
Examples of singular limits in hydrodynamics.

Nader MASMOUDI ∗

Courant Institute of Mathematical Sciences
251 Mercer Street

New York, NY 10012-1185, USA
masmoudi@cims.nyu.edu

April 10, 2006

Abstract This chapter is devoted to the study of some asymptotic prob-
lems in hydrodynamics. In particular, we will review results about the invis-
cid limit, the compressible-incompressible limit, the study of rotating fluids
at high frequency, the hydrodynamic limit of the Boltzmann equation as well
as some homogenization problems in fluid mechanics.

1 Introduction

Any physical system can be described by a system of equations which governs
the evolution of the different physical quantities such as the density, the
velocity, the temperature... The unknowns usually involve several physical
units such as (m, kg, s ...). Introducing some length scale, time scale, velocity
scale..., the system of equations can always be written in a dimensionless
form. This dimensionless form contains some ratios between the different
scales such at the Reynolds number, the Mach number or the ratio between
two length scales. Indeed, the system may have different length scales. For
instance, it may have a vertical length scale and a horizontal one.
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1.1 Dimensionless parameters

Writing the system in its dimensionless form allows us to compare the relative
influence of the several terms appearing in the equations. Moreover, it allows
us to compare different systems. For instance two incompressible flows which
have the same Reynolds number have very similar properties, even if the
length scales, the velocity scales and viscosities are very different. The only
important factor of comparison is the ratio Re = U L

ν0
where U is the velocity

scale, L is the length scale, and ν0 is the kinematic viscosity.
In hydrodynamics, asymptotic problems arise when a dimensionless pa-

rameter ε goes to zero in a dimensionless system of equations describing the
motion of some fluid. Physically, this allows a better knowledge of the system
in this limit regime by describing (usually by a simpler system) the prevail-
ing phenomenon when this parameter is small. Indeed, this small parameter,
usually describes a physical reality. For instance, a slightly compressible
flow is characterized by a low Mach number, whereas a slightly viscous flow
is characterized by a high Reynolds number. Notice, here, that we used the
terminology slightly compressible flow or slightly viscous flow instead of fluid.
Indeed, this is a property of the flow rather than the fluid itself. However, we
will often use the terminology slightly compressible fluid or slightly viscous
fluid to mean the properties of the flow.

Let us notice that if the viscosity goes to zero, then the Reynolds number
goes to infinity. But this is not the only way of getting a big Reynolds
number. For instance if L or U increase then the Reynolds number also
increases and we get the same properties as when the viscosity goes to zero.
This is of course very important from a physical point of view since it is
much easier to change L or U in a physical experiment than to change the
viscosity. This shows the importance of the dimensionless parameters. So,
when we speak about the inviscid limit, this should be understood as the
limit when the Reynolds number goes to infinity.

Moreover, in many cases, we have different small parameters (we can be
in presence of a slightly compressible and slightly viscous fluid in the same
time). Depending on the way these small parameters go to zero, we can
recover different systems at the limit. For instance, if ε, δ, ν, η << 1, the
limit system can depend on the magnitude of the ratio of ε/δ or ε/ν... This
again shows the importance of having dimensionless quantities which can be
compared.

The study of these asymptotic problems allows us to get simpler models
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at the limit, due to the fact that we usually have fewer variables or (and)
fewer unknowns. This simplifies the numerical simulations. In fact, instead
of solving the initial system, we can solve the limit system and then add a
corrector.

1.2 Mathematical problems

Many mathematical problems are encountered when we try to justify the
passage to the limit, which are mainly due to the change of the type of the
equations the presence of many spatial and temporal scales, the presence of
boundary layers (we can no longer impose the same boundary conditions for
the initial system and the limit one), the presence of oscillations in time at
high frequency ....

Usually, we say that we have a singular limit if there is a change of the
type of the equation. For instance in the inviscid limit (Reynolds number
going to infinity), we go from a parabolic equation to a hyperbolic equation.
However, this terminology seems a little bit restrictive since, we can see from
the examples that it is not usually easy to give a type to each system of
equations. Moreover, we can say that we have a singular limit if we have a
reduction of the number of variables or unknowns due to a more restrained
dynamics. Different type of questions can be asked :

1) What do the solutions of the initial system (Sε) converge to ? Is the
convergence strong or weak ?

2) In the case of weak convergence, can we give a more detailed description
of the sequences of solutions ? Can we describe the time oscillations for
instance ?

3) Can we use some properties of the limit system to deduce properties
for the initial system when the parameter in small.

In this chapter, we will try to answer some of these questions by studying
some examples of singular limits in hydrodynamics. In the next subsection,
we recall the physical equation of fluid dynamics and introduce the several
dimensionless parameters.

1.3 The compressible Navier Stokes system

In this subsection, we recall the compressible Navier Stokes system for a
Newtonian fluid and introduce the several dimensionless parameters used in
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the next sections. The CNS reads

∂ρ

∂t
+ div(ρu) = 0 , ρ ≥ 0,

∂ρu

∂t
+ div(ρu⊗ u)− div(2µD(u))−∇(λdivu) +∇p = f ,

∂ρe

∂t
+ div(ρue) + pdivu− div(k∇T ) = 2µ|D(u)|2 + λ(divu)2

(1)

In the above system, t is time, div and ∇ only act in the x variable
and x ∈ RN . Moreover ρ, u, p, e and T are respectively the density, the
velocity, the pressure, the internal energy by unit mass and the temperature
of the fluid. Besides, µ and λ are the so-called Lamé viscosity coefficients
and satisfy the relation µ ≥ 0, Nλ+2µ ≥ 0. The coefficient k is the thermal
conduction coefficient and satisfies k ≥ 0. In general µ, λ and k can depend
on the the thermodynamical functions and their gradients. Finally, f is the
force term. For geophysical flows we will consider a force which is the sum
of the gravitational force and the Coriolis force, namely f = ρg + ρΩe × u
where Ω is the rotation frequency and e is the direction of rotation. We also
denote g = |g|.

The system (1) can be closed by the thermodynamic state equations,
namely p = P (ρ, T ) and e = e(ρ, T ). For an ideal gas, these functions are
given by {

e = CvT
p = ρRT

(2)

where R > 0 is the ideal gas constant and Cv > 0 is a constant. We also
define Cp = R + Cv. The constant Cv and Cp are respectively the specific
heats at constant volume and constant pressure. We also define the adiabatic
constant γ = Cp/Cv.

The system formed by (1) and (2) is closed. There is an other important
thermodynamical function, namely the entropy. It is defined by the following
thermodynamic relation

T dS =
∂e

∂T
dT + (

∂e

∂ρ
− p

ρ2
)dρ. (3)

For an ideal gas, (3) yields ∂S
∂T

= Cv

T
and ∂S

∂ρ
= −R

ρ
. Hence S is given by

S = Cvlog T
ργ−1 . In particular we can replace the third equation of (1) by an
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equation for the entropy, namely

∂ρS

∂t
+ div(ρuS) =

1

T
div(k∇T ) +

2µ|D(u)|2 + λ(divu)2

T
. (4)

Let us notice that if we take µ = λ = 0 and k = 0 then (4) reduces to a
transport equation and that if the entropy is constant initially S = S0 then it

remains constant at later times. In this case, T = e
S
cv ργ−1 and p = Re

S0
cv ργ.

This yields the compressible isentropic Euler system. An other model we
will deal with is the isentropic compressible Navier-Stokes system (69). It
corresponds to the case k = 0, S is constant and we neglect the variation
of S due to the viscous effects. However, (69) can not be rigorously derived
from (1) in any asymptotic regime.

1.4 Dimensionless parameters

Let us now define the different dimensionless parameters. We take t, L, U ,
ρ and P to be respectively the characteristic time scale, the characteristic
length scale, the characteristic velocity scale, the characteristic density scale
and the characteristic pressure scale. This means that each time or length
is made dimensionless by dividing it by t or L. Hence, we can define a
dimensionless time and dimensionless length by t̃ = t

t
and x̃ = x

L
. We can

do the same for all the other quantities. We also take characteristic values
of µ and k which we denote µ and k. These are equal to µ and k if they are
constant.

The Strouhal number and Reynolds number are defined by

St =
L

tU
(5)

Re =
LU

µ/ρ
. (6)

A small Strouhal number St corresponds to the longtime behavior of a sys-
tem. A large Reynolds number Re corresponds to small viscous effects.

The acoustic waves propagates at the sound speed which is given in the
isentropic case by c2 = ∂p

∂ρ
= γRT . Hence we can define the Mach number as

the ratio between U and c, namely

Ma =
U

c
=

U√
γRt

. (7)
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When Ma < 1, we have a subsonic flow and when Ma > 1, we have a
supersonic flow.

The velocity and the temperature satisfy both a diffusion equation with
a diffusivity given respectively by

µ

ρ
and k

Cvρ
. The ratio between this two

numbers is the Prandtl number

Pr = γ
Cvµ

k
=
Cpµ

k
. (8)

Now, we will introduce some other dimensionless parameters related to
the gravity force and the Coriolis force. First, let us introduce a vertical
length scale H. Hence the gravity wave speed is given by

√
gH and we

can define the Froude number which measures the importance of the gravity
force. It is the ratio between U and

√
gH, namely

Fr =
U√
gH

. (9)

The Rossby number measures the importance of the earth’s rotation. It is
the ratio between the rotation time scale tΩ = 1/Ω and the fluid time scale
tU = L/U . It is given by

Ro =
U

ΩL
. (10)

Since, we have two length scale, we can define the ratio between H and L,
δ = H

L
. It measures how shallow the fluid is.

In section 2, we study the inviscid limit, namely the limit when the
Reynolds number goes to infinity. We will mostly emphasis the problem
of boundary layers. In section 3, we study the compressible-incompressible
limit, namely the limit when the Mach number goes to infinity and the den-
sity becomes almost constant. We also study the limit when γ (the adiabatic
constant) goes to ∞. We will emphasis the problem of oscillations in time.
In section 4, we study rotating fluid at high frequency. In section 5, we will
study the hydrodynamic limit of the Boltzmann equation and derive several
compressible and incompressible fluid systems. In section 6, we will recall few
results about the homogenization of the Stokes, the Euler and the compress-
ible Navier-Stokes system. In section 7.1, we will give some other examples
of singular limits which were not studied in the previous sections. Finally, in
section 7.2, we will give some concluding remarks.
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Let us end this introduction by giving some general references about fluid
mechanics. We refer to [33, 119, 122] for mathematical results about the
incompressible Euler equation. We refer to [108, 163, 39] for mathematical
results about the incompressible Navier-Stokes system. We refer to [109,
117, 66, 139] for results about the compressible Navier-Stokes system. We
also refer to [176, 177] for many formal asymptotic developments and to
[80, 144, 118] for physical and mathematical results about the geophysical
equations.

2 The inviscid limit

The Navier-Stokes system is the basic mathematical model for viscous in-
compressible flows. It reads

∂tu
ν + uν .∇uν − ν∆uν +∇p = 0,

div(uν) = 0,
uν = 0 on ∂Ω,

(11)

where uν is the velocity, p is the pressure and ν is the kinematic viscosity. We
can define a typical length scale L and a typical velocity U . The dimensionless
parameter Re = UL

ν
is very important to compare the properties of different

flows. When Re is very large (ν very small), we can expect that the Navier-
Stokes system (NSν) behaves like the Euler system

∂tu + u.∇u +∇p = 0,
div(u) = 0,

u.n = 0 on ∂Ω.
(12)

The zero-viscosity limit for the incompressible Navier-Stokes equation in
a bounded domain, with Dirichlet boundary conditions, is one of the most
challenging open problems in Fluid Mechanics. This is due to the formation
of a boundary layer which appears because we can not impose a Dirichlet
boundary condition for the Euler equation. This boundary layer satisfies
formally the Prandtl equations, which seem to be ill-posed in general. Let us
first state some results in the whole space where the boundary layer problem
does not occur.
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2.1 The whole space case

The inviscid limit in the whole space case was performed by several authors,
we can refer for instance to Swann [159] and Kato [95]. They basically prove
the following result. Take the Navier-Stokes system in the whole space Rd

∂tu
n + div(un ⊗ un)− νn∆un = −∇p in Rd (13)

div(un) = 0 in Rd (14)

un(t = 0) = u0 with div(u0) = 0 (15)

where νn goes to 0 when n goes to infinity.

Theorem 2.1 Let s > d/2 + 1, and u0 ∈ Hs(Rd). If T ∗ is the time of
existence and u ∈ Cloc([0, T

∗);Hs) is the solution of the Euler system

∂tu+ div(u⊗ u) = −∇p in Rd (16)

div(u) = 0 in Rd (17)

u(t = 0) = u0 with div(u0) = 0, (18)

then for all 0 < T < T ∗, there exists ν0 such that for all νn ≤ ν0, the Navier-
Stokes system (13 - 15) has a unique solution un ∈ C([0, T ];Hs(Rd)) and for
each t ∈ [0, T ], u(t) = limn→∞u

n(t) exists strongly in Hs(Rd) uniformly in
t ∈ [0, T ]. Moreover,

‖un − u‖L∞(0,T ;Hs−2) ≤ Cνn (19)

where C depends only on u.

We point out that this result can be easily extended to the periodic case and
more generally to domains without boundaries.

Idea of the proof: The proof of this theorem is based on a standard
Grönwall inequality (see [159, 95, 38]). Let us start by proving (19). First,
we see that we can solve the Navier-Stokes system and Euler system in
C([0, T ];Hs(Rd)) on some time interval independent of νn with bounds which
are independent of n. This is because there is no boundary. Then, we can
write an energy estimate in Hs−2 for wn = un − u,

∂t‖wn‖2
Hs−2 + νn‖∇wn‖2

Hs−2

≤
(
C(‖u‖Hs + ‖wn‖Hs)‖wn‖Hs−2 + νn‖∆u‖Hs−2

)
‖wn‖Hs−2 (20)
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and by Grönwall lemma, we can deduce that (19) holds. It is easy to see
that the above argument holds as long as we can solve the Euler system and
that we can take any T such that T < T ∗ (see [38]). Notice that in [38], the
regularity required is s − 2 > d/2 + 1. However, it seems that this is not
necessary modulo the regularization argument given below.

Interpolating between (19) and the uniform bound for wn in C([0, T ];Hs(Rd)),
we deduce that un converges to u in Hs′ for any s′ < s and for s−2 < s′ < s,
we have

‖un − u‖L∞(0,T ;Hs′ ) ≤ Cν
s−s′

2
n . (21)

To get the convergence in Hs requires a regularization of the initial data. For
all δ > 0, we take uδ

0 such that ‖uδ
0‖Hs ≤ C‖u0‖Hs , ‖uδ

0‖Hs+1 ≤ C
δ
, ‖uδ

0‖Hs+2 ≤
C
δ2 and for some s′ such that d/2 < s′ < s−1, we have ‖uδ

0−u0‖Hs′ ≤ Cδs−s′ .
Such a uδ

0 can be easily constructed by taking uδ
0 = F−1(1{|ξ|≤1/δ}Fu0). Let

vδ be the solution of the Euler system (16,17,18) with the initial data vδ(t =
0) = uδ

0. Then, setting wδ = vδ − u, we have

∂t‖wδ‖2
Hs ≤ C(‖u‖Hs + ‖vδ‖Hs)‖wδ‖2

Hs + C‖vδ‖Hs+1‖wδ‖Hs‖wδ‖L∞ . (22)

Then, we notice that on some time interval [0, T ], T < T ∗ (T depends only
on ‖u0‖Hs), we have ‖vδ‖Hs+1 ≤ C

δ
and ‖vδ‖Hs+2 ≤ C

δ2 . Moreover, writing

(22) at the regularity s′, we can prove easily that ‖wδ‖L∞(0,T ;Hs′ ) ≤ Cδs−s′ .
Hence, (22) gives

∂t‖wδ‖Hs ≤ C(‖u‖Hs + ‖vδ‖Hs))‖wδ‖Hs + Cδs−s′−1. (23)

Hence wδ goes to zero in L∞(0, T ;Hs), namely vδ goes to v in L∞(0, T ;Hs).
Writing an energy estimate for wn,δ = un − vδ, we get (here we drop the n
and δ)

∂t‖w‖2
Hs + νn‖∇w‖2

Hs

≤ C(‖w‖L∞‖vδ‖Hs+1‖w‖Hs + (‖vδ‖Hs + ‖un‖Hs)‖w‖2
Hs)+

νn‖vδ‖Hs+2‖w‖Hs . (24)

Hence, we get

∂t‖w‖Hs ≤ C‖un − u‖L∞‖vδ‖Hs+1 + C‖vδ − u‖L∞‖vδ‖Hs+1+

νn‖vδ‖Hs+2 + C(‖vδ‖Hs + ‖un‖Hs)‖w‖Hs . (25)
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Since un converges to u is Hs−1, we deduce that

‖un − u‖L∞ ≤ ‖un − u‖Hs−1 ≤ C(νn)1/2. (26)

Taking δ = δn such that δ = δn and νn

δ2
n

go to zero when n goes to infinity, we
deduce that

∂t‖wn,δ‖Hs ≤ C(
ν1/2

δ
+ δs−s′−1 +

ν

δ2
+ ‖wn,δ‖Hs) (27)

Hence, by Grönwall lemma, we deduce that wn,δ goes to zero in L∞(0, T ;Hs)
and that un goes to u in L∞(0, T ;Hs).

2.1.1 The 2D case

We notice that the time T ∗ is related to the existence time for the Euler
system (16). If d = 2 it is known [175, 171] that the Euler system (16)
has a global solution and hence one can take any time T < ∞ in the above
theorem.

Also in the 2D case, one can lower the regularity assumption. Indeed
Yudovich [175] proved that if ω0 = curl(u0) ∈ L∞ ∩ Lp for some 1 < p < ∞
then the Euler system (16) has a unique global solution. It was proved in
[34] that the solution to the Navier-Stokes system converges in L∞((0, T );L2)
to the solution of the Euler system if we only assume that ω0 = curl(u0) ∈
L∞ ∩ Lp. More precisely, Chemin [34] proves that

‖un − u‖L∞(0,T ;L2) ≤ C‖curl(u0)‖L∞∩L2(νnT )
1
2
exp(−C‖curl(u0)‖L∞∩L2T ). (28)

Notice that here, the rate of convergence deteriorates with time. This does
not happen if we also know that u is in L∞(0, T ;Lip) as was proved by
Constantin and Wu [40].

For vortex patches, namely the case where curl(u0) is the characteristic
function of a C1+α domain α > 0, it was proved in [32] (see also [22]) that
the characteristic function of curl(u) remains a C1+α domain and that the
velocity u is in L∞loc(R;Lip). It was proved in [40, 41] that under the condition,
u ∈ L∞loc(R;Lip), the estimate (28) is actually better since there is no loss for
the rate of convergence, namely

‖un − u‖L∞(0,T ;L2) ≤ C(νnT )
1
2 . (29)
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In [41], the authors also prove some estimate in Lp spaces for the difference
between the vorticities, in particular they prove for p ≥ 2 that ‖curl(un −
u)‖L∞(0,T ;Lp) ≤ Cν

1/4p−ε
n for some short time T and ε > 0.

Concerning vortex patches one can give more precise results about the
convergence. It was proved by Danchin [42] that the boundary of the patch
under the Navier-Stokes flow converges to the boundary of the patch under
the Euler flow. A similar result is also proved in higher dimension locally
in time [43]. Also, in [1], a better rate of convergence is given for vortex
patches, namely

‖un − v‖L∞(0,T ;L2) ≤ C(νnT )
3
4 (30)

which is optimal (see also [129] for a similar result in 3D).
Let us end this subsection by the vortex sheet case, namely the case

where the vorticity is a measure. For the 2D case, it is known that we
have existence of weak solutions for the Euler system if we only assume that
u0 ∈ L2 and ω0 ∈ L1 ∩ Lp, 1 < p. In this case, extracting a subsequence, we
can prove the weak convergence of the solutions to the Navier-Stokes system
towards a weak solution to the Euler system. Indeed, from the bound we
have on the vorticity curl(un) ∈ L∞(0, T ;Lp), we deduce that un is bounded
in L∞(0, T ;W 1,p) and since ∂tu

n is bounded in L∞(0, T ;H−1) we deduce
that un is precompact in L2L2

loc. Then extracting a subsequence, we deduce
that un converges to some u and u is a weak solution of the Euler system.
Here, the main point is that W 1,p(R2) is compactly injected in L2

loc(R2).
The above argument does not work if p = 1. However, the best result in this
direction is due to Delort [50] where he can prove the weak convergence under
the assumption that the initial vorticity is compactly supported, belongs to
H−1(R2) and can be decomposed into two parts: one being a nonnegative
measure, the other belonging to some Lq(R2), q > 1. The proof requires a
precise analysis to rule out concentrations at the limit.

2.2 The case of the Dirichlet boundary condition

Let us consider the limit from (11) towards (12). In the region close to the
boundary the length scale becomes very small and we can not neglect the
viscous effect. In 1904, Prandtl [145] suggested that there exists a thin layer
called boundary layer, where the solution uν undergoes a sharp transition
from a solution to the Euler system to the no-slip boundary condition uν = 0
on ∂Ω of the Navier-Stokes system. In other words, Prandtl proves formally
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that uν = u + uν
BL where uν

BL is small except near the boundary. Giving a
rigorous justification of this formal expansion is still an open problem. We
refer to [151, 150] for a justification in the analytic case.

There are many review papers about the inviscid limit of the Navier-
Stokes in a bounded domain and the Prandtl system (see [60, 29]). We also
refer to [83] for a review about boundary layers.

2.2.1 Formal derivation of Prandtl system

To illustrate this, we consider a two-dimensional (planar) flow uν = (u, v)
in the half-space {(x, y) | y > 0} subject to the following initial condition
uν(t = 0, x, y) = uν

0(x, y), boundary condition uν(t, x, y = 0) = 0 and uν →
(U0, 0) when y → ∞. Taking the typical length and velocity of order one,
the Reynolds number reduces to Re = ν−1. Let ε = Re−1/2 =

√
ν. Near the

boundary, the Euler system is not a good approximation. We introduce new
independent variables and new unknowns

t̃ = t x̃ = x ỹ =
y

ε

(ũ, ṽ)(t̃, x̃, ỹ) = (u,
v

ε
)(t̃, x̃, εỹ)

Notice that when ỹ is of order one, y = εỹ is of order ε. Rewriting the
Navier-Stokes system in terms of the new variables and unknowns yields

ũt̃ + ũũx̃ + ṽũỹ − ũỹỹ − ε2ũx̃x̃ + px̃ = 0
ε2(ṽt̃ + ũṽx̃ + ṽṽỹ − ṽỹỹ)− ε4ṽx̃x̃ + pỹ = 0

ũx̃ + ṽỹ = 0

Neglecting the terms of order ε2 and ε4 yields{
ũt̃ + ũũx̃ + ṽũỹ − ũỹỹ + px̃ = 0

pỹ = 0, ũx̃ + ṽỹ = 0

Since p does not depend on ỹ, we deduce that the pressure does not vary
within the boundary layer and can be recovered from the Euler system (12)
when y = 0, namely px(t, x) = −(Ut + UUx)(t, x, y = 0), since V (t, x, y =
0) = 0. Going back to the old variables, we obtain{

ut + uux + vuy − νuyy + px = 0
ux + vy = 0

(31)
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which is the so-called Prandtl system. It should be supplemented with the
following boundary conditions{

u(t, x, y = 0) = v(t, x, y = 0) = 0
u(t, x, y) → U(t, x, 0) as y →∞.

(32)

Formally, a good approximation of uν should be u + uν
BL where u is the

solution of the Euler system (12) and u(t, x, 0) + uν
BL is the solution of the

Prandtl system (31), (32).
Replacing the Navier-Stokes system by the Euler system in the interior

and the Prandtl system near the boundary requires a justification. Mathe-
matically this can be formulated as a convergence theorem when ν goes to
0, namely uν − (u + uν

BL) goes to 0 when ν goes to 0 in L∞ or in some
energy space. In its whole generality this is still a major open problem in
fluid mechanics. This is due to problems related to the well-posedness of the
Prandtl system. Indeed, under some monotonicity condition on the initial
data, Oleinik proved the local existence for the Prandtl system [140, 141] (see
also [142]). These solutions can be extended as global weak solutions [173].
However, Weinan E and Enguist [61] proved a blow up result for the Prandtl
system for some special type of initial data. For general initial data, it is
not known whether we have local well-posedness or not. Moreover, even if
we have existence for Prandtl system there are other problems related to the
instability of some solutions to the Prandtl system [82] which may prevent
the convergence.

2.2.2 The analytic case

In this subsection, we will present the result of [151, 150]. We will just give
an informal statement since the result requires the definition of several spaces
to keep track of the analyticity of the solution.

Theorem 2.2 Suppose that u(t, x, y) and u(t, x, 0)+uν
BL are respectively the

solutions of the Euler system (12) and the Prandtl system (31), (32) which
are analytic in the space variables. Then for a short time independent of

√
ν,

there is an analytic solution u of the Navier-Stokes equations such that it is
given by u = u + O(

√
ν) in the interior and u = u(t, x, 0) + uν

BL + O(
√
ν)

inside the boundary layer.

We refer to [29] for a sketch of the proof and to [151, 150] for the complete
proof.
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2.2.3 Kato’s criterion of convergence

The convergence of uν − (u + uν
BL) to 0 when ν goes to 0 in L2 is still an

open problem. Kato [96] gave a very simple criterion which is equivalent to
the convergence of uν to u in L2.

First let us notice that working with strong solutions to the Navier-Stokes
system does not really help. Indeed, the existence of strong solution for d ≥ 3
only holds on a time interval [0, Tν ] where Tν may go to zero when ν goes
to 0. Also, for d = 2, working with strong solutions does not help since the
higher Sobolev norms blow up when ν goes to zero. This is why we consider
a family of weak solutions uν to the Navier-Stokes system (11) with an initial
data uν

0. We assume that uν ∈ Cw([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) for all
T > 0, divuν=0 and (11) holds in the sense of distributions, namely

−
∫

Ω

uν
0φ(t = 0)+

∫ T

0

∫
Ω

−uν ⊗uν : ∇φ+ ν∇uν ·∇φ−uν∂tφ dxdt = 0 (33)

for all φ ∈ C∞
0 ([0, T )×Ω), divφ =0 and the following energy inequality holds∫

Ω

|uν(t, x)|2dx+ 2ν

∫ T

0

∫
Ω

|∇uν(s, x)|2dxds ≤
∫

Ω

|uν
0(x)|2dx (34)

Assume that uν
0 is divergence-free and converges in L2 to some u0 and

u0 ∈ Hs, s > d/2 + 1. Let u be the unique strong solution of the Euler
system (12) with the initial data u0 in the space C([0, T ∗);Hs) for some
T ∗ ≤ ∞ and T ∗ = ∞ if d = 2. We refer to [162] and [33] for this existence
result. Kato proves the following convergence criterion

Theorem 2.3 For 0 < T < T ∗, the following conditions are equivalent

• i) uν(t, .) converges to u(t, .) in L2(Ω) uniformly for t ∈ [0, T ]

• ii)

ν

∫ T

0

∫
Γν

|∇uν |2dxdt → 0 (35)

when ν goes to 0. Here Γν is a strip of width O(ν) around the boundary
∂Ω.

• iii)

ν

∫ T

0

∫
Ω

|∇uν |2dxdt → 0 (36)
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Idea of the proof:
We will just give a sketch of the proof of ii) implies i). The idea is to

construct a corrector or boundary layer which allows to recover the Dirichlet
boundary condition for the difference uν−u and which satisfies some natural
bounds. Kato constructs such a corrector Bν which is divergence free and
with a support contained in a strip of size O(ν) around ∂Ω. Then, considering
uν − u− B, he can write the following energy estimate where uB = u + Bν

1

2
‖uν − u‖2

L2(t) + ν

∫ t

0

‖∇uν‖2
L2ds

≤
∫ t

0

∫
Ω

−(uν × uν) : ∇uB + u · ∇u.uν + ν∇uν .∇uB dxds+ o(1) (37)

for 0 < t ≤ T , where o(1) goes to zero when ν goes to 0. This yields

1

2
‖uν − u‖2

L2(t) + ν

∫ t

0

‖∇uν‖2
L2 ≤∫ t

0

∫
Ω

−(uν − u)× (uν − u) : ∇u− uν × uν : ∇Bν+∫ t

0

∫
Ω

ν∇uν .∇uB dxdt+ o(1). (38)

Then, using some natural L2 and L∞ bounds satisfied by Bν , the Hardy-
Littlewood inequality for the second term on the right hand side of (38) and
applying a Gronwall lemma, Kato gets

‖uν − u‖2
L2(t) ≤

∫ t

0

K‖uν − u‖2
L2 +R(s) ds+ o(1) (39)

for some constant K related to the L∞ norm of ∇u and

R(t) ≤ K

∫ t

0

ν‖∇uν‖2
L2(Γν) +Kν‖∇uν‖L2 +Kν1/2‖∇uν‖L2(Γν).

This ends the proof of the uniform convergence in L2. Notice that it also
proves iii) since the total dissipation appears on the left hand side of (38).

In the same spirit as the Kato criterion, Temam and Wang [164] give a
different criterion based on the magnitude of the pressure at the boundary.
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They prove that if there exists some 0 ≤ δ < 1/2 such that

either νδ

∫ T

0

‖pν‖H1/2(∂Ω) ≤ C or νδ+1/4

∫ T

0

‖∇pν‖L2(∂Ω) ≤ C (40)

then the convergence of uν towards u holds and

‖uν − u‖L2 ≤ Cν(1−2δ)/5. (41)

Also, in [169], Wang gives a criterion which only involves the tangential
derivative of the velocity, namely ∇τu

ν . However, he needs a control on a
strip of size bigger than ν.

Concerning bounded domain with boundary conditions other than the
Dirichlet boundary condition, let us mention that in [165], Temam and Wang
prove the convergence of the solutions to the Navier-Stokes system towards
a solution of the Euler system in the non-characteristic case, namely the
normal velocity is prescribed at the boundary. In this case a boundary layer
of size ν can be constructed.

Let us also mention that in [11], Bardos treats the case of a bounded
domain with a boundary condition on the vorticity, which does not engender
any boundary layer. He has a result similar to theorem 2.1.

Also, in [36], the vanishing viscosity limit is considered with the Navier
(friction) boundary condition.

2.2.4 Different vertical and horizontal viscosities.

One of the main ideas of Kato in the previous subsection is to take the
freedom of using a corrector which does not necessary satisfy the Prandtl
system. The same idea was used in [123] to get a complete convergence result
without any condition on the dissipation in the case we take different vertical
and horizontal viscosities. We consider the following system of equations
(NSν,η)

∂tu
n + div(un ⊗ un)− ν∂2

zu
n − η∆x,yu

n = −∇p in Ω (42)

div(un) = 0 in Ω (43)

un = 0, in ∂Ω (44)

un(0) = un
0 with ∇.un

0 = 0 (45)
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where Ω = ω× (0, h) , or Ω = ω× (0,∞), and ω = T2, or R2, ν = νn, η = ηn.
We want to point out here that this anisotropy is classical in geophysical
flows. In fact instead of putting the classical viscosity −ν̃∆ of the fluid
in the equation, meteorologists often model turbulent diffusion by putting
a viscosity of the form −AH∆x,y − AV ∂

2
zz, where AH and AV are empiric

constants, and where AV is usually much smaller that AH (for instance in
the ocean, AV ranges from 1 to 103cm2/s whereas AH ranges from 105 to
108 cm2/s. We recall that the viscosity of the water is of order 10−2 cm2/s.)
We refer to the book of J. Pedlovsky [144], Chapter 4 for a more complete
discussion. When η, ν go to 0, we expect that un converges to the solution
of the Euler system

∂tw + div(w ⊗ w) = −∇p in Ω,
div(w) = 0 in Ω,

w.n = ±w3 = 0 on ∂Ω,
w(t = 0) = w0.

(46)

It turns out that we are able to justify this formal derivation under an addi-
tional condition on the ratio of the vertical and horizontal viscosities.

Theorem 2.4 Let s > 5/2, and

w0 ∈ Hs(Ω)3, div(w0) = 0, w0.n = 0 on ∂Ω.

We assume that un(0) converges in L2(Ω), to w0 and ν, η, ν/η go to 0, then
any sequence of global weak solutions (à la Leray) un of (42- 45) satisfying
the energy inequality satisfies

un − w → 0 in L∞loc([0, T
∗);L2(Ω)),

√
η∇x,yu

n,
√
ν∂zu

n → 0 in L2
loc([0, T

∗);L2(Ω)),

where w is the unique solution of (46) in C([0, T ∗);Hs(Ω)3).

We give here a sketch of the proof and refer to [123] for a complete proof.
The existence of global weak solutions for (NSν,η), satisfying the energy
inequality is due to J. Leray [102, 104, 103] (see also [90] and [163, 39] for
some references about weak solutions of the Navier-Stokes)

1

2
‖un(t)‖2

L2 + ν

∫ t

0

‖∂zu
n‖2

L2ds+ η

∫ t

0

‖∂xu
n‖2

L2 + ‖∂yu
n‖2

L2 ≤
1

2
‖un

0‖2
L2 (47)
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This estimate does not show that un is bounded in L2(0, T ;H1) and hence
if we extract a subsequence still denoted by un converging weakly to u in
L∞(0, T ;L2), we cannot deduce that un ⊗ un converges weakly to w ⊗ w. If
we try to use energy estimates to show that un−w remains small we see that
the integrations by parts introduce terms that we cannot control, since un−w
does not vanish at the boundary. Hence, we must construct a boundary layer
which allows us to recover the Dirichlet boundary conditions. Hence, Bn will
be a corrector of small L2 norm, and localized near ∂Ω (we take here the case
where Ω = ω × (0,∞) not to deal with boundary conditions near z = h){

Bn(z = 0) + w(z = 0) = 0, Bn(z = ∞) = 0,
div(Bn) = 0, Bn → 0 in L∞loc([0, T

∗);L2)

a possible choice is to take Bn of the form

Bn = −w(z = 0)e
− z√

νζ + ...

where ζ is a free parameter to be chosen later. We want to explain now the
idea of the proof. Instead of using energy estimates on un −w, we will work
with vn = un − (w + Bn). Next we write the following equation satisfied by
wB = w + Bn (in what follows, we will write B instead of Bn)

∂tw
B + wB.∇wB − ν∂2

zw
B − η∆x,yw

B =

∂tB + B.∇wB + w.∇B − ν∂2
zw

B − η∆x,yw
B −∇p (48)

which yields the following energy equality

1

2
‖wB(t)‖2

L2 + ν

∫ t

0

‖∂zw
B(s)‖2

L2 ds+ η

∫ t

0

‖∂xw
B‖2

L2 + ‖∂yw
B‖2

L2 =

1

2
‖wB(0)‖2

L2 +

∫ t

0

wB.[∂tB + w.∇B − ν∂2
zw

B − η∆x,yw
B] (49)

Next, using the weak formulation of (42), we get for all t∫
Ω

un.wB(t) + ν

∫ t

0

∫
Ω

∂zw
B(s)un + η

∫ t

0

∫
Ω

∂xw
B∂xu

n + ∂yw
B∂yu

n =∫
Ω

un.wB(0) +

∫ t

0

∫
Ω

un.∇wBun + un.[∂tB − w.∇w − ν∂2
zw

B − η∆x,yw
B](50)
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Then adding up (47),(49) and subtracting (50), we get

1

2
‖v(t)‖2

L2 + ν

∫ t

0

‖∂zv‖2
L2ds+ η

∫ t

0

‖∂xv‖2
L2 + ‖∂yu

n‖2
L2 ≤

1

2
‖v0‖2

L2 +∫ t

0

∫
Ω

v.[∂tB − ν∂2
zw

B − η∆x,yw
B] + w.∇BwB − un.∇wBun + w.∇wun (51)

Finally, using that
∫

(u.∇q)q = 0, we get∫
Ω

w.∇BwB − un.∇wBun + w.∇wun =

∫
Ω

−wB.∇Bv − B.∇wv − v.∇wBv

Now, we want to use a Gronwall lemma to deduce that ‖v(t)‖2
L2 remains

small. By studying two terms among those occurring in the right hand side
of the energy estimate (51), we want to show why we need the condition
ν/η → 0. In fact∣∣∣∣∫

Ω

v3∂zBv
∣∣∣∣ ≤

∫
v3

z
z2∂zB

v

z

≤ C‖∂zv3‖L2

√
νζ‖w‖L∞ ‖∂zv‖L2

≤ Cζ‖∂zv3‖2
L2‖w‖2

L∞ +
ν

4
‖∂zv‖2

L2

where, we have used the divergence-free condition ∂zv3 = −∂xv1 − ∂yv2. We
see from this term that we need the following condition to absorb the first
term by the viscosity in (51) : Cζ‖w‖2

L∞ ≤ η. On the other hand, the second
term can be treated as follows∣∣∣∣ν ∫

Ω

∂2
zBv

∣∣∣∣ ≤ ν‖∂zv‖L2‖∂zB‖L2

≤ ν

4
‖∂zv‖2

L2 + ν‖∂zB‖2
L2

≤ ν

4
‖∂zv‖2

L2 + ν‖w‖2
L∞

1√
νζ

The second term on the right hand side must go to zero, this is the case if
we have ν/ζ → 0. Finally, we see that

If
ν

η
→ 0 then ζ =

η

C‖w‖2
L∞

is a possible choice.
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2.3 Weak limit.

We want to conclude this section by mentioning an other important question
in the inviscid limit of the Navier-Stokes even in the case without boundary.
Consider any sequence of weak solutions to the Navier-Stokes system with
viscosity ν. What can we say about this sequence when ν goes to 0. In
subsection 2.1, we saw that if the initial data is regular enough then the
sequence converges to the solution of the Euler system on some small time
interval. Moreover, in the 2D case, we can take initial data such that the
vorticity is a signed measure and still prove that the solutions of the Navier-
Stokes system weakly converge to a solution of the Euler system [50]. Can we
say more ? What can we say if we only assume that u0 ∈ L2 ? We mention
here two attempts to explain what happens based on two notions of “very
weak” solutions to the Euler system.

2.3.1 Measure valued solutions

In their three papers [59, 58, 57] Diperna and Majda studied the behavior of
sequences of approximate solutions to the Euler system. In the introduction
of [59], they state “a sequence of Leray-Hopf weak solutions of the Navier-
Stokes equations converges in the high Reynolds number limit to a measure-
valued solution of Euler defined for all positive times”. They introduced the
following notion of measure valued solutions to the Euler system.

Definition 2.5 Let O be a smooth domain of Rd, µ a nonnegative measure
of M(O) and (t, x) → (ν1

(t,x), ν
2
(t,x)) a dt dµ-measurable map from (0, T )×O

to M+(Rd) × Prob(Sd−1). We also denote µ = µs + fdtdx the Lebesgue
decomposition of µ into its singular and absolutely continuous parts. Then
the triple (µ, ν1, ν2) is called a measure valued solution of the incompressible
Euler system if

div
[〈
ν1

(t,x),
v

1 + |v|2
〉
(1 + f)

]
= 0 and

∫ ∫
φt.

〈
ν1

(t,x),
v

1 + |v|2
〉
(1 + f)dtdx+∇φ :

〈
ν2

(t,x), xi× ξ
〉
dµ = 0 (52)

for all smooth divergence-free vector field φ(t, x).
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Of course a weak solution u of the Euler system defines a measure valued
solution by taking f = µ = |u|2, ν1

(t,x) = δv=u(t,x) and ν2
(t,x)(ξ) = δξ= u

|u|
if

u(t, x) 6= 0.
They also define the notion of generalized Young measure for a sequence

{vε} bounded in L2(O).

Theorem 2.6 If {vε} is an arbitrary family of functions whose L2 norm on
a set O is uniformly bounded, then extracting a subsequence, there exist a
measure µ ∈M(O) such that

|vε|2 → µ in M(O), (53)

and a µ-measurable map x → (ν1
(x), ν

2
(x)) from O to M+(Rd) × Prob(Sd−1)

such that for all

g(v) = g0(v)(1 + |v|2) + gH(
v

|v|
)|v|2,

where g0 lies in the space C0(Rd) of continuous function vanishing at infinity
and gH lies in the space C(Sd−1) of continuous function on the unit sphere,
we have

g(vε) →
〈
ν1

(x), g0(v)
〉
(1 + f)dx+

〈
ν2

(x), gH(v)
〉
dµ in D′ (54)

where f denotes the Radon-Nikodym derivative of µ with respect to dx. The
triple (µ, ν1, ν2) is called the generalized Young measure of the sequence {vε}.

The notion of generalized Young measure can be extended to the case the
function vε also depend on t. The above two definitions are linked by the
following theorem.

Theorem 2.7 Assume vε is a sequence of functions satisfying div(vε)=0, vε

is bounded in L2((0, T ) × O) and for all divergence-free test function φ in
C∞

0 ((0, T )×O),

lim
ε→0

∫ ∫
(φt.vε +∇φ : vε × vε) dtdx = 0. (55)

Then, if (µ, ν1, ν2) is a generalized Young measure of the sequence {vε} then
it defines a measure-valued solution to the Euler system.

Of course, one of the main application of this theorem is the case where vε

satisfies the Navier-Stokes equation with a vanishing viscosity since it implies
(55).
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2.3.2 Dissipative solutions

An other notion of “very weak” solutions to the Euler system was introduced
by P.-L. Lions [108]. As stated by P.-L. Lions, it is not clear whether this
notion is relevant. Its only merits are the fact that such solutions exist and
are global and as long as a “smooth” solution exists with the same initial
data, any such dissipative solution coincides with it. Let us point out that
such a uniqueness property does not hold for the measure-valued solutions of
the previous subsection. Before defining dissipative solutions, let us introduce
few notations. For a divergence-free smooth test function v of [0,∞) × Rd,
we define

E(v) = −∂v
∂t
− P (v.∇v) (56)

where P is the Leray projector on divergence free vector fields. We also
denote d(v)ij = 1

2
(∂ivj + ∂jvi), the symmetric part of ∇v. For t ≥ 0, let

||d−||∞ = || sup
|ξ|=1

−(d ξ, ξ)+||L∞(Rd) (57)

Definition 2.8 Let u ∈ L∞(0,∞;L2)∩C([0,∞);L2
w). Then u is a dissipative

solution of the Euler system
∂tu+ div(u⊗ u) = −∇p in Rd,

div(u) = 0 in Rd,
u(t = 0) = u0,

(58)

if u(0) = u0, div(u) = 0 and for all divergence-free smooth test function v,
we have

||(u− v)(t)||2L2(Rd) ≤ e2
R t
0 ||d

−||∞ ||(u− v)(0)||2L2(Rd)+

+ 2

∫ t

0

∫
Rd

e2
R t

s ||d
−||∞E(v).(u− v)ds. (59)

In [108], P.-L. Lions proves the following result

Theorem 2.9 Let uν be a sequence of Leray-weak solutions to the Navier-
Stokes system with viscosity ν and initial data uν

0. In particular it satisfies

d

dt
||uν ||2L2(Rd) + ν||∇uν ||2L2(Rd) ≤ 0 in D′, (60)
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uν ∈ L2(0, T ;H1) ∩ L∞(0,∞;L2) ∩ C([0,∞);L2
w) for all T > 0 and uν(t)

goes to uν
0 in L2(Rd) when t goes to 0. Assume that uν

0 converges in L2 to
u0 then, extracting a subsequence, uν converges weakly-∗ in L∞(0,∞;L2) to
some u and converges weakly in L2 uniformly in t ∈ [0, T ] to u. Moreover, u
is a dissipative solution of the Euler system.

Let us give a sketch of the proof. From (60), we can deduce that for all
divergence-free test function v, we have

d

dt
||uν − v||2L2(Rd) + ν||∇uν ||2L2(Rd) ≤ 2||d−||∞||uν − v||2L2(Rd)+

2

∫
E(v).(uν − v)dx+ C(v)ν||∇uν ||L2 (61)

Then, we can apply a Gronwall lemma to get

||(uν − v)(t)||2L2(Rd) ≤ e2
R t
0 ||d

−||∞ ||(uν
0 − v(0))||2L2(Rd)+

+ 2

∫ t

0

∫
Rd

e2
R t

s ||d
−||∞E(v).(uν − v)ds+ CT (v)ν. (62)

Then, we can extract a subsequence of uν which converges weakly-∗ in
L∞(0,∞;L2). Passing to the limit in (62), we deduce that u is a dissipative
solution of the Euler system.

3 Compressible-incompressible limit

It is well-known from a Fluid Mechanics viewpoint that one can derive for-
mally incompressible models such as the Incompressible Navier-Stokes sys-
tem or the Euler system from compressible ones namely compressible Navier-
Stokes system (CNS) when the Mach number goes to 0 and the density be-
comes constant. There are several mathematical justifications of this deriva-
tion. One can put these works in two categories depending on the type
of solutions considered. Indeed, one viewpoint consists on looking at local
strong solutions and trying to prove existence on some time interval inde-
pendent of the Mach number and then studying the limit when the Mach
number goes to zero. This was initiated by Klainerman and Majda [97] (see
also Ebin [62]). The second point of view consists on retrieving the Leray
global weak solutions [104, 103] of the incompressible Navier-Stokes system
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starting from global weak solutions of the compressible Navier-Stokes system
(see [111]). Let us also mention that there were many works about this limit
during the last 10 years and that there are many review papers about it (see
for instance [124, 70, 47, 155]).

3.1 Formal limit

We first wish to recall the general set up for such asymptotic problems. We
will present it for the compressible isentropic Navier-Stokes system. The
unknowns (ρ̃, v) are respectively the density and the velocity of the fluid
(gas) and solve on (0,∞)× RN

∂ρ̃

∂t
+ div (ρ̃v) = 0 , ρ̃ ≥ 0, (63)

∂ρ̃v

∂t
+ div (ρ̃v ⊗ v)− µ̃∆v − ξ̃∇divv +∇p̃ = 0 , (64)

and
p̃ = aρ̃γ , (65)

where N ≥ 2, µ̃ > 0 , µ̃+ ξ̃ > 0, a > 0 and γ > 1 are given.

From a physical view-point, the fluid should behave (asymptotically) like
an incompressible one when the density is almost constant, the velocity is
small and we look at large time scales. More precisely, we scale ρ and v (and
thus p) in the following way

ρ̃ = ρ(εt, x), v = εu(εt, x) (66)

and we assume that the viscosity coefficients µ, ξ are also small and scale like

µ̃ = εµε, ξ̃ = εξε (67)

where ε ∈ (0, 1) is a “small parameter ” and the normalized coefficient µε, ξε
satisfy

µε → µ , µε → ξ as ε goes to 0+ . (68)

We shall always assume that we have either µ > 0 and µ+ ξ > 0 or µ = 0.

With the preceding scalings, the system (63)-(65) yields
∂ρ

∂t
+ div(ρu) = 0 , ρ ≥ 0,

∂ρu

∂t
+ div(ρu⊗ u)− µε∆u− ξε∇divu+

a

ε2
∇ργ = 0 .

(69)
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We may now explain the heuristics which lead to incompressible models.
First of all, the second equation (for the momentum ρu) indicates that ρ
should be like ρ̄+O(ε2) where ρ̄ is a constant. Of course, ρ̄ ≥ 0 and we always
assume that ρ̄ > 0 (in order to avoid the trivial case ρ̄ = 0). Obviously, we
need to assume this property holds initially (at t = 0). And, let us also
remark that by a simple (multiplicative) scaling, we may always assume
without loss of generality that ρ̄ = 1.

Since ρ goes to 1, we expect that the first equation in (69) yields at the
limit : div u = 0. And writing ∇ργ = ∇(ργ − 1), we deduce from the second
equation in (69) that we have in the case when µ > 0

∂u

∂t
+ div(u⊗ u)− µ∆u+∇π = 0 (70)

or when µ = 0
∂u

∂t
+ div(u⊗ u) +∇π = 0 (71)

where π is the “limit” of
ργ − 1

ε2
. In other words, we recover the incom-

pressible Navier-Stokes equations (70) or the incompressible Euler equations
(71), and the hydrostatic pressure appears as the limit of the “renormal-

ized” thermodynamical pressure (
ργ − 1

ε2
). In fact, as we shall see later on,

the derivation of (70) (or (71)) is basically correct even globally in time, for
global weak solutions ; but the limiting process for the pressure is much more
involved and may, depending on the initial conditions, incorporate additional
terms coming from the oscillations in div(ρεuε ⊗ uε).

This section about the compressible incompressible limit is organized as
follows. In the next subsection 3.2, we recall the results of Klainerman and
Majda [97, 98] for the strong solutions to the isentropic compressible Navier-
Stokes when the Mach number goes to zero. Then, we give several extensions
of that result by taking general or “ill-prepared” initial data [166, 154]. Also
we state result about long time existence for the slightly compressible system
[87, 89]. We also present results in “almost” critical spaces [45, 46]. In
subsection 3.3, we recall the results of convergence from the global weak
solutions to the isentropic compressible Navier-Stokes towards the global
weak solutions of the incompressible Navier-Stokes. In the last subsection
3.5, we state some newer results about the non-isentropic case [133, 134].

We will not mention result about the steady problem and refer to [17,
106, 111].
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3.2 The case of strong solutions

The first mathematical justification of the incompressible limit is due to
Ebin [62]. By using Lagrangian coordinates and a geometric description
of the equations, he proved that “slightly compressible fluid motion can be
described as a motion with a strong constraining force, while incompressible
fluid flow is the analogous constrained motion.” The first justification using
PDE methods was done by Klainerman and Majda [97, 98] using the theory
of singular limits of symmetric hyperbolic systems. We should also mention
the work of Kreiss [99] about problems with different time scales but which
requires the control of more time derivatives at time t = 0.

We consider the compressible Euler system which can be recovered from
(69), by taking µε = ξε = 0,

∂ρε

∂t
+ uε · ∇ρε + ρεdivuε = 0 , ρε ≥ 0,

ρε

(
∂uε

∂t
+ uε · ∇uε

)
+

1

ε2
∇pε = 0

(72)

where pε and ρε are related by pε = aργ
ε where a > 0 and γ ≥ 1 are given

constants. They consider the above system in the torus or the whole space,
Ω = TN or Ω = RN with the following initial data

uε(t = 0, x) = u0
ε(x), pε(t = 0, x) = p0

ε(x). (73)

Notice that we can retrieve the initial data for ρε from the initial data for pε.
Here ‖.‖s will denote the Hs norm and s0 = [N

2
] + 1.

Theorem 3.1 Assume the initial data (73) satisfies

‖u0
ε(x)‖s +

1

ε
‖p0

ε(x)− p‖s ≤ C0 (74)

for some constants p > 0 and C0 and some s ≥ s0 + 1. Then there exists an
ε0 and a fixed time interval [0, T ] with T depending only upon ‖u0

ε(x)‖s0+1 +
1
ε
‖p0

ε(x)− p0‖s0+1 and a constant Cs such that for ε < ε0, a classical solution
of the compressible Euler system exists on [0, T ]× Ω and satisfies

sup
0≤t≤T

‖uε‖s +
1

ε
‖p0

ε − p‖s + ε‖∂uε

∂t
‖s−1 + ‖∂pε

∂t
‖s−1 ≤ Cs. (75)
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Moreover if the initial data satisfies the additional condition

u0
ε(x) = u0(x) + εu1(x), divu0 = 0,

p0
ε(x) = p+ ε2p1(x), (76)

‖u1(x)‖s + ‖p1(x)‖s ≤ C0

then, on the same time interval [0, T ], we have

sup
0≤t≤T

‖∂uε

∂t
‖s−1 + ε−1‖∂pε

∂t
‖s−1 ≤ C1

s (77)

and as ε goes to 0, uε converges weakly in L∞([0, T ];Hs) and uniformly in
Cloc([0, T ]× Ω) to u∞ where u∞ satisfies the incompressible Euler system{

∂u∞

∂t
+ u∞ · ∇u∞ +∇p∞ = 0

u∞(t = 0, x) = u0(x), divu∞ = 0.
(78)

The condition (76) means that the flow is initially almost incompressible
and that the density is initially almost constant. These data are called “well-
prepared” initial data. The more general condition (74) will be called general
initial data or “ill-prepared” initial data. Notice that we still need to assume
that p0

ε − p is of order ε this is because, we need to make a change a variable
qε = ε−1(pε − p) to write our system in a form which is suitable for energy
estimates, we will denote q0

ε = ε−1(p0
ε − p).

Idea of the proof: We rewrite the system in terms of the new unknowns
(uε, qε) where qε = ε−1(pε − p)

∂qε
∂t

+ uε · ∇qε +
γ

ε
(p+ εqε)divuε = 0 , ρε ≥ 0,

∂uε

∂t
+ uε · ∇uε +

1

ε(p+ εqε)1/γ
∇qε = 0

(79)

To prove (75), we just need to prove Hs estimates on some time interval
[0, T ] which is independent of ε. For each ε, we denote

Es(t) =

∫ ∑
|α|=s

1

(p+ εqε)1/γ
|∂αqε|2 + γ(p+ εqε)|∂αuε|2. (80)
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Then, we can prove that ∂tEs ≤ C(Es)
2 where C does not depend on ε < ε0.

This shows that there exists a time of existence T which is uniform in ε.
Next, we have to prove (77) and the convergence towards the incompress-

ible system (78) under the well-prepared condition (76). We notice that,
taking the time derivative of (79), we can write a hyperbolic equation for
(∂tuε, ∂tqε) which is similar to (79). To prove uniform bounds for (∂tuε, ∂tqε)
in Hs−1 on some time interval [0, T ] we only need to have bounds in Hs−1

initially. This follows immediately from (76). Hence, if (76) holds then (77)
holds. Moreover, by simple compactness arguments, we can extract a subse-
quence such that (uε, qε) converges in C([0, T ];Hs−κ

loc ) to some (u, q) for κ > 0.
Then, it is easy to see that u satisfies the Euler system (78) by passing weakly
to the limit in the different terms. Since, we have uniqueness for (78), we
deduce the convergence of the whole sequence.

Remark 3.2 1) In [97, 98], the authors also deal with the Navier-Stokes case
by proving that the viscosity does not affect the leading hyperbolic behavior.

2)For the “well-prepared” case, the convergence stated in the theorem can
be improved to a convergence in C([0, T ];Hs) (see Beirão da Veiga [18, 19]).

During the last 25 years there were different extensions of this result
in different directions. First, there were results trying to take more general
initial data. These results require some analysis of the acoustic waves. Then,
there were results about more general models, namely the non-isentropic
model (the entropy is not constant and is transported by the flow). Also,
there were results trying to improve the minimum regularity required for the
convergence.

3.2.1 General initial data

In the whole space RN (see Ukai [166]) or in the exterior of a bounded
domain (see Isozaki [92, 93]), the result of [98] has been extended to the
case of general initial data or “ill-prepared” initial data. The convergence
towards the incompressible limit holds locally in space. However, we do not
have uniform convergence near t = 0 due to the presence of an initial layer
in time. This layer comes from acoustic waves that go to infinity. We have
the following result

Theorem 3.3 (Ω = RN) Assume the initial data (73) satisfies (74) and
that (u0

ε(x), q
0
ε (x)) converges to some (u0(x), q0(x)) in Hs, then the solution
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constructed in theorem 3.1 satisfies

(qε, uε) → (0, u∞) (81)

weakly* in L∞((0, T );Hs) and strongly in C0
loc((0, T ]×RN) where u∞ is the

unique solution to the incompressible Euler system (78) with the initial data
Pu0 where P is the Leray projection onto divergence free vector fields P =
Id−∇∆−1∇·.

In the periodic case TN , Schochet [154] extends the result of [98] to the
case of “ill-prepared” initial data. He proves the same theorem 3.3 in the
periodic case with the only difference that the (0, u∞) is replaced by (c, u∞)
for some constant c and that the convergence is only weak due to the acoustic
waves. The convergence is strong for the divergence-free part Puε.

Theorem 3.4 (Ω = TN) Assume the initial data (73) satisfies (74) and
that (u0

ε(x), q
0
ε (x)) converges to some (u0(x), q0(x)) in Hs, then the solution

constructed in theorem 3.1 satisfies

(qε, uε) → (c, u∞) (82)

weakly* in L∞((0, T );Hs) where u∞ is the unique solution to the incom-
pressible Euler system (78) with the initial data Pu0 where P is the Leray
projection onto divergence free vector fields P = Id − ∇∆−1∇·. Moreover,
Puε converges strongly in C0

loc([0, T ]× TN) to u∞.

Idea of the proofs:
The idea of theorem 3.4 is to use the group method to filter the oscilla-

tions. We also would like to mention that ideas close to the group method
were also developed by Joly, Métivier and Rauch [94]. We introduce the
following group (L(τ), τ ∈ R) defined by eτL where L is the operator defined
on D′ × (D′)N , by

L

(
ϕ

v

)
= −

(
γpdivv

1
p1/γ∇ϕ

)
. (83)

It is easy to check that eτL is an isometry on each Hs × (Hs)
N

for all s ∈ R

and for all τ . This show that if we define

(
ϕ(τ)

v(τ)

)
= eτL

(
ϕ0

v0

)
then it solves

∂ϕ

∂τ
= −γp divv ,

∂v

∂τ
= − 1

p1/γ
∇ϕ.
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If we denote Uε = t(qε, uε), then Vε = L(− t
ε
)Uε is such that ∂tVε is bounded

in L∞(0, T ;Hs−1). Then, we can use compactness argument to extract a
subsequence which converges to some V in C([0, T ];Hs−κ

loc ). Now, passing to
the limit in the equation satisfied by V requires the study of resonances. It
turns out these resonances do not affect the divergence-free flow. See also
subsection 3.3.5 for more about resonances.

If we consider the whole space case, we notice that the long time behavior
of the operator eτL is not the same in the whole space and in the torus.
Indeed, in the whole space we have dispersion and the following Strichartz
[158] type estimate holds∥∥∥∥e t

ε
L

(
ψ

∇φ

)∥∥∥∥
Lp(R;W s,q(RN )))

≤ Cε1/p

∥∥∥∥(
ψ

∇φ

)∥∥∥∥
Hs+σ

(84)

for all p, q > 2 and σ > 0 such that

2

q
= (N − 1)

(1

2
− 1

p

)
, σ =

1

2
+

1

p
− 1

q
.

This dispersion allows for the convergence in C0
loc((0, T ]×RN) (see also [52]).

3.2.2 Long time existence for the compressible system

In [87], Hagstrom and Lorenz give a result about the global existence of strong
solutions to the slightly compressible Navier-Stokes system in 2D for initial
data which are close to the incompressible, namely satisfying a condition of
the type (76). Also, in [89], Hoff gives a similar result in dimension 2 or 3
with a force term under some assumptions about the limit system. These
two results use different properties of the system. However, they both use in
a critical way the presence of the viscosity. Consider the system (69) with
aγ = 1, µε = µ > 0, ξε = ξ and µ+ ξ > 0. The limit system reads{

∂u∞

∂t
+ u∞ · ∇u∞ − µu∞ +∇p∞ = 0

u∞(t = 0, x) = u0(x), divu∞ = 0.
(85)

In [87], the following result is proved

Theorem 3.5 Let u0 ∈ C∞(T2) be an incompressible velocity field and π0(x) =
p∞(t = 0, x) where (u∞, p∞) is the solution to (85), −∆π0(x) =

∑2
i,j=1 ∂iu

0
j∂ju

0
i .
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There exists ε0 = ε0(u
0, µ, ξ) and δ0 = δ0(u

0, µ, ξ) such that if 0 < ε < ε0 and
the initial data (ρ0

ε , u
0
ε) for (69) satisfies

‖u0
ε(x)− u0‖3 + ε−1‖ρ0

ε(x)− 1− ε2π0‖3 ≤ δ0 (86)

then there exists a global solution (ρε, uε) ∈ C∞([0,∞) × T2) to (69) which
locally converges to (1, u∞) when ε goes to zero.

We also refer to Gallagher [69] for a similar result.
Idea of the proof : We write uε = u∞+u′ and ρε = 1+ ε2(π∞+ρ′). Then,

we denote

w =

(
u′

ερ′

)
.

Hence, w satisfies the following equation

wt + (u∞ + u′) · ∇w = Aεw +G (87)

where Aε is a constant coefficient operator given by

Aε = −1

ε

 0 0 ∂x

0 0 ∂y

∂x ∂y 0

 +

 µ∆ + ξ∂2
xx ξ∂2

xy 0
ξ∂2

xy µ∆ + ξ∂2
yy 0

0 0 0

 (88)

and G consists of nonlinear terms involving (u∞, π∞) and w. It turns out
that this term can be controlled for long time due to the exponential decay
of the incompressible Navier-Stokes solution u∞.

Equation (87) is a coupled parabolic-hyperbolic system where the large
hyperbolic part is symmetric. Even though (87) is not completely parabolic,
in particular there is no viscosity in the third equation, the coupling between
the three equations yields some decay for w. This cannot be seen from the
standard L2 estimate but requires the use of a different scalar product. We
denote Âε(k) the symbol of Aε, k ∈ Z2 which can be obtained from Aε

by replacing ∂x by ik1 and ∂y by ik2. Then a symmetrizer H(k) can be
constructed for (87) satisfying the following lemma

Lemma 3.6 [87] There exist c0, c1, C1, C2 depending on µ, ξ, ε0 such that for
0 < ε < ε0 there are Hermitian matrices H(k, ε) ∈ C3×3 satisfying

0 < (I − C1εI) ≤ H ≤ (I + C1εI)

q∗(HÂε(k) + Âε(k)
∗H)q ≤ −c0q∗Hq − c1|k|2(|q1|2 + |q2|2) ∀ q ∈ C3,

|H − I| ≤ C2ε
|k| .

(89)
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Using this lemma, we can define a new inner product on L2(T2,R3) by

(w1, w2)H =
∑
k∈Z2

ŵ1(k)
∗H(k, ε)ŵ2(k)

which is used to prove the exponential decay.

In [89], Hoff takes an other approach to prove the long time existence for
the slightly compressible Navier-Stokes. He uses the effective viscous flux F
given by

F = (µ+ ξ)divuε − ε−2[ργ
ε − 1] (90)

which satisfies the following elliptic equation

∆F = div(ρε∂tuε + ρεuε · ∇uε − ρεf) (91)

where f is the force term. It turns out that this equation yields some regu-
larity for F which is not shared by divuε or by ε−2[ργ

ε − 1]. Then, Hoff uses
the equation for the density to deduce that

(µ+ ξ)∂t(ρε − 1) + ε−2[ργ
ε − 1] = −ρεF (92)

from which we can deduce some decay for (ρε − 1) if we have some good
control on F . We refer to [89] for more details.

3.2.3 Convergence in critical spaces

The compressible Navier-Stokes system (69) is invariant, up to a change of
the pressure law, under the transformation

(ρ(t, x), u(t, x)) → (ρ(l2t, lx), lu(l2t, lx)) (93)

P (ρ) → l2P (ρ). (94)

Hence it seems natural to consider initial data (ρ0, u0) ∈ Ḣd/2 ×Hd/2−1. For

fixed ε the local existence for (69) in the critical Besov space B
d/2
2,1 × B

d/2−1
2,1

was performed by Danchin [44]. He also proves global existence if the data

is small. We refer to [44] for the precise definition of the Besov space B
d/2
2,1 .

We only recall that unlike Hd/2, B
d/2
2,1 is injected in L∞.

In [46] and [45], Danchin proves the convergence of the solutions con-
structed in [44] towards solutions of the incompressible Navier-Stokes system.
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More precisely for the critical case, namely B
d/2
2,1 ×B

d/2−1
2,1 he proves a global

existence and convergence result but only for small data. For large data he
works with spaces which are slightly more regular, namely B

d/2+κ
2,1 ×Bd/2−1+κ

2,1

or the Sobolev spaces with the same regularity. Moreover, he proves the
convergence towards the incompressible Navier-Stokes system as long as the
solution of the limit system exists

3.3 The case of global weak solutions

Global weak solutions to the isentropic Navier-Stokes system were constructed
by P.-L. Lions [109] (see also Feireisl [64] and Novotny and Straskraba [139]).
We also refer to [65] for a review paper about the isentropic Navier-Stokes
system and to [66] for the existence of weak solutions to the full compressible
system. In this subsection, we would like to study the behavior of the weak
solutions constructed in [109] when the Mach number goes to zero. The first
paper treating this question is [111]. In [111], the group method was used
to pass to the limit in the nonlinear term. This yields the convergence in
the periodic case. The result of [111] was then extended in [54] and [52] to
deal with the case of a bounded domain or the whole space case. In [54], the
presence of a boundary layer is responsible of the damping of the acoustic
waves. In [52] the dispersion of the acoustic waves yields the local strong
convergence towards the incompressible solution.

In the next subsection 3.3.1, we will present in some details the simple
result of [113] were the convergence is proved locally in space. This proof is
independent of the boundary condition. In particular it also holds for the
exterior domain.

3.3.1 The local method

Let Ω be an open bounded set in RN . For ε ∈ (0, 1], we consider (ρε, uε) a
weak solution of

∂ρε

∂t
+ div(ρεuε) = 0 , ρε ≥ 0

∂ρεuε

∂t
+ div(ρεuε ⊗ uε)− µ∆uε − ξ∇divuε +

a

ε2
∇ργ

ε = 0

(95)
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in (0, T ) × Ω, T > 0, a > 0, γ >
N

2
, µ > 0 and µ + ξ > 0. We assume that

ρε ∈ L∞(0, T ;Lγ) ∩ C([0, T ];L1), ρε|uε|2 ∈ L∞(0, T ;L1), uε ∈ L2(0, T ;H1)
and that the total energy is bounded namely



∫
Ω

ρε|uε|2 +
1

ε2

[
ργ

ε − ρ̄
γ

ε − γρ̄
γ−1

ε (ρε − ρ̄ε)
]
dx ≤ C, a.e. t ∈ (0, T )

∫ T

0

dt

∫
Ω

dx |Duε|2 ≤ C

(96)
for some positive constant C independent of ε, where ρ̄ε is a positive constant
such that ρ̄ε and 1/ρ̄ε are bounded independently of ε.

We denote ρ0
ε andm0

ε the initial conditions for ρε and ρεuε. We also assume

that
|m0

ε |2

ρ0
ε

, m0
ε , ρ

0
ε are bounded in L1, L2γ/(γ+1), Lγ respectively. Extracting

subsequences, we can assume that ρε, ρεuε,
√
ρεuε, uε, ρ

0
ε , m

0
ε ,

m0
ε√
ρ0

ε

converge

weakly when ε goes to zero 0, towards ρ, m, w, u, ρ0, m0, ũ0 (respectively in
L∞(0, T ;Lγ)−w∗, L∞(0, T ;L2γ/(γ+1))−w∗, L∞(0, T ;L2)−w∗, L2(0, T ;H1),
Lγ, L2γ/(γ+1), L2) and that ρ̄ε converges towards ρ̄. Finally, we denote V0 =

{u ∈ L2(Ω),

∫
Ω

uϕdx = 0 ∀ϕ ∈ C∞
0 (Ω), div ϕ = 0 in Ω} (if Ω is regular,

than V0 = {∇p, p ∈ H1(Ω)}.
The main result of [113] is the following

Theorem 3.7 Under the above conditions
i) ρε converges to ρ̄ in L∞(0, T ;Lγ), and m ≡

√
ρ̄w ≡ ρ̄u.

ii) The weak limit u is a solution of the incompressible Navier-Stokes system
∂u

∂t
+ div(u⊗ u)− ν∆u+∇π = 0 , divu = 0 in Ω× (0, T )

u(t = 0, x) = u0(x)

(97)

with u ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2), π ∈ D′ and ν =
µ

ρ̄
and u0 ∈ ũ0 + V0.

Remark 3.8 1) For the existence of solutions to the compressible Navier-
Stokes satisfying the conditions stated above, we refer to [109].
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2) Theorem 3.7 does not say anything about the boundary condition satisfied
by u. This is natural since there is no boundary condition for the initial
system (95). This is the reason we have and initial condition u0 ∈ ũ0 + V0

which may seem vague. However, if we fix some boundary conditions, then
u0 will be completely determined. This will be done in the next subsections.

Idea of the proof:
To simplify the proof, we assume that ρ̄ε goes to ρ̄ = 1.

Convergence of ρε to 1
We claim that ρε converges to 1 in C([0,∞);Lγ) : indeed, for ε small

enough ρ̄ε ∈
(1

2
,
3

2

)
and thus for all δ > 0, there exists some νδ > 0 such

that

xγ + (γ − 1)(ρ̄ε)
γ − γx(ρ̄ε)

γ−1 ≥ νδ|x− ρ̄ε|γ if |x− ρ̄ε| ≥ δ, x ≥ 0 .

Hence,

sup
t≥0

∫
|ρε − 1|γ ≤ δγ|Ω|+ sup

t≥0

[∫
1(|ρε−1|≥δ)|ρε − ρ̄ε|γ

]
+ C|ρε − 1|γ

≤ δγ|Ω|+ Cε2

νδ

+ C|ρε − 1|γ

and we conclude upon letting first ε go to 0 and then δ go to 0. Actually,
we need more information about this convergence and more precisely, denot-

ing ϕε =
ρε − ρ̄ε

ε
we can prove using some convexity inequalities that ϕε is

bounded in L∞(0, T ;L2) if γ ≥ 2. If γ < 2, then ϕε1(|ρε−1|≤1/2) is bounded in

L∞(0, T ;L2) and ||ϕε1(|ρε−1|>1/2)||L∞(0,T ;Lγ) ≤ Cε
2
γ
−1.

Next, we notice that τε = ρεuε⊗uε is bounded in L∞(0, T ;L1)∩L2(0, T ;Lq)

with
1

q
=

1

γ
+
N − 2

2N
if N ≥ 3, 1 ≤ q < γ if N = 2. Extracting a subsequence,

we denote by τ a weak limit of τε. Passing to the limit in the first equation of
(95), we deduce that u ∈ L2(0, T ;H1) satisfies divu = 0 in Ω×]0, T [. Passing
to the limit in the second equation of (95), we get

∂u

∂t
+ div τ − µ∆u+∇π1 = 0 (98)

where π1 ∈ D′(Ω× (0, T )). We just need to prove that div(τ) = div(u×u)+
∇π2. It turns out that in general π2 does not vanish.
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Convergence of uε in the regular case
First, we assume that ϕε, πε = a

ε2
(ργ

ε − ρ̄γ
ε − γ(ρε− ρ̄ε)), mε = ρεuε, uε are

regular in x, uniformly in ε, i.e. ϕε, πε and mε, are bounded in L∞(0, T ;Hs)
and uε is bounded in L2(0, T ;Hs) for all s ≥ 0. Next, we want to show that

div(ρεuε ⊗ uε) ⇀ε div(u⊗ u) +∇π2 (99)

for some distribution π2. To this end, we will pass to the limit locally in x
when ε goes to 0. Let B be a ball in our domain Ω. We want to prove the
convergence stated in (99) locally in B×(0, T ). We introduce the orthogonal
projections P and Q defined on L2(B) by I = P+Q ; divPu = 0, curl(Qu) =
0 in B ; Pu.n = 0 on ∂B where n stands for the exterior normal to ∂B.

Applying P to the second equation of (95), we deduce easily that
∂

∂t
Pmε

is bounded in L∞(0, T ;Hs)(∀s ≥ 0) and hence that Pmε converges to Pu in
C([0, T ];Hs) (∀s ≥ 0). Here, we have used that the injection of Hr(B) in
Hs(B) is compact since B is bounded. We also deduce that Puε converges

to Pu in L2(0, T ;Hs) since P (uε − u) = P
(
(1− ρε)uε

)
+ P

(
ρεuε − u

)
.

Next, we decompose in B, mε in u + P (mε − u) + Q(mε − u) and uε in
u+P (uε−u)+Q(uε−u). Hence, we can decompose in D′(B) div(ρεuε⊗uε)
in 8 different terms and it is easy to see that it is sufficient to show that

div
(
Q(mε − u) ⊗ Q(uε − u)

)
converges to some gradient. Moreover since

Q(mε−u) andQ(uε−u) converge weakly to 0 and thatQ(mε−u)−Q(uε−u) =

Q(
(
(1 − ρε)u

)
converges to 0 in L2(0, T ;Hs) (∀s ≥ 0), we see that it is

equivalent to show the above requirement for the following term div
(
Q(mε−

u)⊗Q(mε−u)
)
. Next, we introduce ψε such that −

∫
B

ψεdx = 0, ∇ψε = Qmε.

Besides, it is easy to see that ψε is bounded in L∞(0, T ;Hs)(∀s ≥ 0). With
the above notations, we deduce from the initial system (69) the following one

∂ϕε

∂t
+

1

ε
∆ψε = 0 ,

∂∇ψε

∂t
+
aγ

ε
∇ϕε = Fε (100)

where Fε = ξ∇ div uε + ∇πε + µQ
[
∆uε − div(ρεuε ⊗ uε)

]
is bounded in

L2(0, T ;Hs)(∀s ≥ 0).
Next, we observe that in D′(B×]0, T [), we have on one hand

div(Qu⊗Qu) =
1

2
∇|Qu|2 + (divQu)Qu =

1

2
∇|Qu|2
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and on the other hand

div
(
∇ψε ⊗∇ψε

)
=

1

2
∇|∇ψε|2 + ∆ψε∇ψε

=
1

2
∇

(
|∇ψε|2

)
− ∂

∂t
(εϕε∇ψε) + εϕεFε − aγϕε∇ϕε

=
1

2
∇

(
|∇ψε|2 − aγϕ2

ε

)
− ∂

∂t
(εϕε∇ψε) + εϕεFε .

Using that εϕε∇ψε converges strongly to 0 in L2(0, T ;Hs) (∀s ≥ 0) and that
εϕεFε converges strongly to 0 in L∞(0, T ;Hs) (∀s ≥ 0), we deduce that

div
(
Q(mε − u)⊗Q(mε − u)

)
⇀ε ∇q (101)

and finally, we obtain that

div(ρεuε ⊗ uε) ⇀ε div(u⊗ u) +∇q in B × (0, T ) (102)

and the theorem is proved in the regular case. We only notice here that if Ω
is not simply connected, we can take C an annulus around each hole in the
previous argument to make sure that the pressure is globally well defined.

Convergence in the general case:
Now, we are going to show how we can regularize in x the above quanti-

ties (uniformly in ε). To do so let Kδ =
1

δN
K(

.

δ
), where K ∈ C∞

0 (RN),∫
RN

Kdz = 1, δ ∈ (0, 1). We can then regularize by convolution as follows

ϕδ
ε = ϕε ∗Kδ, m

δ
ε = mε ∗Kδ, u

δ
ε = uε ∗Kδ, π

δ
ε = πε ∗Kδ. We can then follow

the same proof as in the regular case by replacing ϕε, πε, mε and uε by their
regularizations and we conclude by observing that ||uδ

ε − uε||L2(0,T ;L2)
≤ Cδ,

||uδ
ε ||L2(0,T ;H1)

≤ C and ||uδ
ε⊗uδ

ε−uε⊗uε||L1(0,T ;Lp)
≤ Cδ, ||uδ

ε⊗uδ
ε ||L1(0,T ;Lp)

≤ C

(p =
N

N − 2
if N ≥ 3, 1 ≤ p < +∞ if N = 2). Indeed, from the above uni-

form bounds, we deduce that

sup
ε∈]0,1]

{
||ρδ

εu
δ
ε −mδ

ε ||L2(Lq)
+ ||mδ

ε − uδ
ε ||L2(Lq)

+ ||ρεuε −mδ
ε ||L2(Lq)

}
−→

δ
0 ,
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sup
ε∈]0,1]

{
||ρδ

εu
δ
ε ⊗ uδ

ε −mδ
ε ⊗ uδ

ε ||L1(Lr)
+ ||mδ

ε ⊗ uδ
ε −mε ⊗ uε||L1(Lr)

+

||mε ⊗ uε − uδ
ε ⊗ uδ

ε ||L1(Lr)

}
−→

δ
0 ,

with
1

q
>

1

γ
+
N − 2

2N
,

1

r
>

1

γ
+
N − 2

N
, since

1

γ
+
N − 2

N
< 1. Moreover, it

is easy to see that for all δ and all s, we have that ||mδ
ε − uδ

ε ||L2(Hs) goes to
0 when ε goes to 0.

In the next three subsections, we would like to specify the boundary
conditions and give a more precise convergence result.

3.3.2 The periodic case

The periodic case was treated in [111]. The convergence stated in theorem 3.7
can not be improved. Indeed, the acoustic waves will oscillate indefinitely.
So, we only have weak convergence. The initial condition in (97) can be
specified precisely, namely u0 = Pũ0.

3.3.3 The case of Dirichlet boundary conditions

In this subsection, we will state more precise results in the case of Dirichlet
boundary conditions. Indeed, depending on some geometrical property of the
domain, we can prove a strong convergence result towards the incompressible
Navier-Stokes system, which means that all the oscillations are damped in
the limit. Let Ω be a bounded domain. We consider the system (69) with
the following Dirichlet boundary condition

uε = 0 on ∂Ω. (103)

For ε ∈ (0, 1], we consider (ρε, uε) satisfying the same hypotheses as in section
3.3.1. In order to state precisely our main Theorem, we need to introduce a
geometrical condition on Ω. Let us consider the following over determined
problem

−∆φ = λφ in Ω,
∂φ

∂n
= 0 on ∂Ω, and φ is constant on ∂Ω. (104)

A solution of (104) is said to be trivial if λ = 0 and φ is a constant. We will
say that Ω satisfies assumption (H) if all the solutions of (104) are trivial.
Schiffer’s conjecture says that every Ω satisfies (H) excepted the ball (see for
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instance [71]). In two dimensional space, it is proved that every bounded,
simply connected open set Ω ⊂ R2 whose boundary is Lipschitz but not real
analytic satisfies (H), hence property (H) is generic in R2. The main result
reads as follows

Theorem 3.9 Under the above conditions, ρε converges to 1 in C([0, T ];Lγ(Ω))
and extracting a subsequence if necessary uε converges weakly to u in L2((0, T )×
Ω)N for all T > 0, and strongly if Ω satisfies (H). In addition, u is a global
weak solution of the incompressible Navier-Stokes equations with Dirichlet
boundary conditions satisfying u|t=0 = Pũ0 in Ω.

For the proof of this result, we refer to [54]. We only sketch below the
phenomenon going on. Let (λ2

k,0)k≥1, (λk,0 > 0), be the nondecreasing se-
quence of eigenvalues and (Ψk,0)k≥1 the orthonormal basis of L2(Ω) functions
with zero mean value of eigenvectors of the Laplace operator −∆N with
homogeneous Neumann boundary conditions

−∆Ψk,0 = λ2
k,0Ψk,0 in Ω,

∂Ψk,0

∂n
= 0 on ∂Ω. (105)

We can split these eigenvectors (Ψk,0)k∈N (which represent the acoustic eigen-
modes in Ω) into two classes : those which are not constant on ∂Ω will gener-
ate boundary layers and will be quickly damped, thus converging strongly to
0; those which are constant on ∂Ω (non trivial solutions of (104)), for which
no boundary layer forms, will remain oscillating forever, leading to only weak
convergence. Indeed, if (H) is not satisfied, uε will in general only converge
weakly and not strongly to u (like in the periodic case Ω = Td for instance).
However, if at initial time t = 0, no modes of second type are present in the
velocity, the convergence to the incompressible solution is strong in L2.

Notice that according to Schiffer’s conjecture the convergence is not strong
for general initial data when Ω is the two or three dimensional ball, but is
expected to be always strong in any other domain with Dirichlet boundray
conditions.

3.3.4 The whole space case

In [52], the authors give a more precise result in the whole space case by
using the dispersion of the acoustic waves.
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Consider the system (95) in the whole space RN . The initial data (ρ0
ε ,m

0
ε)

satisfies ∫
RN

πε(t = 0) +
|m0

ε |2

2ρ0
ε

dx ≤ C (106)

where πε = 1
γ(γ−1)ε2

(ργ
ε −1−γ(ρε−1)), mε = ρεuε. We also assume that

m0
ε√
ρ0

ε

converges weakly in L2(RN) to some ũ0. Let Lp
2(RN) denote the Orlicz space

Lp
2(RN) = {f ∈ L1

loc(RN)/f1|f |<1 ∈ L2 and f1|f |≥1 ∈ Lp}. We consider
global weak solutions to (95) with the initial data (106) satisfying (96) with
Ω replaced by RN and such that ρε − 1 ∈ L∞(0, T ;Lγ

2(RN)).

Theorem 3.10 Under the above assumptions, ρε−1 converges to 0 in L∞(0, T ;Lγ
2).

For all subsequence of uε which converges weakly to some u ∈ L2, u is a
global weak solution of the incompressible Navier-Stokes system with the ini-
tial data u(t = 0) = Pũ0. Moreover, the subsequence uε converges strongly
to u in L2(0, T ;L2(RN

loc)) and the gradient part Quε converges strongly to 0
in L2(0, T ;Lq(RN)) for q > 2 when N = 2 and for q ∈ (2, 6) when N = 3.

The proof uses the Strichartz estimate (84) to prove that the acoustic waves
locally go to zero.

3.3.5 Convergence towards the Euler system

In this subsection, we study the case where µε goes to 0 too. We will state
two results in the periodic case and in the whole space case taken from [127].
The case of domains with boundaries is open even in the incompressible case
(see Section 2).
The whole space case

We consider a sequence of global weak solutions (ρε, uε) of the compress-
ible Navier-Stokes equations (69) and we assume that ρε−1 ∈ L∞(0,∞;Lγ

2)∩
C([0,∞), Lp

2) for all 1 ≤ p < γ, where Lp
2 = {f ∈ L1

loc, |f |1|f |≥1 ∈ Lp, |f |1|f |≤1 ∈
L2}, uε ∈ L2(0, T ;H1) for all T ∈ (0,∞) (with a norm which can explode

when ε goes to 0), ρε|uε|2 ∈ L∞(0,∞;L1) and ρεuε ∈ C([0,∞) ; L
2γ/(γ+1)−w)

i.e. is continuous with respect to t ≥ 0 with values in L
2γ/(γ+1)

endowed with
its weak topology. We require (69) to hold in the sense of distributions and
we impose the following conditions at infinity

ρε → 1 as |x| → +∞ , uε → 0 as |x| → +∞ . (107)
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Finally, we prescribe initial conditions ρε(t = 0) = ρ0
ε , ρεuε(t = 0) = m0

ε

where ρ0
ε ≥ 0, ρ0

ε − 1 ∈ Lγ, m0
ε ∈ L2γ/(γ+1), m0

ε = 0 a.e. on {ρ0
ε = 0} and

ρ0
ε |u0

ε |
2 ∈ L1, denoting by u0

ε =
m0

ε

ρ0
ε

on {ρ0
ε > 0}, u0

ε = 0 on {ρ0
ε = 0}. We

also introduce the following notation ρε = 1 + εϕε. Notice that if γ < 2, we
cannot deduce any bound for ϕε in L∞(0, T ;L2). This is why we introduce
the following approximation which belongs to L2

Φε =
1

ε

√
2a

γ − 1
(ργ

ε − 1− γ(ρε − 1)).

Furthermore, we assume that
√
ρ0

ε u
0
ε converges strongly in L2 to some ũ0.

Then, we denote by u0 = Pũ0, where P is the projection on divergence-free
vector fields, we also define Q (the projection on gradient vector fields), hence
ũ0 = Pũ0 + Qũ0. Moreover, we assume that Φ0

ε converges strongly in L2 to
some ϕ0. This also implies that ϕ0

ε converges to ϕ0 in Lγ
2 . We also assume

that (ρε, uε) satisfies the energy inequality. Our last requirement on (ρε, uε)
concerns the total energy : we assume that we have

Eε(t) +

∫ t

0

Dε(s)ds ≤ E0
ε a.e. t,

dEε

dt
+Dε ≤ 0 in D′

(0,∞) (108)

where Eε(t) =

∫
Ω

1

2
ρε|uε|2(t) +

a

ε2(γ − 1)
((ρε)

γ − 1 − γ(ρε − 1))(t), Dε(t) =∫
Ω

µε|Duε|2(t) + ξε (divuε)
2(t) and E0

ε =

∫
Ω

1

2
ρ0

ε |u0
ε |2 +

a

ε2(γ − 1)
((ρ0

ε)
γ − 1−

γ(ρ0
ε − 1)). The existence of solutions satisfying the above requirement was

proved in [109].
When ε goes to zero and µε goes to 0, we expect that uε converges to v,

the solution of the Euler system


∂tv + div (v ⊗ v) +∇π = 0

div v = 0 v|t=0 = u0

(109)

in C([0, T ∗);Hs). We have the following theorem

Theorem 3.11 We assume that µε →ε 0 (such that µε + ξε > 0 for all ε)
and that Pũ0 ∈ Hs for some s > N/2 + 1, then P (

√
ρεuε) converges to v
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in L∞(0, T ;L2) for all T < T ∗, where v is the unique solution of the Euler
system in L∞loc([0, T

∗);Hs) and T ∗ is the existence time of (109). In addition√
ρεuε converges to v in Lp(0, T ;L2

loc) for all 1 ≤ p < +∞ and all T < T ∗.

The periodic case

Now, we take Ω = TN and consider a sequence of solutions (ρε, uε) of
(69), satisfying the same conditions as in the whole space case (the functions
are now periodic in space and all the integration are performed over TN).
Of course, the conditions at infinity are removed and the spaces Lp

2 can be
replaced by Lp. Here, we have to impose more conditions on the oscillating
part (acoustic waves), namely we have to assume that Qũ0 is more regular
than L2. In fact, in the periodic case, we do not have a dispersion phe-
nomenon as in the case of the whole space and the acoustic waves will not
go to infinity, but they are going to interact with each other. This is why, we
have to include them in the energy estimates to show our convergence result.
This requires an analysis of the possible resonances between the different
modes.

For the next theorem, we assume that Qũ0, ϕ0 ∈ Hs−1 and that there
exists a nonnegative constant ν such that µε + ξε ≥ 2ν > 0 for all ε. For
simplicity, we assume that µε + ξε converges to 2ν.

Theorem 3.12 : (The periodic case) We assume that µε →ε 0 (such that
µε + ξε → 2ν > 0) and that Pũ0 ∈ Hs for some s > N/2 + 1, and Qũ0, ϕ0 ∈
Hs−1 then P (

√
ρεuε) converges to v in L∞(0, T ;L2) for all T < T ∗, where

v is the unique solution of the Euler system in L∞loc(0, T
∗;Hs) and T ∗ is

the existence time of (109). In addition
√
ρεuε converges weakly to v in

L∞(0, T ;L2)

Idea of the proofs
The proofs of theorems 3.11 and 3.12 are based on energy estimates, since

we loose the compactness in x from the viscosity at the limit. Indeed, using
the energy bounds, we deduce that ρε− 1 converges to 0 in L∞(0, T ;Lγ

2) and
that there exists some u ∈ L∞(0, T ;L2) and a subsequence

√
ρεuε converging

weakly to u. Hence, we also deduce that ρεuε converges weakly to u in
L

2γ/(γ+1)
. Here we are in a situation where we do not have compactness in

time and we do not have compactness in space. This is why we have to use
an energy method. For this, we have to describe the oscillations in time and
incorporate them in the energy estimates. It turns out that in the whole
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space case the acoustic waves disperse to infinity as can be deduced from
the Strichartz estimate (84). We also refer to [166] and theorem 3.3 in the
framework of strong solutions and [52] and theorem 3.10 in the framework of
weak solutions. In the sequel, we will concentrate more on the periodic case.
The operators L and L were defined in (83). Let

U ε = (ϕε, Q(ρεuε)) and V ε = L(−t/ε)(ϕε, Q(ρεuε)).

Using that

ε
∂ϕε

∂t
+ div Q(ρεuε) = 0, ε

∂

∂t
Q(ρεuε) +∇ϕε = εFε (110)

for some Fε which is bounded in L2H−r for some r ∈ R, we deduce that

∂tU
ε =

1

ε
LU ε + (0, Fε), and hence that ∂tV

ε = L(−t/ε)(0, Fε). This means

that V ε is compact in time since the oscillations have been canceled by
L(−t/ε). If we had enough compactness in space we could pass to the limit
in this equation and recover the following limit system for the oscillating part

∂tV̄ +Q1(u, V̄ ) +Q2(V̄ , V̄ )− ν∆V̄ = 0, (111)

where Q1 and Q2 are respectively a linear and a bilinear forms in V̄ defined
by

Definition 3.13 For all divergence-free vector field u ∈ L2(Ω)N and all V =
(ψ,∇q) ∈ L2(Ω)N+1, we define the following linear and bilinear symmetric
forms in V

Q1(u, V ) = lim
τ→∞

1

τ

∫ τ

0

L(−s)
(

0

div
(
u⊗ L2(s)V + L2(s)V ⊗ u

))
ds (112)

and

Q2(V, V ) = lim
τ→∞

1

τ

∫ τ

0

L(−s)
(

0

div
(
L2(s)V ⊗ L2(s)V

)
+ γ−1

2
∇(L1(s)V )2

)
ds.

(113)

The convergences stated above take place in W−1,1 and can be shown by
using almost-periodic functions (see [125] and the references therein). We
also notice that

−ν∆V = lim
τ→∞

1

τ

∫ τ

0

−L(−s)
(

0

2ν∆L2(s)V

)
ds (114)
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To recover compactness in space, we will use the regularity of the limit
system. Let V 0 be the solution of the following system

∂tV
0 +Q1(v, V

0) +Q2(V
0, V 0)− ν∆V 0 = 0

V 0
|t=0 = (ϕ0, Qũ0)

(115)

where v is the solution of the incompressible Euler equations with initial data
u0. The existence of global strong solutions for the system (115) (and local
solutions if the viscosity term is removed) can be deduced from the exact
computations of the two forms Q1 and Q2. We point out that in the case
ν > 0, the existence of a global solution to the system (115) is an important
property of (115) which is not shared by the Navier-Stokes system from which
it is derived. Indeed, the nonlinear term Q2(V

0, V 0) can be decomposed into
a countable number of Burgers equations. We refer to [127] for more details.

Finally, the energy method is based on the fact that we can apply a
Gronwall lemma to the following quantity

||√ρεuε − v − L2(
t

ε
)V ||2L2 + ||Φε − L1(

t

ε
)V ||2L2 . (116)

Notice indeed, that from the analysis given above, we expect that
√
ρεuε

behaves like v + L2(
t
ε
)V and that φε and Φε behave like L1(

t
ε
)V . For the

details, we refer to [127].
We want to point out that the method of proof is the same for the whole

space case and is simpler since we do not have to study all the resonances
(the acoustic waves go to infinity). So, we just need to apply a Gronwall
lemma to the quantity given in (116) where V is replaced by V (t = 0).

Remark 3.14 In theorem 3.12, one can remove the condition 2ν > 0. In
that case, we still have the result of theorem 3.12 but only on an interval of
time (0, T ∗∗) which is the existence interval for the equation governing the
oscillating part (115). Indeed, it is easy to see using the particular form of
Q1 and Q2 that if ν > 0 and V (t = 0) ∈ Hs−1 then, we have (as long as v
exists) a global solution in L∞(Hs−1) which satisfies ∇V ∈ L1(0, T ;L∞). On
the other hand if ν = 0 and V (t = 0) ∈ Hs−1 then we can only construct a
local (in time) solution in L∞(Hs−1) which satisfies ∇V ∈ L1(0, T ;L∞) for
all T < T ∗∗.
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3.4 Study of the limit γ →∞
In this subsection we are going to study the limit γ going to infinity. De-
pending on the total mass, we will recover at the limit either a mixed model,
which behaves as a compressible one if ρ < 1 and as an incompressible one
if ρ = 1 or the classical incompressible Navier-Stokes system. We start with
the first case and define the limit system, namely

∂ρ

∂t
+ div(ρu) = 0 in (0, T )× Ω, 0 ≤ ρ ≤ 1 in (0, T )× Ω , (117)

∂ρu

∂t
+ div(ρu⊗ u)− µ∆u− ξ∇divu+∇π = 0 in (0, T )× Ω , (118)

divu = 0 a.e. on
{
ρ = 1

}
, (119)

π = 0 a.e. on
{
ρ < 1

}
, π ≥ 0 a.e. on

{
ρ = 1

}
(120)

In all this section, Ω is taken to be the torus, the whole space or a bounded
domain with Dirichlet boundary conditions. Indeed, the proofs given in
[112] can also apply to the case of Dirichlet boundary conditions, by using
the bounds given in [110] and [67].

Let γn be a sequence of nonnegative real numbers that goes to infinity.
Let (ρn, un) be a sequence of weak solutions to the isentropic compressible
Navier-Stokes equations

∂ρ

∂t
+ div(ρu) = 0 , ρ ≥ 0,

∂ρu

∂t
+ div(ρu⊗ u)− µ∆u− ξ∇divu+∇ργn = 0

(121)

where µ > 0 and µ+ξ > 0. We recall that global weak solutions of the above

system are known to exist, if we assume in addition that γn >
N

2
. This holds

for n large enough. The sequence (ρn, un) satisfies in addition the following
initial conditions and the following bounds,

ρnun(t = 0) = m0
n , ρn(t = 0) = ρ0

n, (122)

where 0 ≤ ρ0
n a.e. , ρ0

n is bounded in L1(Ω) and ρ0
n ∈ Lγn with

∫
(ρ0

n)γn ≤ Cγn

for some fixed C, m0
n ∈ L2γn/(γn+1)(Ω), and ρ0

n|u0
n|

2
is bounded in L1, denoting
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by u0
n =

m0
n

ρ0
n

on {ρ0
n > 0}, u0

n = 0 on {ρ0
n = 0}. In the periodic case or in the

Dirichlet boundary condition case, we also assume that
∫
ρ0

n = Mn, for some
Mn such that 0 < Mn ≤ M < 1 and Mn → M . Furthermore, we assume
that ρ0

nu
0
n converges weakly in L2 to some m0 and that ρ0

n converges weakly
in L1 to some ρ0. The last requirement concerns the following energy bounds
we impose on the sequence of solutions we consider,

En(t) +

∫ t

0

Dn(s)ds ≤ E0
n a.e. t,

dEn

dt
+Dn ≤ 0 in D′

(0,∞) (123)

where En(t) =

∫
1

2
ρn|un|2(t) +

a

γn − 1
(ρn)γn(t), Dn(t) =

∫
µ|Dun|2(t) + ξ

(divun)2(t) and E0
n =

∫
1

2
ρ0

n|u0
n|2 +

a

γn − 1
(ρ0

n)γn .

Without loss of generality, extracting subsequences if necessary, we can
assume that (ρn, un) converges weakly to (ρ, u). More precisely we can as-
sume that ρn ⇀ ρ weakly in Lp((0, T ) × Ω) for any 1 ≤ p ≤ ∞ and that
ρ ∈ L∞(0, T ;Lp) (in fact we will show that ρ actually satisfies 0 ≤ ρ ≤ 1 ),
un ⇀ u weakly in L2(0, T ;H1

loc).
Before stating the main theorem, we have to define precisely the notion

of weak solutions for the limit system. (ρ, u, π) is called a weak solution of
the limit system (117-120) if

ρ ∈ L∞(0, T ;L∞ ∩ L1(Ω)) ∩ C(0, T ;Lp) for any 1 ≤ p <∞ (124)

∇u ∈ L2(0, T, L2) and u ∈ L2(0, T ;H1(B)), (125)

where B = Ω if Ω = TN or if Ω is a bounded domain (with Dirichlet boundary
conditions) and B is any ball in RN if Ω = RN , in this last case we also impose
that u ∈ L2(0, T, L2N/N−2(RN)), if in addition N ≥ 3.
Moreover,

ρ|u|2 ∈ L∞(0,∞;L1) and ρu ∈ L∞(0,∞;L2) (126)

Next, equations (117), (118) must be satisfied in the distributional sense.
This can be written using a weak formulation (which also incorporate the
initial conditions in some weak sense), namely we require that the following
identities hold for all φ ∈ C∞([0,∞)× Ω) and for all Φ ∈ C∞([0,∞)× Ω)

N
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compactly supported in [0,∞) × Ω (i.e. vanishing identically for t large
enough)

−
∫ ∞

0

dt

∫
Ω

ρ∂tφ−
∫

Ω

ρ0φ(0)−
∫ ∞

0

dt

∫
Ω

ρu.∇φ = 0, (127)

−
∫ ∞

0

dt

∫
Ω

ρu.∂tΦ−
∫

Ω

m0.Φ(0)−
∫ ∞

0

dt

∫
Ω

ρ(u.∇Φ).u+ (128)

+

∫ ∞

0

dt
{∫

Ω

µDu.DΦ + ξdivudivΦ
}
− π divΦ = 0.

On the other hand, the equation (120) should be understood in the following
way ρπ = π ≥ 0. Of course, we have to define the sense of the product ρπ
since, we only require that π ∈ M. Indeed, the product can be defined by
using that

ρ ∈ C([0, T ];Lp) ∩ C1([0, T ];H−1),

π ∈ W−1,∞(H1) + L1(LN/(N−2) ∩ Lα(Lβ) + L2(L2).
(129)

where 1 < α, β <∞ and
1

β
=

1

α

N − 2

N
+ (1− 1

α
).

Finally, equation (119) is just a consequence of (117), however we incor-
porate it in the limit system to emphasis the fact that it is a mixed system
which behaves like a compressible one if ρ < 1 and as an incompressible one
if ρ = 1.

Theorem 3.15 Under the above conditions, we have 0 ≤ ρ ≤ 1 and

(ρn − 1)+ → 0 in L∞(0, T ;Lp) for any 1 ≤ p < +∞.

Moreover, (ρn)γn is bounded in L1 (for n such that γn ≥ N). Then extracting
subsequences again, there exists π ∈M((0, T )× Ω) such that

(ρn)γn ⇀n π. (130)

If in addition ρ0
n converges in L1 to ρ0 then (ρ, u, π) is a weak solution of

(117-120) and the following strong convergences hold

ρn → ρ in C(0, T ;Lp(Ω)) for any 1 ≤ p < +∞

ρnun → ρu in Lp(0, T ;Lq(Ω)) for any 1 ≤ p < +∞, 1 ≤ q < 2

ρnun ⊗ un → ρu⊗ u in Lp(0, T ;L1(Ω)) for any 1 ≤ p < +∞.
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The second result concerns the case M > 1. Let (ρn, un) be a sequence
of solutions of (121) satisfying the above requirement but where we assume
now that

∫
ρ0

n = M > 1,
∫

(ρ0
n)γn ≤Mγn + Cγn for some fixed C.

Theorem 3.16 Under the above assumptions, ρn converges to M in C([0, T ];Lp(Ω))
for 1 ≤ p < +∞,

√
ρn un converges weakly to

√
Mu in L∞(0, T ;L2(Ω)) and

Dun converges weakly to Du in L2(0, T ;L2(Ω)) for all T ∈ (0,∞) where u is
a solution of the incompressible Navier-Stokes system

∂u

∂t
+ div(u⊗ u)− µ

M
∆u+∇p = 0,

div(u) = 0, u|t=0 = P (m0).

For the proof of these two theorems we refer to [112] and to [124] for the
Dirichlet boundary condition case.

3.5 The Non-isentropic case

We consider the non-isentropic compressible Euler system. This can be writ-
ten after some simple change of variable in the following form (see [133])

a(∂tq + v · ∇q) + 1
ε
∇ · v = 0

r(∂tv + v · ∇v) + 1
ε
∇q = 0

∂tS + v · ∇S = 0

(131)

where a = a(S, εq) and r = r(S, εq) are positive given function of S and εq.
In (131), S is the entropy, P = Peεq is the pressure for some constant P
and v is a rescaled velocity. The equation of state is given by the density
ρ = R(S, P ) from which we can deduce the function a and r by

a(S, εq) =
P

R

∂R(S, P )

∂P
r(S, εq) =

R(S, P )

P
. (132)

Formally when ε goes to zero, we expect that the solution (qε, vε, Sε) to the
system (131) converges to a solution of the following limit system

r0(S)(∂tv + v · ∇v) +∇π = 0

div(v) = 0

∂tS + v · ∇S = 0

(133)
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where r0(S) = r(S, 0). The limit system (133) is an inhomogeneous incom-
pressible Euler system (see [108] for some remarks about this system). This
convergence was first proved in the “well-prepared” case in [153].

For general initial data, there are two major questions we can ask about
the system (131). Can we solve (131) on some time interval which is inde-
pendent of ε ? and can we characterize the limit of (qε, vε, Sε) when ε goes
to zero ? For the first question a full satisfactory answer is given in [133].
For the second equation, Métivier and Schochet [133] prove the convergence
towards the limit system (133) in the whole space by using the dispersion
for a wave equation with non constant coefficients. For the periodic case the
problem is much more involved due to the oscillations in time. In [134], the
same authors give some partial results. The case of the exterior domain is
treated in [2]. Before stating the result of [133], let us mention the reference
[26] where a formal computation is made in the periodic case and the recent
paper [3] where the full compressible Navier-Stokes is considered in the whole
space.

Let us take some initial data for (131) (qε, vε, Sε)(t = 0) = (q0
ε , v

0
ε , S

0
ε ).

The following result is proved in [133]. The first part applies to the case
Ω = TN and Ω = RN (see also [2] for domains with boundary). The second
part is only for the whole space case (see [2] for the case of an exterior
domain).

Theorem 3.17 i) Assume that ‖(q0
ε , v

0
ε , S

0
ε )‖Hs ≤ M0 where s > N/2 + 1.

There exists T = T (M0) such that for all 0 < ε ≤ 1, the Cauchy problem with
the initial data (q0

ε , v
0
ε , S

0
ε ) has a unique solution (qε, vε, Sε) ∈ C([0, T ];Hs).

ii) Moreover if Ω = RN and (v0
ε , S

0
ε ) converges in Hs(RN) to some (v0, S0)

and S0
ε decays at infinity in the sense

|Sε
0(x)| ≤ C|x|−1−δ |∇Sε

0(x)| ≤ C|x|−2−δ

then (qε, vε, Sε) converges weakly in L∞(0, T ;Hs) and strongly in L2(0, T ;Hs′

loc)
for all s′ < s to a limit (0, v, S). Moreover, (v, S) is the unique solution in
C([0, T ];Hs) of the limit system (133) with the initial data (w0, S0) where w0

is the unique solution in Hs(RN) of

div(w0) = 0, curl(r0w0) = curl(r0v0), where r0 = r(S0, 0). (134)

The difficulty in proving the convergence towards the limit system is that
the acoustic waves satisfy a wave equation with variable coefficients. The
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proof of the convergence is based on the use of the H−measures (which were
introduced by Gérard [72] and Tartar [161]) to analysis the oscillating part
and actually prove that it disperses to infinity as was the case in the isentropic
case.

4 Study of rotating fluids at high frequency

In this section, we will study rotating fluids when the frequency of rotation
goes to zero. This is a singular limit which has many similarities with the
compressible-incompressible limit. We will not detail all the known results
for this system. We consider the following system of equations

∂tu
n + div(un ⊗ un)− ν∂2

zu
n − η∆x,yu

n +
e3 × un

ε
= −∇p

ε
+ F in Ω(135)

div(un) = 0 in Ω (136)

un(0) = un
0 with div(un

0 ) = 0 (137)

un = 0 on ∂Ω (138)

where for example Ω = T2×]0, h[ or Ω = T3, ν = νn and η = ηn are
respectively the vertical and horizontal viscosities and ε = εn is the Rossby
number. This system describes the motion of a rotating fluid as the Ekman
and Rossby numbers go to zero (see Pedlovsky [144], and Greenspan [80]).
It can model the ocean, the atmosphere, or a rotating fluid in a container.
As for the compressible-incompressible limit the limit system can depend on
the boundary conditions in a non trivial way.

4.1 The periodic case

When there is no boundary (Ω = T3 for instance) and when ν = η = 1 (the
Navier-Stokes case) or ν = η = 0 (the Euler case), the problem was studied
by several authors ([81], [33], [8], [9], [10], [63], [68], [143]...) by using the
group method of [154] and [81]. This method was first introduced to treat the
compressible incompressible limit (see subsections 3.2.1 and 3.3.5). Basically,
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denoting Lu = −P (e3 × u) and L(τ) = eτL, we see that vn = L(−t/ε)un

satisfies

∂tv
n + L(−t/ε)

[
div(un ⊗ un)− ν∂2

zu
n − η∆x,yu

n
]

= −∇q in Ω (139)

which gives compactness in time for vn.
The special structure of the limit system which is similar to (159) allows

to prove results about long time existence for the Navier-Stokes system when
ε goes to zero. This means in some sense that the rotation has a regularizing
effect. This regularizing effect also appear when we deal with boundary layers
(see the next subsection).

The method introduced in [154] fails when Ω has a boundary (except in
very particular cases where there is no boundary layer, or where boundary
layers can be eliminated by symmetry [23]).

4.2 Ekman boundary layers in Ω = T2×]0, h[

In domains with boundaries (for instance Ω = T2×]0, h[), the case of “well-
prepared” initial data was treated in [37], [84], [123], [73]. Here “well-
prepared” initial data means that Lu0 = 0 which implies that the initial
data is bi-dimensional and only depends on the horizontal variables. No-
tice that this implies that there are no oscillations in time. In this case a
boundary layer appears at z = 0 and z = h to match the non-slip boundary
condition with the interior flow. This boundary layer is responsible of the
so-called Ekman damping. Let us give a formal expansion leading to the
Ekman boundary layer in the well-prepared case (see [84])

4.2.1 Formal expansion

For convenience we will take here ε = ν, otherwise there is not such a formal
development. Let us write un, p and F in the following form

U = U0(t, x, y, z,
z

l
,
h− z

l
) + εU1 + ...

where l is the length of the boundary layer. Notice here that we do not have
a dependence on t

ε
since we are concerned here with the well-prepared case.

U0 is decomposed as

U0 = U0(t, x, y, z) + Ũ0(t, x, y, θ) + Ŭ0(t, x, y, λ),
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is the sum of an interior term U0 and of two boundary layer terms Ũ0 and Ŭ0

respectively near z = 0 and z = h, where we set θ = z/l and λ = (h− z)/l.
We enforce

lim
θ→∞

Ũ = 0 and lim
λ→∞

Ŭ = 0,

and, to get the good limit conditions at z = 0 and z = h,

u0(t, x, y, z = 0) + ũ0(t, x, y, θ = 0) = 0, (140)

u0(t, x, y, z = h) + ŭ0(t, x, y, λ = 0) = 0. (141)

Since the Ekman boundary layers come from the interaction between the
viscosity ν∂2

zu and the Coriolis force ε−1(e3 × u), we take l =
√
εν, hence

l = ε, in this section. Let us focus on the boundary layer near z = 0. At the
leading order ε−2 , one gets

∂θp̃
0 = 0 hence p̃0 = 0.

The pressure does not change in the boundary layer, which is classical in
fluid mechanics. One also has from (135)

−u0
2 = −∂xp

0, (142)

u0
1 = −∂yp

0, (143)

0 = −∂zp
0, (144)

−∂2
θ ũ

0
1 − ũ0

2 = 0, (145)

−∂2
θ ũ

0
2 + ũ0

1 = 0, (146)

−∂2
θ ũ

0
3 = −∂θp̃

1, (147)

and from (136)
∂θũ

0
3 = 0 hence ũ0

3 = 0, (148)

∂xu
0
1 + ∂yu

0
2 + ∂zu

0
3 = 0, (149)

∂xũ
0
1 + ∂yũ

0
2 + ∂θũ

1
3 = 0. (150)

Then we obtain from (144) that p0 does not depend on z, and from (147)
and (148) that ∂θp̃

1 = 0 and hence that p̃1 = 0. Therefore (142) and (143)
give that u0

1 and u0
2 do not depend on z, and that

∂xu
0
1 + ∂yu

0
2 = 0. (151)
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Subtracting this from (149), one gets that u0
3 does not depend on z, and since

ũ0
3 = 0, (140) leads to u0

3 = 0.
Hence u0 satisfies an equation of 2-D Navier-Stokes’ type. To find this

equation, one must take the next order of (42), which gives

∂tu
0 +∇(u0 ⊗ u0)−∆x,yu

0 +

 −u1
2

u1
1

0

 = −∇p1 + F 0(t, x, y, z) in ω(152)

We will suppose that F 0 does not depend on z, and that F 0
3 (t, x, y) = 0. The

third component gives that p1 does not depend on z. Combining this with
(152), one finds that u1

1 and u1
2 do not depend on z. Hence the divergence-free

condition for u1 shows that u1
3 is affine.

Let ζ0 = curl u0. We have

∂tζ
0 + (u0.∇)ζ0 −∆x,yζ

0 − curl F 0 = −∂xu
1
1 − ∂yu

1
2 = ∂zu

1
3.

Integrating this equation with respect to z, we obtain

∂tζ
0 + (u0.∇)ζ0 −∆x,yζ

0 − curl F 0 = h−1(u1
3(z = h)− u1

3(z = 0)).

Therefore there is a source term in the equation of the vorticity, term which
is given by the vertical velocity of the fluid just outside the Ekman boundary
layer. So let us compute the boundary layer ũ0, which satisfies

∂2
θ ũ

0
1 = −ũ0

2

∂2
θ ũ

0
2 = +ũ0

1

ũ0
1(θ = 0) = −u0

1, limθ→∞ ũ0
1 = 0

ũ0
2(θ = 0) = −u0

2, limθ→∞ ũ0
2 = 0

The solution is given by ũ0
1 = −e−

θ√
2

(
u0

1 cos( θ√
2
) + u0

2 sin( θ√
2
)
)

ũ0
2 = −e−

θ√
2

(
u0

2 cos( θ√
2
)− u0

1 sin( θ√
2
)
)

Reporting this in (150), and using (151), one gets

∂θũ
1
3 = e

− θ√
2 (∂xu

0
2 − ∂yu

0
1) sin(

θ√
2
)
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Integrating this equation,

ũ1
3 = −e

− θ√
2

√
2

(∂xu
0
2 − ∂yu

0
1)(sin(

θ√
2
) + cos(

θ√
2
)) (153)

The integration constant is 0, because limθ→∞ ũ0
3 = 0.

The same calculus holds for the boundary layer at z = h, if we change θ
by λ and ∂θ by −∂λ

ŭ0
1 = −e−

λ√
2

(
u0

1 cos( λ√
2
) + u0

2 sin( λ√
2
)
)

ŭ0
2 = −e−

λ√
2

(
u0

2 cos( λ√
2
)− u0

1 sin( λ√
2
)
)

ŭ1
3 = e

− λ√
2√

2
(∂xu

0
2 − ∂yu

0
1)

(
sin( λ√

2
) + cos( λ√

2
)
)

Using the limit conditions, and the fact that u1
3 is affine, one gets

u1
3 =

(∂xu
0
2 − ∂yu

0
1)√

2

(
1− 2z

h

)
(154)

∂zu
1
3 = −

√
2

h
(∂xu

0
2 − ∂yu

0
1) (155)

Coming back to (152), we find the limit system

∂tu
0 +∇(u0 ⊗ u0)−∆x,yu

0 +

√
2

h
u0 = −∇q + F 0 in ω (156)

Hence (u0
1, u

0
2) satisfies a 2-D Navier-Stokes system with a damping term (we

recall u0
3 = 0).

4.2.2 The “ill-prepared” case

We want here to present the result of [125] where Ω = T2×]0, h[ and we
consider “ill-prepared” initial data. Here, we have to study the oscillations
in time and show that they do not affect the averaged flow. We can apply
the same formal expansion as in the previous subsection taking into account
the oscillations in time, namely

U = U0(
t

ε
, t, x, y, z,

z

l
,
h− z

l
) + εU1 + ... (157)
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U0 = U0(τ, t, x, y, z) + Ũ0(τ, t, x, y, θ) + Ŭ0(τ, t, x, y, λ). (158)

We do not detail this expansion here and refer to [125]. We only point
out that there are two extra difficulties here. Indeed, there is an oscillating
boundary layer for each mode which has a vertical component. Moreover,
we have to deal with the resonances between the different modes as in the
works cited in the periodic case.

To write down the limit system, we introduce the spaces V s
sym consisting

of functions of Hs with some extra conditions on the boundary (see [125]).
We also set Lu = −P (e3×u), where P is the projection onto divergence-free
vector fields such that the third component vanishes on the boundary and
L(τ) = eτL. Let us denote w the solution in L∞(0, T ∗, V s

sym) of the following
system 

∂tw +Q(w,w)−∆x,yw + γS(w) = −∇p in Ω,

div(w) = 0 in Ω,

w.n = ±w3 = 0 on ∂Ω,

w(t = 0) = w0.

(159)

where Q(w,w), S(w) are respectively a bilinear and a linear operators of w,
given by

Q(w,w) =
∑
l,m,k

k∈A(l,m)
λ(l)+λ(m)=λ(k)

b(t, l)b(t,m)αlmkN
k(X) (160)

where the Nk are the eigenfunctions of L and iλ(k) are the associated
eigenvalues, αlmk are constants which depends on (l,m, k) and A(l,m) =
{l +m, Sl +m, l + Sm, Sl + Sm}, (Sl = (l1, l2,−l3)) is the set of possible
resonances. The bilinear term Q is due to the fact that only resonant modes
in the advective term w.∇w are present in the limit equation.

S(w) =
∑

k

1

h
(D(k) + iI(k))b(t, k)Nk(X)

where

D(k) =
√

2
{

(1− λ(k)2)
1
2

}
, I(k) =

√
2
{
λ(k)(1− λ(k)2)

1
2

}
.

In fact S(w) is a damping term that depends on the frequencies λ(k), since
D(k) ≥ 0. It is due to the presence of a boundary layer which creates a second
flow of order ε responsible of this damping (called damping of Ekman).
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Theorem 4.1 Let s > 5/2, and w0 ∈ V s
sym(Ω)3, ∇.w0 = 0. We assume

that un
0 converges in L2(Ω) to w0, η = 1 and ε, ν go to 0 such that

√
ν
ε
→ γ.

Then any sequence of global weak solutions (à la Leray) un of (135- 138)
satisfying the energy inequality satisfies

un − L(
t

ε
)w → 0 in L∞(0, T ∗, L2(Ω)),

∇x,y(u
n − L(

t

ε
)w),

√
ν∂zu

n → 0 in L2(0, T ∗, L2(Ω))

where w is the solution in L∞(0, T ∗, V s
sym) of (159)

The above theorem gives a precise description of the oscillations in the
sequence un. We can also show that the oscillations do not affect the averaged
flow (also called the quasi-geostrophic flow). We see then that w (the weak
limit of un) satisfies a 2-D Navier-Stokes equation with a damping term,
namely 

∂tw + w.∇w − η∆x,yw + γ
√

2
h
w = −∇p in T2,

div(w) = 0 in T2,

w(t = 0) = S(w0) = w0,

(161)

where S is the projection onto the slow modes, namely that do not depend
on z, w(t, x, y) = S(w) = (1/h)

∫ h

0
w(t, x, y, z)dz.

This can be proved by studying the operator Q and showing that if k ∈
A(l,m) with k3 = 0 and l3m3 6= 0 than αlmk + αmlk = 0.

4.2.3 Non flat bottom

In [125], we also deal with other boundary conditions, and construct Ekman
layers near a non flat bottom

Ωδ = {(x, y, z), where (x, y) ∈ T2, and δf(x, y) < z < h},

with the following boundary conditions

u(x, y, δf(x, y)) = 0. (162)

We also treat the case of a free surface,

un
3 (z = h) = 0 ∂z

(
un

1

un
2

)
|z=h

=
1

β
σ(
t

ε
, t, x, y) (163)

where σ describes the wind (see [144]). Next, we have the following theorem
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Theorem 4.2 Let un be global weak solutions of (135,136,137, 162,163). If
η = 1 and (ε, ν, β, δ) → (0, 0, 0, 0) then

uν − L(
t

ε
)w → 0 in L∞(0, T ∗;L2(Ω)),

∇x,y(u
ν − L(

t

ε
)w),

√
ν∂zu

ν → 0 in L2(0, T ∗;L2(Ω))

where w is the solution of the following system (
√

ν
ε
, ν

β
, δ

ε
stand for the limit

of these quantities when n goes to infinity)
∂tw +Q(w,w)−∆x,yw + 1

2

√
ν
ε
S(w) + ν

β
S1(σ) + δ

ε
S2(f, w) = −∇p

div(w) = 0 in Ω,
w.n = ±w3 = 0 on ∂Ω,

w(t = 0) = w0.

(164)

where S1(σ), and S2(f, w) are source terms that are due respectively to the
wind , and to the non flat bottom.

The proofs of the above two theorems are based (as in the previous sec-
tion) on energy estimates and use a more complicated corrector due to the
presence of oscillations in time as well as the presence of different types of
boundary layers. For more details about the proof, we refer to the original
paper [125].

4.3 The case of other geometries

In the whole space case or in a domain Ω = R2×]0, h[ the oscillations dis-
perse to infinity as was the case for the acoustic waves in the compressible-
incompressible limit. Let us state the following result for Ω = R2×]0, h[
taken from [35]. We take η to be constant and ν = ε.

Theorem 4.3 Let u0 be a divergence free vector field is L2, u0.n = u03 = 0
on ∂Ω. Let uε be a family of weak solutions of (135- 138) written in Ω =
R2×]0, h[. Let w be the global solution of the 2D Navier-Stokes system (161)
in R2 with the initial data S(w0). Then, we have

‖uε − (w, 0)‖L∞(R+;L2
loc(R2×]0,h[)) + ‖∇(uε − (w, 0))‖L2(R+;L2

loc(R2×]0,h[)) → 0
(165)

when ε goes to zero.
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The proof of this theorem uses the Ekman layer constructed in subsection
4.2.1 and some Strichartz type estimate for the oscillating part.

Let us also mention that the study of other geometries such as cylindrical
domains were also studied [25].

4.4 Other related problems

We would like to end this section on rotating fluids by mentioning few related
results. First, other physical systems present very similar properties to the
rotating fluids. For instance there are several singular limits coming from
magneto-hydrodynamic which have similar properties as the rotating fluids.
We refer to [51] and [20]

An other important question concerns the stability of boundary layers.
Indeed, in the previous subsection, we dealt with the case the horizontal
viscosity was not going to zero. We can also study the case where η goes to
zero. For the case without rotation we are lead to the inviscid limit which
was studied in section 2. It was proved that if ν, η and ν/η go to zero then
we have convergence towards the Euler system. In other words the horizontal
viscosity has a regularizing effect which is not shared by the vertical one. In
the case with rotation and when ν = η, we can prove [123] (see also [125] for
the ill-prepared case) that if

‖w‖L∞ ≤ C
ν

ε
, (166)

for some small enough constant C, then we have convergence towards the
Euler system with damping, namely (161) with η = 0. This means that the
rotation has a regularizing effect. Condition (166) is a stability condition.
It was proved in [53] that the boundary layer can be instable if (166) is not
satisfied. More precisely, Desjardins and Grenier [53] prove the instability
of the Ekman boundary layer under a more precise spectral condition. The
stability condition (166) can also be refined to match the spectral condition.
This was done by Rousset [148] for the case of Ekman boundary layers and
[147] for the case of Ekman-Hartmann boundary layers.
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5 Hydrodynamic limit of the Boltzmann equa-

tion

From a physical point of view, we expect that a gas can be described by
a fluid equation when the mean free path (Knudsen number) goes to zero.
During the last two decades this problem got a lot of interest and specially
after DiPerna and Lions constructed their renormalized solutions [56]. In this
section, we present some of the most recent results concerning these (rigorous)
derivations. We will present results for the three most classical equations
of fluid mechanics in the incompressible regime, namely the incompressible
Navier-Stokes equation, the Stokes equation and the Euler equation. We will
also present some derivation of Fluid Mechanic boundary conditions starting
from kinetic boundary conditions [132].

5.1 Scalings and formal asymptotics

In his sixth problem, Hilbert asked for a full mathematical justification of
fluid mechanics equations starting from particle systems [88]. If we take the
Boltzmann equation as a starting point, this problem can be stated as an
asymptotic problem. Namely, starting from the Boltzmann equation, can we
derive fluid mechanics equations and in which regime ?

A program in this direction was initiated by Bardos, Golse and Lever-
more [12] who, using the the renormalized solutions to the Boltzmann equa-
tion constructed by DiPerna and Lions, set an asymptotic regime where one
can derive different fluid equations (and in particular incompressible models)
depending on the chosen scaling.

5.1.1 The Boltzmann equation

The Boltzmann equation describes the evolution of the particle density of a
rarefied gas. Indeed, the molecules of a gas can be modeled by hard spheres
that move according to the laws of classical mechanics. However, due to the
enormous number of molecules (about 2.7 1019 molecules in a cubic centime-
ter of gas at 1 atm and 00 C), it seems difficult to describe the state of the
gas by giving the position and velocity of each individual particle. Hence,
we must use some statistics and instead of giving the position and velocity
of each particle, we specify the density of particles F (x, v) at each point
x and velocity v. This means that we describe the gas by giving for each
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point x and velocity v the number of particles F (x, v) dx dv in the volume
(x, x+ dx)× (v, v + dv).

Under some assumptions (rarefied gas, ...), it is possible to derive (at
least formally) the Boltzmann equation from the classical Newton laws in an
asymptotic regime where the number of particles goes to infinity. (see [101],
[157] and [31] for some rigorous results about the derivation of the Boltzmann
equation starting from the N particle system).

The Boltzmann equation reads

∂tF + v.∇xF = B(F, F ) (167)

where the collision kernel B(F, F ) is a quadratic form which acts only on
the v variable. It describes the possible interaction between two different
particles and is given by

B(F, F )(v) =

∫
RD

∫
SD−1

(F ′
1F

′ − F1F )b(v − v1, ω)dv1dω (168)

where we have used the following notation for all function φ

φ′ = φ(v′), φ1 = φ(v1), φ′1 = φ(v′1), (169)

and where the primed speeds are given by

v′ = v + ω[ω.(v1 − v)], v′1 = v − ω[ω.(v1 − v)]. (170)

Moreover, the Boltzmann cross-section b(z, ω) (z ∈ RD, ω ∈ SD−1) depends
on the molecular interactions (intermolecular potential). It is a nonnegative,
locally integrable function (at least when grazing collisions are neglected).
The Galilean invariance of the collisions implies that b depends only on v −
v1, ω and that

b(z, ω) = |z|S(|z|, |µc|), µc =
ω.(v1 − v)

|v1 − v|
, (171)

where S is the specific differential cross-section. We also insist on the fact
that the relations (170) are equivalent to the following conservations

v′ + v′1 = v + v1 (conservation of the moment) (172)

|v′|2 + |v′1|2 = |v|2 + |v1|2 (conservation of the kinetic energy) (173)

We notice that the fact that two particles give two particles after the interac-
tion translates the conservation of mass. For a more precise discussion about
the Boltzmann equation, we refer to [30], [31] and [168]. For some numerical
works on the hydrodynamic limit, we refer to [156].
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5.1.2 Compressible Euler

We start here by explaining how one can derive (at least formally) the Com-
pressible Euler equation from the Boltzmann equation. A rigorous derivation
can be found in Caflisch [28]. If F satisfies the Boltzmann equation, we de-
duce by integration in the v variable (at least formally) the following local
conservations 

∂t

(∫
RD F dv

)
+∇x.

(∫
RD v F dv

)
= 0

∂t

(∫
RD vF dv

)
+∇x.

(∫
RD v ⊗ v F dv

)
= 0

∂t

(∫
RD |v|2F dv

)
+∇x.

(∫
RD v|v|2 F dv

)
= 0

(174)

These three equations describe respectively the conservation of mass, mo-
mentum and energy. They present a great resemblance with the compressible
Euler equation. However, the third moment

∫
RD v|v|2 F dv is not a function

of the others and depends in general on the whole distribution F (v). In the
asymptotic regimes we want to study, the distribution F (v) will be very close
to a Maxwellian due to the fact that the Knudsen number is going to 0. If
we make the assumption that F (v) is a Maxwellian for all t and x, then the
third moment

∫
RD v|v|2 F dv can be given as a function of ρ =

∫
RD F dv,

ρu =
∫

RD vF dv and ρ(1
2
|u|2 + D

2
θ) =

∫
RD

1
2
|v|2F dv. Moreover, for all i and

j,
∫

RD vivjF dv can also be expressed as a function of ρ, u and θ.
We recall that a Maxwellian Mρ,u,θ is completely defined by its density,

bulk velocity and temperature

Mρ,u,θ =
ρ

(2πθ)D/2
exp(− 1

2θ
|v − u|2) (175)

where ρ, u and θ depend only on t and x. If, we assume that for all t and x,
F is a Maxwellian given by F = Mρ(t,x),u(t,x),θ(t,x) then (174) reduces to

∂tρ+∇x.ρu = 0

∂t(ρu) +∇x.(ρu⊗ u) +∇x(ρθ) = 0

∂t

(
1
2
ρ|u|2 + D

2
ρθ

)
+∇x.

(
ρu(1

2
|u|2 + D+2

2
θ)

)
= 0

(176)

which is the compressible Euler system for a mono-atomic perfect gas. This
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derivation can become rigorous, if we take a sequence of solutions Fε of

∂tFε + v.∇xFε =
1

ε
B(Fε, Fε) (177)

where ε is the Knudsen number which goes to 0 (see R. Caflisch [28]). For-
mally the presence of the term 1

ε
in front of 1

ε
B(Fε, Fε) implies (at the limit)

that B(F, F ) = 0 which means that F is a Maxwellian (see [30], [31] or [168]
for a proof of this fact).

5.1.3 Incompressible scalings

In the last subsection, we explained how we can derive the compressible
Euler equation. It turns out that using different scalings, one can also derive
incompressible models. We will explain what these scalings mean concerning
the the Knudsen, Reynolds and Mach numbers. We consider the following
global Maxwellian M which corresponds to ρ = θ = 1 and u = 0.

M(v) =
1

(2π)D/2
exp(−1

2
|v|2). (178)

Let Fε = MGε = M(1 + εmgε) be a solution of the following Boltzmann
equation

εs∂tFε + v.∇Fε =
1

εq
B(Fε, Fε) (179)

which is also equivalent to

εs∂tGε + v.∇Gε =
1

εq
Q(Gε, Gε) (180)

where

Q(G,G)(v) =

∫
RD

∫
SD−1

(G′
1G

′ −G1G)b(v − v1, ω)M1dv1dω. (181)

With this scaling, we can define

Ma = εm, Kn = εq, Re = εm−q. (182)

Here εs is a time scaling which is related to the Strouhal number. We re-
call that St = L

TU
and hence St = εs−m. This scaling in time allows us to

choose the phenomenon we want to emphasize. By varying m, q and s, we
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can formally derive the following systems (see the references below for some
rigorous mathematical results). A part from the first case where the com-
pressible Euler system is satisfied by the moments of F , the fluid equations
are recovered for the moments of the fluctuation g and we can show at least

formally that g = ρ + u.v + θ( |v|
2

2
− D

2
) where (ρ, u, θ) satisfies one of the

above equations
1) q = 1, m = 0, s = 0 Compressible Euler system [28, 100, 167]
2) q = 1, m > 0, s = 0 Acoustic waves [14]

∂tρ+∇x.u = 0
∂tu+∇x(ρ+ θ) = 0
∂t(ρ+ θ) + D+2

D
∇x.u = 0

(183)

We notice here that for these two first cases, we have StMa = 1 which is
the condition to see some acoustic effects at the limit.

3) q = 1, m = 1, s = 1 Incompressible Navier-Stokes-Fourier system
[49, 12, 16, 114, 78]

∂tu+ u.∇u− ν∆u+∇p = 0, ∇x.u = 0

∂tθ + u.∇θ − κ∆θ = 0, ρ+ θ = 0

4) q = 1, m > 1, s = 1 Stokes-Fourier system [13, 14, 115, 74, 132]
∂tu− ν∆u+∇p = 0, ∇x.u = 0

∂tθ − κ∆θ = 0, ρ+ θ = 0

5) q > 1, m = 1, s = 1 Incompressible Euler-Fourier system [115, 149]


∂tu+ u.∇u+∇p = 0, ∇x.u = 0

∂tθ + u.∇θ = 0, ρ+ θ = 0.

Note that the compressible Navier-Stokes system (with a viscosity of order 1)
can not be derived in this manner because of the following physical relation

Re = C
Ma

Kn
. (184)

However, the compressible Navier-Stokes system with a viscosity of order ε
can be considered as a better approximation than the Compressible Euler
system in the case q = 1, m = 0, s = 0.
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5.1.4 Formal development

Here, we want to explain (at least formally) how we can derive the incom-
pressible Navier-Stokes system for the bulk velocity and the Fourier equation
for the temperature starting from the Boltzmann system with the scalings
q = 1, m = 1, s = 1. A simple adaptation of the argument also yields a for-
mal derivation of the Stokes-Fourier system (which is the linearization of the
Navier-Stokes-Fourier system) as well as the Euler. Rewriting the equation
satisfied by gε, we get

∂tgε +
1

ε
v.∇xgε = − 1

ε2
Lgε +

1

ε
Q(gε, gε) (185)

where L is the linearized collision operator given by

Lg =

∫
RD

∫
SD−1

(g + g1 − g′1 − g′)b(v − v1, ω)M1dv1 dω (186)

We assume that gε can be decomposed as follows gε = g + εh + ε2k + O(ε3)
and we make the following formal development

1

ε2
: Lg = 0. (187)

A simple study of the operator L shows that it is formally self-adjoint, non
negative for the following scalar product < f, g >= 〈f g〉 where we use
the following notation 〈g〉 =

∫
RD gMdv and Ker(L) = {g, g = α + β.v +

γ|v|2, where (α, β, γ) ∈ R × RD × R}. Hence, we deduce that g = ρ +

u.v + θ( |v|
2

2
− D

2
).

1

ε
: v.∇g = −Lh+Q(g, g). (188)

Integrating over v, we infer that u = 〈vg〉 is divergence-free (div u = 0).
Moreover, multiplying by v and taking the integral over v, we infer that
∇(ρ+ θ) = 0 which is the Boussinesq relation. Besides, at order 1, we have

1

ε0
: ∂tg + v.∇xh = −Lk + 2Q(g, h), (189)

from which we deduce that

1

ε0
: ∂t〈vg〉+∇x.〈v ⊗ vh〉 = 0, (190)

1

ε0
: ∂t〈(

|v|2

D + 2
− 1)g〉+∇x.〈v(

|v|2

D + 2
− 1)h〉 = 0. (191)
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To get a closed equation for g, we have to inverse the operator L. We define
the matrix φ(v) and the vector ψ(v) as the unique solutions of

Lφ(v) = v ⊗ v − 1

D
|v|2I, Lψ(v) = (

|v|2

D + 2
− 1)v (192)

which are orthogonal to Ker(L) for the scalar product < · , · >. We also
define the viscosity ν and the heat conductivity κ by

ν =
1

(D − 1)(D + 2)
〈φ : Lφ〉, (193)

κ =
2

D(D + 2)
〈ψ.Lψ〉. (194)

We notice that ν and κ only depend on b. Using that L is formally self-
adjoint, we deduce that

∂t〈gvi〉+∇x.
〈
φij(Q(g, g)− v.∇g)

〉
+∇ 〈|v|

2

N
h〉 = 0 (195)

∂t〈g(
|v|2

D + 2
− 1)〉+∇x.

〈
ψ(Q(g, g)− v.∇g)

〉
= 0 (196)

A simple (but long) computation gives the Navier-Stokes equation and the
Fourier equation, namely

∂tu+ u.∇u− ν∆u+∇p = 0 (197)

∂tθ + u.∇θ − κ∆θ = 0 (198)

where u = 〈gv〉, θ = −ρ = 〈( |v|2
D+2

− 1)g〉 and the pressure p is the sum of
different contributions.

5.1.5 Mathematical difficulties

Here, we want to explain the major mathematical difficulties encountered in
trying to give a rigorous justification of any of the above asymptotic problems
starting from renormalized solutions.
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D1. The local conservation of momentum is not known to hold for the
renormalized solutions of the Boltzmann equation. Indeed, the solu-
tions constructed by R. DiPerna and P.-L. Lions [56] only hold in the
renormalized sense which means that

∂tβ(F ) + v.∇β(F ) = Q(F, F )β′(F ), (199)

β(F )(t = 0) = β(F 0) (200)

where β is given, for instance, by β(f) = Log (1 + f).

D2. The lack of a priori estimates. Indeed, all we can deduce from the
entropy inequality and the conservation of energy is that gε is bounded
in LlogL and that gε|v|2 is bounded in L1. However, we need a bound
in L2 to define all the product involved in the formal development. In
[74], the authors used the entropy dissipation estimate to deduce some
information on the structure of the fluctuation gε and get some new a
priori estimates by using some Caflisch-Grad estimates.

To pass to the limit in the different products (and specially in the case we
want to recover the Navier-Stokes-Fourier system or the Euler system), one
has also to prove that gε is compact in space and time, namely that gε ∈ K
where K is a compact subset of some Lp(0, T ;L1(Ω)). We split this in two
difficulties

D3. The compactness in space of gε. This was achieved in the stationary
case by C. Bardos, F. Golse and D. Levermore [15], [12] using averaging
lemma [76, 75] and proving that gε is in some compact subset of L1(Ω).
However, a newer version of the averaging lemma [78] was needed in [79]
to prove some equiintegrability and hence the absence of concentration.

D4. The compactness in time for gε. It turns out that in general gε is not
compact in time. Indeed, gε presents some oscillations in time which can
be analyzed and described precisely. Using this description and some
compensation (due to a remarkable identity satisfied by the solutions
to the wave equation), it is possible to pass to the limit in the whole
equation. This was done by P.-L. Lions and the author [114] using some
ideas coming from the compressible-incompressible limit [111, 113].

D5. An other difficulty is that is that in [12], very restrictive conditions
on the Boltzmann kernel were imposed. These conditions were slightly
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relaxed in [74] to treat some general hard potentials in the Stokes-
Fourier scaling and in [79] to treat Maxwellian potential. The case of
general potentials including soft potentials was treated in [105].

5.2 The convergence towards the incompressible Navier-
Stokes-Fourier system

The first paper dealing with the rigorous justification of the formal develop-
ment 5.1.4 goes back to the work of C. Bardos, F. Golse and D. Levermore
[12] where the stationary case was handled under different assumptions and
restrictions (see also A. De Masi, R. Esposito, and J. L. Lebowitz [49] for a
similar result in a different setting). There are however some aspects of the
analysis performed in [12] that can be improved. First, the heat equation
was not treated because the heat flux terms could not be controlled. Second,
local momentum conservation was assumed because DiPerna-Lions solutions
are not known to satisfy the local conservation law of momentum (or energy)
that one would formally expect. Third, the discrete-time case was treated in
order to avoid having to control the time regularity of the acoustic modes.
Fourth, unnatural technical assumptions were made on the Boltzmann ker-
nel. Finally, a mild compactness assumption was required to pass to the limit
in certain nonlinear terms.

During the last few years, there appeared several results trying to improve
the result of [12] and give a rigorous justification of the derivation. In [114]
and under two assumptions (the conservation of the momentum and a com-
pactness assumption), it was possible to treat the time dependent case and
derive the incompressible Navier-Stokes equation. In [74], Golse and Lever-
more gave a rigorous derivation of Stokes-Fourier system (the linearization
of the Navier-Stokes-Fourier system) without any assumption. In [79], Golse
and Saint-Raymond gave the first derivation of the Navier-Stokes-Fourier
system without any compactness or momentum assumption. However, their
result only applies to a small class of collision kernels. In a recent work
in collaboration with Levermore [105], we give a derivation of the Navier-
Stokes-Fourier system for a very general class of Boltzmann kernels which
includes in particular soft potentials.

In what follows, we assume that Ω is the whole space or the torus to avoid
dealing with the boundary. First, let us specify the conditions we impose on
the initial data. It is supposed that G0

ε satisfies (we recall that F 0
ε = MG0

ε)
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H(G0
ε) =

∫
Ω

∫
RD

(G0
ε logG

0
ε −G0

ε + 1)M dxdv ≤ Cε2 (201)

This shows that we can extract a subsequence of the sequence g0
ε (defined

by G0
ε = 1+ εg0

ε ) which converges weakly in L1 towards g0 such that g0 ∈ L2.
We also notice that (201) is equivalent to the fact that

∫
Ω
〈h(εg0

ε )〉 dx ≤ Cε2,
where h(z) = (1 + z)log(1 + z) − z which is almost an L2 estimate for g0

ε .
This shows at least that g0 ∈ L2. Then, we consider a sequence Gε of
renormalized solutions of the Boltzmann equation (180) with s = q = 1,
satisfying the entropy inequality and we want to prove that gε converges to

some g = u.v + θ( |v|
2

2
− D+2

2
).

Before stating the new result of Golse and Saint-Raymond [77], we want
to explain the kind of assumptions that were made in previous works. The
convergence result proved in [114] (which only deals with the u component)
requires the following two hypotheses (A1) and (A2) on the sequence Gε

which allow to circumvent the difficulties D1 and D2
(A1). The solution Gε satisfies the projection on divergence-free vector

fields of the local momentum conservation law

∂tP 〈vGε〉+
1

ε
P∇x.〈v ⊗ vGε〉 = 0. (202)

(A2). The family (1 + |v|2)g2
ε/Nε is relatively compact for the weak

topology of L1(dt M dv dx) which we denote w − L1(dt M dv dx), where
Nε = 1 + ε

3
gε.

In the sequel, we denote the weak topology of L1(dt M dv dx) by w −
L1(dt M dv dx). The assumption (A2) enforces the L logL estimate we have
on gε, namely

∫
Ω
〈h(εgε)〉 dx ≤ Cε2 to prevent some type of concentration.

Now, we state the result of Golse and Saint-Raymond [79] where no as-
sumptions on the solutions is made. This result was extended by Levermore
and the author [105] to treat the case of a larger class of Boltzmann kernels
which includes all the classical kernels in particular soft potentials.

Under some assumptions on the Boltzmann kernel (see [79, 105]), we have

Theorem 5.1 Let Gε be a sequence of renormalized solutions of the Boltz-
mann equations (180) with initial condition G0

ε and satisfying the entropy in-
equality. Then, the family (1+|v|2)gε is relatively compact in w−L1(dt Mdv dx).
If g is a weak limit of a subsequence (still denoted gε) then Lg = 0 and
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g = ρ+ u.v + θ( |v|
2

2
− D

2
) satisfies the limiting dissipation inequality

1

2

∫
Ω

|ρ(t)|2 + |u(t)|2 +
D

2
|θ(t)|2 dx+ (203)

+

∫ t

0

∫
Ω

1

2
ν|∇xu+t ∇xu|2 + κ|∇θ|2

≤ lim inf
ε→0

1

ε2

∫
Ω

〈h(εgε)〉dx = C0 (204)

Moreover, θ + ρ = 0 and (u, θ) = (〈vg〉, 〈( |v|2
D+2

− 1)g〉) is a weak solution
of the Navier-Stokes-Fourier system (NSF )

(NSF )


∂tu+ u.∇u− ν∆u+∇p = 0, ∇.u = 0

∂tθ + u.∇θ − κ∆θ = 0,

u(t = 0, x) = u0(x) θ(t = 0, x) = θ0(x)

with the initial condition u0 = P 〈vg0〉 and θ0 = 〈( |v|2
D+2

− 1)g0〉 and where the
viscosity ν and heat conductivity κ are given by (193) and (194).

Idea of the proof:
Now, we give an idea of the proof of theorem 5.1 (see [79] and [105] for

a complete proof). We start by recalling a few a prior estimates taken from
[12]

Proposition 5.2 We have
i) The sequence (1 + |v|2)gε is bounded in L∞(dt;L1(Mdv dx)) and rela-

tively compact in w−L1(dt Mdv dx). Moreover, if g is the weak limit of any
converging subsequence of gε, then g ∈ L∞(dt;L2(Mdv dx)) and for almost
every t ∈ [0,∞), we have

1

2

∫
Ω

〈g2(t)〉 dx ≤ lim inf
ε→0

1

ε2

∫
Ω

〈h(εgε(t))〉dx ≤ C0. (205)

ii)Denoting qε = 1
ε2

(G′
ε1G

′
ε − Gε1Gε), we have that the sequence (1 +

|v|2)qε/Nε is relatively compact in w − L1(dt dµ dx)) where dµ = b(v −
v1, ω)dωM1 dv1M dv. Besides, if q is the weak limit of any converging sub-
sequence of qε/Nε then q ∈ L2(dt;L2(dµ dx)) and q inherits the same sym-
metries as qε, namely q(v, v1, ω) = q(v1, v, ω) = −q(v′, v′1, ω).
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iii) In addition, for almost all (t, x), Lg = 0, which means that g is of
the form

g(t, x, v) = ρ(t, x) + u(t, x).v + θ(t, x)(
1

2
|v|2 − D

2
), (206)

where ρ, u, θ ∈ L∞(dt;L2(dx)).
iv) Finally, from the renormalized equation, we deduce that

v.∇xg =

∫ ∫
qb(v1 − v, ω)dωM1dv1 (207)

which yields the incompressibility and Boussinesq relations, namely

∇x.u = 0, ∇x(ρ+ θ) = 0. (208)

The rest of the proof is based on a new averaging lemma [78] as well
as a better use of the entropy dissipation to get some estimate on the non
hydrodynamic part of gε. The final passage to the limit uses the same local
method of subsection 3.3.1 to deal with the acoustic waves.

Remark 5.3 Let us also mention a new work of Y. Guo [86] where he proves
that the next order terms in the formal development also hold for the case of
regular solutions to the Boltzmann equation.

5.3 The convergence towards the Stokes system

The convergence towards the Stokes system is easier than the Navier-Stokes
case for two reasons. Indeed, we do not have to pass to the limit in the
nonlinear terms. Besides, the control we get from the entropy dissipation is
better. In this section, we want to present the result of [115] where a new
notion of renormalized solution was used. In [74], the whole Stokes-Fourier
system was also recovered by using a different method.

5.3.1 Defect measures

In [115], the difficulty D1 was overcome by showing that the conservation of
momentum can be recovered in the limit by a very simple argument. Indeed
by looking at the construction of the renormalized solutions of DiPerna-Lions
[56], one sees that one can write a kind of conservation of moment (with a

70



defect measure) which also intervenes in the energy inequality. Indeed, the
solutions Fε built by DiPerna and Lions satisfy in addition

∂t

∫
RD

vFε dv +
1

ε
div

∫
RD

(v ⊗ v)Fε dv +
1

ε
div(Mε) = 0. (209)

Besides, the following energy equality holds

1

2

∫
Ω

∫
RD

|v|2Fε(t, x, v)dx dv +
1

2

∫
Ω

tr(Mε) dx =
1

2

∫
Ω

∫
RD

|v|2F 0
ε (x, v)dx dv

(210)
which can be rewritten (with εmmε = Mε )

∂t〈gεv〉+∇x.〈gεv ⊗ v〉+
1

ε
∇.mε = 0, (211)∫

Ω

〈|v|2gε〉dx+

∫
Ω

tr(mε) dx = 0 (212)

5.3.2 Entropy inequality

One can write the entropy inequality forGε (as in the case of the limit towards
the Navier-Stokes system) or write it for Fε as well. It turns out that the
second choice gives a better estimate for the defect measure. Indeed starting
from the entropy inequality for Fε, we can deduce

∫
Ω

∫
RD

h(εmgε)dx M dv(t)−
∫

Ω

∫
RD

εm
|v|2

2
gεdx M dv(t) +

+
1

4ε2

∫ t

0

ds

∫
Ω

dx

∫
RD

∫
RD

M dv M1 dv1

∫
SD−1

dωb(v − v1, ω) (213)

(
G′

ε1G
′
ε −Gε1Gε

)
log

(G′
ε1G

′
ε

Gε1Gε

)
≤

∫
Ω

∫
RD

h(εmg0
ε )dx M dv

Let us now state the result. We take initial data satisfying∫
TD

∫
RD

F 0
ε dxdv = 1,

∫
TD

∫
RD

vF 0
ε dxdv = 0,

∫
TD

∫
RD

|v|2F 0
ε dxdv = D

(214)
and ∫

Ω

∫
RD

F 0
ε logF

0
ε dx dv ≤ −D

2
+ Cε2m (215)

We also assume that b satisfies (A0).
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Theorem 5.4 If Fε is a sequence of renormalized solutions of the Boltzmann
equations (179), s = q = 1 and m > 1, with initial condition F 0

ε and satisfies
the entropy inequality as well as the refined momentum equation, then the
family (1 + |v|2)gε is relatively compact in w − L1(dt Mdv dx). And, if g
is a weak limit of a subsequence (still denoted gε) then Lg = 0 and g =

ρ+ u.v + θ( |v|
2

2
− N

2
) satisfies the limiting dissipation inequality

1

2

∫
Ω

|ρ(t)|2 + |u(t)|2 +
D

2
|θ|2 dx+

∫ t

0

∫
Ω

1

2
ν|∇xu+t ∇xu|2

≤ lim inf
ε→0

1

ε2m

∫
Ω

〈h(εmgε)〉dx = C0 (216)

Moreover u = 〈vg〉 is the solution of the Stokes system (S) with the initial
condition u0 = P 〈vg0〉 and where the viscosity ν is given by (193). Besides,
we have the following strong Boussinesq relationship

ρ+ θ = 0. (217)

We only explain here briefly how we can recover the conservation of mo-
mentum at the limit. Indeed, starting from the entropy inequality, one de-
duces that ∫

Ω

〈h(εmgε)〉dx+ εmtr(mε) +D(Gε) ≤ Cε2m (218)

and since m > 1, we deduce

1

ε
tr(mε) and

1

ε
mε → 0 (219)

in L∞(0, T ;L1(Ω)) since mε is a positive matrix. This yields the local con-
servation of momentum in (211) at the limit.

5.4 The case of a bounded domain

In this subsection, we want to present the derivation of fluid mechanics
boundary conditions starting form kinetic boundary condition. For simplic-
ity, we will present the result in the Stokes scaling though the proof works
as well for the Navier-Stokes scaling using the result of the previous sections.
We also refer to [27] for a derivation of the Navier condition for the primitive
equations.

72



Let Ω be a smooth bounded domain of RD and O = Ω × RD the space-
velocity domain. Let n(x) be the outward unit normal vector at x ∈ ∂Ω. We
denote by dσx the Lebesgue measure on the boundary ∂Ω and we define the
outgoing/incoming sets Σ+ and Σ− by

Σ± = {(x, v) ∈ Σ, ±n(x).v > 0} where Σ = ∂Ω× RD.

We consider the Boltzmann equation in R+ × O with a scaling where
q = s = 1 and m > 1.

5.4.1 The Maxwell boundary condition

The boundary condition we will consider express the balance between the
incoming and outgoing part of the trace of F , namely γ±F = 11Σ±γF . We
will use the following Maxwell reflection condition

γ−F = (1− α)L(γ+F ) + αK(γ+F ) on Σ− (220)

where α is a constant also called accommodation coefficient. The local re-
flection operator L is given by

Lφ(x, v) = φ(x,Rxv) (221)

where Rxv = v − 2(n(x).v)n(x) is the velocity before the collision with the
wall. The diffuse reflection operator K is given by

Kφ(x, v) =
√

2πφ̃(x)M(v) (222)

where φ̃ is the outgoing mass flux

φ̃(x) =

∫
v.n(x)>0

φ(x, v)n(x).vdv. (223)

We notice that∫
v.n(x)>0

n(x).v
√

2πM(v) dv =

∫
v.n(x)<0

|n(x).v|
√

2πM(v) dv = 1,

which expresses the conservation of mass at the boundary. Here, we are
taking the temperature of the wall to be constant and equal to 1. For the
existence of renormalized solutions to the Boltzmann equation in a bounded
domain we refer to [136].
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5.4.2 A priori estimate

Let E(γ+Gε), the so-called Darrozès-Guiraud information [85], be given by

E(γ+Gε) =

∫
∂Ω

(〈
h(δεγ+gε)

〉
∂Ω
− h

(
〈δεγ+gε〉∂Ω

))
dσx. (224)

In the case of a bounded domain, the entropy inequality reads

H(Gε(t)) +

∫ t

0

(
1

ε2
E(Gε(s)) +

αε√
2πε

Eε(γ+Gε(s))

)
ds ≤ H(Gin

ε ) ,

(225)
where H(G) is the relative entropy functional

H(G) =

∫
Ω

〈(G log(G)−G+ 1)〉 dx , (226)

and E(G) is the entropy dissipation rate functional

E(G) =

∫
Ω

〈〈
1

4
log

(
G′

1G
′

G1G

)
(G′

1G
′ −G1G)

〉〉
dx . (227)

Notice the presence of the extra positive term due to the boundary. It is easy
to see that due to Jensen inequality the extra term Eε(γ+Gε(s)) ≥ 0. This
also gives a bound on γ+Gε which is useful.

Now, we present two results taken from [132] which hold for a wide range
of collision kernels

Theorem 5.5 (Navier boundary condition) Let F in
ε = Gin

ε M be a family of
initial data satisfying

1

δ2
ε

H(Gin
ε ) +

∫ ∫
O
|v|2F in

ε dxdv ≤ Cin (228)

for some Cin <∞ and

1

δε
Π〈v Gin

ε 〉 → u in D′(Ω;RD) ,

1

δε
〈( 1

D + 2
|v|2 − 1)Gin

ε 〉 → θ in D′(Ω;RD) ,
(229)
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for some (uin, θin) ∈ L2(dx;RD×R). Denote by Gε any corresponding family
of renormalized solutions of the Boltzmann equation satisfying the entropy
inequality (225), where the accommodation coefficient satisfies

αε√
2πε

→ λ when ε→ 0. (230)

Then, as ε→ 0, the family of fluctuations satisfies

gε → v·u+
(1

2
|v|2 − D + 2

2

)
θ in w-L1

loc(dt;w-L1((1 + |v|2)Mdv dx)) ,

Π〈v gε〉 → u in C([0,∞);D′(Ω;RD)) ,

〈( 1

D + 2
|v|2 − 1) gε〉 → θ in C([0,∞);D′(Ω;RD)) ,

(231)
where Π is the orthogonal projection from L2(dx;RD) onto divergence-free
vector fields with zero normal velocity, namely the set

H = {u ∈ L2(Ω), ∇x·u = 0, u.n = 0 on ∂Ω}.

Furthermore, (u, θ) ∈ C([0,∞);H × L2(Ω)) ∩ L2(dt;H1(Ω)×H1(Ω)) and it
satisfies the Stokes-Fourier system with Navier boundary condition{

∂tu+∇xp− ν∆xu = 0 , div(u) = 0 on R+ × Ω,
(2νd(u) · n+ λu) ∧ n = 0 , u·n = 0 on R+ × ∂Ω,{

∂tθ − κ∆xθ = 0 on R+ × Ω,
κ∂nθ + λD+1

D+2
θ = 0 on R+ × ∂Ω,

(232)

u(0, x) = uin(x), θ(0, x) = θin(x) on Ω.

where d(u) denotes the symmetric part of the stress tensor d(u) = 1
2
(∇u +t

∇u).

The second result treats the case of Dirichlet boundary conditions. We
will make the same assumptions as in the previous theorem but instead of
assuming that αε

ε
√

2π
→ λ, we assume that αε

ε
→ +∞.

Theorem 5.6 (Dirichlet boundary condition) We make the same assump-
tions as in Theorem 5.5, except that we replace condition (230) by

αε

ε
→∞, when ε→ 0. (233)
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Then, as ε → 0, we have the same convergences (231) as in Theorem 5.5
with (u, θ) ∈ C([0,∞);H × L2(Ω)) ∩ L2(dt;V ×H1

0 (Ω)) where

V = {u ∈ H1(Ω), ∇x·u = 0, u = 0 on ∂Ω}.

Furthermore, (u, θ) satisfies the Stokes-Fourier system with Dirichlet bound-
ary condition

∂tu+∇xp− ν∆xu = 0 , div(u) = 0 on R+ × Ω,
∂tθ − κ∆xθ = 0 on R+ × Ω,
u = 0, θ = 0 on R+ × ∂Ω,
u(0, x) = uin(x), θ(0, x) = θin(x) on Ω.

(234)

Idea of the proof
The interior convergence can be deduced easily from the work of Golse and

Levermore [74]. We just want to explain the convergence at the boundary.
We prove two types of control on the trace γgε of gε on the boundary. The
first control comes from the inside, it uses the interior estimates to deduce
an estimate on the trace

Lemma 5.7 We have for all p > 0,

γĝε → γg in w-L1
loc(dt;w-L1(M(1 + |v|p)|v·n(x)|dv dσx)) (235)

εmγgε → 0 a.e. on R+ × ∂Ω× Rd. (236)

The second control comes from the boundary term appearing in the en-
tropy dissipation. It does not give an estimate on gε but rather on gε minus
its average in v. We get

Lemma 5.8 Define γε = γ+gε − 11Σ+〈γ+gε〉∂Ω and

γ(1)
ε = γε11γ+Gε≤2〈γ+Gε〉∂Ω≤4γ+Gε , γ(2)

ε = γε − γ(1)
ε . (237)

Then √
αε

ε

γ
(1)
ε

(1 + δε

3
γ+gε)1/2

is bounded in L2
loc(dt;L

2(M |v·n(x)|dv dσx));

(238)√
αε

ε

γ
(1)
ε

(1 + δε

3
〈γ+gε〉∂Ω)1/2

is bounded in L2
loc(dt;L

2(M |v·n(x)|dv dσx));

(239)
αε

εδε
γ(2)

ε is bounded in L1
loc(dt;L

1(M |v·n(x)|dv dσx)). (240)
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5.5 Convergence towards the Euler system

We present, here, a method of proof based on an energy method or more
precisely the relative entropy method (see Yau [174]). Indeed contrary to the
two preceding cases, we suppose here the existence of a strong solution to
the Euler system and we show the convergence towards this solution. The
technique used is based on a Gronwall lemma. In [115] (in collaboration with
P.-L. Lions), we show this convergence with an assumption on high velocities
(A2). This assumption was removed in Saint-Raymond [149]. We will present
the result of [149]. We introduce a defect measure (as in the Stokes case)
which disappears at the limit. We take well prepared initial data (i.e. there
are no acoustic waves) and the temperature fluctuation is equal to 0 initially.

5.5.1 Entropic convergence

In addition to the assumptions on G0
ε which we imposed in the case of con-

vergence towards the Navier-Stokes system, we suppose that g0
ε converges

entropically towards g0 and that g0 = u0.v (with divu0 = 0) i.e. that

g0
ε → g0 in w − L1(M dvdx), and (241)

lim
ε

1

ε2

∫
Ω

〈h(εg0
ε )〉dx =

1

2

∫
Ω

〈(g0)2〉dx. (242)

It is also supposed that u0 is regular enough (for example u0 ∈ Hs, s > D
2

+1)
to be able to build a strong solution ũ of the Euler system with the initial
data u0. Then, we have ũ ∈ L∞loc([0, T

∗);Hs) for some T ∗ > 0.

5.5.2 Relative entropy

We want to show that the distribution Fε is close to a Maxwellian M(0,εũ,0) =

MG̃ε. But as Fε is only in LlogL, we have to estimate the difference between
Fε and M(0,εũ,0) using the relative entropy

H(Gε, G̃ε) =

∫
Ω

〈
Gε log

(Gε

G̃ε

)
−Gε + G̃ε

〉
. (243)

Using the improved entropy inequality (213), we get
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H(Gε, G̃ε) + ε

∫
Ω

tr(mε) +

∫ t

0

dsD(Gε)+ ≤ H(G0
ε , G̃

0
ε)

+

∫ t

0

∫
Ω

< Gε∂tlogG̃ε > +ε2∂t < gεv > .ũ+ ε3∂t < gε >
|ũ|2

2
ds

where mε denotes the sequence of defect measures appearing in the conser-
vation of momentum

Theorem 5.9 Under some assumption of the collision kernel, if Gε is a
sequence of renormalized solutions of the Boltzmann equations with initial
condition G0

ε , and such that g0
ε converges entropically to g0 = u0.v, where

u0 ∈ Hs, (s > D
2

+ 1). Then, for all 0 ≤ t < T ∗

gε(t) → ũ(t).v entropically (244)

where ũ(t) is the unique solution of the Euler system in L∞loc([0, T∗);Hs) with
the initial condition u0. Moreover, the convergence is locally uniform in time.

Let us explain here the idea of the proof of the above result. It is based
on a Gronwall lemma. Indeed, after some non trivial computations, one can
rewrite the entropy inequality as follows

1

ε2

[
H(Gε, G̃ε) + ε

∫
Ω

tr(mε)
]
(t) +

1

ε2

∫ t

0

dsD(Gε) ≤
1

ε2
H(G0

ε , G̃
0
ε)

+

∫ t

0

||∇ũ||L∞
1

ε2

[
H(Gε, G̃ε) + ε

∫
Ω

tr(mε)
]
(s) ds+ Aε

where Aε converges to 0. Hence, we deduce that H(Gε, G̃ε) goes to 0 in
L∞loc([0, T

∗)).
We want to point out that the same type of argument can be used to

prove the convergence towards the Navier-Stokes system in the case a regular
solution is known to exist.

6 Some homogenization problems

In this section, we would like to present some homogenization problems. We
will only consider examples which are related to fluid mechanics.
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The homogenization of the Stokes and of the incompressible Navier-Stokes
equations in a porous medium (open set perforated with tiny holes) has
been studied in many works from the formal point of view as well as the
rigorous one. We refer the interested reader to [21, 152, 107] for some formal
developments and to [160, 4, 135] for some rigorous mathematical results.

Let us start by giving a definition of a porous medium. Let Ω be a smooth
bounded domain of RN and define Y =]0, 1[N to be the unit open cube of RN .
Let Ys (the solid part) be a closed smooth subset of Y with a strictly positive
measure. The fluid part is then given by Yf = Y −Ys and we define θ = |Yf |
the Lebesgue measure of Yf and we assume that 0 < θ < 1. The constant
θ is called the porosity of the porous medium. Repeating the domain Yf by
Y-periodicity we get the fluid domain Ef which can also be defined as

Ef = {y ∈ RN | ∃k ∈ ZN , such that y − k ∈ Yf }. (245)

In the same way, we can define Es = RN − Ef

Es = {y ∈ RN | ∃k ∈ ZN , such that y − k ∈ Ys }. (246)

It is easy to see that Ef is a connected domain, while Es is formed by separate
smooth subsets. In the sequel, we denote for all k ∈ ZN , Yk = Y + k the
translate of the cell Y by the vector k, we also denote Yk

s = Ys + k and
Yk

f = Yf +k. Hence, for all ε, we can define the domain Ωε as the intersection
of Ω with the fluid domain rescaled by ε, namely Ωε = Ω ∩ εEf . However,
to get a smooth connected domain, we will not remove the solid parts of the
cells which intersect the boundary of Ω. We define

Ωε = Ω− U{εYk
s , where, k ∈ ZN , εYk ⊂ Ω}.

We also denote Kε = {k | k ∈ ZN and εYk ⊂ Ω}.

Remark 6.1 We can also consider more general domains, especially the
more physical case where Es is a connected set of RN which can be achieved
by allowing Ys to be a closed subset of Ȳ (this is not possible in N = 2 since
we also want that Ωε is connected). We refer the interested reader to the
paper of G. Allaire [4] where the so-called “oscillating test function“ method
of Tartar is extended to the case of a connected Es.

Due to the presence of the holes εYk
s , the domain Ωε depends on ε and

hence to study the convergence of a sequence of functions, we have to extend
the functions defined in Ωε to the whole domain Ω. This can be done in two
different ways.
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Definition 6.2 For any function φ ∈ L1(Ωε), we define

φ̃ =

{
φ in Ωε

0 in Ω− Ωε
(247)

the extension by 0 of φ and

φ̂ =

{
φ in Ωε

1
ε|Yf |

∫
εYk

f
φ dy in εYk

s ∀k ∈ Kε.
(248)

We will also need the restriction operator constructed by Tartar [160] for
the case of a solid part Ys strictly included in Y and by Allaire [4] for more
general conditions on the solid part.

Lemma 6.3 There exists a linear operator Rε from H1
0 (Ω)N to H1

0 (Ωε)
N

(called restriction operator) such that

(i) ∀φ ∈ H1
0 (Ωε)

N , we have Rεφ̃ = φ.

(ii) ∇ · u = 0 in Ω implies that ∇ ·Rεu = 0 in Ωε.

(iii) There exists a constant C such that for all u ∈ H1
0 (Ω)N , we have

||Rεu||L2(Ωε) + ε||∇(Rεu)||L2(Ωε) ≤ C
[
||u||L2(Ω) + ε||∇u||L2(Ω)

]
. (249)

The operator Rε defined above also acts from W 1,r
0 (Ω) into W 1,r

0 (Ωε) for
all 1 < r <∞ and we have an estimate similar to (249) where the L2 norms
are replaced by Lr norms.

Due to the presence of the holes in the domain Ωε, the Poincare’s inequal-
ity reads

Lemma 6.4 There exists a constant C which depends only on Ys such that
for all u ∈ W 1,p

0 (Ωε), we have

||u||Lp(Ωε) ≤ Cε||∇u||Lp(Ωε) (250)

We refer to [160] for a proof of this lemma. By a simple duality argument
we also have the following relation for all 1 < p <∞

||u||W−1,p(Ωε) ≤ Cε||u||Lp(Ωε). (251)
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Finally, we define the permeability matrix Ā. For all i, 1 ≤ i ≤ N , let
(vi, qi) ∈ H1(Yf )

N×L2(Yf )/R be the unique solution of the following system

(Si)


−∆vi +∇qi = ei in Yf

div vi = 0 in Yf

vi = 0 on ∂Ys and vi, qi are Y − periodic.

Using regularity results of the Stokes problem, we infer that vi and qi are
smooth. We extend vi to the whole domain Y by setting vi(y) = 0 if y ∈ Ys.
Then, for all y ∈ Yf , A(y) is taken to be the matrix composed of the column
vectors vi(y) and Ā =

∫
Yf
A(y)dy. It is easy to see that Ā is a symmetric

positive definite matrix. Indeed, multiplying the first equation in (Si) by vj

and the first equation in (Sj) by vi, we get that
∫
Yf
∇vi · ∇vj =

∫
Yf
vji = Āji

and
∫
Yf
∇vj ·∇vi =

∫
Yf
vij = Āij where we wrote vi(y) =

∑N
j=1 vji(y)ej. Then

to prove that Ā is positive definite, we just notice that for all vector X =∑N
j=1 xiei, we have

∑
ij xiĀijxj = ||∇

∑N
j=1 xjvj||2L2(Yf ) and that {vi, 1 ≤ i ≤

N} is an independent family.

6.1 Darcy law

Let us start by recalling the derivation of the Darcy law [48]. We consider
the Stokes problem in the domain Ωε,

−∆uε +∇pε = f ,

divuε = 0, uε = 0 on∂Ωε.
(252)

Theorem 6.5 Prolonging uε by zero in the holes, we have the following con-
vergence

ũε → u weakly in (L2(Ω)) (253)

where u = Ā(f −∇p) and satisfies divu = 0. This is the Darcy law

The proof uses the “oscillating test function” method of Tartar [160]. Indeed,
testing (252) with φ(x)vi(

x
ε
) where φ ∈ C∞

0 (Ω), we can pass to the weakly to
the limit in the different terms to deduce (253). Actually some non trivial
work should be done to pass to the limit in the pressure term and we refer
to [160] and [4].
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6.2 Homogenization of a compressible model

Here, we give a derivation of the porous medium equation. We start with
the following semi-stationary model

ε2∂tρε + div(ρεuε) = 0 ,

−µ∆uε − ξ∇divuε +∇ργ
ε = ρεf + g

(254)

complemented with the boundary condition uε = 0 on ∂Ωε and the initial
condition ρε(t = 0) = ρε0. The force term is such that f ∈ L∞((0, T ) × Ωε)
and g ∈ L2((0, T )×Ωε). We also assume that γ ≥ 1 and that ||f ||L∞ is small
enough if γ = 1.

We assume that the initial data is such that ρε0 ∈ L1 ∩ Lγ(Ωε) if γ > 1,
that

∫
Ωε
ρε0| log ρε0| < C if γ = 1 and that ρ̂ε0 converges weakly to ρ0 in

Lγ(Ω).
We consider a sequence of weak solutions (ρε, uε) of the semi-stationary

model (254) such that for all T > 0, ρε ∈ C([0, T );L1(Ωε))∩L∞(0, T ;Lγ(Ωε))∩
L2γ((0, T ) × Ωε) and ρε|logρε| ∈ L∞(0, T ;L1(Ωε)) if γ = 1. Moreover, uε is
such that uε

ε
∈ L2(0, T ;H1

0 (Ωε)) and uε

ε2
∈ L2((0, T ) × Ωε). Finally, we also

require that p̂ε is bounded in L2
T (H1(Ω)) + εL2

T (L2(Ω)). We assume that the
bounds given above are uniform in ε. We point out that the fact that we can
consider a sequence of solutions satisfying the above uniform estimates can
be proved using the methods of [109].

Before studying the limit of the sequence (uε, ρε, pε), we have to prolong
it to Ω. Let ũε, ρ̃ε and p̂ε be the extensions of uε, ρε and pε to the whole
domain Ω.

Theorem 6.6 Under the above assumptions,

ρ̃ε → θρ weakly in Lr
T (Lγ(Ω)) ∩ L2γ((0, T )× Ω),

ρ̂ε → ρ strongly in Lr
T (Lγ(Ω)) ∩ Lγ+1((0, T )× Ω),

ũε

ε2
→ u weakly in L2

T (L2(Ω))

for all r < ∞ where ρ ∈ L2γ((0, T ) × Ω), ργ ∈ L2
T (H1(Ω)) and ρ is the
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solution of the following system
θ∂tρ+ 1

µ
div ·

[
ρĀ(ρf + g −∇ργ)

]
= 0

ρĀ(ρf + g −∇ργ).n = 0 on ∂Ω

ρ(t = 0) = ρ0

(255)

and u is given by

u = Ā(ρf + g −∇ργ) on {ρ > 0}. (256)

We point out here that even though each one of the terms f , g and ∇ργ

does not have necessary a trace on the boundary ∂Ω, the combination of them
appearing in (255) has a sense. A formal derivation of the system (255) can
be found in [55]. The relation (256) giving u as a function of the pressure is
a Darcy law [48, 160].

Remark 6.7 if Ā = αI (which is the case if for instance Ys is a ball) and
f = g = 0 then we get the following system

∂tρ− β∆ργ+1 = 0

∂ργ+1

∂n
= 0 on ∂Ω

ρ(t = 0) = ρ0

(257)

where β = αγ
θµ(γ+1)

. This system is the so-called “porous medium” equation.

6.3 Homogenization of the Euler system

We consider an incompressible perfect fluid governed by the Euler equation.
We consider the following system of equations

∂tu
ε + εuε.∇uε = −∇pε + f ε(x)

div (uε) = 0,
uε.n = 0 on ∂Ωε

uε
|t=0 = uε

0

(258)

where uε is the velocity, pε is the pressure, f ε is an exterior force and n is
the outward normal vector to Ωε. Arguing as in the book of A. Bensoussan,
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J.-L. Lions and G. Papanicolaou [21] (see also [107]) and the book of E.
Sanchez-Palencia [152], we make an asymptotic development using both a
microscopic scale and a macroscopic scale. Hence, we can derive a (formal)
limit system. Indeed taking uε of the form uε = u0(t, x, x

ε
) + εu1(t, x, x

ε
) + ...,

we get formally the following system for v(t, x, y) = u0(t, x, y)

∂tv + v.∇yv = −∇yp(x, y)−∇x q(x) + f(t, x, y)

divy (v) = 0, divx

(∫
Yf
v(x, y)dy

)
= 0,

v(x, y).n = 0 on Ω× ∂Ys,(∫
Yf
v(x, y)dy

)
.n = 0 on ∂Ω

v|t=0 = v0

(259)

where f(t, x, y) and v0(x, y) are the two-scale limits of the sequences f ε

and uε
0 and here n is the inward normal vector to Ys. The notion of two-

scale convergence is aimed at a better description of sequences of oscillating
functions with a known scale. It was introduced by G. Nguetseng [137, 138]
and later extended by G. Allaire [5] where one can find the mathematical
setting we use here.

Definition 6.8 Let uε be a sequence of functions such that uε ∈ L2(Ωε) and
||uε||L2(Ωε) is bounded uniformly in ε. If v(x, y) ∈ L2(Ω × Yf ), then we say
that uε two-scale converges to v if and only if ∀ψ ∈ C(Ω× Yf ), we have

lim
ε→0

∫
Ωε

uε(x)ψ(x,
x

ε
) dx =

∫
Ω×Yf

v(x, y)ψ(x, y) dxdy. (260)

Moreover, we say that uε two-scale converges strongly to v if and only if
v(x, y) ∈ L2(Ω, C(Yf )) and we have

lim
ε→0

||uε(x)− v(x,
x

ε
)||L2(Ω̃ε)

= 0, (261)

and
lim
ε→0

||uε(x)||L2(Ωε−Ω̃ε)
= 0, (262)
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We will state two results. The first one concerns the Cauchy problem for
the limit system and the second one concerns the convergence of a sequence
of the solutions to (258) toward a solution to (259). We start by defining the
following functional spaces

A = {v(x, y), v ∈ L2(Ω× Yf ), divy(v) = 0, divx(v) = 0,

v.n = 0 on Ω× ∂Ys, v.n = 0 on ∂Ω}(263)

A∞ = {v(x, y), v ∈ A and curly(v) ∈ L∞(Ω× Yf )}, (264)

where divy and divx denote respectively the divergence in the y and in the
x variables, namely divy(v) = ∂y1v1 + ∂y2v2 and divx(v) = ∂x1v1 + ∂x2v2.
Moreover, v denotes the integral of v over Yf , namely v(x) =

∫
Yf
v(x, y) dy.

Finally, n denotes the exterior normal vector to ∂Yf or to ∂Ω.
Now, we give an existence result for the limit system (259)

Theorem 6.9 Take v0 ∈ A∞ and f ∈ L1((0,∞);A∞)). Then, there exists
a global solution to the system (259) such that

v ∈ C([0,∞);A) ∩ L∞((0,∞);A∞). (265)

This result is similar to the existence result for the incompressible Euler
system by V.-I. Yudovich [175]. However, unlike Yudovich solutions, the
uniqueness of the solutions constructed in theorem 6.9 is not known.

Now, we focus on the convergence result. We have to assume that uε
0

is bounded in L3(Ωε), div (uε
0) = 0, uε

0.n = 0 on ∂Ωε, ε curl (uε
0) is in

L∞ (which implies the existence and uniqueness for the initial system) and
that uε

0 two-scale converges strongly to v0 where v0 ∈ A∞. Moreover, we
assume that f ε is divergence-free, that it is bounded in L1((0,∞);L3(Ωε)),
that curl f ε is bounded in L1((0,∞);L∞(Ωε)) and that f ε two-scale con-
verges strongly to f , namely

lim
ε→0

||uε
0(x)− v0(x,

x

ε
)||L2(Ωε) = 0, (266)

lim
ε→0

||f ε(t, x)− f(t, x,
x

ε
)||L1((0,∞);L2(Ωε)) = 0, (267)

where v0 and f satisfy the hypotheses of theorem 6.9. Here, we only take the
two-scale convergence in the x variable, then we have
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Theorem 6.10 Under the above conditions there exists a sequence uε of
solutions to the initial system (258). Moreover, extracting a subsequence if
necessary uε two-scale converges to v where v is a solution to the limit system
(259).

We refer to [116, 128] for the proof.

7 Conclusion

Before giving some concluding remarks we would like to mention some other
limit problems which we did not develop in the previous sections. These
asymptotic problems are very important and we want to give some references
to the interested reader.

7.1 Other limits

7.1.1 The infinite Prandtl number limit

The infinite Prandtl number limit was considered in [170] (see equation (8)
for the definition of the Prandtl number). At the limit the so-called infinite
Prandtl number convection system is retrieved at the limit. It is a system
where he velocity is slaved by the temperature field since velocity diffuses
more rapidly than the temperature. The proof is based on an expansion
using two time scales.

7.1.2 The zero surface tension limit

The infinite Weber limit was considered in [7]. This is the same as the zero
surface tension limit. It was proved in [7] that when surface tension goes to
zero the water wave system with surface tension [6] converges to the water
wave system without surface tension [172]. This is a singular limit since
surface tension has a regularizing effect even though the initial system and
the limit system are of the same type.

7.1.3 The quasi-neutral limit

The convergence from the Vlasov-Poisson system towards the incompressible
Euler equation in the quasi-neutral limit was considered in [24] and [126].
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These two works deal with the zero temperature case, namely the density
f(t, x, v) is a delta function in velocity.

A related problem, is the relation between the Euler system and the N
vortices problem. This was considered in [121]. We also refer to [120] for an
inviscid limit with concentrated vorticity.

For related asymptotic problems in plasma physics, we refer to [131] for
the limit from the Klein-Gordon-Zakharov system to the nonlinear Schrödinger
equation. We also refer to [130] for the limit from Maxwell-Klein-Gordon and
Maxwell-Dirac to Poisson-Schrödinger when the speed of light c goes to in-
finity.

7.1.4 Thin domains

Fluid equations considered in thin domains give rise to many asymptotic
problems (see [91] and [146] and the references therein). Indeed, taking for
instance the Navier-Stokes equation in a thin domain (0, ε)×T2, we can try
to describe the solutions when ε goes to zero. To do so, we have to make a
change of variable and rescale the domain to a fixed domain (0, 1)×T2. This
introduces a small parameter ε in the equation written in the fixed domain.
The small parameter ε is the ratio between the vertical length scale and the
horizontal one.

7.2 Concluding remarks

As can be seen from the different section of this chapter, asymptotic prob-
lem in hydrodynamics is a vast subject by the number of problems one can
consider and the number of methods used to treat them. It is an important
subject from physical and numerical point of view. Besides, it is the motor
behind the development of many new mathematical tools such as (the group
method, defect measures, boundary layer theory ...) to handle the several
physical phenomenon such as (oscillations, boundary layers ...).

In this review paper, we tried to give an idea about some of the advances
made in these singular limits during the last few years. At several places,
the author put more emphasis on results he is more aware of.
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Bourbaki, (926), 2004.
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224, 2001.

[128] N. Masmoudi. Some uniform elliptic estimates in a porous medium. C.
R. Math. Acad. Sci. Paris, 339(12):849–854, 2004.

[129] N. Masmoudi. Two Remarks about the inviscid limit of the Navier-
Stokes system. preprint, 2006.

[130] N. Masmoudi and K. Nakanishi. Nonrelativistic limit from Maxwell-
Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger. Int. Math.
Res. Not., (13):697–734, 2003.

[131] N. Masmoudi and K. Nakanishi. From the Klein-Gordon-Zakharov
system to the nonlinear Schrödinger equation. J. Hyperbolic Differ.
Equ., 2(4):975–1008, 2005.

[132] N. Masmoudi and L. Saint-Raymond. From the Boltzmann equation
to the Stokes-Fourier system in a bounded domain. Comm. Pure Appl.
Math., 56(9):1263–1293, 2003.

[133] G. Métivier and S. Schochet. The incompressible limit of the non-
isentropic Euler equations. Arch. Ration. Mech. Anal., 158(1):61–90,
2001.

[134] G. Métivier and S. Schochet. Averaging theorems for conservative
systems and the weakly compressible Euler equations. J. Differential
Equations, 187(1):106–183, 2003.
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