estimates, we get
[Nt — Nt Lo (Wit B2
Str”+ Lo (WkP+ B,/ ) (6.36)

S IE = E¥|lgr + |E —E* — E* — E*||x + o(1).

Using the estimates (6.22), (6.30) and (6.36), as well as their counterparts for

N° and N—, we deduce that (6.6) holds. This ends the proof of convergence. (3.7)

is a direct consequence of Lemma 4.3 and (3.6).
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