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Abstract

We prove global existence of weak solutions for the co-rotational FENE dumbbell model and the Doi model also
called the Rod model. The proof is based on propagation of compactness, namely if we take a sequence of weak
solutions which converges weakly and such that the initial data converges strongly then the weak limit is also a
solution.
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Résumé

Existence globale de solutions faibles a quelques modèles micro-macro
On montre l’existence globale de solutions faibles à certains modèles micro-macro. En particulier on étudie le

modèle FENE (le cas des ressorts) et le modèle de Doi (le cas des barres rigides) La preuve est basée sur la
propagation de la compacité.
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Version française abrégée

0.1. Le modèle FENE

On montre l’existence globale de solutions faibles au modèle FENE où les polymères sont considérés
comme des ressorts avec une élongation finie. Le systéme est donné par (voir la version anglaise pour les
notations).
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∂tu+ (u · ∇)u− ν∆u+∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR
[
−W (u) ·Rψ +

β

2
∇ψ +∇φψ

]
.

τij =
∫
B

(Ri ⊗∇jφ)ψ(t, x,R)dR, (∇φψ +
β

2
∇ψ).n = 0 on ∂B(0, R0).

(1)

Théorème 0.1 Soit u0 ∈ L2(TN ) et ψ0 telle que
∫
B
φ0dR = 1 p.p en x et

∫
B

ψ2

ψ∞
dR ∈ L∞x . Alors, il

existe une solution faible globale (u, ψ) de (1) avec u ∈ L∞(0, T ;L2)∩L2
loc(0, T ;H1) et ψ ∈ L∞(0, T ;L∞(L2( dRψ∞ ))).

0.2. Le modèle de Doi ou modèle rigide

Dans le modèle de Doi, les polymères sont représentés par des barres rigides l’orientation R.

∂tu+ (u · ∇)u− ν∆u+∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR
[
− PR|∇u ·Rψ

]
−∆Rψ

τij =
∫

SN−1

N(Ri ⊗Rj)ψ(t, x,R)dR+ b∇kul :
∫
RkRlRiRjψdR,

(2)

On démontre le théorème suivant
Théorème 0.2 Soit u0 ∈ L2(TN ) et ψ0 telle que

∫
SN−1 ψ0dR = 1 p.p en x et

∫
TN

∫
B
ψ| logψ|dRdx <

∞. On suppose que b > − N
N−1ν. Alors, il existe une solution faible globale (u, ψ) de (2) avec u ∈

L∞(0, T ;L2) ∩ L2
loc(0, T ;H1) et ψ ∈ L∞(0, T ;L logL(TN × SN−1))).

1. Introduction

Macromolecules play an important role in applied physics, chemistry and biology. Although a polymer
molecule may be a very complicated object, there are simple theories to model it. In this note we deal with
two models: the FENE model and the Doi model. At the level of the polymeric liquid, we get a system
coupling the fluid and the polymers. The Navier-Stokes equation has an extra term due to the polymer
force (this is a micro-macro force). Moreover, the Fokker-Planck equation describing the evolution of the
polymer density has a drift term which depends on velocity gradient (this is a macro-micro interaction).

2. The FENE model

For flexible polymers, a macromolecule is idealized as an “elastic dumbbell” consisting of two “beads”
joined by a spring which can be modeled by a vector R (see [2]). The micro-macro approach consists in
writing a coupled multi-scale system of the form (1). In (1), ψ(t, x,R) denotes the distribution function for
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the internal configuration and F (R) = ∇φ is the spring force which derives from a potential φ. Besides,
β is related to the temperature of the system and ν > 0 is the viscosity of the fluid. W (u) denotes the
anti-symmetric part of ∇u, namely W (u) = ∇u−t∇u

2 . The fact of putting W (u) instead of the whole ∇u
in (1) is done to get better estimate on ψ. The system obtained is called the co-rotational FENE model.
This is a major simplification of the model.

Here, R can either be in a bounded ball or the whole space RN . If R is in the whole space, the model
reduces to the Hooke model for which φ(R) = k|R|2 and the model reduces to the Oldroyd-B model (see
[3] and [10] for some local and global existence results). If R is in the ball B(0, R0), the model reduces
to the FENE model (Finite Extensible Nonlinear Elastic) in which case φ(R) = −k

2 log(1 − |R|2/|R0|2)
for some constant k > 0 and we have to add a boundary condition to get the conservation of ψ, namely
(∇φψ+ β

2∇ψ).n = 0 on ∂B(0, R0). The boundary condition on ∂B(0, R0) insures the conservation of the
polymer density and should be understood in the weak sense, namely for any function g(R) ∈ C1(B), we
have

∂t

∫
B

gψdR+ u.∇x
∫
B

gψdR = −
∫
B

∇Rg
[
−W (u) ·Rψ +

β

2
∇ψ +∇φψ

]
dR. (3)

Notice in particular that it implies that ψ = 0 on ∂B(0, R0) and that if initially
∫
ψ(t = 0, x,R)dR = 1,

then for all t and x, we have
∫
ψ(t, x,R)dR = 1. In the sequel, we only deal with the FENE model and

we will take R0 = 1. For simplicity, we assume that x lies in the torus TN where N = 2 or N = 3.
Notice that, the Fokker-Planck equation in (1) can be written as a Stochastic differential equation (see

Ottinger [12]). There are many existence results for (1). We can mention Jourdain, Lelievre and Le Bris
[8], Weinan E, Li and Zhang [7] and Zhang and Zhang [14], Lin, Liu and Zhang [9] and Barrett, Schwab
and Suli [1].

2.1. A priori estimates and main theorem

we denote ψ∞ = e
−2φ

β /
∫
B
e
−2φ

β = (1 − |R|2)−k/β/
∫
B

(1− |R|2)−k/β . For (1), we have the following a
priori estimate

∂

∂t

∫
TN

|u|2

2

 = −ν
∫

TN

|∇u|2 −
∫

TN

τ : ∇u. (4)

The second equation of (1) can also be written as

∂tψ + u.∇ψ = divR
[
−W (u) ·Rψ

]
+ divR

[
ψ∞∇

ψ

ψ∞

]
. (5)

Hence, for p > 0, we have

∂t

∫
B

ψ∞

(
ψ

ψ∞

)p
dR+ u.∇

∫
B

ψ∞

(
ψ

ψ∞

)p
dR = −4(p− 1)

p

∫
B

ψ∞

∣∣∣∣∣∇
(
ψ

ψ∞

)p/2∣∣∣∣∣
2

dR. (6)

Notice here, that due to the co-rotational simplification, the term divR(−W (u)Rψ) has no contribution.
Theorem 2.1 Take u0 ∈ L2(TN ) and ψ0 such that

∫
ψ0dR = 1 a.e in x and

∫
B

ψ2

ψ∞
dR ∈ L∞x .

Then, there exists a global weak solution (u, ψ) of (1) with u ∈ L∞(0, T ;L2) ∩ L2
loc(0, T ;H1) and ψ ∈

L∞(0, T ;L∞(L2( dRψ∞ ))).
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3. The Doi model

Polymers are idealized as rods of fixed length. The configuration space is R ∈ SN−1. The micro-macro
equation is the so-called Doi model (see (2)). In (2), ∆R is the Laplacian on the sphere and PR| is the
orthogonal projection on the tangent space to the sphere at R, namely PR|∇uR = ∇uR − (R.∇u.R)R
and b is parameter. For the Doi model, we do not need to make the co-rotational simplification since we
do not have the potential singularity as in the FENE model. We refer to [13], [4] and [5] for previous
results.

3.1. A priori estimates and main theorem

The free energy satisfies

∂t

∫
TN

|u|2

2
+
∫

TN

∫
SN−1

ψ logψ − ψ + 1

 = −ν
∫
|∇u|2 + 4

∫
TN

∫
SN−1

|∇
√
ψ|2 (7)

+b
∫

TN

∇kul :
∫

SN−1

RkRlRiRjψdR : ∇iuj (8)

To make sure that the free energy is dissipated, we have to assume that b > − N
N−1ν.

Theorem 3.1 Let u0 ∈ L2(TN ) and ψ0 such that
∫

SN−1 φ0dR = 1 a.e in x and
∫

TN

∫
B
ψ log ψ

ψ∞
dRdx <

∞. Assume that b > − N
N−1ν. Then, there exists a global weak solution (u, ψ) to (2).

We point out that this theorem also applies to the more general Smoluchowski-Navier-Stokes system
studied in [4] and [5].

4. Idea of the proof of theorem 2.1

We will only prove the propagation of the compactness of weak solutions to (1). Details of the proofs
will be given elsewhere. More precisely take (un, ψn) a sequence of weak solutions to (1) with the ini-
tial data (un0 , ψ

n
0 ) which satisfy (4) and (6) and such that (un0 , ψ

n
0 ) converges strongly to (u0, ψ0) in

L2(dx)×L2( dRψ∞ dx). We extract a subsequence such that un converges weakly to u in Lp((0, T );L2(TN ))∩
L2((0, T );H1(TN )) and ψn converges weakly to ψ in Lp((0, T )×TN ;L2( dRψ∞ )) for each p <∞. We would
like to prove that (u, ψ) is still a solution to (1). We present the proof for N = 2. The case N = 3 can be
handled using the same modification as in [10]. We also introduce the following defect measures

(ψn − ψ)2 → η, |∇(un − u)|2 → µ, ψn∇un → ψ∇u+ β (9)

|∇R
ψn − ψ

ψ∞
|2 → κ, |τn − τ |2 → α (10)

where the convergences are in the sense of distributions. We claim that

νµ=
∫
βijRi∇jφdR ≤ C

√
µ
√
α, |βij | ≤

√
µ
√
η (11)

µ≤Cα ≤ C

∫ (
ψ∞κ+

η

ψ∞

)
dR. (12)
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The proof of the first assertion is the same as in [10]. The second one is based on Cauchy-Schwarz
inequality. The last assertion uses Cauchy-Schwarz inequality and the following Hardy type inequality

|τn − τ |2 = |
∫

(ψn − ψ)Ri∇φ|2 ≤ C

∫
ψ∞

∣∣∣∣∇ (ψn − ψ)
ψ∞

∣∣∣∣2 +
(ψn − ψ)2

ψ∞
dR (13)

To prove this inequality, we have to distinguish between the cases k
β = 1, < 1 or > 1. We do not detail

the proof here (see [11]). On one hand, passing to the limit in the equation for ψ, multiplying by ψ
ψ∞

and
integrating in R, we get

∂t

∫
ψ2

ψ∞
+ u.∇

∫
ψ2

ψ∞
=
∫
divR(−Rj

βij − βji
2

)
ψ

ψ∞
−
∫
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 (14)

On the other hand, multiplying (5) by ψn

ψ∞
and passing to the limit, we get

∂t

∫
ψ2 + η

ψ∞
+ u.∇

∫
ψ2 + η

ψ∞
= −

∫
ψ∞

(∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 + κ

)
. (15)

Hence, taking the difference between the two previous equations and using (11), we get

∂t

∫
B

η

ψ∞
+ u.∇

∫
B

η

ψ∞
≤C√µ

∫
B

√
η

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣− ∫
B

ψ∞κ (16)

≤C√µ

∫
B

η

ψ∞

1/2∫
B

ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2
1/2

−
∫
B

ψ∞κ (17)

≤C

1 +
∫
B

ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2
∫
B

η

ψ∞
(18)

where we have used Cauchy-Schwarz inequality and (12) to control µ by η and κ. Hence, using that∫
B

η
ψ∞

= 0 at time 0, we deduce that η = 0 for all t (see [6] and [10]) and hence ψn converges strongly to
ψ and we can pass to the limit in (5). This proves that the weak limit (u, ψ) is a weak solution of (1).

5. Idea of the proof of theorem 3.1

We only prove the propagation of the compactness for a sequence (un, ψn) of weak solutions. For sim-
plicity, we take b = 0. We assume that un converges weakly to u in Lp((0, T );L2(TN ))∩L2((0, T );H1(TN ))
and ψn converges weakly to ψ in Lp((0, T )×TN ;L1(dR) for each p <∞. Let H = (−∆R+ I)−s for some
s > N/2+1. Hence, H : L1(SN−1) → L∞(SN−1) and Hψn is bounded in all variables. We also introduce
the following defect measures

|H(ψn − ψ)|2 → η, |∇(un − u)|2 → µ, ψn∇un → ψ∇u+ β (19)

|∇RH(ψn − ψ)|2 → κ, |τn − τ |2 → α (20)

Using that

|τn − τ | = |
∫
N(R×R)(ψn − ψ)| ≤ C

∫
H−1(R×R)H(ψn − ψ) (21)

5



we deduce that α ≤ C
∫
ηdR is in L∞(dtdx). Moreover, we have as above νµ = N

∫
βijRiRj and µ ≤

Cα ≤ C
∫
ηdR. Arguing as above, after applying the operator H to the equation of ψ, we get

∂t

∫
S

η + u.∇
∫
S

η = −
∫
S

H∇R
[
− PR| [(ψn∇un − ψ∇u) ·R]

]
(H(ψn − ψ))−

∫
S

κ (22)

where gn denotes the weak limit of gn. Using Cauchy-Schwarz, the first term on the right hand side can
be estimated by

≤C
(∫
S

η
)1/2[

µ+ |∇u|
(∫
S

κ
)1/2]

≤ C(1 + |∇u|2)
(∫
S

η
)

+
1
4

∫
S

κ. (23)

Hence, we deduce that ∂t
∫
S
η + u.∇

∫
S
η ≤ C(1 + |∇u|2)

∫
S
η and since,

∫
S
η = 0 at time 0, we deduce

that η = 0 for all t and hence (u, ψ) is a weak solution of (2).
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[12] H. C. Öttinger. Stochastic processes in polymeric fluids. Springer-Verlag, Berlin, 1996. Tools and examples for
developing simulation algorithms.

[13] F. Otto and A. Tzavaras. Continuity of velocity gradients in suspensions of rod-like molecules. Preprint, 2005.

[14] H. Zhang and P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal.,
181(2):373–400, 2006.

6


