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Abstract. In this paper we give a more precise construction of the boundary layer used to
prove the strong decay of the acoustic waves in the paper [4]. Indeed, the construction in
[4] is not completely correct in the case when eigenvalues are not simple and some additional
conditions should be imposed on the basis of eigenvectors chosen. There is an extra interesting
algebraic structure based on a sequence of symmetric operators that should be used in this
choice. This construction can be extended to the case of Robin boundary condition as well as
to the full acoustic operator which includes the heat conductivity effect. Moreover, this paper
allows us to extend the construction of the viscous boundary layer in the hydrodynamic limit
of the Boltzmann equation used in our paper [7] to the general case.

1. Introduction

The paper [4] was devoted to the study of the so-called incompressible limit for solutions
of the compressible isentropic Navier-Stokes equations in a bounded domain with the natural
physical boundary conditions for a viscous fluid, namely the homogeneous Dirichlet boundary
conditions. It was in some sense, the sequel of [9, 10] where various cases were considered,
namely the cases of a periodic flow, of a flow in the whole space, or in a bounded domain with
other boundary conditions than Dirichlet conditions (see also [3] where the dispersion in the
whole space is proved).

A new striking phenomenon caused by the boundary conditions was observed in [4]. As is
well known physically when looking at the incompressible limit, one expects that, as the Mach
number ε goes to 0, fast acoustic waves are generated carrying the energy of the potential part of
the flow (and a normalized part of the internal energy of the gas). For periodic flows (or for some
particular boundary conditions), these waves subsist forever and their frequencies grow as ε goes
to zero. Mathematically speaking, this means that the solutions of compressible (isentropic)
Navier-Stokes equations may only converge weakly in L2 to the solutions of incompressible
Navier-Stokes equations – and they do as shown in [9]. However, in the case of a viscous flow in
a bounded domain with the usual Dirichlet boundary condition, under a generic assumption on
the domain, it was proved in [4] that the acoustic waves are instantaneously (asymptotically)
damped, due to the formation of a thin boundary layer. This layer dissipates the energy carried
by the waves and, from a mathematical viewpoint, it yields a strong convergence in L2. For
more recent results about the compressible-incompressible limit, we refer to [5, 8]. We also refer
to [1, 12] for some review papers. The phenomenon of dissipation due to the boundary layer
is also present for a related problem which presents, as is classical, striking analogies with the
one studied here, namely the so-called “Ekman pumping” for rotating fluids (see for instance
[6, 11, 2]).

The main ingredient in [4] was the construction of a boundary layer that was used as a test
function very much like in the method of “oscillating test functions” of L. Tartar. However, the
construction in [4] presents a small gap when the eigenvalues of the Laplacian with Neumann
boundary condition are not simple. Here we would like to make this more precise. Furthermore,
we consider the full acoustic and diffusion operators including the heat conductivity effect, which
also gives some new phenomena different from the isentropic case. The construction we give
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here is also used to extend the construction of the so-called viscous boundary layer used in the
hydrodynamic limit of the Boltzmann equation [7] to the general case.

We will use the same notations as in [4]. We first recall the definition of the viscous wave
operator Aε = A+ εD where A and D are acoustic and diffusion operators respectively, defined
on D′(Ω)×D′(Ω)d ×D′(Ω) by

AU =

 divu
∇x(ρ+ θ)
γdivu

 , DU =

 0
ν∆xu + (ξ + ν)∇xdivu

κ∆xθ

 ,

where U = (ρ ,u , θ)T and we assume that γ > 0, ν > 0 and ξ + ν > 0.
Let {λ2

k,0}k≥1 be the nondecreasing sequence of eigenvalues and {Ψk,0}k≥1 the orthonormal
basis of L2(Ω) functions with zero mean value of eigenvectors of the Laplace operator −∆N with
homogeneous Neumann boundary conditions:

−∆xΨk,0 = λ2
k,0Ψk,0 in Ω ,

∂Ψk,0
∂n = 0 on ∂Ω . (1.1)

The eigenvalues and eigenvectors of A read as follows

φ±k,0 = 1√
2

(
1√
1+γ

Ψk,0 ,u±k,0 = ±∇xΨk,0
iλk,0

, γ√
1+γ

Ψk,0

)T
∈ C2+d , (1.2)

Aφ±k,0 = i
√

1 + γλ±k,0φ
±
k,0 in Ω , u±k,0 ·n = 0 on ∂Ω , (1.3)

where λ±k,0 = ±λk,0.
In the paper [4], for the isentropic case, Desjardins, Grenier, Lions and the second author

constructed the viscous boundary layers under two conditions: the first, a geometric condition
on the domain Ω (the “assumption (H)” in [4]); the second, an orthogonality condition for
multiple eigenvalues, namely that if λk,0 = λl,0 and k 6= l, then∫

∂Ω
∇xΨk,0 ·∇xΨl,0dσx = 0 . (1.4)

In the present paper, we consider the more general non-isentropic case. The analogue of
the orthogonality condition (1.4) for the isentropic case will be (3.16) for the non-isentropic
case. Actually, this condition (both for isentropic and non-isentropic cases) is not completely
sufficient and we need some higher order orthogonality conditions. This is the main
concern of the present paper.

Let us explain more how the condition (1.4) should be enforced. Assume that λ2 is an
eigenvalue of (1.1) and denote by H0 = H0(λ) the eigenspace associated to λ2, i.e.

H0(λ) = {Ψ ∈ D(−∆x) : −∆xΨ = λ2Ψ in Ω, ∂Ψ
∂n = 0 on ∂Ω} (1.5)

where D(−∆x) = H2(Ω) ∩ {Ψ : ∂Ψ
∂n = 0 on ∂Ω} denotes the domain of −∆x with Neumann

boundary condition. On the finite dimensional space H0(λ), we can define a quadratic form Q1

(its associated bilinear form is also denoted by Q1) and a symmetric operator L1 = Lλ1 by

Q1(Ψ, Ψ̃) =
∫
∂Ω
∇xΨ·∇xΨ̃ dσx =

∫
Ω
L1(Ψ)Ψ̃ dx . (1.6)

Thus the condition (1.4) can be restated as

Q1(Ψk,0,Ψl,0) = 0 , if Ψk,0,Ψl,0 ∈ H0(λ) and k 6= l . (1.7)

This condition means that the eigenvectors Ψk,0 for λk,0 = λ are orthogonal for the symmetric
operator L1. Of course, since L2(Ω) is the direct sum of the spaces H0(λ) for different λ′s, from
the definition of L1 on each eigenspace H0(λ), we can define an operator Lλ1 on L2(Ω) which
leaves each eigenspace H0(λ) invariant. But this is not necessary, so we will think of Lλ1 as acting
on H0(λ) for a fixed multiple eigenvalue λ.
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The orthogonality condition (1.4) turns out to be enough for the construction of the boundary
layer if the eigenvalues of L1 are simple, namely, if

λk,1 =
∫
∂Ω
|∇xΨk,0|2 dσ 6=

∫
∂Ω
|∇xΨl,0|2 dσx = λl,1 (1.8)

for all l 6= k such that λl,0 = λk,0 = λ. [Here the expression of λk,1 is for the isentropic case. The
analog for the general non-isentropic case is given by (3.13).] However, if λ1 is an eigenvalue
of L1 with multiplicity greater than or equal to 2, more precisely, if there exists l 6= k such
that λl,0 = λk,0 = λ, and λl,1 = λk,1 = λ1, then we need an extra orthogonality condition as
following: Let H1 = H1(λ1) be defined by

H1(λ1) = {Ψ ∈ H0(λ) : L1Ψ = λ1Ψ} . (1.9)

On the finite dimensional space H1, there exists a quadratic form Q2 and a symmetric operator
L2 [see the definition below], the extra condition is

Q2(Ψk,0,Ψl,0) = 0 , if Ψk,0,Ψl,0 ∈ H1(λ1) and k 6= l . (1.10)

This condition is enough if L2 has only simple eigenvalue on the vector space H1. However, if
L2 has eigenvalue with multiplicity greater than or equal to 2, we need additional condition on
H2, and so on.

This process can be continued inductively to find the condition we have to impose on the
eigenvectors of −∆x. Indeed, we can construct recursively, on each eigenspace H0(λ) of −∆x, a
sequence of symmetric operators Lq, (q ∈ N) in the following way: Let L0 = −∆x, we define L1

on each one of the eigenspace H0(λ) of L0 by (1.6) [In the non-isentropic case, (1.6) should be
replaced by (3.19)]. Assume that the operators Lp were constructed for p ≤ q−1, q ≥ 2 in such a
way that each operator Lp leaves invariant the eigenspaces of the operators Lp′ for p′ < p. Now,
to construct Lq, it is enough to construct Lq on each eigenspace H1(λ1)∩H2(λ2)∩· · ·∩Hq−1(λq−1),
where λ1, λ2, · · · , λq−1 are multiple eigenvalues of L1, L2, · · · , Lq−1 respectively. This is done by
constructing a quadratic form Qq on each space H1(λ1)∩H2(λ2)∩ · · · ∩Hq−1(λq−1) and defining
Lq by

Qq(Ψ, Ψ̃) =
∫

Ω
Lq(Ψ)Ψ̃ dx , for all Ψ, Ψ̃ ∈ H1(λ1) ∩H2(λ2) ∩ · · · ∩Hq−1(λq−1) . (1.11)

The precise construction of the quadratic form Qq on the space H1(λ1)∩H2(λ2)∩· · ·∩Hq−1(λq−1)
will be done in the proof of Theorem 1.1. The theorem and its proof will be stated for the more
general non-isentropic case, and it is easy to deduce the isentropic case. Once there is an
eigenvalue λq such that dim Hq(λq) = 1, i.e. λq is a simple eigenvalue of Lq, no additional
orthogonality conditions are needed and we can just take Lq′ = Id on H1(λ1) ∩ H2(λ2) ∩ · · · ∩
Hq(λq) for q′ ≥ q + 1. (Note: for this case, the orthogonality condition (1.13) is reduced to∫

Ω Ψk,0Ψl,0 dx = 0, which does not give any new condition).
Let N ∈ N be an integer. This is the integer that will appear in the order of the approximation

in the next proposition. The eigenvectors Ψk,0 for λk,0 = λ should be chosen in such a way that
they are orthogonal to all the operators Ln for n ≤ N + 2, which means that

Qn(Ψk,0,Ψl,0) =
∫

Ω
Ln(Ψk,0)Ψl,0 dx = 0 , (1.12)

if Ψk,0,Ψl,0 ∈ H1(λ1) ∩ H2(λ2) ∩ · · · ∩ Hn−1(λn−1) and k 6= l. In fact, the condition (1.12) is
equivalent to: for 1 ≤ q ≤ n,

Qq(Ψk,0,Ψl,0) =
∫

Ω
Lq(Ψk,0)Ψl,0 dx = 0 , if l 6= k,Ψk,0,Ψl,0 ∈ H0(λ) . (1.13)

Now we state the main result of this paper, which is the same as the Proposition 2 in [4],
except that we add the higher order orthogonality conditions. As we mentioned above, the main
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purpose of the present paper is to fill the gap in the proof of the Proposition 2 in [4] and to
rewrite it in the non-isentropic setting.

Theorem 1.1. Let Ω be a C2 bounded domain of Rd and let k ≥ 1, N ≥ 0. Let the eigenvectors
Ψk,0 of −∆x satisfy the orthogonality conditions (1.7) and (1.13). Then, there exists approximate
eigenvalues iλ±k,ε,N and eigenvectors φ±k,ε,N = (ρ±k,ε,N ,u

±
k,ε,N , θ

±
k,ε,N )T of Aε such that

Aεφ±k,ε,N = iλ±k,ε,Nφ
±
k,ε,N +R±k,ε,N , (1.14)

with
iλ±k,ε,N = ±iλk,0 + iλ±k,1

√
ε+O(ε) , (1.15)

and the real part of iλ±k,1, i.e. Re(iλ±k,1) < 0. Furthermore, for all p ∈ [1,∞], we have

‖R±k,ε,N‖Lp(Ω) ≤ Cp(
√
ε)N+ 1

p . (1.16)

Remarks: 1) In the isentropic case, to get that Re(iλ±k,1) < 0, we need an additional geometric
condition on the domain Ω, the “assumption (H)” in [4]. For the non-isentropic case, this
geometric condition is not needed because of the additional dissipative effect coming from heat
conductivity, see the Remark after (3.14).

2) The proof gives a more precise expansion of the eigenvalues iλ±k,ε,N and eigenvectors φ±k,ε,N .
In Section 2, we collect some results which will be used in the proof of the Theorem 1.1. In

section 3, we prove Theorem 1.1. The main idea is to construct a boundary layer similar to the
one in [4]. For the convenience of the readers, we give a complete proof here.

2. Preliminaries

In this section, we collected some results needed in the construction of the boundary layers.

2.1. The operator A − iλ±k,0. First, for any φ, φ̃ ∈ L2(Ω,C × Cd × C), we introduce a scalar
product

〈φ|φ̃〉 =
∫

Ω

(
ρρ̃+ u·ũ + 1

γ θθ̃
)

dx , (2.1)

for any φ = (ρ ,u , θ)T and φ̃ = (ρ̃ , ũ , θ̃)T . Under this scalar product, the eigenvectors φ±k,0 in
(1.2) have norm 1.

Now, we consider the operator A−iλτk,0, where the acoustic mode k ≥ 1 and τ = + or −. This
operator, especially its pseudo inverse will be important in the construction of the boundary
layer. The kernel and its orthogonal under the inner product (2.1) are

Null(A− iλτk,0) = Span{φτl,0 : λl,0 = λk,0} ,

Null(A− iλτk,0)⊥ =Span{φ+
l,0 , φ

−
l,0 : λl,0 6= λk,0} ⊕ Span{φ−τl,0 : λl,0 = λk,0}

⊕Null(A) .
(2.2)

Next, we define a bounded pseudo inverse of A− iλτk,0(
A− iλτk,0

)−1 : Null
(
A− iλτk,0

)⊥ −→ Null
(
A− iλτk,0

)⊥
,

by (
A− iλτk,0

)−1
φδl,0 = 1

iλδl,0−iλ
τ
k,0

φδl,0 , for any φδl,0 with λδl,0 6= λτk,0 , (2.3)

and (
A− iλτk,0

)−1(ρ,u,−ρ)T = 1
iλτk,0

(ρ,u,−ρ)T , (2.4)

for any (ρ,u,−ρ)T ∈ Null(A) and τ, δ ∈ {+,−}. It is obvious that this pseudo-inverse operator
is a bounded operator.

The following lemma will be used frequently in this paper.
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Lemma 2.1. For each acoustic mode k ≥ 1 and τ = + or −, let φτk,0 be defined in (1.2),
and let ντk be a given number and f τk and gτk be given vectors. Then the following system for
φτk = (ρτk ,u

τ
k , θ

τ
k)T

(A− iλτk,0)φτk = iντkφ
τ
k,0 + f τk ,

uτk ·n = gτk on ∂Ω
(2.5)

can be solved modulo Null(A− iλτk,0) under the following two conditions:

• iντk satisfies

iντk =
∫
∂Ω
gτkΨk,0dσx − 〈f τk |φτk,0〉 . (2.6)

• If λk,0 is an eigenvalue with multiplicity greater than 1, a compatibility condition is
needed ∫

∂Ω
gτkΨl,0dσx = 〈f τk |φτl,0〉 , for λl,0 = λk,0 with k 6= l . (2.7)

Under these two conditions, the solutions to (2.5) can be uniquely represented as

φτk = P0φ
τ
k + P⊥0 φ

τ
k =

∑
λk,0=λl,0

〈φτk |φτl,0〉φτl,0 + P⊥0 φ
τ
k , (2.8)

where P⊥0 φ
τ
k ∈ Null

(
A− iλτk,0

)⊥ is completely determined, and P0φ
τ
k is the orthogonal projection

on Null
(
A− iλτk,0

)
which is not determined.

Proof. For any gτk ∈ H
1
2 (∂Ω), there exists ũτk ∈ H1(Ω ; RD), such that γũτk ·n = gτk , where γ is

the usual trace operator from H1(Ω ; RD) to H
1
2 (∂Ω). We define

φ̃τk = φτk − (0, ũτk, 0)T . (2.9)

Then φ̃τk has zero the normal velocity on the boundary ∂Ω, thus is in the domain of A. From
(2.5), φ̃τk satisfies

(A− iλτk,0)φ̃τk = −(A− iλτk,0)(0, ũτk, 0) + iντkφ
τ
k,0 + f τk . (2.10)

The solvability of (2.10) is that the right-hand side must be in Null
(
A− iλτk,0

)⊥. Thus, the
inner product of (2.10) with φτk,0 is zero, which gives (2.6), while the inner product with φτl,0 with
λk,0 = λl,0, k 6= l gives (2.7). Under these conditions, by applying the pseudo-inverse operator(
A− iλτk,0

)−1 defined in (2.3)-(2.4), we can uniquely solve φ̃τk in Null
(
A− iλτk,0

)⊥, denoted by
φ̄τk. However, the projection of φ̃τk on Null

(
A− iλτk,0

)
is not determined. In other words,

φ̃τk = φ̄τk +
∑

λk,0=λl,0

〈φ̃τk |φτl,0〉φτl,0 .

Using (2.9), we get (2.8), where

P⊥0 φ
τ
k = φ̄τk + (0, ũτk, 0)T −

∑
λk,0=λl,0

〈(0, ũτk, 0)T |φτl,0〉φτl,0 .

In (2.8), the projection of φτk on Null
(
A− iλτk,0

)
, i.e. the first term in the right-hand side of

(2.8), can not be uniquely determined. It is easy to see that the projection of φτk on Null
(
A −

iλτk,0
)⊥, i.e. P⊥0 φ

τ
k, is uniquely determined, although the lifting of the trace gτk is not unique.

�
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2.2. Geometry of the boundary ∂Ω. Next, we collect some differential geometry properties
related to the boundary ∂Ω which can be considered as a (d−1) dimension compact Riemannian
manifold with a metric induced from the standard Euclidean metric of Rd. Let T (∂Ω) and
T (∂Ω)⊥ denote the tangent and normal bundles of ∂Ω in Rd respectively.

There is a tubular neighborhood Uδ = {x ∈ Ω : dist(x, ∂Ω) < δ} of ∂Ω such that the nearest
point projection map is well defined and smooth. More precisely, we have the following lemma:

Lemma 2.2. If ∂Ω is a compact Ck submanifold of dimension d−1 embedded in Rd, then there
is δ = δ∂Ω > 0 and a map π ∈ Ck−1(Uδ ; ∂Ω) such that the following properties hold:

(i): for all x ∈ Ω ⊂ Rd with dist(x , ∂Ω) < δ ;

π(x) ∈ ∂Ω , x− π(x) ∈ T⊥π(x)(∂Ω) , |x− π(x)| = dist(x , ∂Ω) , and

|z − x| > dist(x , ∂Ω) for any z ∈ ∂Ω \ {π(x)} ;
(ii):

π(x+ z) ≡ x , for x ∈ ∂Ω , z ∈ Tx(∂Ω)⊥ , |z| < δ ,

(iii): Let Hessπx denote the Hessian of π at x, then

Hessπx(V1 , V2) = hx(V1 , V2) , for x ∈ ∂Ω V1 , V2 ∈ Tx(∂Ω) ,

where hx is the second fundamental form of ∂Ω at x.

The proof of this lemma is classical, for example, see [13], where the lemma is proved for
general submanifold.

The viscous boundary layer we will construct has significantly different behavior over the
tangential and normal directions near the boundary. This inspire us to consider the following
new coordinate system, which we call the curvilinear coordinate for the tubular neighborhood
Uδ defined in Lemma 2.2. Because ∂Ω is a (d− 1) dimensional manifold, so locally π(x) can be
represented as

π(x) = (π1(x) , · · · , πd−1(x)) . (2.11)
More precisely, the representation (2.11) could be understood in the following sense: we can

introduce a new coordinate system (ξ1 , · · · , ξd) by a homeomorphism which is locally defined
as ξ : ξ(x) = (ξ′(x) , ξd(x)) where ξ′ = (ξ1 , · · · , ξd−1), such that ξ(π(x)) = (ξ′, 0) and d(x) = ξd,
where d(x) is the distance function to the boundary ∂Ω, i.e.

d(x) = dist(x , ∂Ω) = |x− π(x)| . (2.12)

For the simplicity of notation, we denote “ξ′(x) = π(x)” which is the meaning of (2.11).
It is easy to see that∇xd is perpendicular to the level surface of the distance function d, i.e. the

set Sz = {x ∈ Ω : d(x) = z}. In particular, on the boundary, ∇xd is perpendicular to S0 = ∂Ω.
Without loss of generality, we can normalize the distance function so that ∇xd(x) = −n(x) when
x ∈ ∂Ω. By the definition of the projection π, we have

π(x+ t∇xd(x)) = π(x) for t small , (2.13)

and consequently, ∇xπα · ∇xd = 0, for α = 1 , · · · , d − 1. In particular, for t small enough,
∇xπα(x) ∈ Tx(∂Ω) when x ∈ ∂Ω.

In the following section we prove the Proposition 1.1, one of the key idea is that the boundary
layer terms have different length scales on the tangential and normal directions of each level set
Sz, in particular the boundary ∂Ω = S0. So in order to solve the ansatz, we need to project the
vector fields onto tangential and normal directions by inner product with ∇xπα and ∇xd.

Next, we calculate the induced Riemannian metric from Rd on the family of level set Sz. In
a local coordinate system, these Riemannian metric can be represented as

g = gαβdπα ⊗ dπβ ,
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where gαβ = 〈 ∂
∂πα ,

∂
∂πβ
〉. Noticing that ∂

∂xi
= ∂πα

∂xi
∂
∂πα , and 〈 ∂

∂xi
, ∂
∂xj
〉 = δij , the metric gαβ can

be determined by
gαβ

∂πα

∂xi
∂πβ

∂xi
= 1 .

3. Proof of Theorem 1.1

In this section, we prove the Theorem 1.1. The main idea is to build approximate modes of
Aε in terms of φ±k,0, we formally solve the equation

Aεφ±k,ε,N = iλ±k,ε,Nφ
±
k,ε,N +R±k,ε,N , (3.1)

where we make for φ±k,ε,N and λ±k,ε,N the following ansatz.

φ±k,ε,N =
N∑
i=0

(√
ε
i
φ±,int
k,i (x) +

√
ε
i
φ±,bk,i (π(x), d(x)√

ε
)χ(x)

)
, (3.2)

and λ±k,ε,N =
N∑
i=0

√
ε
i
λ±k,i, where φ±,int

k,i = (ρ±,int
k,i ,u±,int

k,i , θ±,int)T and φ±,bk,i = (ρ±,bk,i ,u
±,b
k,i , θ

±,b)T

are smooth functions with boundary conditions u±,int
k,i + u±,bk,i = 0 on ∂Ω, φ±,bk,i being rapidly

decreasing to 0 in the ζ variable defined by ζ = d(x)√
ε

. We also require that for i ≥ 1, we have

〈φ±,int
k,j |φ

±,int
k,0 〉 = 0 (3.3)

for all j ≥ 1. Here the function d(x) is defined in (2.12).
In the ansatz (3.2), χ(y) ∈ C∞0 (Ω) is a smooth cut-off function such that χ(y) = 1 in a

neighborhood of ∂Ω and χ(y) = 0 if d(y) > δ for some δ small enough. Here δ > 0 is taken as
in Lemma 2.2 so that π is uniquely determined in {0 < d(y) < δ}.

Straightforward calculations show that for φb = (ρb ,ub , θb)T ,

Aεφb = 1√
ε
Adφb +Aπφb +Dbφb +

√
εFbφb + εGbφb ,

where

Adφb =

 ∂ζ(ub ·∇xd)
∂ζ(ρb + θb)∇xd
γ∂ζ(ub ·∇xd)

 , Aπφb =

 ∂πα(ub ·∇xπα)
∂πα(ρb + θb)∇xπα
γ∂πα(ub ·∇xπα)

 ,

Dbφb =

 0
ν|∇xd|2∂2

ζ ub + (ξ + ν)∂2
ζ (ub ·∇xd)∇xd

κ|∇xd|2∂2
ζ θ

b

 ,

Fbφb =

 0
2ν∂2

ζπαub(∇xd·∇xπα) + (ξ + ν)[(∂2
ζπαub ·∇xπα)∇xd + (∂2

ζπαub ·∇xd)∇xπα]
2κ∂2

ζπαθ
b(∇xd·∇xπα)


+

 0
ν∂ζub∆xd + (ξ + ν)∂ζub ·∇2

xd
κ∂ζθ

b∆xd

 ,

and

Gbφb =

 0
ν[∂παub∆xπ

α + ∂2
παπβ

ub(∇xπα ·∇xπβ)]
κ[∂παθb∆xπ

α + ∂2
παπβ

θb(∇xπα ·∇xπβ)]


+

 0
(ξ + ν)[∂παub ·∇2

xπ
α + (∂2

παπβ
ub ·∇xπα)∇xπβ]

0

 .
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We will use the following notations for the simplicity: Fbφb = (0,Fu,Fθ)T and Gbφb =
(0,Gu,Gθ)T , and furthermore,

Fu · ∇xπ = Fu
ππ(ub ·∇xπ) + Fu

πd(u
b ·∇xd) ,

Fu · ∇xd = Fu
dπ(ub ·∇xπ) + Fu

dd(u
b ·∇xd) ,

Gu · ∇xπ = Gu
ππ(ub ·∇xπ) + Gu

πd(u
b ·∇xd) ,

Gu · ∇xd = Gu
dπ(ub ·∇xπ) + Gu

dd(u
b ·∇xd) ,

where Fu
ππ,Fu

πd,Fu
dπ,Fu

dd,Gu
ππ,Gu

πd,Gu
dπ,Gu

dd are linear functions. For the θ components, we use
the similar notations.

Now we start to solve the equation (3.1) inductively.
Step 0 : First, the order

√
ε
−1 in the boundary layer gives Adφb

k,0 = 0 which implies that

ub
k,0 ·∇xd = 0 and ρb

k,0 + θb
k,0 = 0 .

In particular, ub
k,0 ·n = 0 and consequently uint

k,0 ·n = 0 on the boundary ∂Ω.
The order

√
ε

0 of the interior part in (3.1) implies that

Aφ±,int
k,0 = iλ±k,0φ

±,int
k,0 .

Comparing with (1.2) and (1.3), we have φ±,int
k,0 = φ±k,0 and λ±k,0 = ±i

√
1 + γλk,0.

Remark: From now on, for the simplicity of representation, we only calculate for “ + ” case,
the calculation for the “-” case is the same.

3.1. Order
√
ε

0 of the boundary layer. The order
√
ε

0 in the boundary layer gives

−Adφb
k,1 = (Aπ +Db − iλk,0)φb

k,0,

i.e.

−

 ∂ζ(ub
k,1 ·∇xd)

∂ζ(ρb
k,1 + θb

k,1)∇xd
γ∂ζ(ub

k,1 ·∇xd)

 =

 ∂πα(ub
k,0 ·∇xπα)

∂πα(ρb
k,0 + θb

k,0)∇xπα
γ∂πα(ub

k,0 ·∇xπα)


+

 0
ν|∇xd|2∂2

ζζu
b
k,0 + (ξ + ν)∂2

ζζ(u
b
k,0 ·∇xd)∇xd

κ|∇xd|2∂2
ζζθ

b
k,0

− iλk,0
−θb

k,0

ub
k,0

θb
k,0

 .

(3.4)
The process to solve this system will be illustrated in the following steps, which are the

foundation to solve the more complicated ODE for φb
k,j . Before we solve the system (3.4), we

recall that we already know the values of ub
k,0 ·∇xd and ρb

k,0 + θb
k,0 as well as the boundary data

for ub
k,0 ·∇xπ and θb

k,0.
Step 1 is to solve ρb

k,1 + θb
k,1. This is achieved by taking the inner product of the second

equation of (3.4) with ∇xd. This gives ∂ζ(ρb
k,1 + θb

k,1) = 0 thus ρb
k,1 + θb

k,1 = 0, noting that
∇xπα ·∇xd = 0 and ub

k,0 ·∇xd = 0.
Step 2 is to solve the tangential part of ub

k,0, i.e. ub
k,0 ·∇xπ. By taking the inner product of

the second equation of (3.4) with ∇xπ, we get that fb = ub
k,0 ·∇xπ satisfies the ODE

Lfb = 0 ,

fb(ζ = 0) = −uint
k,0(x)·∇xπ ,

fb(ζ →∞) = 0 ,

(3.5)
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where the operator L = ν|∇xd|2∂2
ζζ − iλk,0. The boundary condition second line of (3.5) should

be understood as: when ζ = d(x)√
ε

= 0, x ∈ ∂Ω. The solution of (3.5) is given by

ub
k,0(π(x), ζ)·∇xπ = Z̃b,u

0 (ζ, φint
k,0) = −(uint

k,0 ·∇xπ) exp
(
−1+i

2

√
2λk,0
ν

1
|∇xd|ζ

)
. (3.6)

Note that on the right-hand side of (3.6), uint
k,0 ·∇xπ in taken on the boundary ∂Ω, i.e. ζ = 0.

Furthermore, Z̃b,u
0 (ζ, ·) is a linear function.

Step 3 is to solve θb
k,0 whose equation is obtained by subtracting γ times the first equation

from the third equation of (3.4). Hence, fb = θb
k,0 satisfies the ODE

Lγfb = 0 ,

fb(ζ = 0) = −θint
k,0 ,

fb(ζ →∞) = 0 ,

(3.7)

where Lγ = κ|∇xd|2∂2
ζζ − i(1 + γ)λk,0. The solution of (3.7) is given by

θb
k,0(π(x), ζ) = Z̃b,θ

0 (ζ, φint
k,0) = −θint

k,0 exp
(
−1+i

2

√
2(1+γ)λk,0

κ
1
|∇xd|ζ

)
. (3.8)

Again, on the right-hand side of (3.8), θint
k,0 is taken on the boundary ∂Ω, i.e. ζ = 0, and Z̃b,θ

0 (ζ, ·)
is also a linear function.

Step 4 is to solve ub
k,1 ·∇xd. From the first equation of (3.4) (or equivalently the third

equation), we have
−∂ζ(ub

k,1 ·∇xd) = divπ(ub
k,0 ·∇xπ) + iλk,0θ

b
k,0 .

By integrating from ζ to ∞, we get

ub
k,1 ·∇xd = Z̃b

1 (ζ, φint
k,0)

= − 1
cν

divπ(uint
k,0 ·∇xπ) exp(−cνζ)− 1

cκ
iλk,0θ

int
k,0 exp(−cκζ) ,

(3.9)

where cν = 1+i
2

√
2λk,0
ν

1
|∇xd| and cκ = 1+i

2

√
2(1+γ)λk,0

κ
1
|∇xd| . In particular, setting ζ = 0 in (3.9),

we have that on the boundary ∂Ω,

−ub
k,1 ·n = Zb

1 (φint
k,0) = Z̃b

1 (0, φint
k,0) = − 1

cν
divπ(uint

k,0 ·∇xπ)− 1
cκ
iλk,0θ

int
k,0 . (3.10)

Note that Zb
1 (·) is a linear function. Now we summarize that by solving the ODE system (3.4),

we determine
• Step 1 : ρb

k,1 + θb
k,1 ;

• Steps 2, 3 : ub
k,0 ·∇xπ and θb

k,0 ;
• Step 4 : ub

k,1 ·∇xd and hence ub
k,1 ·n . when we take ζ = 0.

Similarly, in the next round, before solving ub
k,1·∇xπ and θb

k,1, we need their boundary values.
In other words, the terms in ansatz (3.2) are determined by solving the ODEs from the boundary
layers and operator equations from the interior alternatively.

3.2. Order
√
ε in the interior. Step 5: The order

√
ε in the interior part of (3.1) yields:

(A− iλk,0)φint
k,1 = iλk,1φ

int
k,0 ,

uint
k,1 ·n = −ub

k,1 ·n = Zb
1 (φint

k,0) .
(3.11)

Applying Lemma 2.1 to the system (3.11), from the formula (2.6), iλk,1 can be solved as

iλk,1 =
∫
∂Ω

(uint
k,1 ·n)Ψk,0dσx = −

∫
∂Ω

(ub
k,1 ·n)Ψk,0dσx . (3.12)
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From (3.10) and the fact that ∇xΨk,0 = gγβ
∂Ψk,0
∂πβ

∂
∂πγ , and ∇xπα = gαδ ∂

∂πδ
, we have∫

∂Ω
∂πα(∇xΨk,0 · ∇xπα)Ψk,0 dσx =−

∫
∂Ω
gγδg

αδgβγ
∂Ψk,0
∂πα

∂Ψk,0
∂πβ

dσx

=−
∫
∂Ω
|∇πΨk,0|2dσx ,

where ∇π is the gradient on the tangential direction of the boundary ∂Ω. Thus the formula
(3.12) reads

iλ±k,1 =
∫
∂Ω
Zb

1 (φint
k,0)Ψk,0dσx

=− 1+i
2

1q
λ3
k,0

∫
∂Ω

(√
ν|∇xΨk,0|2 + γ

1+γ

√
κλ2

k,0|Ψk,0|2
)

dσx .
(3.13)

An important property of (3.13) is that the real part of iλ±k,1 is strictly negative:

Re(iλ±k,1) < 0 . (3.14)

Remark: If only the isentropic case was treated as in [4], there would be no second term in the
integrand of (3.13). We will only have Re(iλ±k,1) ≤ 0. As mentioned in [4], the strict negativity
is related the famous Schiffer’s conjecture. Interestingly, in the present paper, because of the
additional dissipation from heat conductivity, the geometric condition related the Schiffer’s
conjecture as in [4] is not needed.

If the multiplicity of λ = λk,0 as the eigenvalue of L0 = ∆x is greater than 1, then from (2.7),
the following compatibility condition must be satisfied:∫

∂Ω
Zb

1 (φint
k,0)Ψl,0dσx = 0 , for λl,0 = λk,0 with k 6= l , (3.15)

which reads as

−1+i
2

1q
λ3
k,0

∫
∂Ω

(√
ν∇xΨk,0 ·∇xΨl,0 + γ

1+γ

√
κλ2

k,0Ψk,0Ψl,0

)
dσx = 0 , (3.16)

for λl,0 = λk,0 and k 6= l. For the isentropic case (i.e. κ = 0), it is the condition (10) in [4]. We
can define the quadratic form Q1 and the symmetric operator L1 on H0(λ) as

Q1(Ψk,0,Ψl.0) =
∫
∂Ω
Zb

1 (φint
k,0)Ψl,0dσx , (3.17)

and
L1Ψk,0 = iλk,1Ψk,0 , (3.18)

which satisfies that

Q1(Ψk,0,Ψl,0) =
∫

Ω
L1(Ψk,0)Ψl,0 , (3.19)

and the orthogonality condition (3.15) is

Q1(Ψk,0,Ψl,0) = 0 , if Ψk,0,Ψl,0 ∈ H0(λ) and k 6= l . (3.20)

From Lemma 2.1, under these conditions, the solution to (3.11) is

φint
k,1 = P⊥0 φ

int
k,1 + P0φ

int
k,1 , (3.21)

When iλk,0 is a simple eigenvalue of ∆x, then P0φ
int
k,1 ∈ Null(A) vanishes. For this case,

φint
k,1 = P⊥0 φ

int
k,1 ∈ Null(A)⊥ is completely determined. When iλk,0 is not simple, P0φ

int
k,1 is to

be determined.
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Note that the system (3.11) is linear and the boundary data Zb
1 (φint

k,0) is also linear in φint
k,0.

So P⊥0 φ
int
k,1 also linearly depends on P⊥0 φ

int
k,1. Thus we denote

P⊥0 φ
int
k,1 = Z int

1 (φint
k,0) , (3.22)

where Z int
1 (·) is a linear function. Furthermore,

P0φ
int
k,1 =

∑
l 6=k,λl,0=λk,0

akl,1φl,0 ,

where akl,1 = 〈φint
k,1|φl,0〉 will be determined later. Here, we used that akk,1 = 0. Note that the

boundary data for ub
k,1 ·∇xπ and θb

k,1 are determined modulo P0φ
int
k,1. Later on, we will use the

notation:
akl,j = 〈φint

k,j |φl,0〉 .

3.3. Order
√
ε of the boundary layer. The order

√
ε in the boundary layer is

−Adφb
k,2 = (Aπ +Db − iλk,0)φb

k,1 + (Fb − iλk,1)φb
k,0 . (3.23)

Step 1: As before, step 1 is to find the ODE satisfied by ρb
k,2 + θb

k,2 which is

−∂ζ(ρb
k,2 + θb

k,2)|∇xd|2 =
(
(ξ + 2ν)|∇xd|2∂2

ζζ − iλk,0
)

(ub
k,1 ·∇xd) + Fu

dπ(ub
k,0 ·∇xπ) .

The right-hand side of the above equation is a linear operator on φint
k,0, (noticing the notations

in (3.6) and (3.9)). Integrating from ζ to ∞ gives

ρb
k,2 + θb

k,2 = Y b
2 (ζ, φint

k,0) , (3.24)

where Y b
2 (ζ, ·) is a linear function. Note that ρb

k,j + θb
k,j = Y b

j = 0 for j = 0, 1.
Step 2 is to solve ub

k,1·∇xπ. Using the same method which derives the ODE (3.5), i.e. taking
the inner product of the second equation of (3.23) with ∇xπ, we get that fb = ub

k,1·∇xπ satisfies
the ODE

L(fb) = (iλk,1 −Fu
ππ)(ub

k,0 ·∇xπ) ,

fb(ζ = 0) = −uint
k,1 ·∇xπ

= −(P0φ
int
k,1)u ·∇xπ −

(
Z int

1 (φint
k,0)
)
u
·∇xπ ,

fb(ζ →∞) = 0 ,

(3.25)

where (·)u denotes the u component. Again, for the second equation in (3.25), the terms on the
right-hand side are taken values on the boundary ∂Ω. From the linearity of the above ODE, we
can decompose ub

k,1 ·∇xπ = fb
1 + fb

2 , where f b1 is the solution of the ODE

Lfb
1 = 0 ,

fb
1 (ζ = 0) = −(P0φ

int
k,1)u ·∇xπ = −

∑
l 6=k,λl,0=λk,0

akl,1uint
l,0 ·∇xπ ,

fb
1 (ζ →∞) = 0 ,

(3.26)

Note that this ODE is the same as (3.5) with the linear combination of initial data, and Z̃b,u
0 (ζ, ·)

is linear, so the solution is represented as fb
1 = Z̃b,u

0 (ζ, P0φ
int
k,1). Besides, fb

2 satisfies the ODE

Lfb
2 = (iλk,1 −Fu

ππ)(
(
Z̃b,u

0 (φint
k,0)
)

u
) ,

fb
2 (ζ = 0) = −

(
Z int

1 (φint
k,0)
)
u
·∇xπ ,

fb
2 (ζ →∞) = 0 ,

(3.27)
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whose solution is represented as fb
2 = Z̃b,u

1 (ζ, φint
k,0), where Z̃b,u

1 (ζ, ·) is a linear function. Thus,

ub
k,1 ·∇xπ = Z̃b,u

0 (ζ, P0φ
int
k,1) + Z̃b,u

1 (ζ, φint
k,0) .

Step 3 is to solve θb
k,1. The method is the same as in deriving (3.7), i.e. subtracting γ times

the first equation from the third equation of (3.23). Hence, θb
k,1 satisfies the ODE

Lγfb = iλk,1(1 + γ)θb
k,0 −Fθ(θb

k,0) ,

fb(ζ = 0) = −P0(φint
k,1)θ −

(
Z int

1 (φint
k,0)
)
θ
,

fb(ζ →∞) = 0 ,

(3.28)

where (·)θ denotes the θ component. Using the same argument as in the last step, we can
represent the solution of (3.28) as θb

k,1 = Z̃b,θ
0 (ζ, P0φ

int
k,1) + Z̃b,θ

1 (ζ, θint
k,0).

Step 4 is to get ub
k,2 ·∇xd = Z̃b

1 (ζ, P0φ
int
k,1)) + Z̃b

2 (ζ, φint
k,0). Then setting ζ = 0, we have that

on the boundary ∂Ω
−ub

k,2 ·n = Zb
1 (P0φ

int
k,1) + Zb

2 (φint
k,0) . (3.29)

3.4. Order ε of the interior. The order ε of the interior part in (3.1) reads

(A− iλk,0)φint
k,2 = iλk,1φ

int
k,1 + (iλk,2 −D)φint

k,0 ,

uint
k,2 ·n = Zb

1 (P0φ
int
k,1) + Zb

2 (φint
k,0) .

(3.30)

Here we use again the relation uint
k,2 = −ub

k,2 on ∂Ω and (3.29). Taking the inner product of
(3.30) with φint

k,0 gives the first solvability condition

iλk,2 =
∫
∂Ω
Zb

1 (P0φ
int
k,1)Ψk,0dσx +

∫
∂Ω
Zb

2 (φint
k,0)Ψk,0dσx + 〈Dφint

k,0|φint
k,0〉 . (3.31)

Because of the linearity of Zb
1 and the orthogonality condition (3.20), the first term in the above

equation vanishes, so iλk,2 is completely determined. To solve φint
k,2 from (3.30), we consider

three cases:
Case 1: λk,0 is a simple eigenvalue of L0 = ∆x. For this case, no orthogonality condition is

needed.
Case 2: iλk,1 is a simple eigenvalue of L1. Taking the inner product of (3.30) with φint

l,0 gives

akl,1 =
1

iλk,1 − iλl,1

∫
∂Ω
Zb

2 (φint
k,0)Ψl,0dσx . (3.32)

Here, we used that 〈Dφint
k,0|φint

l,0 〉 = 0 for k 6= l. Thus P0φ
int
k,1 is completely determined. No

additional conditions on H0(λ) rather than (3.20) is needed.
Case 3: iλk,1 is an eigenvalue of L1 with multiplicity greater than or equal to 2. For this

case, we need more orthogonality conditions on

H1(λ1) = {Ψ ∈ H0 : L1Ψ = iλk,1Ψ} .

These orthogonality conditions come from the equation (3.30). Taking the inner product with
φint
l,0 for l 6= k, λl,0 = λk,0 and λl,1 = λk,1, we get∫

∂Ω
Zb

2 (φint
k,0)Ψl,0dσx = 0 . (3.33)

We can define the quadratic form Q2 and the symmetric operator L2 on H1(λ1) as

Q2(Ψk,0,Ψl.0) =
∫
∂Ω
Zb

2 (φint
k,0)Ψl,0dσx + 〈Dφint

k,0|φint
l,0 〉 . (3.34)
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and
L2Ψk,0 = iλk,2Ψk,0 , (3.35)

which satisfy that

Q2(Ψk,0,Ψl,0) =
∫

Ω
L2(Ψk,0)Ψl,0dx ,

and the orthogonality condition (3.33) is

Q2(Ψk,0,Ψl,0) = 0 , if Ψk,0,Ψl,0 ∈ H1(λ1) and k 6= l . (3.36)

Under these conditions, to represent the solution of the equation (3.30) in Null(A− iλk,0)⊥,
we decompose the equation (3.30) into two parts: one is the linear combination of the equation
(3.11), the other only includes known terms. More precisely, decompose φint

k,2 = φ1 + φ2, where
φ1 satisfies the equation

(A− iλk,0)φ1 = iλk,1P0φ
int
k,1 ,

u1 ·n = Zb
1 (P0φ

int
k,1) ,

(3.37)

whose solution in Null(A − iλk,0)⊥ is Z int
1 (P0φ

int
k,1), since the equation (3.37) is just a linear

combination of equation (3.11). Besides φ2 satisfies the equation

(A− iλk,0)φ2 = (iλk,2 −D)φint
k,0 + iλk,1Z

int
1 (φint

k,0) ,

u2 ·n = Zb
2 (φint

k,0) ,
(3.38)

whose solution in Null(A − iλk,0)⊥ is completely determined, and is denoted by Z int
2 (φint

k,0). In
summary, the solution of the operator equation (3.30) is

φint
k,2 = P0φ

int
k,2 + Z int

1 (P0φ
int
k,1) + Z int

2 (φint
k,0) . (3.39)

For case 1, everything is fully solved. For case 2, only P0φ
int
k,2 is undetermined. While for

case 3, P0φ
int
k,1 = (P1 + P⊥1 )(φint

k,1) where P1 is the orthogonal projection on H1(λk,1) i.e.

P1φ
int
k,1 =

∑
l 6=k,λl,0=λk,0,λl,1=λk,1

akl,1φl,0.

while P⊥1 is the orthogonal projection on H⊥1 (λk,1), i.e.

P⊥1 φ
int
k,1 =

∑
l 6=k,λl,0=λk,0,λl,1 6=λk,1

akl,1φl,0 .

At this stage, P⊥1 φ
int
k,1 is completely determined by (3.32) and P1φ

int
k,1 will be determined later.

3.5. Induction hypothesis. For j ≥ 3, we assume that we used the information from the
boundary layer till the order

√
ε
j−2 and in the interior till the order

√
ε
j−1. Before we solve

the ansatz for the order
√
ε
j−1 in the boundary layer and the order

√
ε
j in the interior, we

write down and induction hypothesis that summarizes what we were able to construct till now.
We write this in the following 7 statements that we need to check for the order j. Here,
Y b
h (ζ, ·), Z̃b,u

h (ζ, ·), Z̃b,θ
h (ζ, ·), Z̃b

h(ζ, ·), Zb
h(·) and Z int

h (·) are linear functions defined in a way sim-
ilar to (3.24), (3.6), (3.8), (3.9), (3.10) and (3.22) respectively.

(P1
j−1) : For 2 ≤ i ≤ j − 1, ρb

k,i + θb
k,i =

∑i
h=2 Y

b
h (ζ, P0φ

int
k,i−h) ; For i = 0, 1 , ρb

k,i + θb
k,i = 0 ;

(P2
j−1) : For 0 ≤ i ≤ j − 2, ub

k,i ·∇xπ =
∑i

h=0 Z̃
b,u
h (ζ, P0φ

int
k,i−h) ;

(P3
j−1) : For 0 ≤ i ≤ j − 2, θb

k,i =
∑i

h=0 Z̃
b,θ
h (ζ, P0φ

int
k,i−h) ;

(P4
j−1) : For 1 ≤ i ≤ j − 1, ub

k,i ·∇xd =
∑i

h=1 Z̃
b
h(ζ, P0φ

int
k,i−h) . Taking ζ = 0, we deduce that

on the boundary, we have −ub
k,i ·n =

∑i
h=1 Z

b
h(P0φ

int
k,i−h) ;
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(P5
j−1) : For 1 ≤ h ≤ j − 1, iλk,h = Qh(Ψk,0,Ψk,0) , where the quadratic form Q1 and Q2 are

defined in (3.17) and (3.34) respectively, and Qh for 3 ≤ h ≤ j − 1 is defined as

Qh(Ψk,0,Ψl,0) =
∫
∂Ω
Zb
h(φint

l,0 )Ψk,0dσx + 〈D(Z int
h−2(φint

l,0 ))|φint
k,0〉 . (3.40)

(P6
j−1) : For 1 ≤ i ≤ j − 1, φint

k,i = P0φ
int
k,i +

∑i
h=1 Z

int
h (P0φ

int
k,i−h) ;

(P7
j−1) : The last assumption to check deals with the number of orthogonality conditions

needed and specifies what is already determined and what is still not determined in the con-
struction. We distinguish between j cases:

Case 1: iλk,h is a simple eigenvalue of Lh for 0 ≤ h ≤ j − 2. No orthogonality condition is
needed, and every term in the expansion is fully determined;

Case m (2 ≤ m ≤ j): iλk,h is a multiple eigenvalue of Lh for 0 ≤ h ≤ m − 2, and a simple
eigenvalue of Lh for h = m − 1. (Note: the case j means that all the eigenvalues iλk,h for
0 ≤ h ≤ j − 2 are multiple eigenvalues.)

• We need the orthogonality conditions: For each 0 ≤ h ≤ m− 2,

Qh+1(Ψk ,Ψl) = 0 , for Ψk,Ψl ∈ H0 ∩ · · · ∩Hh , (3.41)

where for h ≥ 1, the space Hh = Hh(λh) = {Ψ ∈ H1(λ1) ∩ · · · ∩ Hh−1(λh−1) : LhΨ =
iλhΨ}.
• For 1 ≤ h ≤ j−m, φint

k,h are completely determined. (for the case j, no term is completely
determined.)
• For j −m+ 1 ≤ h ≤ j − 1, (P⊥0 + · · ·+ P⊥j−1−h)φint

k,h are determined.
• For j −m+ 1 ≤ h ≤ j − 1, Pj−1−hφ

int
k,h are not determined,

where Ph−1 is the orthogonal projection on H1(λ1) ∩ · · · ∩ Hh−1(λh−1), and Ph−1 = Ph + P⊥h ,
where P⊥h is the orthogonal projection on H1(λ1) ∩ · · · ∩Hh−1(λh−1) ∩H⊥h (λh) .

Remark: Regarding the condition (3.41), actually we have a stronger orthogonality property
which is actually equivalent to (3.41), namely : for each 0 ≤ h ≤ m− 2,

Qh+1(Ψk ,Ψl) = 0 , for l 6= k, Ψk,Ψl ∈ H0 . (3.42)

Indeed, we just need to use that the Lh leave stable the spaces Hh. Of course, we have to define
Lh over the whole space H0 even if the eigenvalue is simple, but in this case we just take it to
be the identity.

In the next subsection, we are going to prove the 7 hypotheses (P1
j ) − (P7

j ) assuming Pi−1

for i ≤ j.

3.6. General case: order
√
ε
j−1 of the boundary layer. The order

√
ε
j−1 of the boundary

layer gives

−Adφb
k,j =(Aπ +Db − iλk,0)φb

k,j−1 + (Fb − iλk,1)φb
k,j−2 + (Gb − iλk,2)φb

k,j−3

− i
j−1∑
h=3

λk,hφ
b
k,j−1−h .

(3.43)

Step 1 is to solve ρb
k,j + θb

k,j which satisfies the ODE

−∂ζ(ρb
k,j + θb

k,j)|∇xd|2 =
(
(ξ + 2ν)|∇xd|2∂2

ζζ − iλk,0
)

(ub
k,j−1 ·∇xd) + Fu

dπ(ub
k,j−2 ·∇xπ)

+ (Fu
dd − iλk,1)(ub

k,j−2 ·∇xd) +Gu
dπ(ub

k,j−3 ·∇xπ)

+ (Gu
dd − iλk,2)(ub

k,j−3 ·∇xd)− i
j−2∑
h=3

λk,h(ub
k,j−1−h ·∇xd) .

(3.44)
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Integrating from ζ to ∞, the solution of (3.44) can be represented as

ρb
k,j + θb

k,j =
j∑

h=2

Y b
h (ζ, P0φ

int
k,j−h) ,

where Y b
h are linear functions. This corresponds to (P1

j ) in the induction hypothesis.
Step 2 is to solve ub

k,j−1 ·∇xπ which satisfies the ODE

Lfb =(iλk,1 −Fu
ππ)(ub

k,j−2 ·∇xπ)

+(iλk,2 − Gu
ππ)(ub

k,j−3 ·∇xπ)−Fu
πd(u

b
k,j−2 ·∇xd)

+iλk,3(ub
k,j−4 ·∇xπ)− Gu

πd(u
b
k,j−3 ·∇xd)

+i
j−1∑
h=4

λk,h(ub
k,j−1−h ·∇xπ)− ∂πα(ρb

k,j−1 + θb
k,j−1)|∇xπα|2 ,

(3.45)

with boundary conditions

fb(ζ = 0) = −uint
k,j−1 ·∇xπ , fb(ζ →∞) = 0 .

Note that uint
k,j−1 ·∇xπ is taken value on the boundary ∂Ω. Suppose that we already have

φint
k,j−1 = P0φ

int
k,j−1 +

∑j−1
h=1 Z

int
h (P0φ

int
k,j−1−h). The solution of (3.45) can be represented as ub

k,j−1·
∇xπ = fb

1 + fb
2 + · · ·+ fb

j , where f b1 satisfies the ODE

Lfb
1 = 0 ,

fb
1 (ζ = 0) = −(P0φ

int
k,j−1)u ·∇xπ ,

(3.46)

whose solution is fb
1 = Z̃b,u

0 (P0φ
int
k,j−1), and f b2 satisfies the ODE

Lfb
2 = (iλk,1 −Fu

ππ)(Z̃b,u
0 (P0φ

int
k,j−2)) ,

fb
2 (ζ = 0) = −

(
Z int

1 (P0φ
int
k,j−2)

)
u
·∇xπ .

(3.47)

Noticing that this equation has exactly the same structure with the equation (3.27), we infer
that the solution is f b2 = Z̃b,u

1 (ζ, P0φ
int
k,j−2).

Remark: This is a key point in solving the ansatz: because P0φ
int
k,j−2 is a linear combination

of φint
l,0 , so in (3.47) the equation and the boundary conditions are the same linear combination

with those of (3.27). Thus, the solution of (3.47) is also the same linear combination with that
of (3.27).

Furthermore, fb
h , for h = 3 , 4 , · · · , j satisfies the ODE

Lfb
h = gb

h(P0φ
int
k,j−h) ,

fb
h (ζ = 0) = −

(
Z int

1 (P0φ
int
k,j−h)

)
u
·∇xπ .

(3.48)

where gb
h(P0φ

int
k,j−h) denotes the terms in the right-hand side of (3.45) in which P0φ

int
k,j−h appears.

The solution of (3.48) is fb
h = Z̃b,u

h−1(ζ, P0φ
int
k,j−h). Thus

ub
k,j−1 ·∇xπ =

j−1∑
h=0

Z̃b,u
h (ζ, P0φ

int
k,j−1−h) . (3.49)

This corresponds to the (P2
j ) in the induction hypothesis.
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Step 3 is to solve θb
k,j−1 which can be similarly obtained

θb
k,j−1 =

j−1∑
h=0

Z̃b,θ
h (ζ, P0φ

int
k,j−1−h) . (3.50)

This corresponds to (P3
j ) in the induction hypothesis.

Step 4 is to solve ub
k,j ·∇xd which is

∑j
h=1 Z̃

b
h(ζ, P0φ

int
k,j−h). Consequently, taking ζ = 0, we

get the boundary value

−ub
k,j ·n =

j∑
h=1

Zb
h(P0φ

int
k,j−h) . (3.51)

This corresponds to (P4
j ) in the induction hypothesis.

3.7. General case: order
√
ε
j of the interior. The order

√
ε
j of the interior part in (3.1)

reads

(A− iλk,0)φint
k,j = iλk,1φ

int
k,j−1 + (iλk,2 −D)φint

k,j−2 +
j∑

h=3

iλk,hφ
int
k,j−h ,

uint
k,j ·n = −ub

k,j ·n =
j∑

h=1

Zb
h(P0φ

int
k,j−h) .

(3.52)

The first solvability condition for the equation (3.52) is obtained by taking the inner product
with φint

k,0, which is

iλk,j =
∫
∂Ω
Zb

1 (P0φ
int
k,j−1)Ψk,0dσx +

∫
∂Ω
Zb

2 (P0φ
int
k,j−2)Ψk,0dσx

+
j∑

h=3

{∫
∂Ω
Zb
h(P0φ

int
k,j−h)Ψk,0dσx + 〈D(Z int

h−2(P0φ
int
k,j−h))|φint

k,0〉
}
.

(3.53)

Because of the orthogonality conditions (3.41) for 1 ≤ h ≤ j − 1, and the expressions of Q1, Q2

and Qh defined in (3.17), (3.34) and (3.40), only the last two terms in (3.53) are non-zero, i.e.

iλk,j =
∫
∂Ω
Zb
j (φint

k,0)Ψk,0dσx + 〈D(Z int
j−2(φint

k,0))|φint
k,0〉

=Qj(Ψk,0,Ψk,0) ,
(3.54)

which is completely determined. This corresponds to the (P5
j ) in the induction hypothesis.

To solve the equation (3.52), we need to consider j + 1 cases:
Case 1: iλk,h is a simple eigenvalue of Lh for 0 ≤ h ≤ j − 1. No orthogonality condition is

needed, and every term is fully determined;
Case m (2 ≤ m ≤ j + 1): iλk,h is a multiple eigenvalue of Lh for 0 ≤ h ≤ m − 2, and a

simple eigenvalue of Lh for m− 1 ≤ h ≤ j − 1.
We only consider the case j+1 here, i.e. all the eigenvalues iλk,h are multiple. The other

cases are simpler. Taking the inner product with φint
l,0 , for l 6= k, λl,0 = λk,0, which is

j−1∑
h=1

iλk,hakl,j−h =
j−1∑
h=1

Qh(P0φ
int
k,j−h,Ψl,0) +Qj(Ψk,0,Ψl,0) . (3.55)
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If Ψk,0,Ψl,0 ∈ H1(λ1)∩H2(λ2)∩ · · ·∩Hj−1(λj−1), then because of the orthogonality condition
(3.41) for 1 ≤ h ≤ j − 2,

Qh(P0φ
int
k,j−h,Ψl,0) = Qh(Ph−1φ

int
k,j−h,Ψl,0) +Qh(

h−1∑
δ=1

P⊥δ φ
int
k,j−h,Ψl,0)

= iλl,hakl,j−h .

For h = j − 1, Qj−1(P0φ
int
k,1,Ψl,0) = iλl,j−2akl,1 +Qj−1(P⊥j−2φ

int
k,1,Ψl,0). Thus, the identity (3.55)

implies that we need the orthogonality condition that for k 6= l,

Qj(Ψk,0 ,Ψl,0) =
∫

Ω
Lj(Ψk,0)Ψl,0 dx = 0 , for Ψk,0,Ψl,0 ∈ H1 ∩ · · · ∩Hj−1 , (3.56)

where the symmetric operator Lj is defined by LjΨl,0 = iλl,jΨl,0, for Ψl,0 ∈ H1 ∩ · · · ∩Hj−1 .

If Ψk,0,Ψl,0 ∈ H1(λ1)∩H2(λ2)∩· · ·∩Hj−2(λj−2)∩H⊥j−1(λj−1), i.e λk,h = λl,h for 0 ≤ h ≤ j−2,
but λk,j−1 6= λl,j−1, from the identity (3.55), for these k, l, akl,1 can be determined by

akl,1 = 1
iλk,j−1−iλl,j−1

Qj(Ψk,0,Ψl,0) .

This means that (P⊥0 + P⊥1 + · · ·+ P⊥j−1)φint
k,1 is completely determined, but Pj−1φ

int
k,1 is still left

as undetermined.
If Ψk,0,Ψl,0 ∈ H1 ∩ · · · ∩Hj−3 ∩H⊥j−2,

Qj−1(P⊥j−1φ
int
k,1 ,Ψl,0) +Qj(Ψk,0 ,Ψl,0) = (iλkj−2,0 − iλlj−2,0)akl,2 + iλk,j−1akl,1 , (3.57)

from which akl,2 thus P⊥j−2φ
int
k,2 is completely determined.

Under these solvability conditions, the equation (3.52) can be solved in the following way:
φint
k,j = φ1 + φ2 + · · ·+ φj , where φh satisfies the equation

(A− iλk,0)φh = qint
h ,

uh ·n = Zb
0 (P0φ

int
k,j−h) .

(3.58)

where qint
h is the summation of all the terms which include P0φ

int
k,j−h in the right-hand side of

(3.52). For example, φ1 satisfies the equation

(A− iλk,0)φ1 = iλk,1P0φ
int
k,j−1 ,

u1 ·n = Zb
0 (P0φ

int
k,j−1) .

(3.59)

Comparing with the equation (3.37), we know the solution of the equation (3.59) in Null(A −
iλk,0)⊥ is Z int

1 (P0φ
int
k,j−1). φ2 satisfies the equation

(A− iλk,0)φ2 = (iλk,2 −D)(P0φ
int
k,j−2) + iλk,1Z

int
1 (P0φ

int
k,j−2) ,

u2 ·n = Zb
1 (φint

k,j−2) .
(3.60)

Comparing with the equation (3.38), we know the solution of the equation (3.60) in Null(A −
iλk,0)⊥ is Z int

2 (P0φ
int
k,j−2). We can continue the similar process and finally the solution of (3.52)

is

φint
k,j = P0φ

int
k,j +

j∑
h=1

Z int
h (P0φ

int
k,j−h) ,

i.e. φint
k,j is determined modulo P0φ

int
k,j , Pj−1φ

int
k,1, Pj−2φ

int
k,2, · · · , P1φ

int
k,j−1 which are undetermined

at this stage. This corresponds to the (P6
j ) and (P7

j ) in the induction hypothesis.

We can now inductively continue the process, namely go to the order
√
ε
j of the boundary

layer, then the order
√
ε
j+1 of the interior, and so on. We should do this at least till the

order N + 2 where N is the precision of the error in (1.16). Note however, that for a given
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λ = λk,0, we may only need to construct a small number of the Lj if after few steps all the
eigenvalues become simple, namely if for some j all the eigenvalues of Lj are simple on the space
H1(λ1)∩ · · · ∩Hj−1(λj−1). It is clear that if the eigenvalues become simple for some j ≤ N + 2,
then the orthogonality condition (3.41) allows to determine the eigenfuctions Ψk uniquely. If the
process does not end, then we just need to satisfy the condition till the order N + 2 which yield
a none unique choice of eigenfunctions. Also, in this case, we set all the undetermined pieces of
the eigenfunction, namely those left undetermined in the second point of (7) to be zero.

The last step is the error estimate (1.16). Simple calculations show that the leading order
terms in R±k,ε,N are{

(Aπ +Db)φb
k,N + Fbφb

k,N−1 + Gbφb
k,N−2 −

N∑
h=0

iλhφ
b
k,N−h

}
√
ε
N
.

After a simple change of coordinates, the error estimate for ‖R±k,ε,N‖Lp(Ω), namely (1.16) follows.

4. Conclusions

In this paper we give a more precise construction of the boundary layer that is used to
prove the strong decay of the acoustic waves in the paper [4]. Indeed, the construction in [4]
is not completely correct in the case we have eigenvalues which are not simple and some extra
conditions should be imposed on the basis of eigenvectors chosen. There is an extra interesting
algebraic structure based on a sequence of symmetric operators that should be used in this
choice. We show in this paper that this construction can be extended to the full acoustic
operator which includes the heat conductivity effect. Interestingly, in this non-isentropic case,
a geometric condition which is related to the Schiffer’s conjecture is not needed because of the
additional dissipation effect from the heat conductivity.

In the present paper, only the Dirichlet boundary condition is treated. In fact, we can also
generalize to the Robin boundary condition, for example, the Navier-slip boundary condition:
[(∇xu+∇xuT )·n]tan +χεβutan = 0. Similar phenomena will happen. However, the instantaneous
damping effect on the acoustic waves depends the value of β. We will consider this in the
forthcoming paper on the incompressible limit of the isentropic compressible fluids with this
Navier-slip boundary condition.

These higher order orthogonality conditions in the case of the multiple eigenvalues of the
Neumann Laplace operator in Ω are also needed in the hydrodynamic limit of the Boltzmann
equation [7]. In [7], kinetic and viscous fluid boundary layers are coupled when the Boltzmann
equation is imposed the Maxwell boundary condition which includes the both specular reflection
and the boundary diffusion with the accommodation coefficient χεβ as ratio.
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