ON THE CONSTRUCTION OF BOUNDARY LAYERS IN THE
COMPRESSIBLE-INCOMPRESSIBLE LIMIT
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ABSTRACT. In this paper we give a more precise construction of the boundary layer used to
prove the strong decay of the acoustic waves in the paper [4]. Indeed, the construction in
[4] is not completely correct in the case when eigenvalues are not simple and some additional
conditions should be imposed on the basis of eigenvectors chosen. There is an extra interesting
algebraic structure based on a sequence of symmetric operators that should be used in this
choice. This construction can be extended to the case of Robin boundary condition as well as
to the full acoustic operator which includes the heat conductivity effect. Moreover, this paper
allows us to extend the construction of the viscous boundary layer in the hydrodynamic limit
of the Boltzmann equation used in our paper [7] to the general case.

1. INTRODUCTION

The paper [4] was devoted to the study of the so-called incompressible limit for solutions
of the compressible isentropic Navier-Stokes equations in a bounded domain with the natural
physical boundary conditions for a viscous fluid, namely the homogeneous Dirichlet boundary
conditions. It was in some sense, the sequel of [9, 10] where various cases were considered,
namely the cases of a periodic flow, of a flow in the whole space, or in a bounded domain with
other boundary conditions than Dirichlet conditions (see also [3] where the dispersion in the
whole space is proved).

A new striking phenomenon caused by the boundary conditions was observed in [4]. As is
well known physically when looking at the incompressible limit, one expects that, as the Mach
number € goes to 0, fast acoustic waves are generated carrying the energy of the potential part of
the flow (and a normalized part of the internal energy of the gas). For periodic flows (or for some
particular boundary conditions), these waves subsist forever and their frequencies grow as ¢ goes
to zero. Mathematically speaking, this means that the solutions of compressible (isentropic)
Navier-Stokes equations may only converge weakly in L? to the solutions of incompressible
Navier-Stokes equations — and they do as shown in [9]. However, in the case of a viscous flow in
a bounded domain with the usual Dirichlet boundary condition, under a generic assumption on
the domain, it was proved in [4] that the acoustic waves are instantaneously (asymptotically)
damped, due to the formation of a thin boundary layer. This layer dissipates the energy carried
by the waves and, from a mathematical viewpoint, it yields a strong convergence in L?. For
more recent results about the compressible-incompressible limit, we refer to [5, 8]. We also refer
to [1, 12] for some review papers. The phenomenon of dissipation due to the boundary layer
is also present for a related problem which presents, as is classical, striking analogies with the
one studied here, namely the so-called “Ekman pumping” for rotating fluids (see for instance
[6, 11, 2]).

The main ingredient in [4] was the construction of a boundary layer that was used as a test
function very much like in the method of “oscillating test functions” of L. Tartar. However, the
construction in [4] presents a small gap when the eigenvalues of the Laplacian with Neumann
boundary condition are not simple. Here we would like to make this more precise. Furthermore,
we consider the full acoustic and diffusion operators including the heat conductivity effect, which
also gives some new phenomena different from the isentropic case. The construction we give
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here is also used to extend the construction of the so-called viscous boundary layer used in the
hydrodynamic limit of the Boltzmann equation [7] to the general case.

We will use the same notations as in [4]. We first recall the definition of the viscous wave
operator A, = A+ eD where A and D are acoustic and diffusion operators respectively, defined
on D'(2) x D'(N)4 x D'() by

divu 0
AU = | Vi(p+0) |, DU=|vAu+ ({£+v)V,divu |,
~vdivu kA0

where U = (p,u,6)” and we assume that v > 0, v > 0 and & +v > 0.
Let {)\i,o}krzl be the nondecreasing sequence of eigenvalues and {¥,o};>1 the orthonormal

basis of L?(2) functions with zero mean value of eigenvectors of the Laplace operator —Ay with
homogeneous Neumann boundary conditions:

AV =AW in Q, ZEC—0 on 90, (1.1)
The eigenvalues and eigenvectors of A read as follows
+ 1 1 + Vi W, T 94d
ko = 73 (m‘l’k,o,um =4 Mk;“ , \/17?‘1”60) e C*d, (1.2)
A¢Ey =iv/1+ N5 68, in Q, ufyn=0 on 99, (1.3)

where )\io = £ 0.

In the paper [4], for the isentropic case, Desjardins, Grenier, Lions and the second author
constructed the viscous boundary layers under two conditions: the first, a geometric condition
on the domain Q (the “assumption (H)” in [4]); the second, an orthogonality condition for
multiple eigenvalues, namely that if A o = Ao and k # [, then

Vo W0- Vel odo, = 0. (1.4)
o0

In the present paper, we consider the more general non-isentropic case. The analogue of
the orthogonality condition (1.4) for the isentropic case will be (3.16) for the non-isentropic
case. Actually, this condition (both for isentropic and non-isentropic cases) is not completely
sufficient and we need some higher order orthogonality conditions. This is the main
concern of the present paper.

Let us explain more how the condition (1.4) should be enforced. Assume that A\? is an
eigenvalue of (1.1) and denote by Hy = Hg()\) the eigenspace associated to A2, i.e.

Ho(\) = {T € D(—A,) : —A,T = X*T in 9,9 =0 on 90} (1.5)
where D(—4A;) = H*(Q) N {¥ : %—;11’ =0 on 0N} denotes the domain of —A, with Neumann

boundary condition. On the finite dimensional space Ho()), we can define a quadratic form @
(its associated bilinear form is also denoted by (1) and a symmetric operator L; = L{‘ by

Q(V,0) = | V,¥.V,¥do, = / Ly(V)Vdz. (1.6)
o0N Q
Thus the condition (1.4) can be restated as
Ql(\l’k,g, \I/l,g) =0, if \I/k’o, \I’Z,O S H()()\) and k #1. (17)

This condition means that the eigenvectors Wy o for Ay g = A are orthogonal for the symmetric
operator Li. Of course, since L?(€2) is the direct sum of the spaces Ho()) for different \'s, from
the definition of L; on each eigenspace Hy()), we can define an operator L7 on L2(Q2) which
leaves each eigenspace Ho(\) invariant. But this is not necessary, so we will think of L7 as acting
on Hy(A) for a fixed multiple eigenvalue .
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The orthogonality condition (1.4) turns out to be enough for the construction of the boundary
layer if the eigenvalues of L; are simple, namely, if

k1 =/ Vx\l’k,0|2d075/ Va0 of* doy = A (1.8)
o0 o0

for all I # k such that A\j g = Ao = A. [Here the expression of A ; is for the isentropic case. The
analog for the general non-isentropic case is given by (3.13).] However, if \; is an eigenvalue
of L; with multiplicity greater than or equal to 2, more precisely, if there exists | # k such
that \jo = Ao = A, and A\j1 = A1 = A1, then we need an extra orthogonality condition as
following: Let H; = H;(A1) be defined by

Hl(/\l) = {\If S Ho()\) LU = )\1111} . (1.9)

On the finite dimensional space Hy, there exists a quadratic form Q2 and a symmetric operator
Lo [see the definition below], the extra condition is

Qg(\l’k’o, \Ifl’()) =0, if \I/k’(), ‘I’Z,O € H; ()\1) and k 75 l. (1.10)

This condition is enough if Lo has only simple eigenvalue on the vector space H;. However, if
Lo has eigenvalue with multiplicity greater than or equal to 2, we need additional condition on
Hs, and so on.

This process can be continued inductively to find the condition we have to impose on the
eigenvectors of —A,. Indeed, we can construct recursively, on each eigenspace Ho(A) of —A,, a
sequence of symmetric operators Ly, (¢ € N) in the following way: Let Ly = —A,, we define L;
on each one of the eigenspace Hy(A) of Ly by (1.6) [In the non-isentropic case, (1.6) should be
replaced by (3.19)]. Assume that the operators L, were constructed for p < ¢—1,¢ > 2 in such a
way that each operator L, leaves invariant the eigenspaces of the operators L,, for p’ < p. Now,
to construct Ly, it is enough to construct L, on each eigenspace Hy (A1)NHa(A2)N- - -NHg—1(Ag—1),
where A1, Ao, -+, \g—1 are multiple eigenvalues of L1, La,--- , Ls—1 respectively. This is done by
constructing a quadratic form @), on each space Hy (A1) NHa(A2) N---NHy—1(Ag—1) and defining
L, by

Qq(q/,\p):/Lq(q/)xifdx, for all W, ¥ € Hy(A\;) NHa(A2) N---NHy1(Ag—1).  (1.11)
Q

The precise construction of the quadratic form @), on the space Hy (A;)NHa(A2)N---NHy—1(Ag—1)
will be done in the proof of Theorem 1.1. The theorem and its proof will be stated for the more
general non-isentropic case, and it is easy to deduce the isentropic case. Once there is an
eigenvalue )\, such that dimH,(\,) = 1, i.e. A, is a simple eigenvalue of L,, no additional
orthogonality conditions are needed and we can just take Ly = Id on Hi(A) NHa(A2) N ---N
H,(\g) for ¢ > ¢+ 1. (Note: for this case, the orthogonality condition (1.13) is reduced to
fQ U 0V 0de = 0, which does not give any new condition).

Let N € N be an integer. This is the integer that will appear in the order of the approximation
in the next proposition. The eigenvectors Wy o for Ao = A should be chosen in such a way that
they are orthogonal to all the operators L,, for n < N + 2, which means that

Qn(Upo, i) — /Q Ln(Wy0) 0 da = 0, (1.12)

if Upo,U0 € Hi(A) NHa(A2) N--- N Hp—1(Ay—1) and k # [. In fact, the condition (1.12) is
equivalent to: for 1 < ¢ < n,
Qq(¥ro, Vi) = /QLq(‘I’k,o)‘I’l,o dr =0, if [#k, Vg, Vi € Ho(N). (1.13)

Now we state the main result of this paper, which is the same as the Proposition 2 in [4],
except that we add the higher order orthogonality conditions. As we mentioned above, the main
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purpose of the present paper is to fill the gap in the proof of the Proposition 2 in [4] and to
rewrite it in the non-isentropic setting.

Theorem 1.1. Let Q be a C? bounded domain of R* and let k > 1, N > 0. Let the eigenvectors
Uy 0 of =2, satisfy the orthogonality conditions (1.7) and (1.13). Then, there exists approximate

etgenvalues Mfs N and eigenvectors gb,fa N= (pf5 N ufs N 0;&6 N)T of Az such that
‘Aa(bis,N = Z./\lcj:,a,Ngi)l::;:,a,N + le,e,N’ (1'14)
with
iNie v = Fidko + i1 vVE +0(e), (1.15)
and the real part of z)\k 1 i€ iﬂe(i)\fl) < 0. Furthermore, for all p € [1, 0], we have
N+i
1Ry vllzr) < Cp(vE) 7. (1.16)

Remarks: 1) In the isentropic case, to get that %e(i)\il) < 0, we need an additional geometric

condition on the domain 2, the “assumption (H)” in [4]. For the non-isentropic case, this

geometric condition is not needed because of the additional dissipative effect coming from heat

conductivity, see the Remark after (3.14).

2) The proof gives a more precise expansion of the eigenvalues z)\k N and eigenvectors qﬁk N

In Section 2, we collect some results which will be used in the proof of the Theorem 1.1. In

section 3, we prove Theorem 1.1. The main idea is to construct a boundary layer similar to the
one in [4]. For the convenience of the readers, we give a complete proof here.

2. PRELIMINARIES
In this section, we collected some results needed in the construction of the boundary layers.

2.1. The operator A — i)\fo. First, for any ¢, ¢ € L2(Q,C x C% x C), we introduce a scalar
product

(¢10) —/Q(pﬁJru-ﬁJri@@N) da, (2.1)

for any ¢ = (p,u,0)” and ¢ = (5,1,0)7. Under this scalar product, the eigenvectors gbio in
(1.2) have norm 1.

Now, we consider the operator A—i\}, 0 where the acoustic mode k > 1 and 7 = + or —. This
operator, especially its pseudo inverse will be important in the construction of the boundary
layer. The kernel and its orthogonal under the inner product (2.1) are

Null(A — AL o) = Span{djy : Ao = Ako}
Null(A — iA] o) =Span{¢;y , ¢4 : Ao # Ako} @ Span{é; § : Ao = Ako}

(2.2)
@ Null(A).
Next, we define a bounded pseudo inverse of A — ME’O
(A=A o) " Null(A — iA] o) — Null(A —iA[o) ™,
by
(A- MZ,O)*%% = mﬁ,o, for any ¢?,0 with /\?,0 # Ako> (2.3)
and ’ ’
(A=iX o) (o =p) = 5= (o =), (24)

for any (p,u, —p)T € Null(A) and 7,8 € {+, —}. It is obvious that this pseudo-inverse operator
is a bounded operator.
The following lemma will be used frequently in this paper.
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Lemma 2.1. For each acoustic mode k > 1 and 7 = + or —, let ¢2’0 be defined in (1.2),
and let v be a given number and f[ and gj be given vectors. Then the following system for

i = (oo g, 00"
(A =i o)br = Vg dro + fr s

2.5
u,-n=g; on 0 (25)
can be solved modulo Null(A — i)}, ;) under the following two conditions:
e iv] satisfies
i = [ ai¥odos = (ffloko). (26)
o If Ao is an eigenvalue with multiplicity greater than 1, a compatibility condition is
needed
/ G Viodo, = (f161s) . for Mo =Aeo with k#1. 2.7)
o0
Under these two conditions, the solutions to (2.5) can be uniquely represented as
Oh = PRodk + Py ok =Y (Llefo)dlo + Fo ok (28)

Ak,0=A1,0

where POLQSE € Null(.A— i)\gvo)l is completely determined, and Py¢j, is the orthogonal projection
on Null(A — i/\g,o) which is not determined.

Proof. For any g] € H%(8Q), there exists u} € H'(Q2;RP), such that ya}-n = g, where 7 is
the usual trace operator from H'(£2;RP) to H%((?Q) We define

Then (;3; has zero the normal velocity on the boundary 0f2, thus is in the domain of 4. From
(2.5), ¢}, satisfies
(A = N[ 0)0F = —(A — iM]0) (0, 6, 0) + if 6 o+ f7 - (2.10)

The solvability of (2.10) is that the right-hand side must be in Null(A — i/\E’O)J‘. Thus, the
inner product of (2.10) with ¢, , is zero, which gives (2.6), while the inner product with ¢, with
Ao = Ao, k # [ gives (2.7). Under these conditions, by applying the pseudo-inverse operator
(fl — i)\g’o)_l defined in (2.3)-(%.4), we can uniquely solve QEE in Null(.A — i)\;’O)L, denoted by
¢1.- However, the projection of ¢7 on Null (A — 1A, 0) is not determined. In other words,

Gh=dt+ DY (9kldl0)eio-

Ak,0=A1,0
Using (2.9), we get (2.8), where
POLd)E = ¢_5E+ (O>ﬁ7k;70)T_ Z <(Ovﬁ£70)T|¢ZO>¢ZO

Ak,0=A1,0
In (2.8), the projection of ¢}, on Null(.A — i/\g,o)7 i.e. the first term in the right-hand side of

(2.8), can not be uniquely determined. It is easy to see that the projection of ¢} on Null (A —

i)\Z?O)J‘, i.e. P(f- %, is uniquely determined, although the lifting of the trace gj, is not unique.
O
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2.2. Geometry of the boundary J€). Next, we collect some differential geometry properties
related to the boundary 992 which can be considered as a (d —1) dimension compact Riemannian
manifold with a metric induced from the standard Euclidean metric of RY. Let T(9) and
T(0Q)* denote the tangent and normal bundles of 99 in R? respectively.

There is a tubular neighborhood Us = {z € Q : dist(x,9Q) < ¢} of 9 such that the nearest
point projection map is well defined and smooth. More precisely, we have the following lemma;:

Lemma 2.2. If 99 is a compact C* submanifold of dimension d—1 embedded in R?, then there
is 6 = 6pn > 0 and a map ™ € C*~Y(Us;00) such that the following properties hold:
(i): for all x € Q C R with dist(x,0Q) < J;

m(x) €0, x—m(x)e T y(09), |z —7(2)| = dist(z,0Q) , and

s
|z — x| > dist(z,09) for any z € 0N\ {m(x)};
(i)
m(x+2)=x, for x€d,zeT,(00),]z] <4,
(7i1): Let Hessm, denote the Hessian of m at x, then
Hessm, (V1 ,Va) =h, (V1 , Vo), for z€0Q Vi,V e T, (09),

where hy, is the second fundamental form of 02 at x.

The proof of this lemma is classical, for example, see [13], where the lemma is proved for
general submanifold.

The viscous boundary layer we will construct has significantly different behavior over the
tangential and normal directions near the boundary. This inspire us to consider the following
new coordinate system, which we call the curvilinear coordinate for the tubular neighborhood
Us defined in Lemma 2.2. Because 012 is a (d — 1) dimensional manifold, so locally 7(z) can be
represented as

m(z) = (7t(z), -, 741 (x)). (2.11)

More precisely, the representation (2.11) could be understood in the following sense: we can
introduce a new coordinate system (¢!, ---,£%) by a homeomorphism which is locally defined
as & 1 &(x) = (€'(x) , £%(x)) where &' = (€',---,£97"), such that &(n(x)) = (¢/, 0) and d(z) = £,

where d(z) is the distance function to the boundary 012, i.e.
d(z) = dist(x,0Q) = |z — 7(x)] . (2.12)
For the simplicity of notation, we denote “¢’(x) = w(z)” which is the meaning of (2.11).

It is easy to see that V,d is perpendicular to the level surface of the distance function d, i.e. the
set S* = {z € Q :d(z) = z}. In particular, on the boundary, V,d is perpendicular to Sy = 9.

Without loss of generality, we can normalize the distance function so that Vyd(x) = —n(z) when
x € 0). By the definition of the projection m, we have

m(x +tVyd(x)) = w(x) for ¢t small, (2.13)
and consequently, V7% -V,d = 0, for a = 1,---,d — 1. In particular, for ¢ small enough,

Vom(x) € T, (092) when x € 0.

In the following section we prove the Proposition 1.1, one of the key idea is that the boundary
layer terms have different length scales on the tangential and normal directions of each level set
5%, in particular the boundary 092 = S°. So in order to solve the ansatz, we need to project the
vector fields onto tangential and normal directions by inner product with V, 7% and V,d.

Next, we calculate the induced Riemannian metric from R? on the family of level set S*. In
a local coordinate system, these Riemannian metric can be represented as

9 = gopdm® ® dr? ,
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o] o) o _ Or* 9 o) 3
where gog = (57a s 5.5)- 57 = gyt gra»> and <8x“ 557) = 0ij, the metric g, can
be determined by
or 9nP _
9aB g7 dat = L.

3. PROOF OF THEOREM 1.1

In this section, we prove the Theorem 1.1. The main idea is to build approximate modes of
A. in terms of qﬁfo, we formally solve the equation

+
E¢kaN_Z>‘kaN¢ksN+Rkan (3.1)

where we make for gzﬁk . and )\ ke the following ansatz.

Do = Z(\f G (@) + VE O (n(@), S)x(@)) (3.2)

=0
+ +,int +int +,int g4 int +.b +,b +b
and Ay = Z Ve )\,“, where ¢, = (pp.; a0 ) and ¢; 5" = (pp; ,u,” , 00T

are smooth functlons with boundary conditions u,f nt uk = 0 on 01, qbk £,b being rapidly

decreasing to 0 in the { variable defined by ¢ = T) We also require that for ¢ > 1, we have

(D™ |gi™) = (3.3)

for all j > 1. Here the function d(z) is defined in (2.12).

In the ansatz (3.2), x(y) € C§°(f2) is a smooth cut-off function such that x(y) = 1 in a
neighborhood of 9Q and x(y) = 0 if d(y) > J for some § small enough. Here 6 > 0 is taken as
in Lemma 2.2 so that 7 is uniquely determined in {0 < d(y) < ¢}.

Straightforward calculations show that for ¢® = (p?,u®,6")7,

A5¢b=%Adgbb—i—/lﬁgbb—kpbqbb—l—\@beSb—{—sgqub,

where
d¢(uP-v,d) Do (UP -V, %)
AdgP = [0 (pP +0°)Ved |, A" = [ Dpa(p + 0°) V™ | |
Y0 (uP-V,d) Y Opa (UP -V, %)
0
Db = | v[VedPPu® + (€ +v)PP (uP-V,d)Ved | |
K| Vg d\2829b
0
FPoP = | 2092 uP(Ved-Vor®) + (€ + u)[(agﬂaub-vﬂa)vxd + (9Prau®-V,d) V7]
2/-;842”(10 (Vpd- V)
0
+ | vOuPAd + (€ + v)0uP-V2d | |
KagebAmd
and
0

GPoP = | v[OrauP AT + ajawﬁub(vﬂa-vﬂﬁ)]
K[Ora 0P Ap® + aj%ﬁeb(vxwa'vﬂﬁ)]
0
+ | (€ + v)[Grau® - V2r* + (92, _,uP V) V7P
0
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We will use the following notations for the simplicity: FP¢” = (0, F*, F)T and GPpP =
(0,G6%,6%T, and furthermore,

FU-Nym = F (ub Vo) + F2 (ub-Vzd),
FU.V,d = FU (u-V,m) + ]—"dd(ub-vxd) ,
GY- V,mr = G2 (uP-V,7) + G%,(uP-V,d),
GY V,d = GY (uP- V) + G (u°-V,d)

where F2 FX Fo Fo G Gogs Ggns Gy are linear functions. For the 6 components, we use
the similar notations.

Now we start to solve the equation (3.1) inductively.
Step O : First, the order \/5_1 in the boundary layer gives .Ad(;ﬁz o = 0 which implies that
uE’O'de =0 and ,02’0 + 0}370 =0.
In particular, uE o-n =0 and consequently ulnt -n = 0 on the boundary 9f2.
The order \/E of the interior part in (3.1) 1mplies that

AQbi Jint _ )\iogbkiént )

Comparing with (1.2) and (1.3), we have qﬁfém = ¢ o and )‘lfo = Fi/1+ 7k 0.
Remark: From now on, for the simplicity of representation, we only calculate for “+ " case,
the calculation for the “-” case is the same.

3.1. Order \@0 of the boundary layer. The order \/EO in the boundary layer gives
—AGR 1 = (AT + D" —ido) B} o,

ie.
ag(u};l V,d) Ora (uz’O Vpm®)
—1 % (Pz,l + 0}271)de = | Or (Pz,o + eg,o)vﬂra
’yag(u',;l -Vd) YOro (uz0 Vpm®)
0 —02
+ V|de|28c2<“2,o + &+ 1/)3%2 (uE’O-de)de — Ak uz’o
H|de‘28<2<9k 0 91‘?,0

(3.4)
The process to solve this system will be illustrated in the following steps, which are the
foundation to solve the more complicated ODE for (bg i Before we solve the system (3.4), we

recall that we already know the values of u270~VId and p};o + 9270 as well as the boundary data
for uEVO-VﬂT and 9}270.

Step 1 is to solve pl,;’l + 0211. This is achieved by taking the inner product of the second
equation of (3.4) with V,d. This gives 84(,0}371 + 0271) = 0 thus pl,;l + 9}271 = 0, noting that
Vem®-V,d =0 and quOde =0.

Step 2 is to solve the tangential part of uE’O, i.e. u};@Vzﬂ. By taking the inner product of
the second equation of (3.4) with V,7, we get that f® = u2’0~Vw7r satisfies the ODE

LfP=o0,
(¢ =0) = —uff(x) - Ver, (3.5)
fP(¢ = 00) =0,
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where the operator £ = V]deP@gC —iAg0. The boundary condition second line of (3.5) should
be understood as: when ( = % =0, x € JQ. The solution of (3.5) is given by

k(). 0)- Vi = 2y oh) =~ Vomenp (5B dhc) . 36)

Note that on the right-hand side of (3.6), u}cng V.7 in taken on the boundary 912, i.e. ¢ = 0.

Furthermore, Z[l)) (¢, ) is a linear function.
Step 3 is to solve 9}30 whose equation is obtained by subtracting v times the first equation

from the third equation of (3.4). Hence, fP = 92’0 satisfies the ODE

E'yfb = Oa
PC=0)=—6%, (3.7)
(¢ = 00) =0,
where £, = /<;|Vgcd|282C — (1 +v)Ago. The solution of (3.7) is given by
in gin 7 2(1 A
0Ro0(m(2),0) = Zo (¢, ¢jth) = 0} exp ( Lty 2R vidC) : (3.8)

Again, on the right-hand side of (3.8), 9};}8 is taken on the boundary 0%, i.e. ( =0, and ZE’Q(C, )
is also a linear function.

Step 4 is to solve uz’l-vmd. From the first equation of (3.4) (or equivalently the third
equation), we have

—0¢(up - Vpd) = diva(up o Vo) + i o0p -
By integrating from ( to oo, we get
ukl Vpd = Zl(C ¢mt)
= —adlvﬂ(ulnt ‘Vpm)exp(—e, () — éi)\hoﬁ}% exp(—cx(),

where ¢, = 1£* 2)\;’0 |V7310d| and ¢, = 11ty M Ivzd| In particular, setting ¢ = 0 in (3.9),
we have that on the boundary 0f,

—uly = ZP(O8) = Z2(0,6}) = — L diva(ullh- Vo) — ik o6l (3.10)

(3.9)

Note that ZP(-) is a linear function. Now we summarize that by solving the ODE system (3.4),
we determine

e Step 1: ,02’1 + 0271;
e Steps 2, 3 : UZ’O'VNT and 19270;
e Step 4 : ugrvzd and hence u271-n. when we take ¢ = 0.

Similarly, in the next round, before solving uz 1- Ve and 9}? 1» we need their boundary values.
In other words, the terms in ansatz (3.2) are determined by solving the ODEs from the boundary
layers and operator equations from the interior alternatively.

3.2. Order /¢ in the interior. Step 5: The order /¢ in the interior part of (3.1) yields:
(A= iXeo)dit = IAk101 (3.11)
u}cni = ukl n—Z1(¢mt) '

Applying Lemma 2.1 to the system (3.11), from the formula (2.6), i\x; can be solved as

VS :/ (u}f‘i )Wy odoy, = —/ (uEyl-n)\Ilk,odax. (3.12)
o0 0
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OV o
orP 87r“/ ’

From (3.10) and the fact that V, ¥ = ¢7? and V,m¢ 0‘58%5, we have

oV o OV
/BQ Ore (qujk,o : vacﬂ'a)qjk,o doy = — /6 Gy gaégﬁ'y aﬂkao 3:30 doy

= - / |v7r\1’k,0|2d0'x ,
oN

where V is the gradient on the tangential direction of the boundary 9€2. Thus the formula
(3.12) reads

Xy :/a Zy (91) Wk 0do

. (3.13)
L Wl?o . (VoY ko + T VAN ol Wk l?) o
An important property of (3.13) is that the real part of i)\;tl is strictly negative:
Re(irg,) <O0. (3.14)

Remark: If only the isentropic case was treated as in [4], there would be no second term in the
integrand of (3.13). We will only have 9e(iA;|) < 0. As mentioned in [4], the strict negativity
is related the famous Schiffer’s conjecture. Iriterestingly, in the present paper, because of the
additional dissipation from heat conductivity, the geometric condition related the Schiffer’s
conjecture as in [4] is not needed.

If the multiplicity of A = Aj ¢ as the eigenvalue of Lo = A, is greater than 1, then from (2.7),
the following compatibility condition must be satisfied:

/ Zl(¢mt)\lll,0da$:0, fOI" )\170:)%,0 With k‘#l, (3.15)
o002
which reads as
. U0V, U vay\y)d: 1
> A oo (WVx k0 VP10 + 135 VEN 0 Wk 0 Wi ) doz = 0, (3.16)

for Ao = Apo and k # [. For the isentropic case (i.e. £ = 0), it is the condition (10) in [4]. We
can define the quadratic form @ and the symmetric operator L; on Hy(\) as

Qi(Ti0, V1) = /8 2260 Wy gdor (3.17)
and
L1Wgo=1A 1Pk, (3.18)
which satisfies that
Q1(Wi0,V10) = [ Li(Wio)¥io. (3.19)
Q
and the orthogonality condition (3.15) is
Q1(Vr0,¥i0) =0, if Wpo, Vo€ Ho(A) and k#1. (3.20)

From Lemma 2.1, under these conditions, the solution to (3.11) is
Ot = Pyt + Podi (3:21)

When i), is a simple eigenvalue of A, then P0¢mt € Null(A) vanishes. For this case,

(bmt POJ-qut € Null(.A) is completely determined. When i)\, is not simple, Po¢mt is to
be determined.
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Note that the system (3.11) is linear and the boundary data ZP( lrlt) is also linear in qﬁmt
So P mt also linearly depends on F; qﬁmt Thus we denote

POL(;Smt _ 1nt(¢1nt) (322)

where Zi"(.) is a linear function. Furthermore,

Rpii = ). apado,

1#k,X\,0=Ak,0

where a1 = <¢)mt ]qbl o) will be determined later. Here, we used that a1 = 0. Note that the

mt

boundary data for u,€ 1+ Ve and 9}? , are determined modulo Fy¢}]. Later on, we will use the

notation:

ap; = (B d10) -
3.3. Order /¢ of the boundary layer. The order /¢ in the boundary layer is
—AYpR, = (AT + DP — idpo)dpy + (F* — ide1)dRo - (3.23)
Step 1: As before, step 1 is to find the ODE satisfied by /)2,2 + 9}272 which is
—0c(PR 2 + O )| Ved® = ((€ + 20)|VudPOF — ido) (W} 1-Vied) + Fif (0 o- Vi)
The right-hand side of the above equation is a linear operator on ¢ikrjg, (noticing the notations
n (3.6) and (3.9)). Integrating from ¢ to oo gives

PR 2t op 2= = Y(¢, <Z5mt) (3.24)

where Y2((,-) is a linear function. Note that p,w- + ij = ij =0for j=0,1.
Step 2 is to solve uz 1- V. Using the same method which derives the ODE (3.5), i.e. taking

the inner product of the second equation of (3.23) with V,m, we get that fP= u,? 1" V7 satisfies

the ODE
L(f") = (iXe1 — F)(up o V),

=0 = fu};“i Vo
(P0¢1nt ) ( 1nt(¢1nt )) T,
(¢ = 00) =0,
where (+)y denotes the u component. Again, for the second equation in (3.25), the terms on the

right-hand side are taken values on the boundary 9€). From the linearity of the above ODE, we
can decompose u}g 1V = ff + fé’ , where f{’ is the solution of the ODE

(3.25)

LY =0,
FEC=00= =P )uVer == > apauiy-Ver, (3.26)
I#k,\,0=Ak,0
f1(¢—00) =0,

Note that this ODE is the same as (3.5) with the linear combination of initial data, and Zg’u(C, )
is linear, so the solution is represented as f}) =z ZyM (¢, Poqut) Besides, f2b satisfies the ODE

L1 = (i = F2) (25 @1) ).
(¢ =0)=—(Z"(60)) - Ve, (3.27)
(¢ — 00) =0,
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whose solution is represented as fP = Z)” ZM(¢, (bmt) where Zb’u(g“ ,+) is a linear function. Thus,

wp | Vor = Z9(C Poglt) + 20 (CL o).

Step 3 is to solve 9};’ 1- The method is the same as in deriving (3.7), i.e. subtracting v times
the first equation from the third equation of (3.23). Hence, 6% | satisfies the ODE

Lof®=idea(1+ ’Y)Qb - »7:6(91?0)
PPC=0)==Po(ei)e — (Z™(60)) - (3.28)
FP(¢—00) =0,
where (-)g denotes the § component. Using the same argument as in the last step, we can
represent the solution of (3.28) as 9}3 1= ZlO ¢, Py mt) + Zb Y(¢, 0};‘8)

Step 4 is to get uk,2 V.d = ZP(¢, Pogi)mt)) + ZP(¢, (;Smt) Then setting ¢ = 0, we have that
on the boundary 052

—up o n = ZP(Podih) + Z3(815) - (3.29)

3.4. Order ¢ of the interior. The order ¢ of the interior part in (3.1) reads
(A= idko)dih = i1 oS + (A2 — D) »

in in in (330)
ul'ton = ZP(Podi™) + Z5 (6}7%6) -
Here we use again the relation u}é“t2 = —uk o on 0 and (3.29). Taking the inner product of
(3.30) with (bmt gives the first solvability condition
iAgo = /8 A (P()(;Smt)\llk,odax +/a Zsy ((bmt)\Ilk,Odax + (Dot |¢mt> (3.31)

Because of the linearity of Z}’ and the orthogonality condition (3.20), the first term in the above
equation vanishes, so i\ 2 is completely determined. To solve d)ikng from (3.30), we consider
three cases: 7

Case 1: )\ is a simple eigenvalue of Ly = A,. For this case, no orthogonality condition is
needed.

Case 2: i)\ is a simple eigenvalue of L;. Taking the inner product of (3.30) with (;Sflot gives

1
—_ A U, odoy . 3.32
PNk — 1AL /an (k) Trodo (3:52)

Here, we used that (D¢1nt|¢mt> = 0 for k # [. Thus Pogb}ﬂnt1 is completely determined. No
additional conditions on Hg()\) rather than (3.20) is needed.

Case 3: i)\ is an eigenvalue of L; with multiplicity greater than or equal to 2. For this
case, we need more orthogonality conditions on

Hl()\l) = {\If eHy: W= Z)\k71\I/} .

akl1 =

These orthogonality conditions come from the equation (3.30). Taking the inner product with
qut for I # k, N0 = A\go and N1 = A1, we get

/ Z9 (o) ¥ 0doy, = 0. (3.33)
o0

We can define the quadratic form Q2 and the symmetric operator Ly on Hi(\1) as

Qa( W0, T10) = /a Z3(65) Wy odors + (D[S (3.34)
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and
LoWgo=1iM 2V, (3.35)
which satisfy that

Qu(¥0.W10) = | La(Wio) Wi,
and the orthogonality condition (3.33) is
QQ(\I’]C’O, \111’0) =0, if \I/k’(], \I’l’g e Hy ()\1) and k& 75 l. (336)

Under these conditions, to represent the solution of the equation (3.30) in Null(A — z')\k,o)J-,
we decompose the equation (3.30) into two parts: one is the linear combination of the equation
(3.11), the other only includes known terms. More precisely, decompose qﬁmt ' + ¢?, where

¢! satisfies the equation
(A—idro)d' = ide 1 Podpy
u'n = Zl (P0¢mt)

whose solution in Null(A — i\, o)t is ZB(Py¢itt), since the equation (3.37) is just a linear

(3.37)

combination of equation (3.11). Besides ¢? satisfies the equation
(.A—’L')\k())QSQ:(Z')\kQ— )¢1nt _|_Z)\k1Z1nt(¢mt)

3.38
u’n = Zz (¢mt) ( )

whose solution in Null(A — i)\k,o) is completely determined, and is denoted by Zin( }fng). In
summary, the solution of the operator equation (3.30) is

o = Posley + ZI™(Puolh) + Z3" (). (3.39)

mt

For case 1, everything is fully solved. For case 2, only Fy¢pY is undetermined. While for

case 3, Pogb}gtl = (P + Pt )(gbmt) where P is the orthogonal prOJection on Hy(Ag 1) ie.

int
Py = Z akl,191,0-

I#kAL0=Ak,0,A1,1= Ak, 1
while Pj- is the orthogonal projection on Hi (g 1), i.e
1 int
Piop = > akL 1810 -
I#kA,0=Ak,0,A1,1F Ak 1

At this stage, Pf(;ﬁmt is completely determined by (3.32) and Py gi)‘“t will be determined later.

3.5. Induction hypothesis. For j > 3, we assume that we used the information from the
boundary layer till the order Ve ~2 and in the interior till the order Ve fl. Before we solve
the ansatz for the order /& © in the boundary layer and the order y/z' in the interior, we
write down and induction hypothesis that summarizes what we were able to construct till now.
We write this in the following 7 statements that we need to check for the order j. Here,
Y, ), Zs’u(Ca )s Z,?’G(Q Y, ZP(¢,+), ZP() and ZiM(.) are linear functions defined in a way sim-
ilar to (3.24), (3.6), (3.8), (3.9), (3.10) and (3.22) respectively.

(P1 ) For2<i<j—1,p0,+6p, = 2;12231})((, Pogi_p); For i = 0,1, pp,+ 62, =0;

(P3y): For 0<i<j—2,up, Vo = Y50 2, (G Podfit_y) :

. . ] ~b,0

(PJ ) For0<i<j-—2, 91‘3,1' =2 h=o Z@’ (CLPO%% ok

(PJ4 1) For1<i<j—1, u}g’i-vzd = Y ohet Zb((,Pogb}Sg_h). Taking ¢ = 0, we deduce that
on the boundary, we have —up ., n =3} _, Z,E(Pogt}CnE D
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(Pj5_1) :For 1 <h<j—1,i\gp = Qn(¥io, Vi), where the quadratic form Q1 and Q2 are
defined in (3.17) and (3.34) respectively, and @, for 3 <h < j —1 is defined as

Qn(Yio, Vo) = /

- Zp(615) Prodas + (D(Z3%5(01%))|04%) - (3.40)

(PP_y): For 1 <i<j—1, ¢ = Rooi + 2oy 23 (Pod_p) 5

(PJ-7_1) : The last assumption to check deals with the number of orthogonality conditions
needed and specifies what is already determined and what is still not determined in the con-
struction. We distinguish between j cases:

Case 1: i)\, is a simple eigenvalue of Lj, for 0 < h < j — 2. No orthogonality condition is
needed, and every term in the expansion is fully determined;

Case m (2 < m < j): i)\, is a multiple eigenvalue of Lj, for 0 < h < m — 2, and a simple
eigenvalue of Ly, for h = m — 1. (Note: the case j means that all the eigenvalues i)\ for
0 < h < j — 2 are multiple eigenvalues.)

o We need the orthogonality conditions: For each 0 < h <m — 2,
Qh+1(\11k7\11l) =0, for ¥,,¥;eHoN---NHy, (3.41)

where for h > 1, the space H, = Hp(Ap) = {¥ € Hi(A1) N - NHp_1(Ap—1) + Lp¥ =
i\ U} .

e Forl1 <h<j—m, gb}f% are completely determined. (for the case j, no term is completely
determined.) .

efForj—m+1<h<j-—1, (P& 4+ -+ le_l_h) }f}z are determined.

int

e For j—m+1<h<j—1, Pj_1_,¢} are not determined,
where Py_; is the orthogonal projection on Hy(A1) N--- N Hp_1(Ap—1), and P,y = P + P,f-,
where P;- is the orthogonal projection on Hy (A1) N -+ N Hy—1(Ap—1) NHE(Ag).
Remark: Regarding the condition (3.41), actually we have a stronger orthogonality property
which is actually equivalent to (3.41), namely : for each 0 < h <m — 2,

Qh+1(\11k , \Ijl) =0, for I 75 k, ., ¥, €Hy. (342)

Indeed, we just need to use that the L leave stable the spaces Hy. Of course, we have to define
Ly, over the whole space Hy even if the eigenvalue is simple, but in this case we just take it to
be the identity.

In the next subsection, we are going to prove the 7 hypotheses (PJI) — (PJ7) assuming P; 1
for ¢ < j.

3.6. General case: order \/Ej ~! of the boundary layer. The order \@j ~! of the boundary
layer gives
— AR ; =(A™ + D — X o) 1 + (F” = idk1)9R j—a + (G° — iAk2) PR s

i1 (3.43)
— 0> Men®Ri -
h=3

Step 1 is to solve pgj + 9}3]- which satisfies the ODE

_8C(P}3,j + GE,j)!deIQ = ((¢+ 2V)\de\25§< — iAky0) (ui,jfl-%d) + f;w(uz,jq'vmﬂ)
+ (Fiy — ide) (R j o Vid) + G () 5 Vo)
j—2
+ (Gl — i) (0R 5 Vad) =i > Aen(uR ;) - Ved).
h=3

(3.44)
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Integrating from ¢ to oo, the solution of (3.44) can be represented as

J
Pllg,j + GE,J- = Z Y (¢, P0¢}§;-,h) ;
h=2

where Y}}) are linear functions. This corresponds to (PJI) in the induction hypothesis.
Step 2 is to solve ug,jfl-vﬂr which satisfies the ODE
Lf* =(iden = F) (g ;o Var)
(A2 = Gr) (U 3 Vom) = Frg(ug j-Vad)

Fidgz(up j_g-Vor) — Grg(wp ;_5-Vid) (3.45)
j—1

+0 > Aen(ul g Var) = One(pR ;1 + 02 1) Va®[?,
h=4

with boundary conditions
fPC=0)=—ufs - Vor, fP(¢—o00)=0.

Note that uikn; 1+ Vpm is taken value on the boundary 0f). Suppose that we already have
(bmt L= qubmt n —1—23 ! L Ziny( 0¢}2;'—1—h)- The solution of (3.45) can be represented as uzj_l'

Ve = fP2 4+ f2 -+ f;?, where f? satisfies the ODE
LfP =0,
o 310
f1(¢=0)=—(Podi;—1)u Vo,
whose solution is fP = Zg’u(Poqﬁ}g;_l), and f} satisfies the ODE
LfY = (iAp1 — FE)(ZO (Podit ),
3 = (g — Fr) (25" (Podls o)) (3.47)

b
f(¢=0) =~ (Z"(Pod}—2)) - Varr
Noticing that this equation has exactly the same structure with the equation (3.27), we infer
that the solution is f2 = Z>™(¢, Py )
Remark: This is a key point in solving the ansatz: because Poqut 5 is a linear combination

of qb}not, so in (3.47) the equation and the boundary conditions are the same linear combination

with those of (3.27). Thus, the solution of (3.47) is also the same linear combination with that
of (3.27).
Furthermore, f}l’, for h=3,4,--- ,7j satisfies the ODE

Lf; = gr(Podis )
(¢ =0) == (2" (Pod}-n)) Ve -
where gE(PquikIj;_ ,) denotes the terms in the right-hand side of (3.45) in which qub}gn; ;, appears.

The solution of (3.48) is fP = Z,", (¢, Pog{™_,,). Thus

(3.48)

7j—1
. ,
uy Ver =Y ZpNC Pty ) (3.49)
h=0

This corresponds to the (PJ2 ) in the induction hypothesis.
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Step 3 is to solve 9 _, which can be similarly obtained

-
7,0 in
91]2,]'—1 - Z Zy (¢, PO(Zsk,;'—l—h) . (3.50)
h=0

This corresponds to (PJ3) in the induction hypothesis.

Step 4 is to solve u}zvj‘vxd which is Z%:l Z};((, Pogﬁ};f;-_h). Consequently, taking ( = 0, we
get the boundary value

J
—up;n :ZZ (Poois_1) (3.51)
=1

This corresponds to (PJf‘) in the induction hypothesis.

3.7. General case: order \/Ej of the interior. The order \/z' of the interior part in (3.1)
reads

(A= iXe0) o = iAe1dps 1 + (idkz — D) o + ka hORS—h

; (3.52)

wln=—up n=> Zp(Pei ;).
h=1

The first solvability condition for the equation (3.52) is obtained by taking the inner product
with ¢, which is

i\ = /m ZY(Poos 1) W oday + /aQ Z9(Poos_y) g 0doy

(3.53)
int int

+Z{ [ ZR(rolts ) rades + (D2 (Pl )0k >} |

Because of the orthogonality conditions (3.41) for 1 < h < j — 1, and the expressions of Q1, Q2
and @y, defined in (3.17), (3.34) and (3.40), only the last two terms in (3.53) are non-zero, i.e.

ine = /8 ZP(688) W odar, + (D(Z0% ($155)) 6125
=Q;i(Yk0,Vko),

(3.54)

which is completely determined. This corresponds to the (Pj’) in the induction hypothesis.

To solve the equation (3.52), we need to consider j + 1 cases:

Case 1: i)\, is a simple eigenvalue of L, for 0 < h < j — 1. No orthogonality condition is
needed, and every term is fully determined;

Case m (2 < m < j+1): i),y is a multiple eigenvalue of Ly, for 0 < h < m — 2, and a
simple eigenvalue of Ly form —1 < h < j—1.

We only consider the case j+1 here, i.e. all the eigenvalues i)y j are multiple. The other
cases are simpler. Taking the inner product with ¢}nt for I # k, Ao = Ai,0, which is

j—1 j—1
> idknarii—n = Y Qu(Podis 1, Vi) + Q(Vho, Urp). (3.55)
h=1 h=1
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If Wro, Vo€ Hi(A) NHa(A2)N---NH;_1(\j—1), then because of the orthogonality condition
(341) for 1 <h < j—2,
. . h_l .
Qn(Pods 1> 10) = Qu(Prord}s s Wi0) + Qu()_ Ps ey, i)
6=1
= N R Ak j— -
For h=j5—-1, ijl(Poqb}cn’tl, \11570) = i)‘l,j—Qakl,l + ijl(f)jl_qu}cn,tl, \11570). Thus, the identity (3.55)
implies that we need the orthogonality condition that for k& # [,
Qj(lpk,() , \11170) = / Lj(\I/k,O)\Ijl,O der =0, for Vieo, Vioe HiN---NH;_q, (3.56)
Q

where the symmetric operator L; is defined by L;V; g = i)\ ;¥ o, for ;g €c HyN---NH;_4.
If \IJk,O’ \11170 S H1()\1)QH2()\2)O' . ~ﬂHj_2()\j_2)ﬂHjL_1(>\j_1), i.e )\k,h = )\Lh for0 < h<j—2,
but Ay j—1 # Aij—1, from the identity (3.55), for these k,1, a1 can be determined by
agl,1 = WQj(\Ilk‘,Oa ‘Ifl,o)-

This means that (P + Pt 4 -+ P;- )¢} is completely determined, but Pj_1¢}" is still left
as undetermined.
If Wpo, U0 € HiN---NH;_3NH,,
Qj—1 (P, Wi0) + Qi (Who, Wio) = (IXF o0 — iXs o 0)aria + Mk j—1aki1 (3.57)

from which ag; o thus PJ- 2<Z>mt is completely determined.
Under these solvablhty conditions, the equation (3.52) can be solved in the following way:
mt— ¢l + ¢> + .-+ + ¢/, where ¢" satisfies the equation

A — i\ h _ int ’
( k,oi@f) = qp - (3.58)
u"n = Z5(Poois ) -

where g™ is the summation of all the terms which include P0¢}€n§._h in the right-hand side of
(3.52). For example, ¢! satisfies the equation

(A —iXeo)d" = ide1 Podps_
u'n= ZE)O(POQb}:;‘—l) .
Comparing with the equation (3.37), we know the solution of the equation (3.59) in Null(A —
iXgo) T is th(Pqu}crf;fl). ¢? satisfies the equation
(A = iX0)d” = (A2 — D) (Podl_o) + ide1 2™ (Podily )
u’n = Z})(Qbiklj;—z) .
Comparing with the equation (3.38), we know the solution of the equation (3.60) in Null(A —

iXeo)T is ZIY( Py }6“3_2) We can continue the similar process and finally the solution of (3.52)
is

(3.59)

(3.60)

¢1nt _ 1nt + Z th }cm];’—h) ’

i.e. gbmt is determined modulo P(](ﬁkn;, P; 1¢k 1P }gng, .- Pmﬁk o1 which are undetermined
at this stage. This corresponds to the (PJ@) and (PJ7) in the induction hypothesis.
We can now inductively continue the process, namely go to the order /¢’ of the boundary

layer, then the order \/Ej+1 of the interior, and so on. We should do this at least till the
order N 4+ 2 where N is the precision of the error in (1.16). Note however, that for a given
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A = M0, we may only need to construct a small number of the L; if after few steps all the
eigenvalues become simple, namely if for some j all the eigenvalues of L; are simple on the space
Hi(A)N---NH;—1(\j—1). It is clear that if the eigenvalues become simple for some j < N + 2,
then the orthogonality condition (3.41) allows to determine the eigenfuctions ¥y uniquely. If the
process does not end, then we just need to satisfy the condition till the order IV + 2 which yield
a none unique choice of eigenfunctions. Also, in this case, we set all the undetermined pieces of
the eigenfunction, namely those left undetermined in the second point of (7) to be zero.

The last step is the error estimate (1.16). Simple calculations show that the leading order
terms in Ri&N are

N
{(A“ +D")pp N+ FPdpn 1+ G PR N — Z iAhgﬁE’N—h} Ve

h=0

After a simple change of coordinates, the error estimate for HR? - vl zr (@), namely (1.16) follows.

4. CONCLUSIONS

In this paper we give a more precise construction of the boundary layer that is used to
prove the strong decay of the acoustic waves in the paper [4]. Indeed, the construction in [4]
is not completely correct in the case we have eigenvalues which are not simple and some extra
conditions should be imposed on the basis of eigenvectors chosen. There is an extra interesting
algebraic structure based on a sequence of symmetric operators that should be used in this
choice. We show in this paper that this construction can be extended to the full acoustic
operator which includes the heat conductivity effect. Interestingly, in this non-isentropic case,
a geometric condition which is related to the Schiffer’s conjecture is not needed because of the
additional dissipation effect from the heat conductivity.

In the present paper, only the Dirichlet boundary condition is treated. In fact, we can also
generalize to the Robin boundary condition, for example, the Navier-slip boundary condition:
[(Veu4Veul)n]t" + yefut® = 0. Similar phenomena will happen. However, the instantaneous
damping effect on the acoustic waves depends the value of 3. We will consider this in the
forthcoming paper on the incompressible limit of the isentropic compressible fluids with this
Navier-slip boundary condition.

These higher order orthogonality conditions in the case of the multiple eigenvalues of the
Neumann Laplace operator in ) are also needed in the hydrodynamic limit of the Boltzmann
equation [7]. In [7], kinetic and viscous fluid boundary layers are coupled when the Boltzmann
equation is imposed the Maxwell boundary condition which includes the both specular reflection
and the boundary diffusion with the accommodation coefficient ye” as ratio.
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