Stability of oscillating boundary layers in rotating fluids

Stabilité de couches limites oscillantes dans les fluides tournant

N. Masmoudi? F. Rousset!

Abstract

We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating
fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case
where the viscosity and the Rossby number are both equal to . This study generalizes the study
of [22] where a smallness condition was imposed and the study of [25] where the well-prepared
case was treated.

Résumé

On prouve la stabilité linéaire et non-linéaire de couches limites oscillantes de type Ekman
pour les fluides tournant dans le cas de données mal préparées sous une hypothese spectrale.
On s’intéresse au cas ou la viscosité et le nombre de Rossby sont du méme ordre €. Cette étude
généralise celle de [22] ot une condition de petitesse était imposée et celle de [25] ol les données
bien préparées étaient traitées.

1 Introduction

We consider the following system describing the evolution of a rotating fluid in a rectangular domain

{ Osuf + uf - Vut + —exaua + % —eAuf =0, (1)

uf(t = 0) = us? V-ut=0
for x = (y, 2z) € Q = T2 x (0,1) with the Dirichlet boundary condition

and the initial condition
Ujpg = uY. (3)

Here T2 is the periodic torus with periods a; and az, namely, T2 = ]RQ/(%Z X % ) and a1, ag > 0.
Moreover, e = eg is the vertical unit vector and e><€u5 is the Coriolis force.
This system describes the motion of a rotating fluid as the Ekman and Rossby numbers go

to zero (see Pedlovsky [24], and Greenspan [13]). It can model the dynamics of the ocean or the
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atmosphere far from the equator or a rotating fluid in a container. Note that, here, we take the
horizontal viscosity and the vertical viscosity to be equal. We point out that in many previous
works the horizontal viscosity was supposed constant whereas the vertical viscosity v goes to 0 (see
for instance [16]) or in some other cases, the vertical viscosity was supposed much smaller than the
horizontal viscosity. This anisotropy has the advantage of making the boundary layers more stable.

In this paper, we look at the case where the vertical and the horizontal viscosities are equal. We
study the convergence of solutions to (1) towards a solution of the limit system (9) defined below
once the time oscillations are filtered out.

We recall that this system and related ones were studied by several authors. In the “well-
prepared” case in domains with boundary, like 2, we refer to Colin, Fabrie [4], Grenier, Masmoudi
[16], Masmoudi [21]. For general initial data, and for the periodic case, we refer to Grenier [14],
Embid and Majda [8], Babin, Mahalov and Nicolaenko [2, 1], Gallagher [11] or in particular cases
where there is no boundary layer, or where the boundary layer can be eliminated by symmetry
(Beale and Bourgeois [3]). These results rely on the introduction of a group to filter the oscillations
in time, a method which was previously used by Schochet [29] to investigate related problems in
the torus concerning the compressible-incompressible limit.

In [22], the “group method” was extended to the case of domains with boundary, by solving a
superposition of an infinite number of boundary layers. These layers create an extra term in the
limit equation. In [22], the stability of these boundary layers was proved in the case where the
horizontal viscosity goes to zero slower than the Rossby number (or in the small data case). In this
paper, we would like to give a spectral assumption (which we think is optimal) and which yields
the stability of such boundary layers.

In the well prepared case, a similar spectral assumption was used to prove the stability of the
boundary layer [25]. This spectral assumption is optimal since the instability of the boundary layer
was proved in [6] if the spectral assumption does not hold.

In the following sections, we recall the main properties of the approximate solution of (1)
constructed in [22], in particular, we recall the properties of the limit system, of the boundary layers
and the assumptions on the torus which are needed. Next, we shall give our main assumption on
the spectral stability of the boundary layers and state our main result.

1.1 Properties of the approximate solution

To state our main result, we first recall the main properties of the approximate solution u®? of (1)
constructed in [22]. In particular, u®P? describes the formal limit of (1) and the boundary layers.
The details of the construction will be recalled later. The approximate solution is under the form
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where the remainder term u” satisfies u” = O(e) (a precise statement will be given later). The
interior term u'™ can be expressed as

u™(r,t,2) = L(r)w™(t,z)

where £(7) = e™F, Lu = —P(e x u) and P is the Leray projector on divergence-free vector fields
with zero normal component in . We denote Z} = i—’er X Z—’;Z X %’rZ, 72 = i—’er X %Z and we



denote elements of Z3 by k = (k, k3) € Z3 with k € Z2 = E—TZ X Z—’;Z . We have an expansion

w(t,z) = Y bt k) VMR (), (5)
kez3
so that ‘ ' ' ) o
W7, ) = £(r) (@™ (1,2)) = 30 bt F)e U MF ()BT (©)
kez3

and w™™ solves the limit system (9). Note that N¥ = ¢®*YMP* is an eigenvector of L. We assume
that the initial data is chosen such that b(0, (0, k3)) = 0 for every k3 i.e. we exclude initial values
with modes which depend only on z. We shall also assume that the torus is non resonant in the
sense of [2] to insure that the condition b(¢, (0, k3)) = 0 for every k3 remains true for positive times
(see below for a precise definition).

We can express the dominant boundary layer term u® as

ub(r,2, 7' t,y) = uP(1, Z,t,y) +uPH(r, Z',t, y)

where

1 . /T = _1+i K, - o 1—i k,—
WP (7, 2t y) = =5 Dbt R)e R (ks (R AT T AT g 20, 1

k

with
nPE = /1 Ak), BPE = MF0) Fie x MF(0).

Note that since terms under the form (0, k3) are excluded in the above sum, we have nE’i > (0 and

hence, we have a superposition of terms which are small far from the boundary. Nevertheless, the
rate of decay, n®*, goes to zero when I%gl tends to £1.

In view of the above definition of the boundary layers, we introduce the operators

1+i k+ 7

1 NG T — L _ligk—
B7(r, Z)q = —5 > age P (~1)7s (Wt TV g AT )
k

for any sequence q = (qk)kezg so that if ¢ is taken under the form ¢z = b(t, k)e?*¥, we have
B (t,y, Z)q = u>° (1, Z,t,y).
In a similar way, we also define

L(1)q = ZQ;;M’;(J)eM(E)T, o=0, 1.
k

Again, note that if ¢ is taken such that q; = b(t, k)e’*"V then, we have £7(1)q = w(t,y,0).

We shall allways assume that the initial data is sufficiently smooth and vanishes at a sufficient
order at z = 0, z = 1 in order that b(t, k) decay to zero sufficiently fast. In particular, we assume
that

HwOH%/Ssym = Z 1b(0, k)|?|k|** < 0o for some s big enough. (7)
keZ3



This yields that w(t) € Vg, for 0 < ¢ < T where T™ is the life span of a smooth solution of the
limit system (9). Hence, by using that s > % —+ 2, we have since

1 \2 k 2|k|? -
(2) < T ~ g < 2
n® k| = lks| ki + k3

that

’]7 ’
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to finally obtain the important property

“+o0
swp [ (07 (r Z) (it o)|(L+12)+22)dZ < 400, 7 =0,1 (8)
Yy 0

which insures that the boundary layers are sufficiently localized in the vicinity of the boundary.

1.2 The limit system
We denote w™™ = Y"1 s b(t, k)N* the solution in L>(0,T*; V2, ) of the following system

)y Vsym
8twint + @(wint7 ,wint) + ?(wznt) — 7vp in Q,
V-w™=0in Q,
¢ (9)

w™.n=4w3=0 on 09,

w(t = 0) = w’.

where T* is the time of existence of the smooth solution w™ of (9) and Q(w™, w™?t), S(w™) are
respectively a bilinear and a linear operators of w*™.

The bilinear operator is given by

Q™ w™)y = 3" b(t, Db(t, M)z N*(X). (10)
jcellclﬁ(llfm) -
AD A (M) =A(k)
The numbers oy, ; are constants and the set A(l,m) = {l +m, Sl +m, [+ Sm, Sl + Sm} with
the notation o o
S(lla l2a l3) - (lla l27 7Z3)

is the set of possible resonances.
The linear operator is defined by

S(w™) = Z(D(z%) +4iI(k))b(t, k)N*(X)

k

where

D) =v2{(1=AED)}, 1) = V2{AE(1-AE?) ]

Note that S(w®) is a damping term, since D(k) > 0, that depends on the frequencies A(k).



1.3 Non resonance assumption on the torus

In the case of a non resonant torus (see [2] for the definition), the quadratic term Q(w,w) only
includes trivial resonances, namely the resonances only take place with the 2d non oscillating
geostrophic part :

{(k,1,m) |k € A(l,m)} C {(k,1,m) | kgmalz = 0} (11)

which yields in particular the global existence of strong solutions to the limit system. We also know
in that case that for k € A(l,m), and A\(I) + A\(m) — A(k) # 0

1 7d | e d
NOESY IS0 < C(|U* + [m]?) (12)

for some d > 4. We recall that for almost all choices of a; and as, the torus ']I'i is non resonant (see

[2])-

Besides, if at t = 0, we have

/ w® dedy =0
T,y

we see that this holds for any ¢. Indeed, in the non resonant case there are only trivial resonances,
namely with the slow modes (the geostrophic modes) (ki,k2,0). Notice then that the modes
(k1,k2,0), and (—ky, —ka, k3) do not create a resonance with (0,0, k3), since (k1,k2) # (0,0), and
then |A\(—k1, —ks, k3)| < 1. Hence we get that for all ¢ the modes such that A(k) = 41 are absent.
This is a crucial fact in our analysis since the boundary layers for the modes A\(k) = £1 behave
like the boundary layers in the vanishing viscosity limit of the Navier-Stokes equation whithout the
fast rotation (these layers are of Prandtl-type). For such case, the stability of the boundary layer
is known if the horizontal viscosity is much bigger than the vertical one (see [21]), in other cases

instability is more expected [15] except in dimension 1 [26] or for analytic data [28].

1.4 Stability assumption on the boundary layer profiles

The main difficulty in the convergence proof is to get an estimate for (1) linearized about the
approximate solution u®? : we study

Ov + U - Vv + v - Vu — eAv+ Vp+ 0 =0, xeT2 x (0,1) (13)
g

with the boundary condition (2) and the initial condition v/_y = vo(z). We would like to prove
an estimate like

[o(T)I[* < 7 |lwol

for some norm || - || with 7 > 0 independent of €. Even in the well-prepared case such an estimate
is not always true, it depends on a spectral stability property of the boundary layer profiles. If
the boundary layer profiles are spectrally stable, this estimate can be proven as well as nonlinear
stability, [25]. Whereas if they are unstable, we can only get an estimate with - of the order of
£~! and in this case nonlinear instability can be proven [6]. The spectral stability depends on the
amplitude of the boundary layer, numerically, one can prove that boundary layers with too large
amplitude are unstable [20]. The aim of the next subsection is to formulate a stability assumption on
the boundary layer profiles which generalize the spectral stability assumption of the well-prepared
case formulated in [25].



We start by freezing the slow variables ¢ = t and y = 3° in the coefficients of the approximate
solution. Let us set ¢ = q(t°,4%) = (b(¢°, k:)eik'yo),;ezg. We want to study the stability property of
the equations

—eAv =0.

t t t t \Y% X
o+ (L7(2)a+B7(2,2)a) - Vo +0-V(L7(2)a+ BI(Z, D)g) + ~2 +
£ e e £ ele £
Let us define for each sequence ¢ = (q)zezs the oscillating boundary layer profile V/(7, Z, q) as
Vo, Z,q) = L°(T)q + B° (1, Z)q,

we can take the Fourier transform in y and set Z = z/e and 7 = t/e to get the family of one-
dimensional problems

Do+ VO (r, Z,q) - < ng >w+w- < ?Zk >VU(T,Z,q)

—|—< ?k >p+exw+€2|k\2w—ﬁzzw20,
z

iek - wp, + Ozws = 0.
which is now set for Z € (0, 4+o00) with the boundary condition
w(T,ek,0) = 0. (14)

We recall here that we use the notation k = (k, k3) where k € Z2. Finally, we can set £ = ek and
use for £ # 0 the Leray projection P, (£) in the half-space which is recalled in section 19 to rewrite
the equation as

Orw =P (L (&, Qw, i€ - wp+ Ozwz =0 (15)

where L7 (7,€, q) is defined as

L= vz (5 Ju-u (5 )V0z0-exw- ooz (10

The non-autonomous operator P IL7 (7,&, q) generates a strongly continuous family of evolution
operators in the sense of [19], Chapter 7, S7.(7,7/, &, ¢) on He = {w € L?(0, +00), i - wp+0zws = 0}.
As usual, the main property of S (7,7',&,q) is that 7 +— S9(7,7/, £, ¢)wo is the unique solution of
(15) for 7 > 7/ with value wg for 7 = 7.

Let us fix s9 > 1 such that (8) holds when we replace w(t,y, o) by L7(7)g. A set K C V39, (Q)
or more precisely in {q | 3 rezs |k|?%0|qz|* < oo} (using the identification between the function and
its Fourier coefficients) will be called a uniform stability set if for every r, R, 0 < r < R, there

exists C(r, R) and «a(r, R) > 0 such that
Yo e He, [S(7,7,¢, q)vlr2m,) < Ce*a(T*T/)MLz(R”, Vr>7>0,0=0,1 (17)

for every ¢ € K and ¢ such that r < || < R.

We point out that there exists uniform stability sets. Indeed, a vicinity of zero is a uniform
stability set since we can prove as in [22, 5] that all weak amplitude boundary layers are stable
when (8) is matched. )

Let w'™(t) = > kezs b(t, k)N* be the solution of (9). Our main stability assumption is:

6



o (H) We assume that the set K = {(qr(t,y) = b(t,k)e*¥)icps, t € [0,T], y € T2}, is a
uniform stability set. ’

Remark 1 Note that we can define more generally the stability set Ko C V), (Q2) as the set of q
having the property that for every 0 < r < R, there exists C(r,R,q) > 0 and a(r,R,q) > 0 such
that (17) holds. By continuity of Sy with respect to q and compactness, we easily get that every
compact set K C Ko is a uniform stability set. In particular, this yields that for every bounded set
B C Vg, (Q) with s > so, we have that if B is included in Ko, then B is a uniform stability set.
Consequently, the assumption (H) is matched if K C Ko (where K is defined in the statement of
(H) and K is bounded in V£, () for s > sq.

sym

Since the operator L7 has only quasi-periodic coefficients there is no easy characterization of
the assumption (H), for example in term of the spectrum of L. When the initial data is prepared
so that the coefficients of .7 are periodic in time, we can use Floquet theory to replace in the
assumption (H) the decay estimate (17) by an assumption on the spectrum of S% (7,0,&, q) where
T is the period: if the spectrum o(S7(T,0,&,q)) is contained in the open unit disk DD, then the
estimate (17) is verified. Finally, we note that (H) is the natural generalization of the assumption
used in the well-prepared case. Indeed, in the well prepared case, since L5 does not depend on 7
the stability assumption was formulated in term of the spectrum of P4 ()L (&, q) : it was basically
assumed in [25] that the spectrum of P ()T (&, q) is contained in {Re A < 0}. By the standard
theory of analytic semi-groups, it is easy to prove that this assumption on the spectrum implies
the estimate (17). This is proven in [12] in a close setting.

1.5 Notations

We denote by || - || the norm of L?(T? x (0,1)) and by (-,-) the associated scalar product. We also
define the weighted higher order norms :

1013 2 = [[vll* + [ Voll?,
1], = [[0]* + %[Vl [* + ||V >

We will also use some anisotropic norms, namely

loll = > 11Z%]? (18)

a€Z3, |a|<m
where Z1 = 8y,, Z2 = ,,, and Z3 = ez(1 — 2)0, and denote by H™. the Hilbert space defined
by this norm.

1.6 Main result

Our main result is :

Theorem 2 We consider a torus T3 non-resonant in the sense of [2] and w® € Vaym Jor s suffi-
ciently large such that in the expansion

w(@) = > (k) ME(2)

kez?



we have b°(k) = 0 if k = (0,0, k3). Moreover, with the notation ¢°(y) = (¢2(y))z = (b°(k)e™*¥);,
we assume that

(19)

{ lus® — w® — B2(0, £)(¢°(y)) — B'(0, %) (¢° ()
el V(u® —w® = B0, £)(¢°(y)) — B'(0, 17%)(¢*(

for some m > 2, 3/4 < a < 1 and some constant ¢ > 0. Let w'™(t) be the solution of (9), we
assume that (H) holds. Then, there exists ey such that for all 0 < e < gq, the system (1) has a
unique weak solution u® € L>(0,T; L*(Q)) N L*(0,T; HL(Q)) with initial value u®Y. Moreover,
1-2
€

t z

Juf = £y — B D) (a(t,) - B D)t ) e sy < COre® (20)

e e
In addition, if o = 3/4 in (19), there exists a time Ty which depends on w® and on ¢ (but not on
e) such that (20) holds on (0,Tp)

Let us give a few remarks about this theorem.

Remark 3 1) First, we note that when 3/4 < o < 1, the uniform time of existence and convergence
T is only limited by the stability assumption (b(t, l_c)eik'y),geﬁ € Ko, in particular, it may be arbitrary
large even if the data is large. This is due to the regulam'tyaof the limit system which is better than
the regularity of the 3D Navier-Stokes in the non-resonant case (see [2]).

2) We also point out that the assumption that the torus is non-resonant is used to ensure that
b(t,k) = 0 for k = (0,0,k3) and that the result holds if we know that b(t,k) = 0 for k = (0,0, k3)
as well as an estimate of the type (12). Indeed, for the modes k = (0,0, k3), the boundary layer we
get is of Prandtl type (the rotation does not play any part). it was handled in [22] only with the
crucial assumption that the vertical viscosity over the horizontal one also goes to zero.

3) We shall see in the proof that the result is actually more precise. A sufficient condition on
the regularity of w® is s > d+5 where d is given in (12). The convergence will take place in a space
with horizontal regularity m where 2 < m < s —d— 3. Moreover, we notice that the error estimate,
namely Cpre® sees the boundary layer and hence the boundary layer cannot be removed from the
estimate (20). This is stronger than the estimates in [16, 22]. However, our result requires the use
of an initial data which depends on € and which is sufficiently close to the approrimate solution at
t = 0. The convergence is stated in L>(0,T; L*(Q)) but as will be seen from the proof in section 5.1,
we need to prove estimates in a stronger space, namely Y,,. In particular, the solution we construct
is a strong solution which yields the uniqueness of the weak solutions by the classical strong-weak
uniqueness argument.

4) Finally, we note that the proof of Theorem 2 is completely different from the proof of the
stability in the well-prepared case in [25] and the proof of the small data case in the ill-prepared
case [22].

The paper is organized as follows: in the next section, we give some details about the construc-
tion of the approximate solution, then, in the next sections, we prove the linear stability of this
approximate solution, finally section 5 is devoted to the proof of Theorem 2. The Appendix A is
devoted to the definition and the proof of some simple properties of semi-classical operator-valued
pseudo-differential calculus. These properties are crucial in the study of the linear stability. Fi-
nally, the Appendix B gathers some usefull properties of the Leray projection in the strip and in
the half-space.



2 Construction of an approximate solution

2.1 Some definitions and notations
We will use the notations of [22]. Let us denote by VU the subspace of L?(2)® consisting of
divergence-free vectors (div u = 0), and tangent to 9Q (uz(z =0) =us(z =h)=0)
VO ={ue L} Q)3 V u=0,u3(z = 0) = uz(z = h) = 0},
we also define, for m > 0, V" the space
V™ =H™Q)?NVO.

where H™ () is the classical Sobolev space W2™(Q)
Let T2 = T2x] — 1,1[= T2 x R/2Z be the torus of periods respectively a1,as and 2, and E
the linear operator from L?(Q)? into L?(T3)3 defined by Eu(z) = u(z) for 0 < z < h, and for

—h<z<0
Bu(z) = S(u(—2)), (21)

where S is the linear operator from R3 into R?, defined by
SX1=X1 SXo=Xs S5X3=-Xj (22)

for all X € R3, which corresponds to a symmetry with respect to the plan X3 = 0.
We also introduce V'™ = {u € H™(T3)3,V - u = 0}, Hence E'E u = Idyo where E’ is the

restriction from L?(T?)* onto L*(Q)?. In the sequel we will work in the space VI ,

v = E(V'™AEWV™)),

sym
which consists of vectors u € V™ that satisfy extra boundary conditions on the vertical derivatives.

We also introduce a norm on V;Z]m

1
ufig,, = 5 Eulbm,

sym

which is conserved by the group £, namely |L(7)ulvz = |ulvm, , for every 7 € R. We will, also
use the following notations (see the appendix 2.2 of [22] for a precise construction)

e X = (91792,2’) = (y7 Z)
o NF(X) = MF(2)ei* is an eigenvector of L associated to the eigenvalue iA(k) =i ks/|k|

e For w e L>(0,T,Vs,.), we set

» Vsym

w(t,X) = b(t,k)N*(X), (23)

kez3

then we have for all ¢, |w(t) %/Ssym = 2|Q| 35 b(t, k)| |k|%.



2.2 Study of the group

We study here the group L, in particular, we give the expression of the eigenvectors N k.f Using
the construction in the appendix of [22], we get for k = (k, k3) € Z3 and k # (0,0) that N*(X) =
MP¥(2)e?¥ where

2 cos(ks z)nl(@)
ME(z) = | 2cos(ks z)na(k) | - (24)
21 Sin(k‘g Z)’I’Lg(/{?)

7N 713(]5) ,k’Q k‘l =
ni(k) = ﬁ(%)g <Z - A(’“)) )

and

77,3(];7) =

Notice then that N¥(X) € V£, and that we have LN* = A(k)N*.

sym

2.3 Approximate solution

Here, we construct the approximate solution U%P = (u®P, p®P). The aim is that UP satisfies (1)
up to a small error and the boundary condition (2) exactly.
To guess a good choice for U, we expand the solution in the following form U°+eU' +£2U? +...
where
U =U0r,t,2) + U7, t,y, Z) + U° (7, t,y, Z'). (25)

where we recall that 7 =t/e, Z = z/e and Z' = (1 — z)/e. Even though, it is not clear whether we
can push this expansion to all order, this will allow us to guess the first terms. Hence, arguing as
in [22], we get

W (r,t) = L(1)u’(r = 0,t) = L(7)w™ ()

which is exactly the term " in (4).

We notice that u” does not vanish on 99, we only have (u” - n) /o, where n is the normal to
the boundary. This requires the introduction of a boundary layer. For the boundary layer, we only
construct U O near z = 0, since the construction of U° near z = 1 is similar. We recall that the
modes (0, k3) are excluded due to the assumption on the initial data and on the resonances of the

torus. So, we only deal with the case —1 < A(k) < 1. Using the construction in section 4 of [22],
we get @0 = > _zs R¥ where

RFz) = —%b(t,k‘)exp {z <(k:.y)—|—>\(k)t>] y (26)

9

_ 144) - - 1—4) -
[hk’JreXp(—( +Z)nk,+z)+hk,exp(_( ’L) kfi)

V2 vz e

In a similar way, we get that @0 = Y hezs T* where T* has the same formula as RF. Hence,
ub =% + a0,

10



It remains to construct the remainder term u”. Of course, a good guess for u” is to take eU".
However, we would like to get an approximate solution u®? which is divergence-free and which
vanishes on the boundary. The rest term is under the form

uT:Z(R§+T§)+Zr’5+sy+R3
k

k

and hence consists of four terms. We refer to [22] for the details on the construction of these four
terms. The main property of this correction term is that for all |a| 4+ || < s —d — 5,

1(9(2)0:) 05 u" || < Cag,  110:(0(2)8:) gu’ || < Ca. (27)

where ¢(z) is a smooth bounded function which is equivalent to z and 1 — z in the vicinity of 0
and 1 respectively.

o R§ and Té_“ which are introduced to insure that RF and T* satisfy the divergence free condition.
However, R]:;f creates a trace at z = 0 and Tzf creates a trace at z = 1 of order e.

e ¥ which is used to cancel the traces RS(z = 0) and T¥(z = 1). Since, we have to take r*
which is divergence-free, we have to construct r¥ and r§ which have a trace at z = 0 and
z = 1 of order . This is actually easier to handle than the trace on the third component we
started with. Besides, the term %e x r¥ is responsible for the Ekman damping in the limit
equation.

e ¢} is introduced to cancel the non resonant oscillating terms which do not yield a contribution
in the limit equation. More precisely, we have

V(r,t) = —£(7) /0 1L Qw, w) — Glw, w)] (t)dr.

We also point out that due to the non resonance assumption, we know that ||V (7,t)|| gs—a-1 <
C for a constant which does not depend on 7 or t < T.

e R? which takes into account the boundary condition of r, ). This was constructed in section
4.3 of [22].

3 Linear Stability

We study the linearized system about the approximate solution:
T(w,p)=F, V-v=0, z¢cT2x(0,1) (28)
where

T¢(v,p) = 0w +uP? - Vv +v - Vu + Vp LY A
5

with initial data
v(0,z) = vo(x) (29)

and the boundary condition (2). Let us define v by ]:vaF = 1g|>rFyv, for some r > 0 and
k*(eDy)v by Fy(k*v) = k°(e§) Fyv(€) with £°(§) a smooth function which vanishes for || > 2r. the
main result of this section is

11



Theorem 4 We assume that (H) holds. Then, there exists y9 > 0, v > 0 such that for every
e>0,T >0, with ee?” < 1, we have

T
M%THP+ﬂQHVvHFUUH2+l£ el [Vl [? (30)

T T
S (Il + 1 1+ [ [ Feo|+e [CIFIP)

Throughout the paper, < stands for < C' where C' > 0 is independent of € € (0,1), T if ee?? < 1.
Note that by using the Cauchy Schwarz inequality and the Gronwall inequality, we can get from
(30) the estimate

T
[o(T)|[2 + 2| Vo P (D)2 + /0 (el 17wl + =70 713,

T
0 HF
S e (Iluoll® + g 13 . + /O (1+&)[IFI?)

for some 4 > + which gives an estimate of v with respect to the source term F' and the initial data
only. Nevertheless, in order to handle the nonlinear stability, it is important to keep the term

T
/ ‘(HSF, K,Sv)‘
0

in the right-hand side since it will allow to use the structure of the nonlinear term of the Navier-
Stokes equation and hence to get some better estimates.

The aim of the remaining part of the section is to prove Theorem 4. Note that for the moment
we have a control of the L°°(0,T, H') norm only for the high frequency part of v. We will derive
an estimate for all the frequencies in paragraph 3.6.

3.1 Proof of Theorem 4

We start with a localization in frequency of the equation similar to the well prepared case [25].
We will deal with large, medium and small frequencies in different ways. For a smooth bounded
function «, we apply the Fourier multiplier x(eDy) to the equation 13. We get

T¢(kv,kp) = KF +C (31)
where the commutator C is defined as
C = —[k,u"? - Vv — [k, DuPv
By using the same argument as in [25], [27], we have the estimate
€11 < 2I1Vol]? + o] (32)

Note that these commutator estimates are actually proven in a more general case in Lemma 16.
We first deal with the case where xk = x* is supported in £|k| > R. We have

Proposition 5 There exists R > 0 sufficiently large such that we have for every e € (0,1) and
every T >0 :

T T
e T e A (Ao R

Note that for the proof of this lemma we do not need to use (H).

12



Proof

We use the same argument as in the well-prepared case treated in [25]. Using that u®"P is divergence
free, the standard energy estimate for (31) gives

N

T T
bR+ [ eliTatol S sl + [ (sl £ [ ol -+ 1))

T
= |m%o||2+/0 (=7 lIKEoll? + el 12 + IC)).
We notice that

IV&bol[? > R%e™||w ol

so that for R sufficiently large, the singular term £~!||x"v||? in the right hand side of (33) can be
absorbed by the left hand side. By using also (32), this yields

T T
et @IE +e7 [l s [ (Il +ellPIE) + ool (33

[[>. This is an easy consequence of the following

To conclude, it suffices to estimate £2||VkLv(T)
lemma :

Lemma 6 Consider u a solution of

X
8tu—5Au+€ Y

5 +Vp=H, V-u=0, € (34)

with the initial condition u(0,z) = uop(z) and the boundary condition (2). Then, we have the
estimate

T T
EIVan)IP+ [ (IR + cllol?) S 2wl + [ (Ml + i) (35)

L

We first end the proof of Proposition 5 by using Lemma 6. We can use Lemma 6 with v = x*v and

H = —u® . Vrtv — (kPv) - VU + kLF 4 C.

This yields
T
&% VrEol? S €% VrLuol + /0 (=7 IR5 0l + ell Vol + el I + ol )
To conclude, it suffices to add (33) times a sufficiently large constant and the last estimate.

‘We now turn to the Proof of Lemma 6 :

13



Proof of Lemma 6

We take the scalar product of (34) by dsu, since dyu is divergence free and verifies the boundary
condition (2), we have
d /1 9
(Vp,8u) =0, (—Au, dyu) = %<§HVU|| )
and hence we get

T T
AV + [ ol < eliTuall+ [ (111 + el ol
By using the Young inequality, we find after multiplication by e
2 2 ’ 2 < 2 2 g 2 1),,1(2
2| Vu(T)|| +/0 el[Qrul* S || Vuol| +/O (cl1HIZ + 7l 2). (36)
Next, we use the classical regularity result for the Stokes equation [10]. We consider (34) as

—eAu—i—Vp:H—exu

— O, V-u=0

and we find that
EV2ull? S HI? + e [Jul]” + ||dpul [*.

To end the proof, it suffices to integrate in time, to multiply by ¢ the last estimate and to use (36).
This ends the proof of Lemma 6.

We now consider R as fixed. The next step is to consider the case where xk = k° is supported
in elk| <r.

Proposition 7 There exists r > 0 sufficiently small such that we have for every e € (0,1) and
every T' >0

T T
o+ [ el ol [ (ol 166 Fro)l) + ool .

Again, note that the assumption (H) is not used.

Proof
We again use a direct energy estimate as in [25]. Since (e X x°v, k*v) = 0, we get
T T
oo+ [ el s [ (ICIR + llsoll + [ F om0+ 5°) +lewlP (37
0 0

where the singular term S° is defined by

Se = 5_1/ |k vs] <|82ub\ + \8Z/ub|> |k%v| da.
Q
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Again, we use (32) to estimate C and hence it remains to study S°. To estimate this term, we shall
use the inequality

rear s ([lon) <z [ospes o it ge=0 69

Note that since 0,k°v3 = —01Kk°v] — O2k°v9 because of the incompressiblity condition, we can use
(38) twice to get

z z 1
|/<aSv3|2 < z/ ]82/{9113\2 < z/ |Vh/<csvh|2 < 23/ \82Vh/<csvh\2,
0 0 0
1
|k%0)? < z/ |0, K5v|2.
0
This yields
8_1/ k53| |07u”0| |kS| da
Q
+o0 )
< €2||82Vhlisv\| [|0. k50| sup/ Z2|8ZBO(T, Z)wmt(t, y,0)|dZ
y Jo

< 8T||VI€SU||2.

To get the last inequality, we have used that ¢||V,k®f|| < 7||x°f|| by definition of x° and our
regularity assumption which gives

00 .
sup/ Z2|0,B% (1, Z)w™ (t,y,0)| dZ < +o0
Y 0

following (8). The same argument in the vicinity of the boundary z = 1 shows that
5_1/ k503 |07u" | |kSv| do < er||VkSv|[2.
Q

Consequently, we can choose r sufficiently small to absorb the singular term S€ in the left hand
side of (37). This ends the proof of Proposition 7. O

Finally, it remains the most difficult case where s(ck) = ' is supported in r/2 < e|k| < 2R.
Note that r and R are now fixed. We have the following estimate :

Proposition 8 Under the assumptions of Theorem 4, we have for ¢ and T such that ee?T <1
T T
IR+ [ el S T Il + [ (e IFIR + ol ).

The assumption (b(t, k)e™*¥) kezg € K is crucial in the proof of Proposition 8.
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3.2 Proof of Proposition 8

In this section, due to the oscillations in the boundary layers, we use an approach completely
different from the one of the well-prepared case used in [25]. The proof of this Proposition is the
most technical part and we split it into various steps. First, we rewrite (31) by using the Leray
projection P(D,) which is recalled in section B.2. Let us set v! = xlv, we get the equation

o' = P(D,)R (eD, )LV + P(D,)7 (MF + mlC>, Voul=0, zeQ, (39)
where %' is compactly supported with a support slightly bigger than ! and takes the value 1 on

the support of ! in order that &'x = x and L¢ is defined by

exXv
Lfv =eAv—u? .- Vv —v- - Vu? — ——.
€
Next, we shall estimate differently v' in the interior of the domain and in the vicinity of the
boundary. We decompose v' as

z ) 1—=z2
Ul:Xb(g)Ul‘FXlnt(Z)Ul‘i‘Xb( 5 )Ul

(40)

where x® is compactly supported in [0, 2], and ™™ is compactly supported in [5,1 — 6]. Note that
X" depends on § though we forget this dependence in the notation. Multiplying (39) by x for x
one of the truncation functions x™, x*0 = x(2/8), x®' = x*(1 — 2/§), we get

Bi(xv') = P(Dy)R! (eDy) L7 (xv') + H (41)
V- (xo') = —8:x v} (42)
where
H = xP(D,)# (FJF + /{lC) relgc? (43)
with the new commutators C! and C? defined by
¢! = [xP(D)R (D)L, (44)
¢ = P(D,)R(eD,) [X,LE] o, (45)

Thanks to (155) in Lemma 19, we get that
IEH S I+ el Vo' ] + 2| AV S [[o']l2.e- (46)

Note that in the following < stands for < C and that C' may depend on §. Besides, the explicit
computation of C? and a new use of the commutator estimates (see the appendix of [25] or Lemma
16) gives that
2 ! ! 1
ICEIL S V'] + el [Vorl] S o] fe- (47)

Finally, note that if we choose % such that the support of 7 is again slightly larger than the one
of &' then we have
H =7 (cD,)H. (48)
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3.2.1 Interior estimates

We start with the case y = ™. The estimate of x""*v! can be obtained by a direct energy estimate.
We shall first establish the estimate :

T T
l — i l l l
DR+ [ IR S I+ [ (AR I+ RRL). o)

The only difficulty is that we have to deal with the fact that x™*v! is not divergence free. When
we take the scalar product of (41) by ™!,

(PR (eD,)LE (¢"t0), 10 ) = (L2 (¢™0!), B(D, R (D) (™)
= (Le0 ), ) 4 (L), [P(Dy )R (eDy), X ™10

since v is divergence free. Hence by using again the commutator estimate (155) of Lemma 19, we
get

we can write

(P(Dy)R (D, L (™')™ ) =
(Leemeot) x™ 0t ) + 0 (11| + el Vo] + 2|t ) ™o |

where O(1) is bounded by a constant which is independent of e. The first term in the above equality
can be handled by standard integration by parts as previously. This yields

T
X" (T )||2+/0 el [V (™) (50)

T
S+ [ (Ul + 1D I+ )
where the singular term S¢ is given by
SE — 8—1‘ (Xintﬁzubvl’xint,UQ ‘_{_5—1‘ (Xintaz/ubvl’xmt l)} — Sl + 52‘

By using the localization of the support of ¥ we have

ki

551 < Z\b(uk)HM“(ons-lexp(—"ﬂ )l (51)

b(t, k) Mk
< Z ‘ | )HX'LntleZ < HX'mt l||2

~

and hence this term is well controlled. The estimate of S5 is similar. To conclude, we finally notice
that since the Fourier transform of v! is localized in e|k| > 7, we can write

IV = VTR (0,0 = [[RV (x ™))
> 5—2Hxintle2

and hence, we deduce (49) from (50) by using the Young inequality which gives for every n > 0
(['[2. + [1HID [[x™ '] < Ce(IHIP +110']3) +ne x|
and the estimates (32), (46), (47).
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3.2.2 Estimates near the boundary

We now explain how to estimate x?(z/8)v! which will be denoted as x’v! in the following in order
to simplify the notations. The estimate of xy»'v! which can be obtained in a similar way will not
be detailled. We shall establish

T
@R+ [ (It + eV ) (52)
T
ST O+ [P
0
T
+e e%T/ (110117 + 2102 + 4| A0t] 2 + €29y
0

We study (41), (42) with xy = x*?. Note that since x’v' is compactly supported in T? x [0, 24], we
can use Lemma 20 and replace the Leray projection P(D,) by the Leray projection in the half-space
P, (Dy) modulo a small remainder term. This means that we can study in T2 x Ry the equation

0i(x"') = PL(Dy)R(eD L (x"0") + H + E°, V- (x") = —0.x ' (53)
where
E® =X (P(D,) = P4.(D,) )& (eD, )L (x')

where X is a smooth function with a support slightly bigger than x?. Thanks to Lemma 20, we
have
B[] S M| + el Vol + 2| A0l < [[o!]l2,e- (54)

Again, note that E° verifies
E° =% (eD,)E°. (55)

We add to (53) the only boundary condition
X" (t,y,0) = 0. (56)

Since x’v! is not divergence free, we first lift the divergence to recover a problem with a divergence
free constraint. We choose in a classical way d such that

V-d=-0.x"vk, d(t,y,00=0 (57)

and also in such a way that
7 (eDy)d = d. (58)

This is possible (see [10]) since

)
/aszvé = —/Xbazvlg = /Xb(z)/vy'vé =0.
z y

1l s S W' prs, s 20, (59)

Moreover, we can have

Note that since d is chosen with the property (58), we can use that 7 < e|k| on the support of &
and (59) to get that
- l
e Hldl| S [l (60)
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Moreover, by taking the time derivative of (57), we also get that
e M10ud]] < Nlo']]. (61)
Now, let us set w = x*v! — d, we deduce from (53), (57) that w solves

dw =P, (D,)R(eD,)L>w + H + E° + E' + E?, (62)
V-w=0 (63)

for z = (y,2) € T2 x Ry, with the boundary condition

w(t,y,0) =0 (64)
where L%¢ is the operator
.t t .t ot
Lw = eAw — (umt(f,t,y,O) —i—ub’o(f,f,t,y) —i—Y(E)(umt(qt,y,z) —umt(f,t,y,O))) -Vw
15 g e ) € €
. t z z . 4 . 4
int b,0 — int int
—w- 77ta aO ’ 777at7 < 77t7 ) - 7at7 70 )
w- V(W (2t y,0) + (2, 2t y) + X)W (2 g, ) — (2 8y, 0))
e X w
pant

In this operator, we have introduced ¥ which is again a smooth compactly supported function such
that yx? = x°. Moreover, we recall that the notation u®? refers to the main boundary layer in the
vicinity of z = 0. The main interest of the introduction of Y is that the term

. A . 7
w(S = Y(g) (UZNt(g? t7 Y, Z) - uznt(g’ ta Y, 0))
verifies
||z S 6, [|Vw|lp S 1. (65)

In the above estimates, < is independent of ¢ for 0 < § < 1. In the right-hand side of (62), E? is
the error term coming from d, i.e

E' = 9,d — P, (D,)R(eD,)L"d.

Hence we have
HE| S [10ud]| + ||Vdl| + [|d]| + ]|Ad]] 4 71| |d]]

and hence, thanks to (59), (60), (61), we get
1B S ellow! ||+ [10']] + el Vo'l S 10|+ 110" - (66)
The other error term E? is defined as

t 1—2
B = —P.(09,)(e0y) ("} (0. = 0.0) +07) - V(o)

t 1—
_Xb,Ul ~V(ub’1(—’ th7y)_|_u'r))
g 13

so that by using (27) and the same trick as in (51) with the regularity assumption on the coefficients,
we get

B2 S ellVo'[| + [10']] < 11v']]e- (67)
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Finally, note that E' and E? verify

®E'=E', ®E?=E (68)

To estimate the solution of (62), (63), we can use the following general principle:

Lemma 9 Consider a linear equation of parabolic type in a domain )

ow = A*w+ F (69)
with the boundary condition w/sq = 0 and the initial condition w(0,z) = wo(x). Consider two
weighted norms N7 and || - ||1.. Assume that there exists an approzimate solver GP such that if
we define

wP(t) = GPPF, F = (F,wp)

then wP satisfies the boundary condition and the initial condition and moreover, there exists
Cre > 0 such that
Np(w™) < Orel| Fllre (70)

and if we define the rest operator R*PP qas
ROPFE = 9w — ASw™P — [,
then, there exists C%’E > 0 such that
|(RPPF,0)||I1.e < Cp || FlI7e (71)
Moreover, for everye >0 and T > 0 such that
Cre <1, (72)
there exists C >0 (C = Zkgo(cilfa)k) such that the exact solution of (69) satisfies
Ni(w) < COrel|Fllre- (73)

The proof of this Lemma which only relies on a simple iteration scheme is postponed to the end
of the section.

We shall first explain how we can use Lemma 9 to estimate the solution of (62), (63). In other
words, we need to find an approximate solver G*P. A similar idea was used in [17], nevertheless,
here our approximate solver will be completely different. We define the dilation operators

Msf(Z) = \/gf(aEZ), Msf(7_7 Z) = 5f(57-75Z)'

Note that M. is an isometry on L?(R;) and M. from L2([0,7] x Ry) to L?([0,T/e] x Ry). We
notice that thanks to (65), we can rewrite the operator as

1
Lbéw = ~ ML (q(t, Y), sDy>Mgw +0(1) (5yw| + \wy)
P (Dy) = MZ'Py(eDy) M.
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where ¢(t,y) = (qz(t, y)) with -
qz(t,y) = b(t, k)elk'y.

In the above equality, O(1) is bounded by a number independent of § if £/6 < 1. The rescaled
operator L. is defined by

Lq,)w = (9272 — |&*)w — (£0q+80(7, Z)q) . ( l@i >w

—w - < gg ) (qu—i—BO(T, Z)q) —e X w.
Next, we use a frozen time approximation, we rewrite (62) as
1
gM;1P+(€Dy)E(€Dy)T(q(O, y),eDy)Mw + Réw = H? (74)
where the symbol 7 (g, &) is the differential operator acting only on the 7 and Z variable defined by
T(q7 g)w = aTw - ]Lg-(qa §)w7
where LY is defined in (16) and Rw is defined by
1, _
Rew = —MZ'Pa(eD,)R(eD,)(T(a(0.y),D,) = T(q(t,).eD,) ) Mew
P4 (D,)O(1) (37| + ]
and hence satisfies the estimate
T T T
| IRl s @46 [ valP 42 1) [l (75)
0 0 0
The source term H! in the right-hand side of (74) is defined by
H'=H+ E°+ E' 4+ E2. (76)

Thanks to our assumption (H), it is natural to define our approximate solver G*’P and our approx-
imate solution w? as

WP = OPPF — ME_lOpg El(gDy)MgDa]:a (77)

where

1
F = < H > , D.F = (EHl,E%’wo),
wo

and with a slight abuse of notation, we define M.F as
MF = (MH', Mw).

To define the operator-valued symbol g, we first define for data F(7,2) = (F(7,2),uo(Z)), the
operator G(q,§) (acting on functions depending on 7 and Z) such that G(q,&)F (71, 2) := u(r, Z)
is the solution of

Oru=PL(OL (u+F, & up+dzuz =0 (78)
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such that u(0, Z) = ug(Z), u(r,0) = 0.
By using the operator G(q, £), we can define a symbol g such that

9(y,€) = G(q(0,9),¢&) (79)

and then a semi-classical operator-valued pseudo-differential operator Op, as in the Appendix A.
In particular for F(7,y, Z), we have the definition

OpyF =Y e™G(q(0,y),ek) F (1, k, Z). (80)
k

With a slight abuse of notation, we shall sometimes use the notation G(¢(0,y),eD,) in place of
Opy. Note that the operator M. acts only on the 7 and Z variables. Consequently, we can write

GPPF = Opgare, g (y,€) = M g(y, §)M.D: (81)
and hence G? is itself an operator valued semi-classical pseudo-differential operator with symbol

gapP .
Note that because of (48), (55), (68), since we want to solve (74) only for data such that

R (eDy)H' = H', Fwo = wo, (82)

the introduction of & in the definition (77) is justified. To prove that w™P = GPF is a good
approximate solution, we want to use the semi-classical pseudo-differential calculus of section A
seeing the symbol g(y, &) as an operator on L2([0,7] x Ry) or L>([0,T], L*(R,)).

The aim of the following lemma is to study the dependence of G(gq,§) in ¢. In particular, we
prove that it is smooth in ¢ and we estimate the derivatives. This will imply that g is smooth in y
and hence we will be able to use the Lemma 16 and 17 of the Appendix A.

We introduce the following notations :

lvle2 = l|vllz2(0,0)xry)s  [Vec0 = l[V]]Le((0,0), 22 )5
l[vlle2 = [lv]lL2(0,0)xT2 xRy )s  [V]l@,00 = l[V]lLoo(0,0),22(T2 xR ))-

Lemma 10 Thanks to (H), for every & in the support of El, for every q in K and for every
m, there exists ay, > 0 and Cy, > 0 such that for every © > 0, for every F = (F(t,-),uo(-)),
F(t7 ')7 UO() € HE

1Dg'G(a:§) Flo.co + 1Dy G(q,§) Flo2 + 102D G(q,€) Fle 2 (83)

< Cun(1Flo2 + luol2es))
02D3'G(q,8)Flo,co +10:D'G(q, &) Flo2 + [0z2Dy'G(q, &) Fle2 (84)

< Cm<|F\@,2 + \U0|H1(R+)>-

We also postpone the proof of this Lemma to the end of the section.
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Thanks to Lemma 10 and Lemma 15, we get that
72 = ||G*PF||r2

— HOpg ﬁl(eo”’y)Mapayr(T/’ 7) dT/)

[P

‘T/E,Q
S ellMEH |7ye2 + Vel Mew|
S ellH 2 + Vellwoll
By the same method, we get
[w™P||7.00 = [|GPF|7,00

Opy7 (€0,) M.D.F (7', Z) dT’)

_1
=g 2

’T/:—:,oo
1
S e2 [|MEH |7/ o + || Mewol|

~

1
S e2|[H |72 + |lwoll

In a similar way, since
oMt ="M, oM =T MO, OgM. = eM.D,,
we find
_1
10:(GPF)llr2 S H |72 + 2 woll,
_1 1
10:(GPPF) |2 S [[H |72 + 72| |wol| + €2 ||Vuwo|
_ _3 _1
1022 (G F)llr2 S e IH |72 + €2 [wol | + €72 || Vuwol|,
_1 _
10:(GPPF)|Ir00 S €72 |[H |72 + € ||wol| + || Vawo]|.

~

Consequently, if we define the weighted norm N7 (u) by

1 1
Ni(u) = e Hullrz + |[Vullrz + |01z + €| VZullr2 + 2| |ul |00 + €2 ||Vl 7,00

Note that the norm N7 (w) involves Vw in our definition. Nevertheless, since we use only this norm
for functions whose Fourier transform in y is supported in r < ¢[¢| < R, the terms involving V in
the norm actually gives a usefull, non redondant piece of information for 9, only.

We also define the weighted norm ||F||r. as

1 1
|Fll7.e = [H |12 + ™2 ||wol| + || Vo]

we have actually proven that
Np(GPPF) S | Fllre- (85)

Moreover, by using again Lemma 10 and Lemma 15, we get by the same method that
N7 (OppggmF) S Cal Flire. (86)

We can now check that w®P? is a suitable approximate solutions. To have clear notations in the
following computation, we use the notation

OpT = T(Q(Oa y)v 5Dy)~
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To check that G*PP is a good approximate solution, we write
r, _
—M. P, (eDy,)R (Dy)Op 7 M-Op garn F + REOpgars F
1
= g/\/l;lPJr(sDy)Kl(eDy)Op TMOP garo F + REOpgarn F + C”

where K!(¢) is a smooth compactly supported function with a support slightly bigger that the one
of & and such that
K'F =% (87)

The commutator C" is defined by
cr = %M;lPJr(EDy)KZ[E, Opr|Opyom F
and hence is very similar to C. In particular, thanks to (85), we have
IC" 7,2 < el Fllze- (88)

Next, we write

Lyvctp (eD,)K'(eD,)Op7rM.Op garw F + REOpgars F + C"

M Pa(eDy y)Op 1T M:Op garr Pgave

= éM;lOp]erKz Op1 m.gorn F + REOpgarm F + C" + R'F

1
= g/\/l;lOpp+Kzng€Dgf + REOpgarr F +C" + R'F + R*F.

Since by definition, the symbol g, is chosen such that

P(OK ()T (4(0,9), )y, &) = K'(§)Id,
we get thanks to (82) and (87) that

1
gMglp_;,_ ((C:Dy)E((C:Dy)OpTMgOp gappf + Rsopgappf

= Kl(gDy)Hl + RaOpgapp}' L O +RF+R2F
= H'+C" +R'F + R*F.

The remainder R'F is defined by
1
RIF = gM;1P+(EDy)E(EDy)OpT1f
with the symbol r! given by
1 . 212\ app
Py, €) = (V(t/e,a(t,9), Z) - <Dy + €2D2) 675, €).
Consequently, thanks to (86), we have

IR Fllrz < el Fllre- (89)
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In a similar way, thanks to Lemma 16, and (86), we have for m > 7

IR%Fllre S e Y N°(Oppggem ) S el Fllre. (90)
|| <2
Finally, thanks to (75), we also have
IR Opyem Fllrz S (6 +T)|1Flre. (91)

To use the result of Lemma 9, we set
RWPF = REGP(y,eDy)H' +C" + R'F + R*F
and we see thanks to (88), (89), (90), (91) that
|IRPPFllr2 S (6+ T + &)l Fllre. (92)

Consequently, thanks to Lemma 9, for € and § sufficiently small, there exists T7° and C° > 0 such
that
Fo(w) < C°|Fl|ro ..

To get an estimate on a longer interval of time, we can reiterate the process as long as ¢(t,y) € K.
Indeed, since ¢(7°,y) € K, then we can use the same method as previously for T < TV, we
rewrite the analogous of (74) but we replace 7 (w™°(0,y),eD,) by T (w"™%(T% y),eD,). The
same argument as previously allows to get an estimate on [T, 27°]. The iteration of the argument
finally allows to get for some C' > 0, 9 > 0 independent of T that

Ni(w) < Ce™T||F]

Te (93)

for every T > 0 such that w'™(t,y,0) € K, for t € [0, T].
Finally, we can multiply (93) by ez, use that w = x*v! — d and the estimates (43), (46), (47),
(66), (67), (59), (60) to get in particular that

T
I (DI + /0 (=7 I + £l IV ()| 2) (94)
T
et [ PP
0

T
e [ ([l + Vol + A0 + 2210 ).
0

< @Tjg

This ends the proof of (52).
We can now end the proof of Proposition 8. At this point, we shall restrict ¢ and T such

that ee”” < 1, this will allow to absorb the terms in the right hand side still depending on v'
which involve higher order derivatives by another estimates. At first, we can use the decomposition
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(40) and (52), (49) (we recall that we get an estimate near the upper boundary z = 1 completely
analogous to (52)), to get

T
o' ()] 2 + /0 (=7 101 + 21V 2) (95)
T
S TN + e [ |FIP
0
T
+(1 +eeT) / (110117 + £21W0l[2 + %] A0 |12 + 205! (96)
0
To conclude, we use Lemma 6 to estimate higher order derivatives. We get
T
2ITHDP+ [ (ellow!| + 1920 ?) (97)
0
T
552HVUO||2+/0 (7 101112 + el V0|2 + el o]? + 2|Vl 2 + e[ FI2).
Finally we can add (97) and (95) times a sufficiently large constant to get
T
[ (T2 + €290 ||? + /0 (=7 101112 + IV 2 + el 9|2 + 22192 2)
T
ST uolfp + e [ PP
0
T
+(areem®) [ (ol + <290l + | + o'
0
and hence, for ¢ sufficiently small, and ee"” < 1, we finally get the result of Proposition 8.

3.3 End of the proof of Theorem 4
To get (30), we collect the estimates of Propositions 5, 7, 8. We get for ¢, T such that ee?? <1 :

T
()12 + [V () + /0 (clIVol + 71077 2)
T
< €T (ool + 1o 1) + /0 (e™TIIFI2 + 0] + 2l Vo] + |(x°F, 5°0)] ).
For ¢ sufficiently small, this gives
T
oD+ V0™ e+ [ (elITol+ <77 ) (98)
T
ST (fuol+ g F1E) + [ (e TIFIR + el + [(<F, w00)])
0

and hence Theorem 4 follows by using the Gronwall inequality.
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3.4 Proof of Lemma 9

We represent the exact solution w of (69) as

0= uk

where
w® = GUP(F,wg), R°= R™P(F,u")

and for k > 1 we define recursively w* and R* as
wh = —-GPP(RF10), RF=R"P(RF)0).
Thanks to (70), (71), we easily get by induction that
Ni(w") < Ore(Cr. )M |(Fywo)llre,  ||BMIre < (C1.0) HI(F wo)llre

and hence, thanks to (72), we get that

Ni(w) < Ore (32 (C1M) I (F,wo)llre < CreC II(F,wo)lre.
k>0

3.5 Proof of Lemma 10

We start with the proof for m = 0. In this section, < means < C where C is independent of O.
We can write the solution of (78) under the form

G(q,&)F (1) = Sp(1,0,4,€)F ()wo + / St (1,7, 4, R (E)F (') dr’
0
and hence, thanks to (H), we get that
G0, 6)F(r)| < e ] + / e F(r')| dr’.
0

This yields by standard results on convolutions that

1G(q,)F(7)|

0,00 S |wol + [|Fle,2

and that
1G(q,&)F(7)llo,2 S lwo| + ||F|le,2 (99)

Next, we can reintroduce the pressure and rewrite the equation (78) as

Oru+V(r,Z,q) - < ?Z )u+u' < ?Z )V(T,Z,q)+ ( ?Z >p (100)
+ex u+ €2 u — dzzu =0

with the divergence free condition
1€ - up + Ozus = 0.
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Consequently, the standard energy estimate gives

fu(r)? + / Ozul’ < Juol? + / PP+ / fu?
0 0 0

and since the right hand side is already estimated thanks to (99), we also get
102G(q, ) F (T)lle2 < |wol + || Fle,2 (101)
To estimate higher order derivatives, we use again Lemma 6 (with ¢ = 1), we get
107ul[é 00 + [107ulf 2 + [1022ulld 2 < 107u0l? + |IF 1[G 2 + [[ulld 5
and since the right hand side is again already bounded thanks to (99), we get that
102G (q,8)Flle,c0 + 110-G(q,§) Fllo 2 + [1022G(q, §) F|

This ends the proof of (83), (84) for m=0.

The general case follows by induction, we shall just explain how to handle the case m = 1.
The regularity of the solution of (78) with respect to ¢ follows from standard regularity results for
solutions of parabolic equations whose coefficients smoothly depend on a parameter [9]. Taking the
differential of (78) with respect to ¢ in the direction h, we find that

(aT — P (6)Ly (7.4, g))un h=R'

Rlz((qu-h)-<§Z >u+u'<g€z >qu-h)

and Dyu - hji—g = 0. Consequently, we have

0.2 S |lwo| +||F|le,2-

with

Dyu-h = G(g,€)(R",0).
By using (83), (84) for m = 0, we get

|Dgu - hle oo + |Dgu - hle2 + |0zDqu - hle 2
+[0zDqu - hle,co +|0: Dgu - hlo 2 + |07z Dgu - hle 2
S |RYe

S bl (luloz +10zulo. ).

Consequently, we can use again (83), (84) for m = 0 to get the result for m = 1.

3.6 Estimates of the gradient

The aim of this section is to estimate ||Vou(T)||?, we first give a crude estimate :

Theorem 11 Under the assumptions of Theorem 4, we have
T
ST+ [ (B0l + V7l + 295l ) (102)
0

T T
SVl + T (ol + 1071+ [P0l +e [ IFIF)
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Note that this estimate is relatively crude since we have only a control of £3||Vu(T)||? whereas,
because of the size of the boundary layers, we would expect a control of £2||Vv(T)||?> as we had
for the large frequency part of the solution. Nevertheless, this estimate will be useful in section 4.
The reason is that in the proof we do not use in an optimal way the structure of the singular term

e 1le x v.

Proof of Theorem 11
To get (102), it suffices to use Lemma 6, then multiply the estimate (35) by ¢ and finally use (30). O

To get better estimates of some components of Vv, we shall rewrite the equation (28) under an
equivalent form which is classically used in fluid mechanics. We define n = d1ve — Jov1 and w = vs.
Note that n is the third component of the curl of v. Taking the curl of (28) and using that v is
divergence-free, we easily get that the equation for 7 is given by

o — @Tw —elAn (103)

=0 (u“pp Vg + v - Vug™ —|—F2> — 82<uapp -V +v- Vu‘llpp—i—Fl).

For the equation on w, we first derive the equation for the pressure. We take the divergence of (28)
to get

Ap:g—i—v- (F—uapp‘Vv—v'Vu“pp> (104)
and next, we take the Laplacian in the third component of (28) and we use (104) to get
8tAw+aZn A2y = (Aom—azv-)(—uapp-w_v-vuaqu) (105)

where 73 stands for the projection on the third component i.e. w3(v) = vs. Next, thanks to (2)
and the fact that V - w = 0, we notice that the boundary condition for (103), (105) is given by

N/00 = W/aa = 0w/ pa = 0. (106)
For the system (103), (105), we can prove :

Theorem 12 Under the same assumptions as in Theorem 4, we have

T T
TR +FoDIE) <™ (nlk+ [ It +e [CIFIF) o)

and also
2 2 2 T 2 4 4 2
(Vi DI+ [VuTIP) $  (lollt+ [ 1P+ [C1FR) - aos

for some v > 0.
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Proof

To estimate the solution of (103), (105), we multiply (103) by n and (105) by —w and we add the
two equations. We use (106) to get thanks to integration by parts that

a1
dt 2
S (9ol + e dzu’l + 1F1) (I9n]] + 1 Aw]).

(1l + 1170]12) + (1IVnl 2 + [[Aw]2) = & (@, m) + (@, w))

The crucial fact in the above identity is that
(Ozw,m) + (9=, w) =0
so that the singular term vanishes. Consequently, we can use the Young inequality, the estimate
(38) and multiply by €2 to get
2 2 2 3 r 2 2
(DI + IVw(T)II7) + & /0 IVl + [[Aw]]%)
2 2 2 g 2 2 2
< €(Ilmoll? + [[Vwo %) +/0 (el 170l + llol 2 + el FIP)

Since the right hand side of the above estimate was already estimated in (30), we get (107).
To get (108), we use that V -v =0, to get

Apvg = 01— 0w,  Apvy = —0om — 010w, Ay = 0F + 5.
This immediately yields that
Vil S lnll + [|02w]l, i =1, 2

and hence (108) follows from (107).

4 Higher order conormal derivatives

The estimates of Theorem 4 are sufficient to get a nonlinear stability result when it is possible
to construct a very accurate approximate solution. Indeed, we can very easily estimate weighted
derivatives under the form 5|a|8§“. It suffices to apply the operator 5"1‘873‘ to (28), to rewrite the
obtained equation as

Te(elogv, el*lagp) = ellogF + ¢

where C is a well-controlled commutator and then to apply Theorem 4. The drawback of this
approach is that this yields by Sobolev embedding a bad control of the L* norm which is needed
to prove the nonlinear stability by a fixed point argument. Since here, we have been only able to
construct an approximate solution with ||R°|| < e we cannot use this rough approach to conclude.

In order to conclude, we would want to prove as it was done in [25], [27] that we can estimate
tangential derivatives i.e Jyv where v is still the solution of (28) without loss. This means that we
want to estimate ||0;'v|| and not E‘O‘|H8§“UH. Here a new difficulty appears which was not present
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in the well prepared case. Indeed, when we apply 0, to (28), we have in particular to handle the
commutator

[0y, (U™ +uP) - V]v = 9,u'™ - Vo + dyu’ - Vo.

The second term has the same property as in the well-prepared case since ug =0, we get that
[10,u” - Vol* < [ Vol

and hence this term can be handled by a Gronwall type argument since it involves only first order
tangential derivatives. The main difficulty comes from the term dyu™ - Vv. In the well prepared

case, we have u{" = 0 and hence the same argument as above is valid. Nevertheless, here we do
int

not have ué”t = 0, we only have uj o0 = 0. Consequently, we have the estimate

18yu5" 00| S [l O:0|

where ¢(z) is a smooth bounded function which behaves as z and 1 — z in the vicinity of z = 0
and z = 1 respectively. The usual method in the case of initial boundary value problems for
viscous conservation laws (see [23], [18], for example) is to work in conormal spaces and to consider
simultaneously the derivatives in the directions tangent to the boundary and the additional vector
field ¢d,. Note that, it is legitimate to apply this last vector field @0, to the equation since
(pd,v) /o0 = 0. Nevertheless, in the case of our singularly perturbed incompressible Navier-Stokes
equation, it does not seem easy to use readily this method. Indeed ¢d,v does not verify the
incompressibility condition and moreover V - (¢d,v) is not small. To overcome this difficulty, we
shall use that u§" is highly oscillating in time. We recall that ui" is defined by

ug = " b(t, k)P V2isin(kyz) = Y bt k)er® e sin(ksz2).
k K, k30

Thanks to this definition, we introduce

j A ) ix)te ik sin(k3z).
k, k3#0 )
Note that we have '
athf _ 5718]‘11/;@3”)& + O(l) (109)
and that
WJ?/C()Q =0. "

Next, we introduce the vector fields
Zj=0j+eW;(t,2)0,, j=1,2, Zz=clp(2)0,
where I' > 1 will be chosen sufficiently large. Since |W$| < ¢ thanks to (110), we have
|00] S [Zjv] + [ Z3v] (111)

and hence we can recover good estimates on dyv from estimates on Zv. The main property of these
vector fields as we shall see below is that they have good commutation property with respect to 7.
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Consequently, let us define the weighted norms

lol2 = 3 11255252 250l 2,
o] <m
Yin(v) = [0ll2, + €2V nvnl 2 + 2|V esl, + 2V |2 4 &%) o] 2,
Yiun(v) = sup Yin (u(T)),
[0.,7]
4 1y, HF |2 2 2 2 2 2 4 2,112
Dm(v,mz/o (eI F 12, + ll VI, + 2l19pl 13, + 21 VpI 12, + 1920l 2, ).

Note that the norm || - ||,,, that we have just defined is equivalent to the norm || - ||,, defined in (18)
because of (111), this is why we have abusively used the same notation. In order to deal with the
source term in an optimal way, we also use the notation

(o) = 3 ‘(25325“22?1% Z§‘3Z§2Zf1v)‘.

|| <m
Our main result is :

Theorem 13 Under the same assumptions as in Theorem 4, we have for every m
T T
Yrm(0) + D (0, ) 5ewT(ym(v0)+/ (F, /gsv)m—i—g/ IFIZ,). (112)
0 0

Proof of Theorem 13

We shall prove (112) by induction on m. In the proof, the harmless numbers contained in < are
also independent of I" > 1.

Note that for m = 0, the estimate (112) follows by collecting (102), (30), (108). To present the
main idea without too much technicalities, we first give the proof of (112) for m = 1. At first, let
us study what happens to (28) when we apply the vector field Z; for i = 1, 2. The case where we
apply Zs is easier because of the £ weight in the vector field will not be detailled. Moreover, most
of the terms which appear in the computation are similar to the ones which appear when we apply
Z; to the equation since eW;70, behaves in the same way as Z3.

For i = 1,2, we get

T¢(Zwv, Zip) = Z;F — C? (113)

where
Cf=cf +0y,
C1Z = Ziu? . Vv — e0,W;0,v
CZ = cu™P . VWv + v - ZiVu + ed.pVWE + e AWFv 4 2 VIWE - V.

Note that thanks to the crucial property (109), we have, using the notation vy, = (v1, v2) for vectors
of v € R3, that

C¥ = (Qui™ — e, WE)dv 4 0;(ub 4 u”) - Vv + ui™ - Vv — eWFOuP - Vu
= O0()dv + 0;(ub +u") - Vv + ui™ - Vv — eWFO,u%P - Vo. (114)
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By using that
(2)0.u" = O(1)

since (z) vanishes on the boundary and by using also the inequality (38), we get that

T T T
et s [ (Ve + 2190 +19017) < Droten)+ [ RIE (19

where in the second inequality we have used the property (111).
Finally, let us notice that

V- (Zw) = eVIWVE - 9.v = d;. (116)

A difficulty comes from the nonvanishing divergence of Z;v. To estimate the solution of (113), we
follow the same scheme as in the proof of Theorem 4. We use the same localization in frequencies.
We begin with the small frequencies which is actually the more difficult. We apply x°(eDy) to
(113) to get

TE(k* Ziv, k°Zip) = K°Z;F — k°C% +C* (117)

where the commutator C? satisfies the estimate
IC*11* S €[Vollf + |[v]I. (118)

We use the estimates (115), (118) and the standard energy estimate for (117) to obtain
T
k5 Z:(T)| > + 5/ |k5V Ziv| | 4 (k°V Zip, 1° Z;v)
0

556+DT,o<v,p>+/0T (110188 + €21V el 2 + (Fo)1 )
where the singular term S¢ is defined as
SE = ‘(Ziv -0, Zﬂ))‘.
As in the proof of Proposition 7, we can estimate the singular term
S < er||VZuwl|?

and hence we can absorb it in the left hand side. Next, we have to be careful with the term involving
the pressure since Z;v is not divergence free. We write thanks to integration by parts and (116)

(k°VZip,°Zv) = e(k’Zip, VWS - 0,0)
—e(Kk%0,Zip, K’VW; - v) — e(k°0, Zip, k*V O, W} - v)

and hence we get
|5V Zip, 1 Zi0)| S IVl o]l

so that we finally find
T
IR Zi(T)? + / K5 Zio 2 (119)
0
r 2 2 2
5DT,o<v,p>+/ (Il + 210l + <Vl ol + (Bro ).
0
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In a similar way, by combining the previous argument and the arguments in the proof of proposition
5, we get in the high frequency region

T

1K= Z:(T)|2 + / (=7 Ik Zil 2 + el PV Zo] ) (120)
0
T

< Dro(v,p) + /0 (110112 + 21190118 + +ellZplls el + (Fv)1).

It remains the medium frequency estimates. In this range of frequency, we can lift the nonzero
divergence and use the result of Proposition 8. Indeed, let us first establish some usefull estimates
on d;. Thanks to (116), we have

T T
| P s [ 19lP S eDro(w.p) (121)
0 0
and
T T
|19l [ IvRlP £ e Droe.p) (122)
0 0
Moreover, we notice that
1 1 1
42 S 511250l + 2 10-vsl[2 S 511Z5vl 2 + 2 IVaenlP S (55 +¢2) ¥ilw) (123)

and hence, by taking the time derivative, we also have

T T
| 1P [ i (124)
0 0
Now let us choose as before D; which satisfies the boundary condition (2) and such that
V.-D; =d;. (125)

By using (121), (122), (123), (124), we get

T
| (1P +1I9511R) £ eDrotw. ) (126)
0

T
| I9*DP £ = 2D (w1, (127)
0

1

IVDIE S (75 +¢2) ol (128)
T T
| (oo + iven?) < [ jowz (120)

To estimate k! Z;v, we shall consider the equation satisfied by
A very usefull remark already used to get (60) is that

e ?|Is'Dil* < [|w'V Di . (131)
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Combined with (126)-(129), this gives very good estimate on D;.
Thanks to (113), we get

T (klu, Zip) = k' Z;F — k'CZ +C'+ R, V- (klu) =0 (132)
where C! is the commutator [s!, 7¢] and hence still satisfies the estimate (118) and R' is defined by
R = T¢(x'D;,0). (133)
Consequently, by combining (126), (127), (129) and (131), we get the estimate
T T
[ IR S [ (21010li) + < Drofo.p). (134)
0 0
Next, since u solves (132), we can use the result of Proposition 8 to get
T
IWu(@)IP + 2T @I+ [ (el + el Val )
0
T
S T (|6l + 2|V (k)| [2) + ee™T /0 (IR + 122 + [1C2 + 1R 2).

Now, we can use (126), (128) and (131) and the fact that u = Z;v — D; plus the estimates (115),
(118) and (134). From now on, we restrict € and T such that ee?? < 1. This yields

T
W Zo@)I + IV Zo) DI + [ (7 2ol + | V(e 200l ) (135)
0
T
S (uolff + <Vl ) + Dro(wp) + [ (e TIIFIR + 1o + 2ol + £2l10 7).
0
Note that by combining (119), (120), (135), we have actually proven that
T
| Zv||? +/ (EHVZUH2 —I—E_lHZUHFH2> (136)
0
T
SEMYi(o) + Dro(wp) + [ ([l +T|IFI)
0
Next, since u solves

T(u, Zip) = ZiF —CZ +R, V-u=0 (137)
where
R =7¢(D;,0),
we get thanks to the result of Lemma 11 that

T
&% [Vu(T)|? + /0 (21100l + 41220l 2 + €%V Zp| 2

T
SNVl + [ (Il + 2 vull + 211c7 [ + 2R
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and hence by using (130) and (126), (127), (128), (129), we find
T
53HVZU(T)H2+/O (21102012 + 412202 + 2|V 2] ) (138)
T
S E(Iluoll? + Vw0l ) + Dro(v,p) + /0 (110112 + €392l + Dro(v,p) + 2| FI)

To conclude, we can add (112) for m = 0 and a large constant (independent of ¢) times (136) plus
(138) to get

oD} +°[[Vo(D)II + Dra(v,p)

T
Vi) + [ ((Foh -+l Vil + ol + €l1711).

Next, we use the Young inequality to write for every § > 0
el|Vplli[lvll < gﬂl%!l? +C(0)[v][§
and we choose § sufficiently small to absorb £2||Vp||? in Dr (v, p) so that we get
[o(D)I[F + %[ Vo(T)|IF + Dra(v.p)
< 7Y, (vn) + / (B0 + (ol + T FR).
and we conclude by using the Gronwall inequality as in the end of the proof of Theorem 4.

It remains to estimate ||V, Z;vp|| and ||[Vus||. We use again (137). The result of Theorem 12
gives

T
e (IVaun(DIP + [[Vw(T)I?) < luollf « + /O (€HFHf +el|C7]? + el [RI[* + [Jul* + €\|VUH2)
and hence we can use that u = Z;v — Dy and (126)-(129) and (115) to get

T
2(|[VZiw(D)| + IV Ziws(T)|?) S Yi(wo) + Dra(v,p) + [o(T)]13 + / (el1F12 + 110l 3)

and we can conclude since all the terms in the right-hand side have already been estimated.
We have given the proof for m = 1, the general case follows by induction, this is left to the
reader.

5 Nonlinear stability

In this section we prove the main theorem 2. We introduce a new notation, namely for f € H]". (),
we denote for z € (0,1)

)= > 2%l

aeN?, |a|<m
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where the integration only takes place in the y variable. An important remark is that for every
fe H . (Q), we have by Sobolev imbedding

|f( D) ooy S (S 2)lm m > 2.

Consequently by Leibnitz formula, we find
| f9lm S 1 flmlglm,  m > 2.

5.1 Proof of Theorem 2

For the proof of theorem 2, we recall that u®? = 4" + u® + u", then we can see that uP is an
approximate solution to (1) with an error term F° which has size 1/ in L*°(0, T'; L?(£2)). Moreover,
we can describe more precisely the structure of F¢. Namely, we have

€ a exuapp a a a
F® = 0iu™P + ——— — e AuPP 4 P . Vy"PP + Vp (139)
5

and we can see that F° can be decomposed as
FE — Fs,l + FE,Q

with two types of terms. The first term F&! contains boundary layer terms such as u? - Vu® and
hence has an L? norm of size \/¢ and is concentrated near z = 0 or z = 1. The other type is F*=?
which has an L? norm of size € and which comes for instance from the time derivative of ).

For each € > 0, the existence theory for the Navier-Stokes system yields the existence and
uniqueness of a solution u® to (1) in L°°(0,T¢; H'(2)) with the initial data u*? on some time interval
T¢ > 0. Proving that the time T > 0 can be taken uniform in € and the convergence of u® — [,(g)w
to zero will be done together. We set v = u° — u®P where we recall that u™? = u™ 4+ u® + u".

Note that v depends on ¢, but we drop this dependence in ¢ in the notation. We find that v solves

O +u™? - Vo +v - VuPP + &2 —cAv +Vp = —I* —v - Vo
(140)
div(v) =0, v=0o0n 0N v(t =0) = us —uP(t = 0).
We start with the case 3/4 < a < 1. Let us define
T¢ = sup{to |Vt € [0,t0], Vin(v(t)) < C2e?*}

for some big constant Cy. We recall that Y, (v(0)) < c?e2® for some constant ¢, hence by continuity
T¢ > 0 with the choice Cyp > c¢. Notice that (140) can be written as 7°(v,p) = —(F° + v - Vv).
Hence, we can use Theorem 13 to deduce that for 0 < T < T, we have

T
Y7 m(v) + Dy (v,p) S T (Ym(vo) + / (K*(F° +v-Vv),k°0);, + (141)
0

T
5/0 1F= + - )|2). (142)
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We have to estimate the different terms appearing on the right hand side of (141). We recall that
F¢ can be written as F'¢ = F=! 4+ F2 (for simplicity of notation, we assume that F©! is a boundary
layer at z = 0, the term at z = 1 can be treated in a similar way by replacing z by 1 — z). We have

T
A R R

r T 1 1 1/2
s [ursigoe ol [ ([ e ([ jofaz) ) dyds
0 o Jrz \NJo 0

T T
§A|W”ﬁﬂﬂM%+09ﬂA|Wﬂm%

T e T
S [+ casm) S [ Ivelds
0 0

/0T|/Q(KS(U-W),&SU)m|

T
<c [ IwlRIvelizas
0

Moreover, we also have

T 3/4
< CT1/4C§/2E3/2a3/4<€/ HVUH%L) /
0

1 /T
< CTCSe% 3 + 88/ V||, ds
0

The first term in the above estimate yields the restriction 6cx — 3 > 2« that is o > 3/4.
Besides,

T T 1
[l Veli s e [ ol 90l + ool 0.0l dea
0 0 0
T
<& [ 11020l o V01, + 108l s 0012
0

T
< zsup (lonlln Vo]l + 10:06lln) [ 190
[0,T] 0

< e " sup Y1 (0(t))? Dy (v, p)
(0,77

< CFe** ™! Dry(v,p)

and this term can be absorbed in the left hand side if ¢ is small enough since a > 1/2. Finally, we
have

~

T
e/ 1F=|B, < CTe2.
0

Hence, by Gronwall lemma, we deduce that for all 7" > 0, there exists an g¢ such that for € < ¢,
we can take T° > T and we have

T
wpuwmﬁ+/’wvwﬁsamm (143)
0<t<T 0
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if @ > 3/4.

Remark 14 The proof of Theorem 2 shows that for o = 3/4, we have a similar result but only on
a finite time interval (0,Ty) where Ty depends on the initial data w® and the constant ¢ appearing
in (19). In some sense, it appears from the proof of the theorem that the value o = 3/4 is critical.
However, it may seem more natural to have a critical result at the value o = 1/2. But we were not
able to prove the theorem 2 when 1/2 < o < 3/4. The main problem comes from estimating the
nonlinear term fOT|fQ(/<cs(v.Vv),nSv)m|.
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Appendix

A Simple results about operator valued semi-classical pseudo-
differential calculus

We consider smooth symbols A(y, £). Here, for each y, £, A(y, ) is an operator from Hy to L?(R.)
where H¢ is a closed subspace of L*(Ry). We only need to consider operators associated with
symbols of degree zero which basically verify

|8;3?A(ya Oleer2®y) < Cap- (144)

We associate to A a semi-classical pseudo-differential operator acting on functions on T? x R,

defined by

A(y,edy)w = Opaw(y,z) = Y e*VA(y,ek)ib(k,)(2) (145)
kez?

where w(k, z) are the Fourier coefficients of w(-, z) that is to say :
wly2) = 32 Pk 2), (k) = [ty )y
T2
k 2

here we assume that dy is normalized such that fTQ dy = 1. We shall only give the proof of the
properties that we have used, for more detail, we refer for example to the book [7].

A.1 Continuity in L?

Let us define
|Ala0 = sup sup [0F A(Y, &)|c(m,, 12 (v ))-

Y€ |a|<M
We also introduce the space H C L*(T? x R,)
H={we L*T2xRy), k)€ Hy}.
We have the following result
Lemma 15 There exists C > 0 such that for every e, € € (0, 1),

Vw e H, ||Opaw|[r2(r2xry) < ClA|mol|wl|L2(12 xR )

for M > 2.
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Proof

We follow the method to prove the boundedness of pseudo-differential operator in [30]. We expand
A(y,ek)w(k,-) in Fourier series :
Ay, ek)w(k Ze’””A (Iek)w(k, ), A(l,ek) :/ e MY Ay, ek) dy.
']1‘2

Since A(y, ek) is smooth in y, we have

(L + 12N AL ek) = / (I — A, (e ) A(y, k) dy = / eI - A,)V Ay, k) dy
T3 T2

and hence we get
1

L+ 2N

Opaw — Z eil-y(z e* AL, ek)u?k),

l k
we get by using the Bessel identity that for N > 1

10paw]| < ZHZ eV A(L, k) wkH - ( JA(l, ek)wy] )
and hence thanks to (146), we obtain

|Opawl| < |A!2NOZ i W 7 O wl?
P

AL ek)| 2y S |Alan o (146)

Since

N

which finally gives by a new use of Bessel identity
|Opawl| S [Alvo[lwl]-

This ends the proof.

A.2 Product

Here we only need to study the product of a differential operator and of a pseudo-differential
operator of order 0 which is obvious and the product of a bounded Fourier multiplier and a pseudo-
differential operator of order zero. Note that here we want to prove that the residual is small in
€.

Lemma 16 Let B(£) € L(L?) and A(y, &) two symbols then
OpgOpaw = Opgaw + € Oprw, Yw € H
where there exists C' such that for every e € (0,1),
Vw e H, |[Oprwl|r2(r2xr,)) < C|BloxlAlaollwl|a

for M > 5 where
|Blo1 = sup IVeB(E)loir2ry):-
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Proof

We write

OppOpaw(y,) = > /T ) M=) el B(ck) Ay, el)iv(l, -) dy’
k,l a

= Yoty B en)( / AW ety )il )
! % T2

= > &> e B(ek) Ak, el)i(l, -)
l k

- ¥ e“y(z e®B(e(k + 1) A(k, gz))w(z, ).
l k

Consequently, the symbol of OpgOp4 is C defined by

Cly,el) =Y e™B(e(k +1))A(k, el)
k

Note that the object is well-defined since B is uniformly bounded and fl(k’, el) is fastly decreasing
in k. By Taylor expansion, we can write

B(e(k 4 1)) = B(el) + eB' (el ¢k) - k, Bl(g,g):/lDB(g—i—tC)dt
0

and hence we get
OppOpaw(y,-) = Oppaw(y,-) + eOprw(y, )
where R is defined by
R(y,&) =) e* VB (& k) - kA(K, €).

k

Since B! is uniformly bounded and Ais fastly decreasing, we easily get that R satisfies (144). More
precisely, we have

|R|am0 S |Blot [Alaryao-

We end the proof by using Lemma 15.

A.3 Version with time dependence

Here, we consider the case where for each y, &, A(y, €) is an operator from L?(0, T} He) or L>(0,T; He)
to L2((0,T) x Ry) or L>=((0,T); L>(R4)). Let us set
wl|r2 = ||w||L2([o,T],L2(T3xR)+)» w700 = ||w||Lw([0,T],L2(Tng)+)

and

[Alla0,7,2 = sup sup 07 A(y, &)l c(z2 (0,11, He),L2([0,7),12 (R4 )
y€ |a|<M

A[|ar,0,7,00 = sup sup |9y A(y, &)|£(zoo (0,71, ), L2(10,T1,L2 (R 1))
Y8 |a|<M
|Bllog,1,2 = Slgp [IVeBllzL2(0.1),L2(R 1))

1Bllo1, 7,00 = 81§1p [IVeBl| £ (Lo (0,17, L% (R4 )))-
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Then we have the following properties :

Lemma 17 There exists C > 0 such that

vw e L*([0,T],H), ||Opaw|lrz < ClAllsmor2llwlre,
[[Opaw|lree < ClIA[|a0,1,00! [w]|T,2,
and
OppOpaw = Oppaw + eOppg
with
Yw e L*([0,T],H), ||Opruwllre < C||Blloyr2llAllaore|lwllrs,
|Oprw|[T00 < C||Bllo,1,1,00|[Al| 31,0700 ||w]|7,2-

The proof can be obtained by the same method as in the previous version and we shall not detail
it.

B The Leray Projection

B.1 The case of a half space
In this section, we study the symbol P, (k) for k& # 0. We look for a decomposition

v:u+(zaki>,z>0, ik up + Osuz =0, us(0) =0 (147)

and we set P, (k)v = u. It is convenient to introduce also Q4 (k) = Id — P, (k). We have the
following properties :

Lemma 18 i) The operator P, (k) can be written for every v € L*(R,) as

P, (k)v(z) = Ihv(z) — Ky(k,z,2Yo(2')d', Yz2>0
R4

() = < gh(z) )

and there exists C > 0 such that the matriz K (k, z,2') satisfies the estimate

where

VE£0, |Ki(k, 2 2)| < Clk| (e*““' =] 4 e*'kKW’)) (148)
it) There exists C' > 0 such that the operators P4 (k) satisfy for k # 0 the uniform estimates
Vo€ L*(Ry),  [Py(k)vlr2my) < Clolpam,) (149)

i11) Let k(&) be a smooth bounded function which vanishes in the vicinity of zero and x(z) another
smooth bounded function then there exists C' > 0 such that we have the uniform estimate

Ve € (0,1), Yo € LA(RS), ] {X(z),IPLr(k)/ﬂ(sk)}v S eloley)- (150)

L2(Ry)

The precise expression of K1 will be given in the proof.
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Proof

Note that ii) is a direct consequence of i) and the Schur Lemma since

Sup/ |Ky(k,z,2")] < C, sup/ |K,(k,2,2")] < C.
2>0.J2>0 2>0J2/>0

Let us prove iii), we have
X Ba(brEh) | = = [x(2), Qi (W)n(ek) v
_ / K (k2 2 y(ek) (x(2) — () )u()
and hence since x is smooth, we get thanks to (148)
| [ Btz b (x(2) = () ol

< / (1ole ™10z — /] 4 ke HET (2 4 ) ) (eh)lo(2)| 42’

K|

(1 e
S / (781 4 e+ ) () |/

for some ¢ > 0, where in the two last lines, we have used the inequality Xe X < e~ for X >0
and the fact that on the support of k, we have ¢|k| > ¢ > 0. The result follows by a new use of the
Schur Lemma since

Cly—p! _c / Ly _c !
sup/ el e gy < O, sup/ el e 2) g < e,
2'>0J2>0 220 J2'>0

It remains to prove i). The result follows by an explicit computation. Thanks to (147), we find
that p solves the ODE

(82'2' - |k|2>p = ikvh + 82'037 82]7(0) = U3(O)'

The unique bounded solution is given by

p(z) = — /Z+OO (zk‘ cop(2) + azvg(z')>e_|k|Z/COS}|l(k||k’z) dz

z /
_/ (’Lk . ’Uh(Z/) + azv3(2/)>ef|k\zCOSh(|k|Z ) dZ/ B ’03(0) ef\k\z
0 || ||

and hence, after an integration by part, we find

+OO / h /
p= —/ ik - vp(2")eFI2 COS|(IJ|]€|Z) + v3(z")e *I¥ cosh(|k|z) d2’

z h /
—/ ik - Uh(z/)e_|k|2(m’(k||k|z) — v3(2) e FIZ sinh(|k|2') d2’.
0
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Note that this also yields
+0o0o
0.p = v3(z) — / ik - v (2" e F1Z sinh (| k| 2) 4 v3(2)|k|e™** sinh(|k|z) d2’
—/ —ik - vp(2")e K2 cosh(|k|2') 4 v3(2')| ke ¥ sinh(|k|2").
0
Finally, since

0.p

it suffices to read the expression of K, we find

. 400
Piv=v-— ( ikp ) = Ipv — K (k,z 2 )o()d?,
0

%e“k‘zl cosh(|k|z) %e_‘k‘zl cosh(|k|z) —ikie IFI# cosh(|k|2)
Kok, z,2') = | Bk e=He' cosh(|k|2) %e—\k\z’ cosh(|k|z)  —ikee ¥ cosh(|k|z) |, 0=z <7
—ikie ¥ sinh(|k|z) —ikoe F1# sinh(|k|2))  —|k|e” ¥ sinh(|k|z)
(151)
and
Kz cosh([k2)  Bkeelklz cosh(|k|)  ikye™ M sinh(|k|2')
Ki(k,z,2) = %e*“ﬂ"z cosh(|k|2") %e*wz cosh(|k|2')  ikge FlZsinh(|k|2") | 2> 2 >0.
ikie~ 12 cosh(|k|2")  ikge ¥ cosh(|k|2’)  —|k|e”1*I# sinh(|k|2")
(152)
The estimate (148) follows immediately from the above expressions.
B.2 The case of a strip.
We now study the operator P(k), for k& # 0. We now look for the decomposition
v=u+ < gﬁ; > ,2€(0,1), ik-up+0u3 =0, wu3z(0)=0,us(l)=0.
Lemma 19 i) The operator P(k) can be written for every v € L*(R,) as
P(k)v(z) = Ipv(z) — K(k,z,2w(z)d', V2>0
(0,1)
where
Ih’U(Z) _ < Uh(z) >
0
and there exists C' > 0 such that the matriz K(k, z,2") satisfies the estimate
VE£0, |Kyi(k, 2 2)| < Clk| (e*"f' =] 4 e*"“KH“*Z’)) (153)

it) There exists C' > 0 such that the operators P(k) satisfy for k # 0 the uniform estimates
Yo e L*(Ry), |P(k)v|r21) < Clolzzo (154)

iii) Let k(&) a smooth function bounded function which vanishes in the vicinity of zero and x(z)
another smooth bounded function then there exists C' > 0 we have the uniform estimate

Ve € (0,1), Yo € L*(0,1), ] [X(z),P+(k)/<c(€k)]v

12(0.1) S E|U|L2(0,1)- (155)
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Proof
We now solve the ODE
D22p — |kI*p = ik - vp + Ov3, 2 € (0,1),  9,p(0) = v3(0), 0xp(1) = v3(1).

The explicit resolution gives
sinh(|k|(z — 2))

— - YL . /
P _/0 (zk vy, —i-azvg)) ] dz
1
-

, cosh(|k](1 — 2)
(Zk “Uht 8zvg) |k| sinh |k|

cosh(|k|(z — 1) cosh(|k|2)
— "+ v3(1)

|k| sinh |k| |k|sinh |k|
and hence after an integration by parts, we find

! cosh(|k|(1 — 2)) cosh(|k|z) sinh(|k|(1 — 2"))
- ik - h(|k|z) )d2'
b / (““ vh [ sinh k] g o ’Z)) :

z sinh(|k|(z — 2"))  cosh(|k|(1 — 2))
+ /O (it on (e~ st oK)

cosh(|k|z) dz’

*Ug(O)

~ sinh(|k|(1 - 2"))
sinh |k|

+ Ug(cosh(|k:|(z —2') cosh(|k:|z))) dz'.

Note that we have used the fact that
cosh | k| sinh(|k|z)  cosh(|k|(z — 1)
0) (L - - =0
vs( )(yk\sinhm k] k| sink [K] )

Finally, we can rewrite the pressure under the more convenient form

= —/1i|k v (e_|k|2/ cosh(|k|z) n e‘k|(2_zl)cosh(|k]z)>dz,

cosh(|k|z)

%] T 1 — e72IH
1 e—Iklz’ COSh(‘k|Z) e—lkl(2—2") cosh(‘k|2’)> 4z
s ”3< 1—e 2k 1 — e~ 2kl ’
B z Zﬁ Y <6—|k|z COSh(’k‘Z/) N e~ |kl(2—2) Cosh(‘k|2/)> ds!
o |K| 1 — e—2lkl 1 — e—2Ikl
# e MEsinn(|k|2) e ME2) sinh(|k|2)
e sin z e - c /
+/0 U3( 1- 6_2|k|) + 1 — 2|k ) dz.

By taking the derivative with respect to z, we also find

Lk e K= sinh(|k|z) e K== sinh(|k|2) ,
op = s(2) — | b (et e ) &

1 —lklz" ginh(lk —1kl1(2=2") ginh(1k
[ (Sl ) e S

1— e2lk 1 — e2lkl
k e 1klz cosh(|k|2') e FIC=2) cosh(|k|2)) .
_/0 zm-vh‘lﬂ(— 1 o 2] + [ o 2] )dz
z —|k|z & h(|k‘| /) —|k[(2—2) &3 h(|k’| /)
e sin z e sin z ,
+/ sl | =T ) de
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Consequently, since

. 400
Pv=wv— < tkp > = Ipv — / K(k,z,2" () d?,
0

d:p
we find
K(k,z,2) =
) %mr(k,z,z/) kﬂkﬁzaJr(k,z,z’) —ikya_(k, z,2")
1 — o2/l k‘lk% ay(k,z,2") %mr(kz,z,z’) —iksa_(k,z,2") |> 0<z<2z, (156)
—ik1by(k,z,2") —ikoby(k,z,2") —|k|b_(k,z,2)
) ‘%a+(l€,z’,z’) k‘lk‘2a+(k,z’,z) —ik1by(k, 2, 2)
/
- m k|1kk|2a+(kvzlvz) Wa-i-(kv?/?z) —ik2b+(k:,z’,z) 02 <2 (157)
ikia_(k,2',z) ikea_(k,2',2) —l|klb—(k,2,2)
where
ar(k,z,2") = e * cosh(|k|2) + e FI2=2) cosh(|k|z2),

(
a_(k, z,7") = e *¥ cosh(|k|z) — e FI2=2") cosh(|k|2),
by(k,z,2") = e IF smh(\k|z)+e K12==") sinh (|k|2),
b_(k,z,2") = e ™ sinh(|k|z) — e M=) sinh(|k|2).

Thanks to (156), (157), the estimate (153) follows easily and next, we obtain ii) and iii) as previously.

B.3 Estimate of P - P,

Lemma 20 Let k(§) a smooth function bounded function which vanishes in the vicinity of zero
and x1(z), x2(z) two smooth bounded function which are compactly supported in [0,1), then there
exists C' > 0 and ¢ > 0 such that we have the uniform estimate

Ve € (0,1), Yo e L*(Ry), |xa (IP’ - P+>/’v(€k)X20\L2(R+) < Ce = vl 2y (158)

Proof
We can use the explicit expressions given by (156), (157) and (151), (152). This yields
() (B = P ) (k) (2]
oo / 1 /
< [ @l (e M= = 1) 4 bl A=) g
0 _

and hence if the support of x(§) is in |£] > r > 0 and the support of x and x’ are in [0, 4], § < 1,
we find

le(Z)<IF’ IP’+) (ek)x2(2)v]

oo 2
/ )H(&‘]{Z)"U(Z/N(’k‘eilkHZiZ/'eigr 4 ’k‘672|k|(176)> dz
0

+o0 -
/ (2" k(ek)|v(2)|e" = d2’.
0

IN

A
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The estimate (158) follows by using again the Schur Lemma.
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