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Abstract

In this paper, we continue our investigation of the high-frequency and subsonic limits

of the Klein-Gordon-Zakharov system. Formally, the limit system is the nonlinear

Schrödinger equation. However, for some special case of the parameters going to

the limits, some new models arise. The main object of this paper is the derivation

of those new models, together with convergence of the solutions along the limits.

Résumé

Du système de Klein-Gordon Zakharov vers un système de Schrödinger nonlinéaire

sigulier.

Dans cet article, on continue l’investigation des limites haute fréquence et sub-

sonique du système de Klein-Gordon-Zakharov. Formellement, le système limite

est le système de Schrödinger nonlinéaire. Cependant, pour un cas particulier des

paramètres, on trouve un nouveau modèle qui contient un terme sigulier. L’objet

de ce papier est de donner une dèrivation rigoureuse de ce moèle et de montrer la

convergence dans l’espace d’énergie.
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1 Introduction

The Klein-Gordon-Zakharov system in nondimensional variables reads:{
c−2Ë −∆E + c2E = −nE,
α−2n̈−∆n = ∆|E|2,

(1.1)

where E : R1+3 → R3 is the electric field∗ and n : R1+3 → R, is the density

fluctuation of ions, c2 is the plasma frequency and α the ion sound speed. This

system describes the interaction between Langmuir waves and ion sound waves in a

plasma (see Dendy [9] and Bellan [3]). It can be derived from the two-fluid Euler-

Maxwell system (see Sulem and Sulem [23], Colin and Colin [7] and Texier [24, 25]

for some rigorous derivations). We also refer to [16, Introduction] for the rescaling

with physical constants.

The system (1.1) has the following conserved energy∫
c2|E|2 + |∇E|2 + c−2|Ė|2 +

1

2
||α∇|−1ṅ|2 +

1

2
|n|2 + n|E|2dx. (1.2)

Notice that this energy is at least O(c2) due to the first term when c goes to infinity,

so it is not useful by itself to get uniform bounds when c goes to infinity and does

not give a conserved quantity for the limit system.

To explain the main contribution of this paper, we start by some formal consid-

erations. Taking F = eic
2tE, system (1.1) becomes{

c−2F̈ + 2iḞ −∆F = −nF,
α−2n̈−∆n = ∆|F |2.

(1.3)

Its formal limit as c, α→∞ is given by the nonlinear Schrödinger equation:

2iḞ −∆F = |F |2F, n = −|F |2. (1.4)

If we take the limit c→∞ first, we get the usual Zakharov system:{
2iḞ −∆F = −nF,
α−2n̈−∆n = ∆|F |2.

(1.5)

If we take the limit α → ∞ first in (1.1), we get the nonlinear Klein-Gordon

system :

c−2Ë −∆E + c2E = −|E|2E. (1.6)

∗In our results the range of E may be Rd or Cd with arbitrary d.
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It is classically known that the limit when α goes to infinity in the Zakharov

system (1.5) leads to the cubic nonlinear Schrödinger equation (1.4) and that the

limit when c goes to infinity in the cubic nonlinear Klein-Gordon system (1.6) also

leads to the cubic nonlinear Schrödinger equation.

However a more precise analysis involving the two different modes of oscillations

of (1.1), namely writing E = E1e
−ic2t + E2e

ic2t shows that these two limits do

not commute. Indeed, the non-relativistic limit of the nonlinear Klein-Gordon was

studied in [13, 14]. In [14] we proved that the limit system is a coupled nonlinear

Schrödinger system {
2iĖ1 −∆E1 − (|E1|2 + 2|E2|2)E1 = 0,

2iĖ2 −∆E2 − (|E2|2 + 2|E1|2)E2 = 0
(1.7)

which differs from the one we can derive from the Zakharov system or the one

derived in [16] where we took a simultaneous limit requiring that α < c where the

limit system was {
2iĖ1 −∆E1 − (|E1|2 + |E2|2)E1 = 0,

2iĖ2 −∆E2 − (|E2|2 + |E1|2)E2 = 0.
(1.8)

In this paper, we will study the case where γα = 2c2 for some fixed constant γ.

At the limit we will get a singular Schrödinger system (1.11). Formally, we see that

when γ goes to infinity we recover the nonlinear Schrödinger system (1.8) derived

in [16], and when γ goes to zero we recover the nonlinear Schrödinger system (1.7)

derived in [14].

To write our limit system, we need the following operators, defined as functions

of |∇| =
√
−∆ (by using the Fourier transform)

A+
γ :=

|∇|
|∇| − γ + 0i

= PV

(
|∇|
|∇| − γ

)
− iγπδ(|∇| − γ),

A−γ :=
|∇|
|∇|+ γ

,

Aγ :=
1

2
(A+

γ +A−γ ) = PV

(
|∇|2

|∇|2 − γ2

)
− iγπ

2
δ(|∇| − γ),

(1.9)

where PV denotes the principal value. Our main result is as follows.

Theorem 1.1. Let (Ec, nc) be a sequence of solutions for (1.1) such that c → ∞
with γ = 2c2/α > 0 fixed, and initial data satisfying

(Ec(0), c−2IcĖ
c(0))→ (ϕ, ψ) in H1,

(nc(0), |α∇|−1ṅc(0)) bounded in L2.
(1.10)

3



Let T c be its maximal existence time. Let E∞ := (E∞1 ,E∞2 ) be the solution of the

following nonlinear Schrödinger type system

2iĖ−∆E = |E|2E +Aγ(E1 · E2)E⊥,

E(0) =
1

2
(ϕ− iψ, ϕ− iψ),

(1.11)

where E⊥ = (E2,E1). Let T∞ be the maximal existence time for E∞. Then in the

limit c→∞ with γα = 2c2, we have lim inf T c ≥ T∞, and for any T < T∞,

Ec − (eic
2tE∞1 + e−ic

2tE∞2 )→ 0 in C([0, T ];H1). (1.12)

We have asymptotic formula also for Ėc, nc and ṅc, which we will give in a more

precise and general version of the above theorem (see Theorem 3.1). Here we just

remark that the singular part in the equation for E∞ actually comes from singular

behavior of nc and ṅc.

Remark that in the limit system (1.11), the L2 norm of the solution decreases

in t by the nonlinear interaction of E1 ·E2 at the frequency of size γ, because of the

dissipative part of A+
γ , i.e. =A+

γ = −γπδ(|∇| − γ):

∂t‖E∞(t)‖2
L2
x

= − γ

(2π)2

∫
|ξ|=γ

∣∣∣∣∫
R3

(E1 · E2)(t, ξ)e−ixξdx

∣∣∣∣2 dξ. (1.13)

This property is used in a forthcoming paper [18] to study the limit when γ goes

to infinity in (1.11). A similar phenomenon is known in the context of stability

of nonlinear bound states, to cause the radiation damping [22] in the nonlinear

Klein-Gordon equation (the linear ground state decays by the nonlinear resonance),

and the relaxation of excited states [26] in the nonlinear Schrödinger equation (the

excited states decay by the nonlinear resonance). In those cases, the operator A+
γ

involving a potential gives decay in the ODE governing the amplitude of the bound

states. But as far as the authors know, the above theorem seems the first observation

with a rigorous proof for a nonlinear resonance leading to decrease of energy for the

limit wave functions.

The rest of the paper is organized as follows: First in the next section, we will

rewrite our equation into a first order system such that we can formally derive the

limit system. Then we restate our main result in Section 3 in the new variables,

allowing more general initial data, which can introduce some additional singular

terms into the limit system. After preparing some notations and tools in Section 4,

we prove first a set of uniform estimates in Section 5, and then prove the convergence

in Section 6.
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We conclude the introduction with some notations used throughout the paper.

〈a〉 := (1 + |a|)1/2, 〈a, b〉 := <(a · b),

〈f | g〉x :=

∫
R3

〈f(x), g(x)〉dx, 〈u | v〉t,x :=

∫
R
〈u(t) | v(t)〉xdt,

(1.14)

where a, b, f , g, u and v may be scalar or vector valued. We denote by Fd the d

dimensional Fourier transform. In particular, the space and the space-time Fourier

transform are denoted by

F3ϕ = ϕ̃(ξ) =

∫
R3

ϕ(x)e−ixξdx, F4u = û(τ, ξ) =

∫
R1+3

u(t, x)e−itτ−ixξdtdx. (1.15)

For any function ϕ, we define the Fourier multiplier ϕ(∇) := F−1
3 ϕ(ξ)F3. We will

use the following multipliers repeatedly:

Ic := 〈∇/c〉−1, ∆c := −2ω(∇), ω(ξ) := c2(〈ξ/c〉 − 1). (1.16)

2 Reduction of equations

In this section we rewrite the Klein-Gordon-Zakharov system (1.1) into first order

equations in time and also decompose n into different time oscillations, from which

one can easily obtain the limit system. The reduced systems will be suited also to

get uniform estimates as well as the convergence.

First we define (we will remove the c dependence from Ec and nc)

E+ :=
1

2

{
E − ic−2Ic∂tE

}
, E− :=

1

2

{
E − ic−2Ic∂tE

}
,

E := e−ic
2t(E+, E−), N := n− i|α∇|−1ṅ.

We also define E⊥ = (E2,E1) and E∗ := e−2ic2tE⊥ for any E = (E1,E2). The original

functions are given by

E = eic
2tE1 + e−ic

2tE2, Ė = ic2I−1
c (eic

2tE1 − e−ic
2tE2),

n = <N, ṅ = −=(|α∇|N),

where < and = represent the real and imaginary parts. Hence, the system (1.1) is

reduced to {
2iĖ−∆cE = −Icn(E + E∗),
iṄ + |α∇|N = −|α∇|〈E,E + E∗〉.

(2.1)

¿From now on, we will concentrate on system (2.1). Further we rewrite it into

integral form as

E = e−i∆ct/2E(0)− SEIcn(E + E∗), (2.2)

N = ei|α∇|tN(0)− Sn|α∇|〈E,E + E∗〉, (2.3)
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where the space-time operators SE and Sn are defined by

SEf :=
1

2i

∫ t

0

e−i∆c(t−s)/2f(s)ds, Snf :=
1

i

∫ t

0

ei|α∇|(t−s)f(s)ds. (2.4)

Next we decompose N into components with different time phases

N = N f +N0 +N+ +N−,

N f := ei|α∇|tN(0),

N0 := −Sn|α∇||E|2,
N+ := −Sneiαγt|α∇|(E1 · E2),

N− := −Sne−iαγt|α∇|(E1 · E2),

(2.5)

where the oscillation αγt = 2c2t is coming from E∗ in the equation for N . Integrating

on the phase eiα(|∇|±γ)(t−s) in s, we get

N0 =− |E|2(t) + ei|α∇|t|E|2(0) + iSn∂t|E|2,
N+ =− eiαγtA+

γ (E1 · E2)(t) + ei|α∇|tA+
γ (E1 · E2)(0) + iA+

γ Sn∂t(E1 · E2),

N− =− e−iαγtA−γ (E1 · E2)(t) + ei|α∇|tA−γ (E1 · E2)(0) + iA−γ Sn∂t(E1 · E2).

(2.6)

The second and the third terms on each line will go to zero in the limit due to

dispersion of ei|α∇|t (the decay for the singular operator ei|α∇|tA+
γ is given in Lemma

4.3). Hence plugging each first term into the nonlinearity for E, we get the leading

terms

n(E + E∗) = −|E|2E− 1

2
[A+

γ (E1 · E2) +A−γ (E1 · E2)]E⊥ + osc.+ o(1), (2.7)

where osc. represents those terms with rapid oscillation e±iαγt or e−2iαγt, and hence

goes to zero weakly in time. Thus we arrive at the limit system (1.11).

3 Main result

Now we restate our main result in terms of the new variables (E, N) introduced

in Section 2, slightly extending the initial data space for N . For that purpose, we

introduce the Banach space Wk,p on R3 for p ≥ 2 and k ∈ Z by the norm

‖ϕ‖Wk,p := sup
t≥0
‖eit|∇|ϕ‖Wk,p . (3.1)

Theorem 3.1. Let (Ec, N c) be a sequence of solutions to (2.1), such that c → ∞
with γ = 2c2/α > 0 fixed, and ‖Ec(0)‖H1 + ‖N c(0)‖L2+Wk,p bounded for some p >

3 and k ≥ 1. Let T c be the maximal existence time of (Ec, N c). Then there is
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T > 0, depending only on the size of the above initial norm, such that T c ≥ T and

‖Ec(t)‖H1 + ‖N c(t)‖L2+Wk,p is uniformly bounded on [0, T ] for large c.

Moreover, assume that the initial data satisfies as c→∞

Ec(0)→ ∃Φ∞ in H1,

e−σiαγtei|α∇|tN c(0)→ ∃µσ∞ in D′((0,∞)× R3),
(3.2)

for σ = 0,+. Let E∞ be the solution of the following limit system

2iĖ∞ −∆E∞ = [|E∞|2 + <µ0∞]E∞ +
[
Aγ(E∞1 · E∞2 ) + µ+∞/2

]
E∞⊥,

E∞(0) = Φ∞.
(3.3)

Let T∞ > 0 be the maximal existence time of E∞. Then we have a lower bound

lim inf T c ≥ T∞, and for all T < T∞ we have uniform convergence

Ec − E∞ → 0 in C([0, T ];H1), (3.4)

and also, by decomposing N c = N fc +N0c +N+c +N−c according to (2.6),

N0c + |E∞|2 −N0Ic → 0 in C([0, T ];L2),

N−c + eiαγtA−γ (E∞1 · E∞2 )−N−Ic → 0 in C([0, T ];L2),

N+c + e−iαγtA+
γ (E∞1 · E∞2 )−N+Ic → 0 in C([0, T ];L2 +Wk,p),

(3.5)

for all p > 3, where

N fc = ei|α∇|tN c(0), N0Ic = ei|α∇|t|Φ∞|2,
N+Ic = ei|α∇|tA+

γ (Φ∞1 · Φ∞2 ), N−Ic = ei|α∇|tA−γ (Φ∞1 · Φ∞2 ).
(3.6)

Moreover, we have

lim
s→∞
‖eis|∇|(N c −N fc)(t)‖L2+Wk,p = 0 (3.7)

uniformly for t ∈ [0, T ] and for large c.

Remark 3.2. The uniform bound of N c(0) implies that the convergence to µσ∞ in

(3.2) actually holds *-weakly in L∞(0,∞;L2 +W k,p), so that we can make sense of

the products with µσ∞ in the limit system.

Remark 3.3. (3.7) implies that the singular parts µσ∞ are preserved for later time,

namely

e−iσαγteiα(t−t0)|∇|N c(t0)→ µσ∞. (3.8)

In other words, the singular initial layer N+Ic does not affect these terms (neither do

the regular ones N0Ic and N−Ic). This follows from the decay property of eit|∇|A+
γ ,

see Lemma 4.3.
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In particular, if we start with initial data N c(0) bounded in Hσ for some σ ∈ R,

then we will never encounter µ∗∞, because for any χ ∈ C∞0 (R3) we have

‖χ(x/R)ei|α∇|tN c(0)‖L2Hσ .
√
R/α‖N c(0)‖Hσ , (3.9)

see [16, Lemma 8.1].

Hence nontrivial µ∗∞ can be created only from singular (in the Fourier space)

initial data. For example, if µ0
0 and µ+

0 are bounded complex-valued measures on

[0, b) and (a, b)× S2 respectively, then

N c(0) := F−1
3

∫ b

0

|ξ|−2δ(|ξ| − τ/α)µ0
0(τ)dτ

+ F−1
3

∫ b

a

δ(|ξ| − γ − τ/α)µ+
0 (τ, ξ/|ξ|)dτ

= F−1
3 α|ξ|−2µ0

0(α|ξ|) + F−1
3 αµ+

0 (α(|ξ| − γ), ξ/|ξ|)

(3.10)

is bounded in Wk,∞ for any k ∈ N, and the limit profiles are given by

µ0∞(t) = (2π)−3

∫ b

0

eiτtµ0
0(τ)dτ = (2π)−2F−1

1 µ0
0(τ),

µ+∞(t) = F−1
3 δ(|ξ| − γ)

∫ b

a

eiτtµ+
0 (τ, ξ/|ξ|)dτ = F−1

4 δ(|ξ| − γ)µ+
0 (τ, ξ/|ξ|).

(3.11)

Note that µ0∞ and µ+∞ do not see each other because of the rapid oscillation e−iαγt.

If we choose N c(0) = N(0) independent of c, then the convergence (3.2) implies that

µ0∞ is a constant, and µ+∞ is time-independent with Fourier support on {|ξ| = γ}.
We remark that σ = −1 in (3.2) would give always 0 in the limit because of the

oscillation eiα(|∇|+γ)t, which is uniformly rapid for all frequency ξ.

Remark 3.4. For the uniform bounds, we can sharpen the Wk,p norm by replacing

Lp with the Lorentz space L3,∞.

Remark 3.5. Theorem 1.1 easily follows from the above theorem by transforming

the variables back to the original (E, n), in the case N c(0) is bounded in L2 and

hence µ0∞ = µ+∞ = 0. However the singular part Wk,p is needed even for the proof

in this case. Indeed, to prove the above result, we will work on some small time

interval (0, T1) on which we can prove some uniform estimates, then we will pass

to the limit. Then, to extend the convergence to the maximal existence interval

(0, T∞), we need to iterate the same argument on some interval (T1, T2). We notice

that at the time T1, N+c(T1) contains the singular part

N+c(T1)→ −A+
γ (E∞1 (T1) · E∞2 (T1)), (3.12)

which is bounded in Wk,p +L2 for all p > 3 and k ∈ N by Lemma 4.3, but does not

belong to L2 in general.
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Our first order system (2.1) is not exactly invariant for time shift, because of the

oscillation factors e±ic
2t, but for the modulated translation

(E, N) 7→ (eic
2t0E(t+ t0), N(t+ t0)), (3.13)

for any t0 ∈ R. Correspondingly, we have an immediate

Corollary 3.6. In the above theorem, assume instead of (3.2)

e−ic
2t0Ec(0)→ ∃Φ∞ in H1,

e−σiαγ(t+t0)ei|α∇|tN c(0)→ ∃µσ∞ in D′((0,∞)× R3),
(3.14)

for some t0 ∈ R. Then we have the convergence

e−ic
2t0Ec − E∞ → 0, N0c + |E∞|2 −N0Ic → 0,

N−c + eiαγ(t+t0)A−γ (E∞1 · E∞2 )−N−Ic → 0,

N+c + e−iαγ(t+t0)A+
γ (E∞1 · E∞2 )−N+Ic → 0,

(3.15)

in the same topologies and with the same E∞ and N∗Ic as above.

Proof. Assume by contradiction that one of the convergences fails. Extracting a

subsequence of c, we may assume in addition that eic
2t → eiθ for some θ ∈ R. Then

we can apply the above theorem replacing Φ∞ with eiθΦ∞ and µσ∞ with e2σiθµσ∞.

Since the limit system is invariant with respect to the “gauge transform”

(E∞, µσ) 7→ (eiθE∞, e2σiθµσ), (3.16)

the theorem gives all the desired convergences for this subsequence, a contradiction.

Strictly speaking, we will be using the above logic implicitly in the proof of the

above theorem when extending the convergence from the first time step T1 to the

maximal existence time T∞. Namely, we should apply the above argument to the

modulated translation(eic
2T1E(t+ T1), N(t+ T1)) to get the convergence in the next

time step (cf. (3.8) for the persistence of (3.14)). We will not repeat this in the

proof given below.

4 Preliminaries and notations

Before starting the proof, we prepare basic settings and estimates together with

some notations.
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4.1 Frequency decomposition

Let χ ∈ C∞0 (R3) satisfy 0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| ≤ 4/3 and χ(ξ) = 0 for |ξ| ≥ 5/3.

For any a > 0 and any function ϕ, we denote

f≤a := χ(|∇/a|)f, f>a := f − f≤a, fa :=

{
f≤a − f≤a/2, (a > 1)

f≤a, (a ≤ 1)
. (4.1)

Hence we have the inhomogeneous Littlewood-Paley decomposition

f =
∑
j∈D

fj, D := {1, 2, 22, 23, 24 . . . } (4.2)

In addition, we denote the non-resonant frequency part by

NX := N −Nγ. (4.3)

We note that the singularity of A+
γ is only around |ξ| = γ in the Fourier space, and

so it is regular in the physical space.

For bilinear interactions, we denote frequency trichotomy by

fg = (fg)LH + (fg)HL + (fg)HH ,

:=
∑
l<h/4

flgh +
∑
h>4l

fhgl +
∑

4i≥j≥i/4

figj, (4.4)

where i, j, k, l, h run over the dyadic numbers D, and LH, HL and HH respectively

indicate low-high, high-low and high-high frequency interactions.

If no ambiguity can occur, we often abbreviate such as (fg)Y l := ((fg)Y )l and

(fg)Y+Z := (fg)Y + (fg)Z where Y, Z = HH,HL or LH and l = a,> a,≤ a. For

example, (EF )HLX = ((EF )HL)X , (EF )HH>a = ((EF )HH)>a, etc.

4.2 Strichartz norms

We briefly recall the Strichartz estimate for e−it∆c/2 and eit|α∇| on R3 (see [10, 13]).

For the Klein-Gordon equation, we have

‖e−it∆c/2ϕ‖I−µc Lp(R;Bσq (R3)) . ‖ϕ‖H1 , (4.5)

where Bs
p := Bs

p,2 denotes the inhomogeneous Besov space (cf. [5]), provided that

θ ∈ [0, 1], p ∈ [2,∞], (p, θ) 6= (2, 0),

1

q
=

1

2
− 1

p
+

θ

3p
, σ = 1 +

θ − 1

p
, µ =

1

p

(
1 +

2θ

3

)
,

(4.6)
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where θ = 0 corresponds to the Strichartz estimate for the wave equation, and θ = 1

without Ic is for the Schrödinger equation. Moreover, for n, we have

‖eit|α∇|ϕ‖α−1/pLp(R;Ḃσq (R3)) . ‖ϕ‖L2 , (4.7)

where Ḃs
q := Ḃs

q,2 denotes the homogeneous Besov space, provided that

2 < p ≤ ∞, 1

p
+

1

q
=

1

2
, σ = −2

p
. (4.8)

For the Duhamel terms we have similarly

‖SEf‖ST (E)1
. ‖f‖ST (E)∗2

, ‖Snf‖ST (N)3
. ‖f‖ST (N)∗4

, (4.9)

where for each ST (E)j (resp. ST (N)j) we could choose any space in (4.5) (resp. in

(4.7)), but for the sake of concreteness we choose the following specific exponents:

ST (E)1 = L∞H1 ∩ I−5/9
c L3B1

18/5 ∩ I−1/3
c L3B

2/3
6 ,

ST (E)∗2 = L1H1 + I25/36
c L12/7B1

9/7 + I1/2
c L10/7B1

10/7,

ST (N)3 = L∞L2 ∩ α−1/3L3B
−2/3
6 ,

ST (N)∗4 = L1L2 + α1/3L3/2B
2/3
6/5 + α1/6L6/5B

1/3
3/2 ,

(4.10)

where θ = 1 for the second, the fifth, and the sixth spaces, and θ = 0 for the third

one. In applying the Strichartz estimates, we will write these exponents explicitly.

4.3 Fourier restriction norms

For any s ∈ R and any interval I ⊂ R, we define

Xs,1 := {e−i∆ct/2u(t) | u ∈ H1
t (I;Hs

x)},
Y s,1 := {ei|α∇|tu(t) | u ∈ H1

t (I;Hs
x)}.

(4.11)

with the norms

‖u‖Xs,1(I) = ‖ei∆ct/2u(t)‖H1
t (I;Hs

x), ‖v‖Y s,1(R) = ‖e−i|α∇|tv(t)‖H1
t (I;Hs

x). (4.12)

Those norms on the whole line t ∈ R can be represented by the Fourier transform

‖u‖Xs,1(R) = ‖〈τ − ω(ξ)〉〈ξ〉sû‖L2
τ,ξ
, ‖v‖Y s,1(R) = ‖〈τ − α|ξ|〉〈ξ〉sv̂‖L2

τ,ξ
. (4.13)

The distance from the characteristic surface, such as |τ − ω(ξ)| for Xs,1, plays an

essential role in using those norms. So, we consider an explicit extension from (0, T )

to R. We define an extension operator ρT for any T ∈ (0, 1) by

ρTu(t) = χ(t)u(µT (t)), (4.14)
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where µT (t) := max(t, 2T − t, 0) and χ ∈ C∞0 (R) satisfies χ(t) = 1 for |t| ≤ 2 and

χ(t) = 0 for |t| ≥ 3. It is clear that ρTu(t) = u(t) for t ∈ (0, T ), and ρT is bounded

on H1
t (0, T ;Hs)→ H1

tH
s(R1+3) uniformly for s ∈ R and 0 < T ≤ 1.

For the bilinear estimates using those norms, we introduce decomposition with

respect to the distance from characteristic surface. For any β : R3 → R and δ > 1

and any function u(t, x) on R× R3, we define

P|τ−β(ξ)|≤δu := F−1
4 χ((τ − β(ξ))/δ)F4u,

P|τ−β(ξ)|>δu := u− P|τ−β(ξ)|≤δu.
(4.15)

Estimating in the Fourier space, we easily obtain

‖P|τ−ω(ξ)|>δu‖L2Hs . δ−1‖u‖Xs,1 , (4.16)

‖P|τ−α|ξ||>δu‖L2Hs . δ−1‖u‖Y s,1 , (4.17)

We can derive similar estimates in L∞t setting without bypassing Xs,b spaces:

Lemma 4.1. We have∥∥∥∥ρT ∫ t

0

(P|τ |>δf)(s)ds

∥∥∥∥
L∞t (R;X)

. min(δ−1, T )‖f‖L∞t (R;X), (4.18)

uniformly for any δ > 1, any T > 0 and any Banach space X.

Proof. The left hand side is bounded by∥∥∥∥∫ t

0

(P|τ |>δf)(s)ds

∥∥∥∥
L∞t (0,T ;X)

≤

{
‖P|τ |>δf‖L1(0,T ;X) . T‖f‖L∞(X),

‖[ψ(δt) ∗ f ]t0‖L∞(0,T ;X) . δ−1‖f‖L∞(X),
(4.19)

where we denoted ψ(t) := F−1τ−1(1− χ(τ)) ∈ L1(R). We note here that the proof

is simpler than that of lemma 2.3 of [16] due to the different order of the integration

and the extension ρT .

4.4 Singular decay estimate

Here we derive some estimates on the singular operator A+
γ together with the wave

propagator. First, we have a pointwise decay estimate:

Lemma 4.2. For any ϕ ∈ S(R3) with symmetry ϕ(x) = ϕ(|x|), we have

|eit|∇|A+
γ ϕ(x)| .

{
〈x〉−1〈t− |x|〉−1 (|x| < t),

〈x〉−1 (|x| > t),
(4.20)

uniformly for t > 0 and x ∈ R3.
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Proof. By the Laplace transform, we have

eit|∇|A+
γ ϕ(x) = −ieit|∇| lim

ε→+0

∫ ∞
0

|∇|eis(|∇|−γ+iε)ϕds

= −ieitγ lim
ε→+0

∫ ∞
0

|∇|ei(|∇|−γ+iε)(t+s)ϕds.

(4.21)

Let |x| = r. By the Fourier transform, the expression before the limit is equal to

(2π)−2

∫ ∞
0

∫ ∞
0

ρei(ρ−γ+iε)(t+s)F3ϕ(ρ)
sin(ρr)

ρr
ρ2dρds. (4.22)

Define f(t) by F1f(ρ) = ρ2F3ϕ(ρ) for ρ > 0, and F1f(ρ) = 0 for ρ < 0. Then

(4.22) =

∫ ∞
0

f(t+ r + s)− f(t− r + s)

2πir
e−(iγ+ε)(t+s)ds

=
1

iπ

∫ 1

−1

∫ ∞
0

f ′(t+ θr + s)e−(iγ+ε)(t+s)dsdθ.

(4.23)

Since F1f ∈ W 2,1 and F1f
′ = iρF1f ∈ W 3,1, we have

|f(t)| . 〈t〉−2, |f ′(t)| . 〈t〉−3. (4.24)

Hence we have for r < t,

|(4.22)| . 〈r〉−1

∫ ∞
0

〈t− r + s〉−2ds . 〈r〉−1〈t− r〉−1, (4.25)

and for any r > 0,

|(4.22)| . 〈r〉−1 sup
|θ|≤1

∫
R
〈t+ θr + s〉−2ds . 〈r〉−1, (4.26)

both uniformly in ε > 0. Thus we get the desired bound by ε→ +0.

Applied to the Littlewood-Paley decomposition, the above estimate immediately

implies the following Lp decay.

Lemma 4.3. If q ≥ 1, p ≤ ∞, 1/q − 1/p ≥ 2/3 and (p, q) 6= (3, 1), (∞, 3/2), then

we have

‖eit|∇|A+
γ ϕγ‖Lp(R3) . t−3(1/q−1/p−2/3)‖ϕγ‖Lq(R3). (4.27)

In addition, we have

‖eit|∇|A+
γ ϕγ‖L3,∞(R3) . ‖ϕγ‖L1(R3), ‖eit|∇|A+

γ ϕγ‖L∞(R3) . ‖ϕγ‖L3/2,1(R3), (4.28)

where Lp,q denotes the Lorentz space.
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Proof. Let ψ ∈ S(R3) be radially symmetric and F3ψ(ξ) = 1 for |ξ| . γ+1 including

suppF3ϕγ, so that we have

eit|∇|A+
γ ϕγ = ϕγ ∗ eit|∇|A+

γ ψ. (4.29)

Hence by the Young inequality for the Lorentz space, we have for the first case,

‖eit|∇|A+
γ ϕγ‖Lp . ‖ϕγ‖Lq‖eit|∇|A+

γ ψ‖Lr,∞ , (4.30)

where 1/r = 1/p− 1/q + 1 ∈ [3,∞], and applying the above lemma to ψ,

‖eit|∇|A+
γ ψ‖Lr,∞ . t−3(1/q−1/p−2/3). (4.31)

The second case is just the critical case for the Young inequality.

We will mainly use the above Lp decay with q = 1. From (4.23), it is clear that

the pointwise estimate for r > t can not be improved, and hence eit|∇|A+
γ ϕ does not

belong to L3(R3) in general.

5 Uniform estimates

In this section and the next one, we prove the main theorem 3.1. The main part of

the proof consists in estimating the following norms uniformly in c (and α) and for

small T > 0.

‖‖‖E‖‖‖ := ‖E‖StrE(0,T ) + ‖E‖X (0,T ),

‖‖‖N‖‖‖ := ‖N‖
[Strn(0,T )+L∞t (0,T ;B

1/2
2,∞)]∩Y(0,T )+L∞t (0,T ;Wk,p)

,
(5.1)

for arbitrarily fixed k ≥ 1 and p > 3, where StrE, Strn,X and Y are defined by

StrE := {u ∈ L∞(H1) | u≤c ∈ L3(B1
18/5), u>c ∈ c−1/3L3(B

1/3
6 )},

Strn := L∞(L2) ∩ α−1/3L3(B
−2/3
6 ),

X = I5/6
c X0,1, Y = I−1/6

c αY 0,1.

(5.2)

Note that in the StrE norm, the frequencies lower than c are estimated in the second

space in (4.10) and the higher part in the third space.

The uniform estimate will be done in this section, while Section 6 will be devoted

to the convergence proof. Let us outline the proof for the uniform bounds. First in

Section 5.1, we derive the estimates in the space-time Fourier spaces X and Y by

simple product estimates, from the Strichartz and energy bounds.
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To estimate the Strichartz norm of E, we decompose

E =e−i∆ct/2E(0)− SEIc[nγF + (nXF≤c)HH+LH +
∑
k>c

(nX(≤γ̃k/c)Fk)]

− SEIc[
∑
k>c

(nX(>γ̃k/c)Fk)LH + (nXF )HL]
(5.3)

where F = E + E∗ and γ̃ = γ/ε with ε > 0 given in Lemma 5.4. The terms

appearing on the first line of (5.3) will be treated in Proposition 5.2 using only

Strichartz bounds. The terms on the second line of (5.3) require the use of the

nonresonant property and are treated in Proposition 5.5.

To estimate NX in Strn + L∞B
1/2
2,∞, we write

N = ei|α∇|tN(0)− Sn|α∇|
∑
k

∑
j≤γ̃k/c

〈Ek,E + E∗〉j

− Sn|α∇|
∑
k

∑
j>γ̃k/c

〈Ek,E + E∗〉j.
(5.4)

For the part where j ≤ γ̃k/c, we cannot use the nonresonant property but we can

gain powers of c because j is much smaller than k. This part can be treated only

by Strichartz in Proposition 5.3. The part j > γ̃k/c, is treated in Proposition 5.6

using the nonresonant property of the interaction.

Finally, the estimate on Nγ ∈ L∞(Wk,p) is done in Section 5.4 by integrating by

parts in time.

5.1 X × Y bounds from Strichartz bounds

Now we start the actual proof of theorem 1.1, or the general version 3.1. Here we

derive the X and Y type estimate from the Strichartz type bounds. We have the

following Proposition.

Proposition 5.1. For any functions n, E and F on (0, T )× R3, we have

‖SEIcnE‖X (0,T ) . T 1/6‖N‖L∞(0,T ;L2+W1,p)‖E‖StrE(0,T ),

‖Sn|α∇|〈E,F 〉‖Y(0,T ) . T 1/6‖E‖L∞(0,T ;L2)‖F‖StrE(0,T ).
(5.5)

Proof. Decompose N = N1 + N2 such that N1 ∈ L∞L2 and N2 ∈ L∞Wk,p. We use

by Sobolev that StrE ⊂ L3L∞+ c−1/3L3L18, W 1,p ⊂ L∞, and that L18×L2 ⊂ H−1/6

to deduce that

‖n1E‖L3L2+c−1/3L3H−1/6 . ‖N1‖L∞L2‖E‖StrE ,

‖n2E‖L∞L2 . ‖N2‖L∞L∞‖E‖L∞L2 . ‖N2‖L∞W1,p‖E‖L∞L2 .
(5.6)
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Since c−1/6H−1/6 ⊂ I
−1/6
c L2, we obtain the first estimate.

‖SEIcnE‖X (0,T ) . T 1/6‖N‖L∞(L2+W1,p)‖E‖StrE . (5.7)

For N , we get exactly in the same way

‖∇〈E,F 〉‖L3L2+c−1/3L3H−1/6 . ‖∇E‖L∞L2‖F‖StrE + ‖∇F‖L∞L2‖E‖StrE , (5.8)

by putting the low frequency in the Strichartz space and hence we obtain the second

estimate.

5.2 Strichartz estimate for regular interactions

To derive H1 ×L2 and Strichartz bounds for E and NX , we decompose the bilinear

terms into frequencies as in (4.4). Those interactions where the less regular function

has lower or similar frequency are relatively more regular. In [16], these term were

treated only by the Strichartz estimate. Here, due to the low regularity, we have to

treat some of those terms using their nonresonant property. We have the following

estimates, which will be used with E,F = E or E∗

Proposition 5.2. For any functions E and n defined on (0, T )× R3, we have

‖SEIc(nE≤c)HH+LH‖StrE(0,T ) . T 1/4‖n‖L∞(0,T ;L2)‖E‖StrE(0,T ),

‖SEIc(nE)‖StrE(0,T ) . T‖n‖L∞(0,T ;W1,p)‖E‖L∞(0,T ;H1),

‖SEIc
∑
k>c

(n≤γ̃k/cEk)‖StrE(0,T )

. (T + T 1/2c−1/2)‖n‖
Strn(0,T )+L∞(0,T ;B

1/2
2,∞)
‖E‖StrE .

(5.9)

Proof. For the first estimate, we use the Sobolev and the Strichartz estimate, hence

it is bounded by

‖(nE≤c)HH+LH‖L12/7B1
9/7

. T 1/4‖n‖L∞L2‖E‖StrE . (5.10)

The second estimate easily follows from the energy inequality and

‖nE‖L∞H1 . ‖n‖L∞t (W 1,p)‖E‖L∞H1 . (5.11)

For the third estimate, we decompose n = w + u such that w ∈ Strn and

u ∈ L∞B1/2
2,∞. For the part in Strn, we have

‖
∑
k>c

Ic(w≤γ̃k/cEk)‖H1 .
∥∥∥(c/k)1−2/3‖w‖

B
−2/3
6
‖Ek‖B2/3

3
k1/3

∥∥∥
`2k>c

. c−1/2‖w‖
α−1/3B

−2/3
6
‖E>c‖c−1/6B

2/3
3
.

(5.12)
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Integrating in time, we get

‖SEIc
∑
k>c

(w≤γ̃k/cEk)‖StrE . T 1/2c−1/2‖w‖
α−1/3L3B

−2/3
6
‖E>c‖c−1/6L6B

2/3
3
. (5.13)

For the part in L∞B
1/2
2,∞, we have

‖
∑
k>c

Ic(u≤γ̃k/cEk)‖H1 .
∥∥‖(c/k)u≤γ̃k/c‖L∞‖Ek‖H1

∥∥
`2k>c

. ‖u‖
B

1/2
2,∞
‖E‖H1 . (5.14)

Integrating in time, we get

‖SEIc
∑
k>c

(u≤γ̃k/cEk)‖StrE . T‖u‖
L∞B

1/2
2,∞
‖E‖L∞H1 . (5.15)

For the estimate of Snα|∇|〈E,F 〉X in Strn + L∞B
1/2
2,∞ where E,F = E,E∗, we

have to use the nonresonant property for almost all the interactions. However, there

is a resonant case where we can only use the Strichartz estimate. The resonance

we have here is actually less severe than the one at the frequency γ. This is the

case when cj ∼ k ∼ l and E = E and F = E∗. For this case, we use the following

proposition

Proposition 5.3. For any functions E,F on (0, T )× R3, we have

‖Sn
∑
k&c

α|∇|(FEk)≤γ̃k/c‖Strn(0,T ) . T 1/2c−1/2‖F‖StrE(0,T )‖E‖StrE(0,T ). (5.16)

Proof. Here we use that they are HH interactions. Hence,

‖Snα|∇|(FlEk)j‖Strn . αj‖(FlEk)j‖α1/3L3/2B
2/3
6/5

. α2/3j5/3‖(FlEk)j‖L3/2L6/5

. α2/3j5/3c−1/6l−1k−2/3‖Fl‖L2H1‖Ek‖c−1/6L6B
2/3
3

. c−1/2(cj/l)5/3‖Fl‖L2H1‖E>c‖c−1/6L6B
2/3
3
,

(5.17)

which can be summed in `2
j`

1
k`

1
l (cj . k ∼ l), using the Young inequality for convo-

lution in Z (cf. [16, Lemma 2.6]), and yields a factor c−1/2.

5.3 Bilinear estimate for nonresonant interactions

The remaining terms can not be estimated simply by using the Strichartz estimates.

We need to take into account the nonresonance property and use the Xs,b norms.

Here nonresonance means the following simple trichotomy: one of three interacting
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functions (including the output) must be away from the characteristic surface in the

space-time Fourier space. The Xs,b spaces give a gain for functions away from the

characteristics as in (4.16), (4.17) and (4.18).

Now we make the above statement into precise estimates. We estimate interac-

tions of the form 〈<(N)E | F 〉t,x for N ∈ Y(R) and E,F ∈ X (R), splitting each

function with respect to the distance from the characteristic surfaces. Using (4.15),

we define

NC = P|τ−α|ξ||≤δN, E
C = P|τ−ω(ξ)|≤δE, E

∗C = P|τ+ω(ξ)+2c2|≤δE
∗,

NF = P|τ−α|ξ||>δN, E
F = P|τ−ω(ξ)|>δE, E

∗F = P|τ+ω(ξ)+2c2|>δE
∗,

(5.18)

where δ > 0 will be determined according to Lemma 5.4. We denote nF := <(NF ),

nC := <(NC). Notice also that E∗C = EC∗ = e−2ic2t(EC
2 ,EC

1 ). Then the non-

resonance property is expressed in the following way.

Lemma 5.4. Let αγ = 2c2 for some fixed γ > 0. There exists ε > 0 (one can take

ε = 1/80), such that we have the following (i) and (ii) for large c (say c > 2(γ+1)).

Let j, k, l ∈ D be dyadic numbers.

(i) If δ ≤ εαj and j > 1, then we have 〈nCj EC
k | FC

l 〉t,x = 0.

(ii) If δ ≤ εαj and min(k, l) < ε c
γ
j, then we have 〈nCXjE∗Ck | FC

l 〉t,x = 0.

Proof. By the Plancherel identity in space-time, we have

〈nCj EC
k | FC

l 〉t,x =

∫
nCj E

C
k F

C

l (t, x)dtdx

= C

∫∫
(τ0,ξ0)+(τ1,ξ1)=(τ,ξ)

n̂Cj (τ0, ξ0)ÊC
k (τ1, ξ1)F̂C

l (τ, ξ)dξ1dτ1dξdτ.
(5.19)

For the proof of the first point, we want to show that the set

A = Supp(n̂Cj (τ0, ξ0)ÊC
k (τ1, ξ1)F̂C

l (τ, ξ))∩{(τ0, ξ0)+(τ1, ξ1) = (τ, ξ)} = ∅. We denote

the distance from each characteristic surface in the integrand on the right hand side

by

d0 = |τ0 ∓ α|ξ0|| , d1 = |τ1 − ω(ξ1)|, d = |τ − ω(ξ)|, (5.20)

where we denote ω(ξ) = c2(〈|ξ|/c〉−1). Assume thatA 6= ∅ and let (τ0, ξ0, τ1, ξ1, τ, ξ) ∈
A. By the constraint (τ0, ξ0) + (τ1, ξ1) = (τ, ξ), we have

6δ > d0 + d1 + d ≥ α|ξ0| − |ω(ξ)− ω(ξ1)|

≥ α|ξ0| − c|ξ0| ≥
1

2
α|ξ0|,

(5.21)
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since α = 2c2/γ � c when c is large. Hence, by choosing ε small enough, we have

6δ > d0 + d1 + d ≥ 1
2
α|ξ0| ≥ 1

3
αj since j > 1, and we get a contradiction. Hence,

A = ∅ and (i) is proved.

For the proof of the second point, we argue in a similar manner. We use that

the characteristic surface for E∗ is τ + c2(〈ξ/c〉 + 1) = 0, so the distance from the

characteristic is given by

d1 = |τ1 + c2(〈ξ1/c〉+ 1)|. (5.22)

Hence we have

d0 + d1 + d ≥
∣∣∣α|ξ0| − 2c2 − ω(ξ1)− ω(ξ)

∣∣∣. (5.23)

Since |ξ0| 6∼ γ, we have

|α|ξ0| − 2c2| ∼ α|ξ0|+ 2c2 & αj, (5.24)

where we used the fact that if j = 1 > |ξ0| then γ > 1 by the support of F3nX and

hence 2c2 = αγ > α = αj. The condition on k and l implies that

ω(ξ1) + ω(ξ) < c(|ξ1|+ |ξ|) ≤ c(2 min(|ξ1|, |ξ|) + |ξ0|) ≤ (εα + 2c)j. (5.25)

Hence we get a contradiction if ε is small enough and α, c are large. This ends the

proof of (ii).

Now we proceed to bilinear estimates. We start by looking at SEIc(nE).

Proposition 5.5. For any functions N and E on (0, T )× R3, we have

‖SEIc(nXE)HL‖StrE(0,T )

. (T 1/6 + c−1/2)‖NX‖L∞L2(0,T )∩Y(0,T )‖E‖StrE(0,T )∩X (0,T ),
(5.26)

‖SEIc[
∑
k>c

(nX(>γ̃k/c)Ek)LH‖StrE(0,T )

. (T 1/5 + c−1/2)‖NX‖L∞L2(0,T )∩Y(0,T )‖E‖StrE(0,T )∩X (0,T )

(5.27)

where n := <N and E = E or E∗.

Proof. In order to apply Lemma 5.4, we first extend those functions to R by using

(4.14):

E′(t) := e−it∆c/2ρT e
it∆c/2E(t), N ′(t) = ei|α∇|tρT e

−i|α∇|tN(t), (5.28)
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which does not effect them nor the output on (0, T ), and we have

‖E′‖X (R) . ‖E‖X (0,T ), ‖N ′‖Y(R) . ‖N‖Y(0,T ),

‖E′‖L∞H1(R) . ‖E‖L∞(0,T ;H1), ‖N ′‖L∞L2(R) . ‖N‖L∞(0,T ;L2).
(5.29)

In the following, we do not distinguish (E′, N ′) and (E, N).

We decompose each function into dyadic pieces as (njEk)l, and let δ := εαj as

in Lemma 5.4. Either by HL or by j > γ̃k/c, the condition of the lemma holds for

both cases with E = E or E = E∗, for sufficiently large c. Hence applying to nE

the same decomposition as for E, we have

(njEk)l = (nFj Ek)l + (nCj E
F
k )l + (nCj E

C
k )Fl . (5.30)

Each term is estimated as follows, where we regard ε just as a constant.

First we prove (5.26), hence k . j ∼ l. Using the Sobolev embedding B1
18/5 +

c−1/3B
1/3
6 ⊂ I

1/3
c B

1/6
∞ , we have

‖SEIc(nFj Ek)l‖StrE . 〈l/c〉−1‖(nFj Ek)l‖L1H1

. 〈l/c〉−1l‖nFj ‖L2L2‖Ek‖L2L∞

. 〈l/c〉−1l〈j/c〉1/6 α
αj
‖Nj‖YT 1/6〈k/c〉1/3k−1/6‖E‖StrE(0,T )

. 〈l/c〉−1/2T 1/6k−1/6‖Nj‖Y‖E‖StrE ,

(5.31)

which can be summed in `2
l `

1
j`

1
k(k . j ∼ l) and gives

‖SEIc(nFE)HL‖StrE . T 1/6‖N‖Y‖E‖StrE . (5.32)

Similarly, by using L2 ⊂ B
−3/2
∞ we have

‖SEIc(nCj EF
k )l‖StrE . 〈l/c〉−1l‖NC

j ‖L2L2k3/2〈k/c〉−5/6(αj)−1‖Ek‖X
. 〈l/c〉−1〈k/c〉−5/6(k/c)3/2c−1/2‖N‖L2L2‖E‖X ,

(5.33)

This can be summed in `1
l `

1
j`

1
k(k . j ∼ l) and gives

‖SEIc(nCEF )CHL‖StrE . c−1/2T 1/2‖N‖L∞L2(0,T )‖E‖X . (5.34)

Now, using Lemma 4.1 and the Sobolev embedding, we have

‖SEIc(nCj EC
k )Fl ‖c−1L∞H3/2 . cδ−1〈l/c〉−1l3/2‖NC

j ‖L∞L2k1/2‖EC
k ‖L∞H1

. (cl)−1〈l/c〉−1l3/2k1/2‖N‖L∞L2‖E‖L∞H1 ,
(5.35)

which can be summed in `1
j`

1
k(k . j ∼ l). We then use the fact that c−1L∞B

3/2
2,∞ ⊂

c−1/2StrE, deducing

‖SEIc(nCEC)FHL‖StrE . c−1/2‖N‖L∞L2‖E‖L∞H1 . (5.36)
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Next we concentrate on (5.27), hence we have γ̃k/c ≤ j ≤ k ∼ l and k > c.

Using the Strichartz estimate, we have

‖SEIc(nFj Ek)l‖StrE . 〈l/c〉−1‖(nFj Ek)l‖I1/2c L10/7B1
10/7

(0,T )

. T 1/5〈l/c〉−1/2j9/10‖nFj ‖L2L2‖Ek‖L∞H1

. T 1/5〈l/c〉−1/2j9/10〈j/c〉1/6 α
αj
‖N‖Y‖E‖StrE ,

(5.37)

which can be summed in `1
l `

1
j`

1
k(j ≤ k ∼ l & c), and yields a factor T 1/5.

In the same way as (5.33), we have

‖SEIc(nCj EF
k )l‖StrE . 〈l/c〉−1lj3/2‖NC

j ‖L2L2〈k/c〉−5/6(αj)−1‖Ek‖X
. 〈l/c〉−11/6lj1/2c−2‖N‖L2L2‖E‖X ,

(5.38)

which can be summed in `1
l `

1
k`

1
j(j . k ∼ l) and we get a factor c−1/2T 1/2.

Finally, in the same way as (5.35), we have

‖SEIc(nCj EC
k )Fl ‖c−1L∞H3/2 .

1

cj
〈l/c〉−1l1/2j3/2‖N‖L∞L2‖E‖L∞H1 (5.39)

which can be summed `1
k`

1
j(j . k ∼ l). We then use that c−1L∞B

3/2
2,∞ ⊂ c−1/2StrE,

getting a factor c−1/2.

Next we consider the nonresonant term in the equation for n.

Proposition 5.6. For any functions E and F on (0, T )× R3, we have

‖Sn
∑
k

∑
j>γ̃k/c

α|∇|〈Ek,F + F∗〉Xj‖Strn(0,T )+L∞(0,T ;B
1/2
2,∞)

. ‖E‖StrE(0,T )∩X (0,T )‖F‖StrE(0,T )∩X (0,T )

(5.40)

Proof. We will denote E = E and F = F or F∗. Decomposing into dyadic pieces,

we consider interactions of the form 〈Ek, Fl〉j for N with j > γ̃k/c. Hence,

〈Ek, Fl〉j = 〈EF
k , Fl〉j + 〈Ek, F F

l 〉j − 〈E
F
k , F

F
l 〉j + 〈EC

k , F
C
l 〉

F

j . (5.41)

By using the Strichartz estimate, we have

‖Sn|α∇|〈EF
k , Fl〉j‖Strn . αj‖(EF

k Fl)j‖α1/6L6/5B
1/3
3/2

. αjα−1/6j1/3‖EF
k ‖L2L2〈l/c〉1/3l−2/3‖Fl‖I−1/3

c L3B
2/3
6

.
αj

δ
(j/c)1/3〈k/c〉−5/6〈l/c〉1/3l−2/3‖E‖X‖F‖StrE .

(5.42)
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This is summable in `1
j`

1
l `

1
k for l . j ∼ k and for j . k ∼ l. The above term can be

bounded also by

αj‖(EF
k Fl)j‖L1L2 . αjT 1/6‖EF

k ‖L2L3〈l/c〉1/3l−2/3‖Fl‖I−1/3
c L3B

2/3
6

. T 1/6αj

δ
k1/2〈k/c〉−5/6〈l/c〉1/3l−2/3‖E‖X‖F‖StrE ,

(5.43)

which is summable in `1
j`

1
l `

1
k for k . l ∼ j, yielding a factor T 1/6.

For 〈Ek, F F
l 〉j, we have just to switch the roles of k and l. For 〈EF

k , F
F
l 〉j, we

have a better bound

‖Sn|α∇|〈EF
k , F

F
l 〉j‖Strn . αj‖(EF

k Fl
F )j‖L1L2

. (αj)−1(kl)3/4〈k/c〉−5/6〈l/c〉−5/6‖Ek‖X‖Fk‖X ,
(5.44)

which is summable for all j, k, l and gives a factor c−1/2.

Finally, for the last term of (5.41), we have

‖Sn|α∇|〈EC
k , F

C
l 〉

F

j ‖L∞H1/2 .
αj

δ
s3/2j1/2(kl)−1‖Ek‖L∞H1‖Fl‖L∞H1 (5.45)

where s = min(j, k, l). This can be summed in `1
l `

1
k for k . l ∼ j, l . k ∼ j and

k ∼ l & j and gives a result in L∞B
1/2
2,∞.

5.4 The resonant part of N

To estimate the resonant frequency part Nγ, we integrate by parts as in (2.6). Then

the estimate on the boundary terms follows from Lemma 4.3. The estimate on the

integral terms use the following proposition

Proposition 5.7. For any functions E and F, we have

‖Sn〈Ė,F〉γ‖L∞L2 . T‖Ė‖L∞H−1‖F‖L∞H1 ,

‖A−γ Sn〈Ė,F∗〉γ‖L∞L2 . T‖Ė‖L∞H−1‖F‖L∞H1 ,

‖A+
γ Sn〈Ė,F∗〉γ‖L∞Wk,p . T‖Ė‖L∞H−1‖F‖L∞H1

(5.46)

Proof. For the proof of the first two estimates, we have just to use that

‖(FĖ)γ‖L2 . ‖(FĖ)γ‖L1

.
∑
k∼l

‖Fk‖L2‖Ėl‖L2 . ‖F‖H1‖Ė‖H−1 , (5.47)

and then apply the energy estimate. For the last term, we use the above L1
x bound

together with Lemma 4.3 to deal with A+
γ .

We then use that ‖Ė‖L∞H−1 ≤ ‖E‖L∞H1 + ‖E‖L∞H1‖N‖L∞(L2+W1,p).
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5.5 Concluding the estimates

Applying the propositions of the previous subsections, we can estimate all the terms

appearing in (5.3) and (5.4). Recall ‖‖‖E‖‖‖ and ‖‖‖N‖‖‖ defined in (5.1).

Proposition 5.8. If (E, N) is a solution of (2.1) on (0, T ), then we have the fol-

lowing a priori bound

‖‖‖E‖‖‖ . ‖E(0)‖H1 + (T 1/6 + c−1/2)‖‖‖N‖‖‖‖‖‖E‖‖‖,
‖‖‖N‖‖‖ . ‖N(0)‖L2+Wk,p + ‖‖‖E‖‖‖2(1 + T‖‖‖N‖‖‖).

(5.48)

Hence, it is clear that there exists a c0 big enough and there exists a uniform

time T such that the equation can be solved for c > c0 on the time interval (0, T ).

6 Passage to the limit

In this section, we prove the convergence towards the limit system. We denote

N0∞ = −|E∞|2,
N+∞ = −eiαγtA+

γ (E∞1 · E∞2 ), N−∞ = −e−iαγtA−γ (E∞1 · E∞2 ),
(6.1)

Eω := e−i(∆c−∆)t/2E∞, Nσω := Nσ∞ +NσI forσ = 0,±, (6.2)

where NσI = NσIc were defined in Theorem 3.1. We also denote

N∞ = N0∞ +N+∞ +N−∞,

N I = N f +N0I +N+I +N−I ,

Nω = N∞ +N I = N0ω +N+ω +N−ω.

(6.3)

Taking the real value, we define also nI = <N I ,

n∞ = <N∞ = −|E∞|2 −<[eiαγtAγ(E∞1 · E∞2 )], (6.4)

and nω = <Nω = n∞ + nI .

We will argue in a similar way as in [16] with the difference that here we have

to estimate the whole Strichartz norm. For any Banach space Z for space-time

functions on (0, T )× R3 or space functions on R3, we will denote by

o(Z), O(Z), (6.5)

those sequence of functions which tends to 0 as c → ∞ in the Z norm, and those

sequence of functions bounded as c → ∞ in the Z norm, respectively. We want to
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prove that

E− Eω ∈ o(StrE),

E− Eω ∈ o(X ) +O(IcX
1,1),

N −Nω ∈ o(Strn + L∞(B
1/2
2,∞ +Wk,p)),

(N −Nω)X ∈ o(Y),

(6.6)

for any p > 3, under the assumption that E(0) = E∞(0) + o(H1) and N f (0) ∈
O(L2 +Wk,p).

For the limit solution, we obtain E∞ ∈ L∞H1 ∩ L2B1
6 in the same way as for

the usual NLS, using the Strichartz estimate together with the following nonlinear

estimates

‖[Aγ(EF )γ + µ∞]G‖L∞H1 . [‖(EF )γ‖L∞L1 + ‖µ∞‖L∞W 1,p ] ‖G‖L∞H1

. [‖E‖L∞H1‖F‖L∞H1 + ‖µ∞‖L∞W 1,p ] ‖G‖L∞H1 ,

‖Aγ(EF )XG‖L2B1
6/5

. T 1/2‖EF‖L∞B1
3/2
‖G‖L∞H1

. T 1/2‖E‖L∞H1‖F‖L∞H1‖G‖L∞H1 ,

‖Aγ(EF )XG‖L1H1 . T 1/2‖EF‖L4H1‖G‖L4(B1
3∩L∞)

. T 1/2‖E‖L∞H1‖F‖L4(B1
3∩L∞)‖G‖L4(B1

3∩L∞)

. T 1/2‖E‖L∞H1‖F‖1/2

L∞H1‖F‖1/2

L2B1
6
‖G‖1/2

L∞H1‖G‖1/2

L2B1
6
,

(6.7)

where in the last step we used the real interpolation (L6, B1
6)1/2,1 = B

1/2
6,1 ⊂ L∞, and

in all cases we used Lemma 4.3 to treat A+
γ . Since ei(∆c−∆)t is strongly convergent

to 1 on H1 uniformly for t ∈ [0, T ], we deduce that

Eω = E∞ + o(StrE), Eω ∈ O(X1,1), N I ∈ O(L∞Wk,p + Y 0,1). (6.8)

Denote [E] := E + E∗ and E⊥ = (E2,E1). We decompose

E− Eω = E1 + E2 + E3 + E4 + E5, (6.9)

where each Ej is defined by the following:

E1 := e−i∆ct/2(E(0)− E∞(0)),

E2 := SEIc

{
[|E∞|2 −<µ0∞]Eω + [Aγ(E∞1 · E∞2 ) + µ+∞/2]Eω⊥

}
− SEei(∆c−∆)t/2

{
[|E∞|2 −<µ0∞]E∞ + [Aγ(E∞1 · E∞2 ) + µ+∞/2]E∞⊥

}
,

E3 := −SEIcn[E− Eω]− SEIc(n− nω)[Eω],

E4 := −SEIc(nI [Eω]−<µ0∞Eω − µ+∞Eω⊥
/2),

E5 := SEIce
−iαγt|E∞|2Eω⊥ − 1

2
SEIce

iαγtAγ(E∞1 · E∞2 )Eω

− 1

2
SEIce

−iαγtAγ(E∞1 · E∞2 )Eω − 1

2
SEIce

−2iαγtAγ(E∞1 · E∞2 )Eω⊥
.

(6.10)
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We treat each Ej one by one. We denote the small factor by

κ = T 1/6. (6.11)

First we have immediately from the initial convergence,

‖E1‖X1,1 = o(1). (6.12)

Next using the estimates (6.7) together with the Strichartz estimate as well as the

strong convergence of ei(∆c−∆)t, we get

‖E2‖StrE∩X = o(1), ‖E5‖StrE∩IcX1,1 = O(1). (6.13)

Using Propositions 5.2 and 5.5, we get

‖E3‖StrE .κ‖E− Eω‖StrE + κ‖N −Nω‖
Strn+L∞(W1,p+B

1/2
2,∞)

+ κ‖(N −Nω)X‖Y + o(1),
(6.14)

and using Proposition 5.1,

‖E3‖X . κ‖E− Eω‖StrE + κ‖N −Nω‖L∞(W1,p+L2). (6.15)

For E4 and E5, we use their rapid oscillation in time. For the higher frequency

N I
>2γ, we integrate by parts after cutting the high frequency of E. For any ε > 0,

there exists K > 1 such that ‖Eω
>K‖StrE∩X ≤ ε and so by Propositions 5.1, 5.2 and

5.5, as well as (6.7), we have

‖SEIc(nI [Eω
>K ]−<µ0∞Eω

>K − µ+∞Eω⊥
>K/2)‖StrE∩X . ε. (6.16)

Hence we may replace Eω by Eω
≤K in E4. Integrating on ei|α∇|t, we get

2SEIcN
I
>2γEω

≤K =
[
ei∆c(s−t)/2Ic

{
(|α∇|−1N I

>2γ)Eω
≤K
}]t

0

− 2iSEIc
{

(|α∇|−1N I
>2γ)∂tEω

≤K
}

+ SE∆cIc
{

(|α∇|−1N I
>2γ)Eω

≤K
}
.

(6.17)

Since |α∇|−1N I
>2γ is bounded in α−1L∞(H1+W 2,p), the first two lines are bounded in

IcX
1,1. For the last term, we need to integrate once more, which yields similar terms

but with one more |α∇|−1 and ∆c. Since ∆2
cIc ≤ O(α3/2|∇|) and ∆2

c ≤ O(α|∇|2) on

Hs, and |α∇|−2N I
>2γ is bounded in α−2L∞(H2 +W 3,p), those terms after the second

integration are bounded in c−1StrE ∩ α−1X .

The other terms including N
I

>2γ or Eω∗
≤K are treated in the same way, integrating

on the phase e±i|α∇|t or eiα(±|∇|−γ). The denominators are never singular thanks to
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the frequency restriction > 2γ. Actually it is not needed for the term NE∗. Also, the

same argument applies to E5 without any low frequency cut-off, just by integrating

on the phase e±iαγt or e−2iαγt. Thus we obtain

‖E5‖StrE = o(1). (6.18)

It remains to estimate the part in E4 with N I
≤2γ and Eω

≤K , which we further

cut-off in the physical space. Fix χ ∈ C∞0 (R3) satisfying χ(x) = 1 for |x| ≤ 1 and

χ(x) = 0 for |x| ≥ 2. There exists R > 1 such that ‖(1 − χ(x/R))Eω
≤K‖L∞H1 ≤ ε

and so

‖nI≤2γ[(1− χ(x/R))Eω
≤K ]‖L∞H1 + ‖µ∗∞(1− χ(x/R))Eω⊥

≤K‖L∞H1 . ε. (6.19)

Hence its contribution to E4 is O(ε) in IcX
1,1.

Thus we may replace E≤K further by χ(x/R)E≤K . For the singular part, we

may replace N I by N f because (N I − N f )≤2γ → 0 in L∞W k,p by Lp decay for

eit|∇| and Lemma 4.3. Then the Fourier and physical cut-offs together with the time

integration provide compactness for the convergence in (3.2) such that

‖SEIcχ(x/R)(nI≤2γ −<µ0∞)E‖L∞H1 → 0,

‖SEIcχ(x/R)(e−iαγtN I
≤2γ − µ+∞)E⊥‖L∞H1 → 0,

(6.20)

which implies also the decay in StrE by interpolation. These terms might not go to

0 in X , but are bounded in IcX
1,1. Thus we conclude that

E4 ∈ o(StrE) ∩ [o(X ) +O(IcX
1,1)]. (6.21)

Gathering the above estimates, we obtain

‖E− Eω − E4 − E5‖X . κ‖E− Eω‖StrE + κ‖N −Nω‖L∞(L2+W1,p) + o(1),

‖E− Eω‖StrE . κ‖E− Eω‖StrE + κ‖N −Nω‖
Strn+L∞(W1,p+B

1/2
2,∞)

+ κ‖(N −Nω)X‖Y + o(1).

(6.22)

Next, we estimate N − Nω. We will only concentrate on N+ − N+ω since the

other terms are easier. Integrating by parts for the lower frequency part

(EE)ll := (E1)≤c1/3 · (E2)≤c1/3 , (6.23)

as in (2.6), we get

N+ −N+ω =− Sn|α∇|eiαγt [E1 · E2 − (EE)ll]

+ eiαγtA+
γ [(EE)ll − E∞1 · E∞2 ]

− ei|α∇|tA+
γ [(EE)ll(0)− E∞1 · E∞2 (0)]

+ iA+
γ Sne

iαγt∂t(EE)ll =: N1 +N2 +N3 +N4.

(6.24)

26



For the Y norm, first we have

‖N3
X‖Y . α−1‖E1 · E2 − E∞1 · E∞2 ‖L∞L2 . α−1,

‖N1‖Y . κ‖E>c1/3‖StrE . κ‖E− Eω‖StrE + o(1),
(6.25)

by using Proposition 5.1. For the time derivative term, we use

‖Ė‖L2 . c‖E‖H1 + c‖nE‖H−1 . c, (6.26)

and also StrE ⊂ L3(L∞ + c−1/3L18) to deduce

‖∂t(EE)‖L2L2 . κ‖E‖StrE‖Ė‖L∞L2 . cκ. (6.27)

By the same product estimate, we have

‖EE‖L2H1 . κ‖E‖2
StrE

. (6.28)

Using these bounds, we get

‖N2
X‖Y . α−1‖(i∂t + |α∇|)N2

X‖L2L2 . o(1) + κ‖E− Eω‖StrE ,

‖N4
X‖Y . α−1‖∂t(EE)‖L2L2 . c−1.

(6.29)

Thus by adding them up,

‖(N+ −N+ω)X‖Y . κ‖E− Eω‖StrE + o(1). (6.30)

For the Strichartz-type norms, by using Propositions 5.3 and 5.6, we have

‖N1‖
Strn+L∞B

1/2
2,∞

. ‖E>c1/3‖StrE∩X

. ‖E− Eω‖StrE + ‖E− Eω − E4 − E5‖X + o(1),
(6.31)

where Eω, E4 and E5 are negligible for the higher frequency > c1/3. Decomposing

into the resonant frequency and the rest, we have

‖N2 +N3‖L∞(Wk,p+H1/2) . ‖(EE)ll − E∞1 · E∞2 ‖L∞(L1∩H1/2)

. ‖E− Eω‖StrE + o(1),
(6.32)

where Wk,p and L1 were used for N j
γ , and H1/2 for N j

X . Using the α gain in the

wave Strichartz, we have

‖N4
X‖Strn . ‖∂t(EE)ll‖α1/3L3/2B

2/3
6/5

. α−1/3c5/9T‖∂t(EE)ll‖L∞B−1
6/5

. c−1/9T‖Ė≤c1/3‖L∞H−1‖E≤c1/3‖L∞H1 . c−1/9κ.
(6.33)

Also, by Lemma 4.3 with 1/q = 2/3 + 1/p, we have

‖A+
γ e

i|α∇|tϕγ‖Wk,p . ‖ϕγ‖1/3+2/p

L1 ‖ϕγ‖2/3−2/p

L2 . (6.34)
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Hence combining it with the same Strichartz estimate as above, we get

‖N4
γ‖L∞Wk,p . ‖∂t(EE)llR‖1/3+2/p

L1L1 ‖∂t(EE)llR‖2/3−2/p

α1/3L3/2B
2/3
6/5

. Tα−1/3(2/3−2/p) = o(1),
(6.35)

Gathering the above estimates, we get

‖N+ −N+ω‖
Strn+L∞(Wk,p+B

1/2
2,∞)

. ‖E− Eω‖StrE + ‖E− Eω − E4 − E5‖X + o(1).
(6.36)

Using the estimates (6.22), (6.30) and (6.36), as well as their counterparts for

N0 and N−, we deduce that (6.6) holds. This ends the proof of convergence. (3.7)

is a direct consequence of Lemma 4.3 and (3.6).
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