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N. Masmoudi∗, F. Rousset†

Abstract

We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating
fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case
where the viscosity and the Rossby number are both equal to ε. This study generalizes the study
of [22] where a smallness condition was imposed and the study of [25] where the well-prepared
case was treated.

Résumé

On prouve la stabilité linéaire et non-linéaire de couches limites oscillantes de type Ekman
pour les fluides tournant dans le cas de données mal préparées sous une hypothèse spectrale.
On s’intéresse au cas où la viscosité et le nombre de Rossby sont du même ordre ε. Cette étude
généralise celle de [22] où une condition de petitesse était imposée et celle de [25] où les données
bien préparées étaient traitées.

1 Introduction

We consider the following system describing the evolution of a rotating fluid in a rectangular domain{
∂tu

ε + uε · ∇uε + e×uε

ε + ∇p
ε − ε∆uε = 0,

uε(t = 0) = uε,0 ∇ · uε = 0
(1)

for x = (y, z) ∈ Ω = T2
a × (0, 1) with the Dirichlet boundary condition

uε
/∂Ω = 0 (2)

and the initial condition
uε

/t=0 = uε,0. (3)

Here T2
a is the periodic torus with periods a1 and a2, namely, T2

a = R2/( 1
a1

Z× 1
a2

Z) and a1, a2 > 0.
Moreover, e = e3 is the vertical unit vector and e×uε

ε is the Coriolis force.
This system describes the motion of a rotating fluid as the Ekman and Rossby numbers go

to zero (see Pedlovsky [24], and Greenspan [13]). It can model the dynamics of the ocean or the
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atmosphere far from the equator or a rotating fluid in a container. Note that, here, we take the
horizontal viscosity and the vertical viscosity to be equal. We point out that in many previous
works the horizontal viscosity was supposed constant whereas the vertical viscosity ν goes to 0 (see
for instance [16]) or in some other cases, the vertical viscosity was supposed much smaller than the
horizontal viscosity. This anisotropy has the advantage of making the boundary layers more stable.

In this paper, we look at the case where the vertical and the horizontal viscosities are equal. We
study the convergence of solutions to (1) towards a solution of the limit system (9) defined below
once the time oscillations are filtered out.

We recall that this system and related ones were studied by several authors. In the “well-
prepared” case in domains with boundary, like Ω, we refer to Colin, Fabrie [4], Grenier, Masmoudi
[16], Masmoudi [21]. For general initial data, and for the periodic case, we refer to Grenier [14],
Embid and Majda [8], Babin, Mahalov and Nicolaenko [2, 1], Gallagher [11] or in particular cases
where there is no boundary layer, or where the boundary layer can be eliminated by symmetry
(Beale and Bourgeois [3]). These results rely on the introduction of a group to filter the oscillations
in time, a method which was previously used by Schochet [29] to investigate related problems in
the torus concerning the compressible-incompressible limit.

In [22], the “group method” was extended to the case of domains with boundary, by solving a
superposition of an infinite number of boundary layers. These layers create an extra term in the
limit equation. In [22], the stability of these boundary layers was proved in the case where the
horizontal viscosity goes to zero slower than the Rossby number (or in the small data case). In this
paper, we would like to give a spectral assumption (which we think is optimal) and which yields
the stability of such boundary layers.

In the well prepared case, a similar spectral assumption was used to prove the stability of the
boundary layer [25]. This spectral assumption is optimal since the instability of the boundary layer
was proved in [6] if the spectral assumption does not hold.

In the following sections, we recall the main properties of the approximate solution of (1)
constructed in [22], in particular, we recall the properties of the limit system, of the boundary layers
and the assumptions on the torus which are needed. Next, we shall give our main assumption on
the spectral stability of the boundary layers and state our main result.

1.1 Properties of the approximate solution

To state our main result, we first recall the main properties of the approximate solution uapp of (1)
constructed in [22]. In particular, uapp describes the formal limit of (1) and the boundary layers.
The details of the construction will be recalled later. The approximate solution is under the form

uapp = uint(
t

ε
, t, x) + ub(

t

ε
,
z

ε
,
1− z

ε
, t, y) + ur, x = (y, z) ∈ T2

a × (0, 1) (4)

where the remainder term ur satisfies ur = O(ε) (a precise statement will be given later). The
interior term uint can be expressed as

uint(τ, t, x) = L(τ)wint(t, x)

where L(τ) = eτL, Lu = −P(e × u) and P is the Leray projector on divergence-free vector fields
with zero normal component in Ω. We denote Z3

a = 2π
a1

Z × 2π
a2

Z × 2π
2 Z, Z2

a = 2π
a1

Z × 2π
a2

Z and we
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denote elements of Z3
a by k̄ = (k, k3) ∈ Z3

a with k ∈ Z2
a = 2π

a1
Z× 2π

a2
Z . We have an expansion

wint(t, x) =
∑
k̄∈Z3

a

b(t, k̄)eik·yM k̄(z), (5)

so that
uint(τ, t, x) = L(τ)(wint(t, x)) =

∑
k̄∈Z3

a

b(t, k̄)eik·yM k̄(z)eiλ(k̄)τ (6)

and wint solves the limit system (9). Note that N k̄ = eik·yM k̄ is an eigenvector of L. We assume
that the initial data is chosen such that b(0, (0, k3)) = 0 for every k3 i.e. we exclude initial values
with modes which depend only on z. We shall also assume that the torus is non resonant in the
sense of [2] to insure that the condition b(t, (0, k3)) = 0 for every k3 remains true for positive times
(see below for a precise definition).

We can express the dominant boundary layer term ub as

ub(τ, Z, Z ′, t, y) = ub,0(τ, Z, t, y) + ub,1(τ, Z ′, t, y)

where

ub,σ(τ, Z, t, y) = −1
2

∑
k̄

b(t, k̄)eik·y+iλ(k̄)τ (−1)σk3

(
hk̄,+e

− 1+i√
2

ηk̄,+Z + hk̄,−e
− 1−i√

2
ηk̄,−Z

)
, σ = 0, 1.

with
ηk̄,± =

√
1± λ(k̄), hk̄,± = M k̄(0)∓ ie×M k̄(0).

Note that since terms under the form (0, k3) are excluded in the above sum, we have ηk̄,± > 0 and
hence, we have a superposition of terms which are small far from the boundary. Nevertheless, the
rate of decay, ηk̄,±, goes to zero when k3

|k̄| tends to ±1.
In view of the above definition of the boundary layers, we introduce the operators

Bσ(τ, Z)q = −1
2

∑
k̄

qk̄e
iλ(k̄)τ (−1)σk3

(
hk̄,+e

− 1+i√
2

ηk̄,+Z + hk̄,−e
− 1−i√

2
ηk̄,−Z

)
for any sequence q = (qk̄)k̄∈Z3

a
so that if q is taken under the form qk̄ = b(t, k̄)eik·y, we have

Bσ(τ, y, Z)q = ub,σ(τ, Z, t, y).
In a similar way, we also define

Lσ(τ)q =
∑

k̄

qk̄M
k̄(σ)eiλ(k̄)τ , σ = 0, 1.

Again, note that if q is taken such that qk̄ = b(t, k̄)eik·y then, we have Lσ(τ)q = w(t, y, σ).
We shall allways assume that the initial data is sufficiently smooth and vanishes at a sufficient

order at z = 0, z = 1 in order that b(t, k̄) decay to zero sufficiently fast. In particular, we assume
that

‖w0‖2
V s

sym
=

∑
k̄∈Z3

a

|b(0, k̄)|2|k̄|2s < ∞ for some s big enough. (7)
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This yields that w(t) ∈ V s
sym for 0 < t < T ∗ where T ∗ is the life span of a smooth solution of the

limit system (9). Hence, by using that s > 3
2 + 2, we have since( 1

ηk̄,±

)2
≤ |k̄|
|k̄| − |k3|

=
2|k̄|2

k2
1 + k2

2

≤ 2|k̄|2

that ∑
k̄

|b(t, k̄)|
(
1 +

( 1
ηk̄,+

)2
+

( 1
ηk̄,−

)2)
< ∞.

to finally obtain the important property

sup
y

∫ +∞

0

∣∣∣∂ZBσ(τ, Z)(w(t, y, σ))
∣∣∣(1 + |Z|+ |Z2|) dZ < +∞, σ = 0, 1 (8)

which insures that the boundary layers are sufficiently localized in the vicinity of the boundary.

1.2 The limit system

We denote wint =
∑

k̄∈Z3
a
b(t, k̄)N k̄ the solution in L∞(0, T ∗;V s

sym) of the following system
∂tw

int + Q(wint, wint) + S(wint) = −∇p in Ω,

∇ · wint = 0 in Ω,

wint · n = ±w3 = 0 on ∂Ω,

wint(t = 0) = w0.

(9)

where T ∗ is the time of existence of the smooth solution wint of (9) and Q(wint, wint), S(wint) are
respectively a bilinear and a linear operators of wint.

The bilinear operator is given by

Q(wint, wint) =
∑
l̄,m̄,k̄

k̄∈A(l̄,m̄)
λ(l̄)+λ(m̄)=λ(k̄)

b(t, l̄)b(t, m̄)αl̄m̄k̄N
k̄(X). (10)

The numbers αl̄m̄k̄ are constants and the set A(l̄, m̄) = {l̄ + m̄, Sl̄ + m̄, l̄ + Sm̄, Sl̄ + Sm̄} with
the notation

S(l̄1, l̄2, l̄3) = (l̄1, l̄2,−l3)

is the set of possible resonances.
The linear operator is defined by

S(wint) =
∑

k̄

(D(k̄) + iI(k̄))b(t, k̄)N k̄(X)

where
D(k̄) =

√
2

{
(1− λ(k̄)2)

1
2

}
, I(k̄) =

√
2

{
λ(k̄)(1− λ(k̄)2)

1
2

}
.

Note that S(wint) is a damping term, since D(k̄) ≥ 0, that depends on the frequencies λ(k̄).
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1.3 Non resonance assumption on the torus

In the case of a non resonant torus (see [2] for the definition), the quadratic term Q(w,w) only
includes trivial resonances, namely the resonances only take place with the 2d non oscillating
geostrophic part :

{(k̄, l̄, m̄) | k̄ ∈ A(l̄, m̄)} ⊂ {(k̄, l̄, m̄) | k3m3l3 = 0} (11)

which yields in particular the global existence of strong solutions to the limit system. We also know
in that case that for k̄ ∈ A(l̄, m̄), and λ(l̄) + λ(m̄)− λ(k̄) 6= 0

1
λ(l̄) + λ(m̄)− λ(k̄)

≤ C(|l̄|d + |m̄|d) (12)

for some d > 4. We recall that for almost all choices of a1 and a2, the torus T3
a is non resonant (see

[2]).
Besides, if at t = 0, we have ∫

x,y
w0 dxdy = 0

we see that this holds for any t. Indeed, in the non resonant case there are only trivial resonances,
namely with the slow modes (the geostrophic modes) (k1, k2, 0). Notice then that the modes
(k1, k2, 0), and (−k1,−k2, k3) do not create a resonance with (0, 0, k3), since (k1, k2) 6= (0, 0), and
then |λ(−k1,−k2, k3)| < 1. Hence we get that for all t the modes such that λ(k̄) = ±1 are absent.
This is a crucial fact in our analysis since the boundary layers for the modes λ(k̄) = ±1 behave
like the boundary layers in the vanishing viscosity limit of the Navier-Stokes equation whithout the
fast rotation (these layers are of Prandtl-type). For such case, the stability of the boundary layer
is known if the horizontal viscosity is much bigger than the vertical one (see [21]), in other cases
instability is more expected [15] except in dimension 1 [26] or for analytic data [28].

1.4 Stability assumption on the boundary layer profiles

The main difficulty in the convergence proof is to get an estimate for (1) linearized about the
approximate solution uapp : we study

∂tv + uapp · ∇v + v · ∇uapp − ε∆v +∇p +
e× v

ε
= 0, x ∈ T2

a × (0, 1) (13)

with the boundary condition (2) and the initial condition v/t=0 = v0(x). We would like to prove
an estimate like

||v(T )||2 ≤ eγT ||v0||2

for some norm || · || with γ > 0 independent of ε. Even in the well-prepared case such an estimate
is not always true, it depends on a spectral stability property of the boundary layer profiles. If
the boundary layer profiles are spectrally stable, this estimate can be proven as well as nonlinear
stability, [25]. Whereas if they are unstable, we can only get an estimate with γ of the order of
ε−1 and in this case nonlinear instability can be proven [6]. The spectral stability depends on the
amplitude of the boundary layer, numerically, one can prove that boundary layers with too large
amplitude are unstable [20]. The aim of the next subsection is to formulate a stability assumption on
the boundary layer profiles which generalize the spectral stability assumption of the well-prepared
case formulated in [25].

5



We start by freezing the slow variables t = t0 and y = y0 in the coefficients of the approximate
solution. Let us set q = q(t0, y0) = (b(t0, k̄)eik·y0

)k̄∈Z3
a
. We want to study the stability property of

the equations

∂tv +
(
Lσ(

t

ε
)q + Bσ(

t

ε
,
z

ε
)q

)
· ∇v + v · ∇

(
Lσ(

t

ε
)q + Bσ(

t

ε
,
z

ε
)q

)
+
∇p

ε
+

e× v

ε
− ε∆v = 0.

Let us define for each sequence q = (qk̄)k̄∈Z3
a

the oscillating boundary layer profile V (τ, Z, q) as

V σ(τ, Z, q) = Lσ(τ)q + Bσ(τ, Z)q,

we can take the Fourier transform in y and set Z = z/ε and τ = t/ε to get the family of one-
dimensional problems

∂τw + V σ(τ, Z, q) ·
(

iεk
∂Z

)
w + w ·

(
iεk
∂Z

)
V σ(τ, Z, q)

+
(

iεk
∂Z

)
p + e× w + ε2|k|2w − ∂ZZw = 0,

iεk · wh + ∂Zw3 = 0.

which is now set for Z ∈ (0,+∞) with the boundary condition

w(τ, εk, 0) = 0. (14)

We recall here that we use the notation k̄ = (k, k3) where k ∈ Z2
a. Finally, we can set ξ = εk and

use for ξ 6= 0 the Leray projection P+(ξ) in the half-space which is recalled in section 19 to rewrite
the equation as

∂τw = P+(ξ)Lσ
+(ξ, q)w, iξ · wh + ∂Zw3 = 0 (15)

where Lσ
+(τ, ξ, q) is defined as

Lσ
+(τ, ξ, q)w = −V σ(τ, Z, q) ·

(
iξ
∂Z

)
w − w ·

(
iξ
∂Z

)
V σ(τ, Z, q)− e× w − |ξ|2w + ∂ZZw (16)

The non-autonomous operator P+Lσ
+(τ, ξ, q) generates a strongly continuous family of evolution

operators in the sense of [19], Chapter 7, Sσ
+(τ, τ ′, ξ, q) on Hξ = {w ∈ L2(0,+∞), iξ ·wh+∂Zw3 = 0}.

As usual, the main property of Sσ
+(τ, τ ′, ξ, q) is that τ 7→ Sσ

+(τ, τ ′, ξ, q)w0 is the unique solution of
(15) for τ > τ ′ with value w0 for τ = τ ′.

Let us fix s0 > 1 such that (8) holds when we replace w(t, y, σ) by Lσ(τ)q. A set K ⊂ V s0
sym(Ω)

or more precisely in {q |
∑

k̄∈Z3
a
|k̄|2s0 |qk̄|2 < ∞} (using the identification between the function and

its Fourier coefficients) will be called a uniform stability set if for every r, R, 0 < r < R, there
exists C(r, R) and α(r, R) > 0 such that

∀v ∈ Hξ, |Sσ
+(τ, τ ′, ξ, q)v|L2(R+) ≤ Ce−α(τ−τ ′)|v|L2(R+), ∀τ ≥ τ ′ ≥ 0, σ = 0, 1 (17)

for every q ∈ K and ξ such that r ≤ |ξ| ≤ R.
We point out that there exists uniform stability sets. Indeed, a vicinity of zero is a uniform

stability set since we can prove as in [22, 5] that all weak amplitude boundary layers are stable
when (8) is matched.

Let wint(t) =
∑

k̄∈Z3
a
b(t, k̄)N k̄ be the solution of (9). Our main stability assumption is:
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• (H) We assume that the set K = {(qk(t, y) := b(t, k̄)eik·y)k̄∈Z3
a
, t ∈ [0, T ], y ∈ T2

a}, is a
uniform stability set.

Remark 1 Note that we can define more generally the stability set K0 ⊂ V s0
sym(Ω) as the set of q

having the property that for every 0 < r < R, there exists C(r, R, q) > 0 and α(r, R, q) > 0 such
that (17) holds. By continuity of S+ with respect to q and compactness, we easily get that every
compact set K ⊂ K0 is a uniform stability set. In particular, this yields that for every bounded set
B ⊂ V s

sym(Ω) with s > s0, we have that if B is included in K0, then B is a uniform stability set.
Consequently, the assumption (H) is matched if K ⊂ K0 (where K is defined in the statement of
(H) and K is bounded in V s

sym(Ω) for s > s0.

Since the operator Lσ
+ has only quasi-periodic coefficients there is no easy characterization of

the assumption (H), for example in term of the spectrum of L+. When the initial data is prepared
so that the coefficients of Lσ

+ are periodic in time, we can use Floquet theory to replace in the
assumption (H) the decay estimate (17) by an assumption on the spectrum of Sσ

+(T, 0, ξ, q) where
T is the period: if the spectrum σ(Sσ

+(T, 0, ξ, q)) is contained in the open unit disk D, then the
estimate (17) is verified. Finally, we note that (H) is the natural generalization of the assumption
used in the well-prepared case. Indeed, in the well prepared case, since Lσ

+ does not depend on τ
the stability assumption was formulated in term of the spectrum of P+(ξ)Lσ

+(ξ, q) : it was basically
assumed in [25] that the spectrum of P+(ξ)Lσ

+(ξ, q) is contained in {Reλ < 0}. By the standard
theory of analytic semi-groups, it is easy to prove that this assumption on the spectrum implies
the estimate (17). This is proven in [12] in a close setting.

1.5 Notations

We denote by || · || the norm of L2(T2
a × (0, 1)) and by (·, ·) the associated scalar product. We also

define the weighted higher order norms :

||v||21,ε = ||v||2 + ε2||∇v||2,
||v||22,ε = ||v||2 + ε2||∇v||2 + ε4||∇2v||2.

We will also use some anisotropic norms, namely

||v||2m =
∑

α∈Z3, |α|≤m

||Zα
v||2 (18)

where Z1 = ∂y1 , Z2 = ∂y2 , and Z3 = εz(1 − z)∂z and denote by Hm
anis the Hilbert space defined

by this norm.

1.6 Main result

Our main result is :

Theorem 2 We consider a torus T3
a non-resonant in the sense of [2] and w0 ∈ V s

sym for s suffi-
ciently large such that in the expansion

w0(x) =
∑
k̄∈Z3

a

b0(k̄)eik·yM k̄(z)
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we have b0(k̄) = 0 if k̄ = (0, 0, k3). Moreover, with the notation q0(y) = (q0
k̄
(y))k̄ = (b0(k̄)eik·y)k̄,

we assume that {
‖uε,0 − w0 − B0(0, z

ε )(q0(y))− B1(0, 1−z
ε )(q0(y))‖m ≤ cεα

ε‖∇(uε,0 − w0 − B0(0, z
ε )(q0(y))− B1(0, 1−z

ε )(q0(y)))‖m ≤ cεα (19)

for some m ≥ 2, 3/4 < α ≤ 1 and some constant c > 0. Let wint(t) be the solution of (9), we
assume that (H) holds. Then, there exists ε0 such that for all 0 < ε < ε0, the system (1) has a
unique weak solution uε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) with initial value uε,0. Moreover,

‖uε − L(
t

ε
)wint − B0(

t

ε
,
z

ε
)(q(t, y))− B1(

t

ε

1− z

ε
)(q(t, y))‖L∞(0,T ;L2(Ω)) ≤ CT εα (20)

In addition, if α = 3/4 in (19), there exists a time T0 which depends on w0 and on c (but not on
ε) such that (20) holds on (0, T0)

Let us give a few remarks about this theorem.

Remark 3 1) First, we note that when 3/4 < α ≤ 1, the uniform time of existence and convergence
T is only limited by the stability assumption (b(t, k̄)eik·y)k̄∈Z3

a
∈ K0, in particular, it may be arbitrary

large even if the data is large. This is due to the regularity of the limit system which is better than
the regularity of the 3D Navier-Stokes in the non-resonant case (see [2]).

2) We also point out that the assumption that the torus is non-resonant is used to ensure that
b(t, k̄) = 0 for k̄ = (0, 0, k3) and that the result holds if we know that b(t, k̄) = 0 for k̄ = (0, 0, k3)
as well as an estimate of the type (12). Indeed, for the modes k̄ = (0, 0, k3), the boundary layer we
get is of Prandtl type (the rotation does not play any part). it was handled in [22] only with the
crucial assumption that the vertical viscosity over the horizontal one also goes to zero.

3) We shall see in the proof that the result is actually more precise. A sufficient condition on
the regularity of w0 is s > d+5 where d is given in (12). The convergence will take place in a space
with horizontal regularity m where 2 ≤ m ≤ s− d− 3. Moreover, we notice that the error estimate,
namely CT εα sees the boundary layer and hence the boundary layer cannot be removed from the
estimate (20). This is stronger than the estimates in [16, 22]. However, our result requires the use
of an initial data which depends on ε and which is sufficiently close to the approximate solution at
t = 0. The convergence is stated in L∞(0, T ;L2(Ω)) but as will be seen from the proof in section 5.1,
we need to prove estimates in a stronger space, namely Ym. In particular, the solution we construct
is a strong solution which yields the uniqueness of the weak solutions by the classical strong-weak
uniqueness argument.

4) Finally, we note that the proof of Theorem 2 is completely different from the proof of the
stability in the well-prepared case in [25] and the proof of the small data case in the ill-prepared
case [22].

The paper is organized as follows: in the next section, we give some details about the construc-
tion of the approximate solution, then, in the next sections, we prove the linear stability of this
approximate solution, finally section 5 is devoted to the proof of Theorem 2. The Appendix A is
devoted to the definition and the proof of some simple properties of semi-classical operator-valued
pseudo-differential calculus. These properties are crucial in the study of the linear stability. Fi-
nally, the Appendix B gathers some usefull properties of the Leray projection in the strip and in
the half-space.
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2 Construction of an approximate solution

2.1 Some definitions and notations

We will use the notations of [22]. Let us denote by V 0 the subspace of L2(Ω)3 consisting of
divergence-free vectors (div u = 0), and tangent to ∂Ω (u3(z = 0) = u3(z = h) = 0 )

V 0 = {u ∈ L2(Ω)3,∇ · u = 0, u3(z = 0) = u3(z = h) = 0},

we also define, for m > 0, V m the space

V m = Hm(Ω)3 ∩ V 0.

where Hm(Ω) is the classical Sobolev space W 2,m(Ω)
Let T3

a = T2
a×] − 1, 1[= T2

a × R/2Z be the torus of periods respectively a1, a2 and 2, and E
the linear operator from L2(Ω)3 into L2(T3

a)
3 defined by Eu(z) = u(z) for 0 < z < h, and for

−h < z < 0
Eu(z) = S(u(−z)), (21)

where S is the linear operator from R3 into R3, defined by

SX1 = X1 SX2 = X2 SX3 = −X3 (22)

for all X ∈ R3, which corresponds to a symmetry with respect to the plan X3 = 0.

We also introduce V ′m = {u ∈ Hm(T3
a)

3,∇ · u = 0}, Hence E′E u = IdV 0 where E′ is the
restriction from L2(T3)3 onto L2(Ω)3. In the sequel we will work in the space V m

sym,

V m
sym = E′(V ′m ∩ E(V m)),

which consists of vectors u ∈ V m that satisfy extra boundary conditions on the vertical derivatives.

We also introduce a norm on V m
sym

|u|2V m
sym

=
1
2
|Eu|2V ′m ,

which is conserved by the group L, namely |L(τ)u|V m
sym

= |u|V m
sym

, for every τ ∈ R. We will, also
use the following notations (see the appendix 2.2 of [22] for a precise construction)

• X = (y1, y2, z) = (y, z)

• N k̄(X) = M k̄(z)eik.y is an eigenvector of L associated to the eigenvalue iλ(k̄) = i k3/|k|

• For w ∈ L∞(0, T, V s
sym), we set

w(t, X) =
∑
k̄∈Z3

a

b(t, k̄)N k̄(X), (23)

then we have for all t, |w(t)|2V s
sym

= 2|Ω|
∑

k̄ |b(t, k̄)|2|k̄|2s.

9



2.2 Study of the group

We study here the group L, in particular, we give the expression of the eigenvectors Nk. Using
the construction in the appendix of [22], we get for k̄ = (k, k3) ∈ Z3

a and k 6= (0, 0) that N k̄(X) =
M k̄(z)eik.y where

M k̄(z) =

 2 cos(k3 z)n1(k̄)
2 cos(k3 z)n2(k̄)
2i sin(k3 z)n3(k̄)

 . (24)

and

n1(k̄) =
n3(k̄)

1− λ(k̄)2

(
i
k2

|k̄|
− k1

|k̄|
λ(k̄)

)
,

n2(k̄) =
n3(k̄)

1− λ(k̄)2

(
−i

k1

|k̄|
− k2

|k̄|
λ(k̄)

)
.

n3(k̄) =

√
1− λ(k̄)2

2
.

Notice then that N k̄(X) ∈ V s
sym, and that we have LN k̄ = λ(k̄)N k̄.

2.3 Approximate solution

Here, we construct the approximate solution Uapp = (uapp, papp). The aim is that Uapp satisfies (1)
up to a small error and the boundary condition (2) exactly.

To guess a good choice for Uapp, we expand the solution in the following form U0+εU1+ε2U2+...
where

U0 = U0(τ, t, x) + Ũ0(τ, t, y, Z) + Ŭ0(τ, t, y, Z ′). (25)

where we recall that τ = t/ε, Z = z/ε and Z ′ = (1− z)/ε. Even though, it is not clear whether we
can push this expansion to all order, this will allow us to guess the first terms. Hence, arguing as
in [22], we get

u0(τ, t) = L(τ)u0(τ = 0, t) = L(τ)wint(t)

which is exactly the term uint in (4).
We notice that u0 does not vanish on ∂Ω, we only have (u0 · n)/∂Ω, where n is the normal to

the boundary. This requires the introduction of a boundary layer. For the boundary layer, we only
construct Ũ0, near z = 0, since the construction of Ŭ0 near z = 1 is similar. We recall that the
modes (0, k3) are excluded due to the assumption on the initial data and on the resonances of the
torus. So, we only deal with the case −1 < λ(k̄) < 1. Using the construction in section 4 of [22],
we get ũ0 =

∑
k̄∈Z3

a
Rk̄ where

Rk̄(z) = −1
2
b(t, k) exp

[
i

(
(k.y) +

λ(k)t
ε

)]
× (26)[

hk̄,+ exp(−(1 + i)√
2

ηk̄,+ z

ε
) + hk̄,− exp(−(1− i)√

2
ηk̄,− z

ε
)
]

In a similar way, we get that ŭ0 =
∑

k̄∈Z3
a
T k̄ where T k has the same formula as Rk. Hence,

ub = ũ0 + ŭ0.

10



It remains to construct the remainder term ur. Of course, a good guess for ur is to take εU1.
However, we would like to get an approximate solution uapp which is divergence-free and which
vanishes on the boundary. The rest term is under the form

ur =
∑

k̄

(Rk̄
3 + T k̄

3 ) +
∑

k̄

rk̄ + εY +R3

and hence consists of four terms. We refer to [22] for the details on the construction of these four
terms. The main property of this correction term is that for all |α|+ |β| ≤ s− d− 5,

||(ϕ(z)∂z)β∂α
y ur||L∞ ≤ Cαε, ||∂z(ϕ(z)∂z)β∂α

y ur||L∞ ≤ Cα. (27)

where ϕ(z) is a smooth bounded function which is equivalent to z and 1 − z in the vicinity of 0
and 1 respectively.

• Rk̄
3 and T k̄

3 which are introduced to insure that Rk̄ and T k̄ satisfy the divergence free condition.
However, Rk̄

3 creates a trace at z = 0 and T k̄
3 creates a trace at z = 1 of order ε.

• rk̄ which is used to cancel the traces Rk̄
3(z = 0) and T k̄

3 (z = 1). Since, we have to take rk̄

which is divergence-free, we have to construct rk̄
1 and rk̄

2 which have a trace at z = 0 and
z = 1 of order ε. This is actually easier to handle than the trace on the third component we
started with. Besides, the term 1

εe × rk̄ is responsible for the Ekman damping in the limit
equation.

• εY is introduced to cancel the non resonant oscillating terms which do not yield a contribution
in the limit equation. More precisely, we have

Y(τ, t) = −L(τ)
∫ τ

0

[
L(−τ ′)Q(w,w)−Q(w,w)

]
(t)dτ ′.

We also point out that due to the non resonance assumption, we know that ‖Y(τ, t)‖Hs−d−1 ≤
C for a constant which does not depend on τ or t < T .

• R3 which takes into account the boundary condition of r, Y. This was constructed in section
4.3 of [22].

3 Linear Stability

We study the linearized system about the approximate solution:

T ε(v, p) = F, ∇ · v = 0, x ∈ T2
a × (0, 1) (28)

where
T ε(v, p) = ∂tv + uapp · ∇v + v · ∇uapp +∇p +

e× v

ε
− ε∆v

with initial data
v(0, x) = v0(x) (29)

and the boundary condition (2). Let us define vHF by Fyv
HF = 1ε|k|≥rFyv, for some r > 0 and

κs(εDy)v by Fy(κsv) = κs(εξ)Fyv(ξ) with κs(ξ) a smooth function which vanishes for |ξ| ≥ 2r. the
main result of this section is

11



Theorem 4 We assume that (H) holds. Then, there exists γ0 > 0, γ > 0 such that for every
ε > 0, T > 0, with εeγ0T ≤ 1, we have

||v(T )||2 + ε2||∇vHF (T )||2 +
∫ T

0
ε||∇v||2 (30)

. eγt
(
||v0||2 + ||vHF

0 ||21,ε +
∫ T

0

∣∣∣(κsF, κsv)
∣∣∣ + ε

∫ T

0
||F ||2

)
Throughout the paper, . stands for ≤ C where C > 0 is independent of ε ∈ (0, 1), T if εeγ0T ≤ 1.
Note that by using the Cauchy Schwarz inequality and the Gronwall inequality, we can get from
(30) the estimate

||v(T )||2 + ε2||∇vHF (T )||2 +
∫ T

0

(
ε||∇v||2 + ε−1||vHF ||21,ε

)
. eγ̃t

(
||v0||2 + ||vHF

0 ||21,ε +
∫ T

0
(1 + ε)||F ||2

)
for some γ̃ > γ which gives an estimate of v with respect to the source term F and the initial data
only. Nevertheless, in order to handle the nonlinear stability, it is important to keep the term∫ T

0

∣∣∣(κsF, κsv)
∣∣∣

in the right-hand side since it will allow to use the structure of the nonlinear term of the Navier-
Stokes equation and hence to get some better estimates.

The aim of the remaining part of the section is to prove Theorem 4. Note that for the moment
we have a control of the L∞(0, T, H1) norm only for the high frequency part of v. We will derive
an estimate for all the frequencies in paragraph 3.6.

3.1 Proof of Theorem 4

We start with a localization in frequency of the equation similar to the well prepared case [25].
We will deal with large, medium and small frequencies in different ways. For a smooth bounded
function κ, we apply the Fourier multiplier κ(εDy) to the equation 13. We get

T ε(κv, κp) = κF + C (31)

where the commutator C is defined as

C = −[κ, uapp · ∇]v − [κ, Duapp]v

By using the same argument as in [25], [27], we have the estimate

||C||2 . ε2||∇v||2 + ||v||2. (32)

Note that these commutator estimates are actually proven in a more general case in Lemma 16.
We first deal with the case where κ = κL is supported in ε|k| ≥ R. We have

Proposition 5 There exists R > 0 sufficiently large such that we have for every ε ∈ (0, 1) and
every T > 0 :

||κLv(T )||21,ε + ε−1

∫ T

0
||κLv||21,ε .

∫ T

0

(
||v||21,ε + ε||F ||2

)
+ ||κLv0||21,ε.

Note that for the proof of this lemma we do not need to use (H).

12



Proof

We use the same argument as in the well-prepared case treated in [25]. Using that uapp is divergence
free, the standard energy estimate for (31) gives

||κLv(T )||2 +
∫ T

0
ε||∇κLv||2 . ||κLv0||2 +

∫ T

0

(
ε−1||κLv||2 + ||F || ||κLv||+ ||C||2

)
. ||κLv0||2 +

∫ T

0

(
ε−1||κLv||2 + ε||F ||2 + ||C||2

)
.

We notice that
||∇κLv||2 ≥ R2ε−1||κLv||2

so that for R sufficiently large, the singular term ε−1||κLv||2 in the right hand side of (33) can be
absorbed by the left hand side. By using also (32), this yields

||κLv(T )||2 + ε−1

∫ T

0
||κLv||21,ε .

∫ T

0

(
||v||21,ε + ε||F ||2

)
+ ||κLv0||2. (33)

To conclude, it suffices to estimate ε2||∇κLv(T )||2. This is an easy consequence of the following
lemma :

Lemma 6 Consider u a solution of

∂tu− ε∆u +
e× u

ε
+∇p = H, ∇ · u = 0, x ∈ Ω (34)

with the initial condition u(0, x) = u0(x) and the boundary condition (2). Then, we have the
estimate

ε2||∇u(T )||2 +
∫ T

0

(
ε3||∇2u||2 + ε||∂tu||2

)
. ε2||∇u0||2 +

∫ T

0

(
ε−1||u||2 + ε||H||2

)
. (35)

We first end the proof of Proposition 5 by using Lemma 6. We can use Lemma 6 with u = κLv and

H = −uapp · ∇κLv − (κLv) · ∇uapp + κLF + C.

This yields

ε2||∇κLv||2 . ε2||∇κLv0||2 +
∫ T

0

(
ε−1||κLv||2 + ε||∇κLv||2 + ε||F ||2 + ||v||21,ε

)
.

To conclude, it suffices to add (33) times a sufficiently large constant and the last estimate.

We now turn to the Proof of Lemma 6 :
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Proof of Lemma 6

We take the scalar product of (34) by ∂tu, since ∂tu is divergence free and verifies the boundary
condition (2), we have

(∇p, ∂tu) = 0, (−∆u, ∂tu) =
d

dt

(1
2
||∇u||2

)
and hence we get

ε||∇u(T )||2 +
∫ T

0
||∂tu||2 . ε||∇u0||2 +

∫ T

0

(
||H||+ ε−1||u||

)
||∂tu||.

By using the Young inequality, we find after multiplication by ε

ε2||∇u(T )||2 +
∫ T

0
ε||∂tu||2 . ε2||∇u0||2 +

∫ T

0

(
ε||H||2 + ε−1||u||2

)
. (36)

Next, we use the classical regularity result for the Stokes equation [10]. We consider (34) as

−ε∆u +∇p = H − e× u

ε
− ∂tu, ∇ · u = 0

and we find that
ε2||∇2u||2 . ||H||2 + ε−2||u||2 + ||∂tu||2.

To end the proof, it suffices to integrate in time, to multiply by ε the last estimate and to use (36).
This ends the proof of Lemma 6.

We now consider R as fixed. The next step is to consider the case where κ = κs is supported
in ε|k| ≤ r.

Proposition 7 There exists r > 0 sufficiently small such that we have for every ε ∈ (0, 1) and
every T > 0

||κsv(T )||2 +
∫ T

0
ε||κs∇v||2 .

∫ T

0

(
||v||21,ε + |(κsF, κsv)|

)
+ ||κsv0||2.

Again, note that the assumption (H) is not used.

Proof

We again use a direct energy estimate as in [25]. Since (e× κsv, κsv) = 0, we get

||κsv(T )||2 +
∫ T

0
ε||κs∇v||2 .

∫ T

0

(
||C||2 + ||κsv||2 + |(κsF, κsv)|+ Sε

)
+ ||κsv0||2 (37)

where the singular term Sε is defined by

Sε = ε−1

∫
Ω
|κsv3|

(
|∂Zub|+ |∂Z′u

b|
)
|κsv| dx.
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Again, we use (32) to estimate C and hence it remains to study Sε. To estimate this term, we shall
use the inequality

|f(t, x)|2 ≤
( ∫ z

0
|∂zf |

)2
≤ z

∫ z

0
|∂zf |2 ≤ z

∫ 1

0
|∂zf |2 if f/z=0 = 0. (38)

Note that since ∂zκ
sv3 = −∂1κ

sv1 − ∂2κ
sv2 because of the incompressiblity condition, we can use

(38) twice to get

|κsv3|2 ≤ z

∫ z

0
|∂zκ

sv3|2 . z

∫ z

0
|∇hκsvh|2 . z3

∫ 1

0
|∂z∇hκsvh|2,

|κsv|2 . z

∫ 1

0
|∂zκ

sv|2.

This yields

ε−1

∫
Ω
|κsv3| |∂Zub,0| |κsv| dx

. ε2||∂z∇hκsv|| ||∂zκ
sv|| sup

y

∫ +∞

0
Z2|∂ZB0(τ, Z)wint(t, y, 0)| dZ

. εr||∇κsv||2.

To get the last inequality, we have used that ε||∇hκsf || ≤ r||κsf || by definition of κs and our
regularity assumption which gives

sup
y

∫ +∞

0
Z2|∂ZB0(τ, Z)wint(t, y, 0)| dZ < +∞

following (8). The same argument in the vicinity of the boundary z = 1 shows that

ε−1

∫
Ω
|κsv3| |∂Z′u

b,1| |κsv| dx . εr||∇κsv||2.

Consequently, we can choose r sufficiently small to absorb the singular term Sε in the left hand
side of (37). This ends the proof of Proposition 7. �

Finally, it remains the most difficult case where κ(εk) = κl is supported in r/2 ≤ ε|k| ≤ 2R.
Note that r and R are now fixed. We have the following estimate :

Proposition 8 Under the assumptions of Theorem 4, we have for ε and T such that εeγ0T ≤ 1

||κlv(T )||21,ε +
∫ T

0
ε−1||κlv||21,ε . eγ0T ||κlv0||21,ε +

∫ T

0

(
εeγ0T ||F ||2 + ||v||21,ε

)
.

The assumption (b(t, k̄)eik·y)k̄∈Z3
a
∈ K is crucial in the proof of Proposition 8.
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3.2 Proof of Proposition 8

In this section, due to the oscillations in the boundary layers, we use an approach completely
different from the one of the well-prepared case used in [25]. The proof of this Proposition is the
most technical part and we split it into various steps. First, we rewrite (31) by using the Leray
projection P(Dy) which is recalled in section B.2. Let us set vl = κlv, we get the equation

∂tv
l = P(Dy)κl(εDy)Lεvl + P(Dy)κl

(
κlF + κlC

)
, ∇ · vl = 0, x ∈ Ω, (39)

where κl is compactly supported with a support slightly bigger than κl and takes the value 1 on
the support of κl in order that κlκ = κ and Lε is defined by

Lεv = ε∆v − uapp · ∇v − v · ∇uapp − e× v

ε
.

Next, we shall estimate differently vl in the interior of the domain and in the vicinity of the
boundary. We decompose vl as

vl = χb(
z

δ
)vl + χint(z)vl + χb(

1− z

δ
)vl (40)

where χb is compactly supported in [0, 2], and χint is compactly supported in [δ, 1− δ]. Note that
χint depends on δ though we forget this dependence in the notation. Multiplying (39) by χ for χ
one of the truncation functions χint, χb,0 = χb(z/δ), χb,1 = χb(1− z/δ), we get

∂t(χvl) = P(Dy)κl(εDy)Lε(χvl) + H (41)
∇ · (χvl) = −∂zχvl

3 (42)

where
H = χP(Dy)κl

(
κlF + κlC

)
+ C1 + C2 (43)

with the new commutators C1 and C2 defined by

C1 =
[
χ, P(Dy)κl(εDy)

]
Lεvl, (44)

C2 = P(Dy)κl(εDy)
[
χ, Lε

]
vl. (45)

Thanks to (155) in Lemma 19, we get that

||C1|| . ||vl||+ ε||∇vl||+ ε2||∆vl|| . ||vl||2,ε. (46)

Note that in the following . stands for ≤ C and that C may depend on δ. Besides, the explicit
computation of C2 and a new use of the commutator estimates (see the appendix of [25] or Lemma
16) gives that

||C2|| . ||vl||+ ε||∇vl|| . ||vl||1,ε. (47)

Finally, note that if we choose κ
l such that the support of κ

l is again slightly larger than the one
of κl then we have

H = κ
l(εDy)H. (48)
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3.2.1 Interior estimates

We start with the case χ = χint. The estimate of χintvl can be obtained by a direct energy estimate.
We shall first establish the estimate :

||χintvl(T )||2 + ε−1

∫ T

0
||χintvl||21,ε . ||χintvl

0||2 +
∫ T

0

(
ε||vl||22,ε + ε||F ||2 + ||v||21,ε

)
. (49)

The only difficulty is that we have to deal with the fact that χintvl is not divergence free. When
we take the scalar product of (41) by χintvl, we can write(

P(Dy)κl(εDy)Lε(χintvl), χintvl
)

=
(
Lε(χintvl), P(Dy)κl(εDy)(χintvl)

)
=

(
Lε(χintvl), χintvl

)
+

(
Lε(χintvl), [P(Dy)κl(εDy), χint]vl

)
since vl is divergence free. Hence by using again the commutator estimate (155) of Lemma 19, we
get (

P(Dy)κl(εDy)Lε(χintvl), χintvl
)

=(
Lε(χintvl), χintvl

)
+O(1)

(
||vl||+ ε||∇vl||+ ε2||∆vl||

)
||χintvl||.

where O(1) is bounded by a constant which is independent of ε. The first term in the above equality
can be handled by standard integration by parts as previously. This yields

||χintvl(T )||2 +
∫ T

0
ε||∇(χintvl)||2 (50)

. ||χintvl
0||2 +

∫ T

0

(
(||vl||2,ε + ||H||) ||χintvl||+ Sε

)
where the singular term Sε is given by

Sε = ε−1
∣∣∣(χint∂Zubvl, χintvl

)∣∣∣+ε−1
∣∣∣(χint∂Z′u

bvl, χintvl
)∣∣∣ := Sε

1 + Sε
2.

By using the localization of the support of χint we have

|Sε
1| .

∑
k,±

|b(t,k)||Mk(0)|ε−1 exp
(
− ηk,±δ√

2 ε

)
||χintvl||2 (51)

.
∑
k,±

|b(t,k)|Mk(0)
ηk,± ||χintvl||2 . ||χintvl||2

and hence this term is well controlled. The estimate of Sε
2 is similar. To conclude, we finally notice

that since the Fourier transform of vl is localized in ε|k| ≥ r, we can write

||∇(χintvl)||2 = ||∇(χintκl(ε∂y)vl||2 = ||κ∇(χintvl)||2

≥ ε−2||χintvl||2

and hence, we deduce (49) from (50) by using the Young inequality which gives for every η > 0

(||vl||2,ε + ||H||) ||χintvl|| ≤ C(η)ε(||H||2 + ||vl||22,ε) + η ε−1||χintvl||2

and the estimates (32), (46), (47).
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3.2.2 Estimates near the boundary

We now explain how to estimate χb(z/δ)vl which will be denoted as χbvl in the following in order
to simplify the notations. The estimate of χb,1vl which can be obtained in a similar way will not
be detailled. We shall establish

||χbvl(T )||2 +
∫ T

0

(
ε−1||χbvl||2 + ε||∇(χbvl)||2

)
(52)

. eγ0T ||vl(0)||21,ε + εeγ0T

∫ T

0
||F ||2

+ε eγ0T

∫ T

0

(
||v||2 + ε2||∇v||2 + ε4||∆vl||2 + ε2||∂tv

l||2
)
.

We study (41), (42) with χ = χb,0. Note that since χbvl is compactly supported in T2
a × [0, 2δ], we

can use Lemma 20 and replace the Leray projection P(Dy) by the Leray projection in the half-space
P+(Dy) modulo a small remainder term. This means that we can study in T2

a × R+ the equation

∂t(χbvl) = P+(Dy)κ(εDy)Lε(χbvl) + H + E0, ∇ · (χbvl) = −∂zχvl (53)

where
E0 = χb

(
P(Dy)− P+(Dy)

)
κl(εDy)Lε(χbvl)

where χb is a smooth function with a support slightly bigger than χb. Thanks to Lemma 20, we
have

||E0|| . ||vl||+ ε||∇vl||+ ε2||∆vl|| . ||vl||2,ε. (54)

Again, note that E0 verifies
E0 = κ

l(εDy)E0. (55)

We add to (53) the only boundary condition

χbvl(t, y, 0) = 0. (56)

Since χbvl is not divergence free, we first lift the divergence to recover a problem with a divergence
free constraint. We choose in a classical way d such that

∇ · d = −∂zχ
b vl

3, d(t, y, 0) = 0 (57)

and also in such a way that
κl(εDy)d = d. (58)

This is possible (see [10]) since∫
∂zχ

b vl
3 = −

∫
χb∂zv

l
3 =

∫
z
χb(z)

∫
y
∇y · vl

h = 0.

Moreover, we can have
||d||Hs+1 . ||vl||Hs , s ≥ 0. (59)

Note that since d is chosen with the property (58), we can use that r . ε|k| on the support of κl

and (59) to get that
ε−1||d|| . ||vl||. (60)
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Moreover, by taking the time derivative of (57), we also get that

ε−1||∂td|| . ||∂tv
l||. (61)

Now, let us set w = χbvl − d, we deduce from (53), (57) that w solves

∂tw = P+(Dy)κ(εDy)Lb,εw + H + E0 + E1 + E2, (62)
∇ · w = 0 (63)

for x = (y, z) ∈ T2
a × R+, with the boundary condition

w(t, y, 0) = 0 (64)

where Lb,ε is the operator

Lb,εw = ε∆w −
(
uint(

t

ε
, t, y, 0) + ub,0(

t

ε
,
z

ε
, t, y) + χ(

z

δ
)(uint(

t

ε
, t, y, z)− uint(

t

ε
, t, y, 0))

)
· ∇w

−w · ∇
(
uint(

t

ε
, t, y, 0) + ub,0(

t

ε
,
z

ε
, t, y) + χ(

z

δ
)(uint(

t

ε
, t, y, z)− uint(

t

ε
, t, y, 0))

)
−e× w

ε
.

In this operator, we have introduced χ which is again a smooth compactly supported function such
that χχb = χb. Moreover, we recall that the notation ub,0 refers to the main boundary layer in the
vicinity of z = 0. The main interest of the introduction of χ is that the term

wδ = χ(
z

δ
)
(
uint(

t

ε
, t, y, z)− uint(

t

ε
, t, y, 0)

)
verifies

||wδ||L∞ . δ, ||∇wδ||L∞ . 1. (65)

In the above estimates, . is independent of δ for 0 < δ ≤ 1. In the right-hand side of (62), E1 is
the error term coming from d, i.e

E1 = ∂td− P+(Dy)κ(εDy)Lb,εd.

Hence we have
||E1|| . ||∂td||+ ||∇d||+ ||d||+ ε||∆d||+ ε−1||d||

and hence, thanks to (59), (60), (61), we get

||E1|| . ε||∂tv
l||+ ||vl||+ ε||∇vl|| . ||∂tv

l||+ ||vl||1,ε. (66)

The other error term E2 is defined as

E2 = −P+(∂y)κ(ε∂y)
(
ub,1(

t

ε
,
1− z

ε
, y, 0) + ur

)
· ∇(χbvl)

− χbvl · ∇
(
ub,1(

t

ε
,
1− z

ε
, t, y) + ur

))
so that by using (27) and the same trick as in (51) with the regularity assumption on the coefficients,
we get

||E2|| . ε||∇vl||+ ||vl|| . ||vl||1,ε. (67)
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Finally, note that E1 and E2 verify

κ
l
E1 = E1, κ

l
E2 = E2. (68)

To estimate the solution of (62), (63), we can use the following general principle:

Lemma 9 Consider a linear equation of parabolic type in a domain Ω

∂tw = Aεw + F (69)

with the boundary condition w/∂Ω = 0 and the initial condition w(0, x) = w0(x). Consider two
weighted norms N ε

T and || · ||T,ε. Assume that there exists an approximate solver Gapp such that if
we define

wapp(t) = GappF , F = (F,w0)

then wapp satisfies the boundary condition and the initial condition and moreover, there exists
CT,ε > 0 such that

N ε
T (wapp) ≤ CT,ε||F||T,ε (70)

and if we define the rest operator Rapp as

RappF = ∂tw
app −Aεwapp − F,

then, there exists C1
T,ε > 0 such that

||(RappF , 0)||T,ε ≤ C1
T,ε||F||T,ε. (71)

Moreover, for every ε > 0 and T > 0 such that

C1
T,ε < 1, (72)

there exists C > 0 (C =
∑

k≥0(C
1
T,ε)

k) such that the exact solution of (69) satisfies

N ε
T (w) ≤ CCT,ε||F||T,ε. (73)

The proof of this Lemma which only relies on a simple iteration scheme is postponed to the end
of the section.

We shall first explain how we can use Lemma 9 to estimate the solution of (62), (63). In other
words, we need to find an approximate solver Gapp. A similar idea was used in [17], nevertheless,
here our approximate solver will be completely different. We define the dilation operators

Mεf(Z) =
√

εf(εZ), Mεf(τ, Z) = εf(ετ, εZ).

Note that Mε is an isometry on L2(R+) and Mε from L2([0, T ]×R+) to L2([0, T/ε]×R+). We
notice that thanks to (65), we can rewrite the operator as

Lb,εw =
1
ε
M−1

ε Lb
(
q(t, y), εDy

)
Mεw +O(1)

(
δ|∇w|+ |w|

)
P+(Dy) = M−1

ε P+(εDy)Mε
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where q(t, y) = (qk̄(t, y)) with
qk̄(t, y) = b(t, k̄)eik·y.

In the above equality, O(1) is bounded by a number independent of δ if ε/δ ≤ 1. The rescaled
operator Lb is defined by

Lb(q, ξ)w = (∂ZZ − |ξ|2)w −
(
L0q + B0(τ, Z)q

)
·
(

iξ
∂z

)
w

−w ·
(

iξ
∂z

) (
L0q + B0(τ, Z)q

)
− e× w.

Next, we use a frozen time approximation, we rewrite (62) as

1
ε
M−1

ε P+(εDy)κ(εDy)T (q(0, y), εDy)Mεw +Rεw = H1 (74)

where the symbol T (q, ξ) is the differential operator acting only on the τ and Z variable defined by

T (q, ξ)w = ∂τw − L0
+(q, ξ)w,

where L0
+ is defined in (16) and Rεw is defined by

Rεw =
1
ε
M−1

ε P+(εDy)κ(εDy)
(
T (q(0, y), εDy)− T (q(t, y), εDy)

)
Mεw

+P+(Dy)O(1)
(
δ|∇w|+ |w|

)
and hence satisfies the estimate∫ T

0
||Rεw||2 . (T 2 + δ2)

∫ T

0
||∇w||2 + ε−2(δ2 + T 2)

∫ T

0
||w||2. (75)

The source term H1 in the right-hand side of (74) is defined by

H1 = H + E0 + E1 + E2. (76)

Thanks to our assumption (H), it is natural to define our approximate solver Gapp and our approx-
imate solution wapp as

wapp = GappF = M−1
ε Opg κ

l(εDy)MεDεF , (77)

where

F =
(

H1

w0

)
, DεF = (εH1, ε

1
2 w0),

and with a slight abuse of notation, we define MεF as

MεF = (MεH
1,Mεw0).

To define the operator-valued symbol g, we first define for data F(τ, Z) = (F (τ, Z), u0(Z)), the
operator G(q, ξ) (acting on functions depending on τ and Z) such that G(q, ξ)F(τ, Z) := u(τ, Z)
is the solution of

∂τu = P+(ξ)L0
+(ξ)u + F, iξ · uh + ∂Zu3 = 0 (78)
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such that u(0, Z) = u0(Z), u(τ, 0) = 0.
By using the operator G(q, ξ), we can define a symbol g such that

g(y, ξ) = G(q(0, y), ξ) (79)

and then a semi-classical operator-valued pseudo-differential operator Opg as in the Appendix A.
In particular for F(τ, y, Z), we have the definition

OpgF =
∑

k

eikyG(q(0, y), εk)F̂(τ, k, Z). (80)

With a slight abuse of notation, we shall sometimes use the notation G(q(0, y), εDy) in place of
Opg. Note that the operator Mε acts only on the τ and Z variables. Consequently, we can write

GappF = Opgapp , gapp(y, ξ) = M−1
ε g(y, ξ)MεDε (81)

and hence Gapp is itself an operator valued semi-classical pseudo-differential operator with symbol
gapp.

Note that because of (48), (55), (68), since we want to solve (74) only for data such that

κ
l(εDy)H1 = H1, κ

l
w0 = w0, (82)

the introduction of κ
l in the definition (77) is justified. To prove that wapp = GappF is a good

approximate solution, we want to use the semi-classical pseudo-differential calculus of section A
seeing the symbol g(y, ξ) as an operator on L2([0, T ]× R+) or L∞([0, T ], L2(R+)).

The aim of the following lemma is to study the dependence of G(q, ξ) in q. In particular, we
prove that it is smooth in q and we estimate the derivatives. This will imply that g is smooth in y
and hence we will be able to use the Lemma 16 and 17 of the Appendix A.

We introduce the following notations :

|v|Θ,2 = ||v||L2((0,Θ)×R+), |v|Θ,∞ = ||v||L∞((0,Θ),L2(R+)),

||v||Θ,2 = ||v||L2((0,Θ)×T2
a×R+), ||v||Θ,∞ = ||v||L∞((0,Θ),L2(T2

a×R+)).

Lemma 10 Thanks to (H), for every ξ in the support of κ
l, for every q in K and for every

m, there exists αm > 0 and Cm > 0 such that for every Θ > 0, for every F = (F (t, ·), u0(·)),
F (t, ·), u0(·) ∈ Hξ

|Dm
q G(q, ξ)F|Θ,∞ + |Dm

q G(q, ξ)F|Θ,2 + |∂ZDm
q G(q, ξ)F|Θ,2 (83)

≤ Cm

(
|F |Θ,2 + |u0|L2(R+)

)
|∂ZDm

q G(q, ξ)F|Θ,∞ + |∂τD
m
q G(q, ξ)F|Θ,2 + |∂ZZDm

q G(q, ξ)F|Θ,2 (84)

≤ Cm

(
|F |Θ,2 + |u0|H1(R+)

)
.

We also postpone the proof of this Lemma to the end of the section.
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Thanks to Lemma 10 and Lemma 15, we get that

||wapp||T,2 = ||GappF||T,2

=
∣∣∣∣∣∣Opg κ

l(ε∂y)MεDεF(τ ′, Z) dτ ′
)∣∣∣∣∣∣

T/ε,2

. ε||MεH1||T/ε,2 +
√

ε||Mεw0||
. ε||H1||T,2 +

√
ε||w0||.

By the same method, we get

||wapp||T,∞ = ||GappF||T,∞

= ε−
1
2

∣∣∣∣∣∣Opgκ
l(ε∂y)MεDεF(τ ′, Z) dτ ′

)∣∣∣∣∣∣
T/ε,∞

. ε
1
2 ||MεH1||T/ε,2 + ||Mεw0||

. ε
1
2 ||H1||T,2 + ||w0||.

In a similar way, since

∂tM−1
ε = ε−1M−1

ε ∂τ , ∂zM−1
ε = ε−1M−1

ε ∂Z , ∂ZMε = εMε∂z,

we find

||∂z(GappF)||T,2 . ||H1||T,2 + ε−
1
2 ||w0||,

||∂t(GappF)||T,2 . ||H1||T,2 + ε−
1
2 ||w0||+ ε

1
2 ||∇w0||

||∂zz(GappF)||T,2 . ε−1||H1||T,2 + ε−
3
2 ||w0||+ ε−

1
2 ||∇w0||,

||∂z(GappF)||T,∞ . ε−
1
2 ||H1||T,2 + ε−1||w0||+ ||∇w0||.

Consequently, if we define the weighted norm N ε
T (u) by

N ε
T (u) = ε−1||u||T,2 + ||∇u||T,2 + ||∂tu||T,2 + ε||∇2u||T,2 + ε−

1
2 ||u||T,∞ + ε

1
2 ||∇u||T,∞

Note that the norm N ε
T (w) involves ∇w in our definition. Nevertheless, since we use only this norm

for functions whose Fourier transform in y is supported in r ≤ ε|ξ| ≤ R, the terms involving ∇ in
the norm actually gives a usefull, non redondant piece of information for ∂z only.

We also define the weighted norm ||F||T,ε as

||F||T,ε = ||H1||T,2 + ε−
1
2 ||w0||+ ε

1
2 ||∇w0||

we have actually proven that
N ε

T (GappF) . ||F||T,ε. (85)

Moreover, by using again Lemma 10 and Lemma 15, we get by the same method that

N ε
T

(
OpDα

y gappF
)

. Cα||F||T,ε. (86)

We can now check that wapp is a suitable approximate solutions. To have clear notations in the
following computation, we use the notation

OpT = T (q(0, y), εDy).
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To check that Gapp is a good approximate solution, we write

1
ε
M−1

ε P+(εDy)κl(εDy)Op TMεOp gappF +RεOpgappF

=
1
ε
M−1

ε P+(εDy)K l(εDy)Op TMεOp gappF +RεOpgappF + Cr

where K l(ξ) is a smooth compactly supported function with a support slightly bigger that the one
of κ and such that

K lκ = κ. (87)

The commutator Cr is defined by

Cr =
1
ε
M−1

ε P+(εDy)K l[κ, OpT ]OpgappF

and hence is very similar to C. In particular, thanks to (85), we have

||Cr||T,2 . ε||F||T,ε. (88)

Next, we write

1
ε
M−1

ε P+(εDy)K l(εDy)Op TMεOp gappF +RεOpgappF + Cr

=
1
ε
M−1

ε OpP+KlOpTMεgappF +RεOpgappF + Cr +R1F

=
1
ε
M−1

ε OpP+KlT gMεDεF +RεOpgappF + Cr +R1F +R2F .

Since by definition, the symbol g, is chosen such that

P+(ξ)K l(ξ)T (q(0, y), ξ)g(y, ξ) = K l(ξ)Id,

we get thanks to (82) and (87) that

1
ε
M−1

ε P+(εDy)κ(εDy)Op TMεOp gappF +RεOpgappF

= K l(εDy)H1 +RεOpgappF + Cr +R1F +R2F
= H1 + Cr +R1F +R2F .

The remainder R1F is defined by

R1F =
1
ε
M−1

ε P+(εDy)κ(εDy)Opr1F

with the symbol r1 given by

r1(y, ξ) =
(
V (t/ε, q(t, y), Z) · εDy + ε2D2

y

)
gapp(y, ξ).

Consequently, thanks to (86), we have

||R1F||T,2 . ε||F||T,ε. (89)
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In a similar way, thanks to Lemma 16, and (86), we have for m > 7

||R2F||T,2 . ε
∑
|α|≤2

N ε
(
OpDα

y gappF
)

. ε||F||T,ε. (90)

Finally, thanks to (75), we also have

||RεOpgappF||T,2 . (δ + T )||F||T,ε. (91)

To use the result of Lemma 9, we set

RappF = RεGapp(y, εDy)H1 + Cr +R1F +R2F

and we see thanks to (88), (89), (90), (91) that

||RappF||T,2 . (δ + T + ε)||F||T,ε. (92)

Consequently, thanks to Lemma 9, for ε and δ sufficiently small, there exists T 0 and C0 > 0 such
that

N ε
T 0(w) ≤ C0||F||T 0,ε.

To get an estimate on a longer interval of time, we can reiterate the process as long as q(t, y) ∈ K.
Indeed, since q(T 0, y) ∈ K, then we can use the same method as previously for T ≤ T 0, we
rewrite the analogous of (74) but we replace T (wint,0(0, y), εDy) by T (wint,0(T 0, y), εDy). The
same argument as previously allows to get an estimate on [T 0, 2T 0]. The iteration of the argument
finally allows to get for some C > 0, γ0 > 0 independent of T that

N ε
T (w) ≤ Ceγ0T ||F||T,ε (93)

for every T > 0 such that wint(t, y, 0) ∈ K, for t ∈ [0, T ].
Finally, we can multiply (93) by ε

1
2 , use that w = χbvl − d and the estimates (43), (46), (47),

(66), (67), (59), (60) to get in particular that

||χbvl(T )||2 +
∫ T

0

(
ε−1||χbvl||2 + ε||∇(χbvl)||2

)
(94)

. eγ0T ||vl
0||21,ε + εeγ0T

∫ T

0
||F ||2

+ε eγ0T

∫ T

0

(
||v||2 + ε2||∇v||2 + ε4||∆vl||2 + ε2||∂tv

l||2
)
.

This ends the proof of (52).

We can now end the proof of Proposition 8. At this point, we shall restrict ε and T such
that εeγ0T . 1, this will allow to absorb the terms in the right hand side still depending on vl

which involve higher order derivatives by another estimates. At first, we can use the decomposition
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(40) and (52), (49) (we recall that we get an estimate near the upper boundary z = 1 completely
analogous to (52)), to get

||vl(T )||2 +
∫ T

0

(
ε−1||vl||2 + ε||∇vl||2

)
(95)

. eγ0T ||vl(0)||21,ε + εeγ0T

∫ T

0
||F ||2

+(1 + εeγ0T )
∫ T

0

(
||v||2 + ε2||∇v||2 + ε4||∆vl||2 + ε2||∂tv

l||2
)
. (96)

To conclude, we use Lemma 6 to estimate higher order derivatives. We get

ε2||∇vl(T )||2 +
∫ T

0

(
ε||∂tv

l||2 + ε3||∇2v||2
)

(97)

. ε2||∇v0||2 +
∫ T

0

(
ε−1||vl||2 + ε||∇vl||2 + ε||v||2 + ε2||∇v||2 + ε||F ||2

)
.

Finally we can add (97) and (95) times a sufficiently large constant to get

||vl(T )||2 + ε2||∇vl||2 +
∫ T

0

(
ε−1||vl||2 + ε||∇vl||2 + ε||∂tv

l||2 + ε3||∇2vl||2
)

. eγ0T ||v0||21,ε + εeγ0T

∫ T

0
||F ||2

+(1 + ε eγ0T )
∫ T

0

(
||v||2 + ε2||∇v||2 + ε4||∆vl||2 + ε2||∂tv

l||2
)

and hence, for ε sufficiently small, and εeγ0T ≤ 1, we finally get the result of Proposition 8.

3.3 End of the proof of Theorem 4

To get (30), we collect the estimates of Propositions 5, 7, 8. We get for ε, T such that εeγ0T ≤ 1 :

||v(T )||2 + ||∇vHF (T )||21,ε +
∫ T

0

(
ε||∇v||2 + ε−1||vHF ||2

)
. eγ0T (||v0||2 + ||vHF

0 ||21,ε) +
∫ T

0

(
εeγ0T ||F ||2 + ||v||2 + ε2||∇v||2 + |(κsF, κsv)|

)
.

For ε sufficiently small, this gives

||v(T )||2 + ||∇vHF ||21,ε +
∫ T

0

(
ε||∇v||2 + ε−1||vHF ||2

)
(98)

. eγ0T (||v0||2 + ||vHF
0 ||21,ε) +

∫ T

0

(
εeγ0T ||F ||2 + ||v||2 + |(κsF, κsv)|

)
and hence Theorem 4 follows by using the Gronwall inequality.
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3.4 Proof of Lemma 9

We represent the exact solution w of (69) as

w =
∑
k≥0

wk

where
w0 = Gapp(F,w0), R0 = Rapp(F,w0)

and for k ≥ 1 we define recursively wk and Rk as

wk = −Gapp(Rk−1, 0), Rk = Rapp(Rk−1, 0).

Thanks to (70), (71), we easily get by induction that

N ε
T (wk) ≤ CT,ε(C1

T,ε)
k||(F,w0)||T,ε, ||Rk||T,ε ≤ (C1

T,ε)
k+1||(F,w0)||T,ε

and hence, thanks to (72), we get that

N ε
T (w) ≤ CT,ε

(∑
k≥0

(C1
T,ε)

k)
)
||(F,w0)||T,ε ≤ CT,εC ||(F,w0)||T,ε.

3.5 Proof of Lemma 10

We start with the proof for m = 0. In this section, . means ≤ C where C is independent of Θ.
We can write the solution of (78) under the form

G(q, ξ)F(τ) = S+(τ, 0, q, ξ)κl(ξ)w0 +
∫ τ

0
S+(τ, τ ′, q, ξ)κl(ξ)F (τ ′) dτ ′

and hence, thanks to (H), we get that

|G(q, ξ)F(τ)| . e−ατ |w0|+
∫ τ

0
e−α(τ−τ ′)|F (τ ′)| dτ ′.

This yields by standard results on convolutions that

||G(q, ξ)F(τ)||Θ,∞ . |w0|+ ||F ||Θ,2

and that
||G(q, ξ)F(τ)||Θ,2 . |w0|+ ||F ||Θ,2 (99)

Next, we can reintroduce the pressure and rewrite the equation (78) as

∂τu + V (τ, Z, q) ·
(

iξ
∂Z

)
u + u ·

(
iξ
∂Z

)
V (τ, Z, q) +

(
iξ
∂Z

)
p (100)

+e× u + |ξ|2u− ∂ZZu = 0

with the divergence free condition
iξ · uh + ∂Zu3 = 0.
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Consequently, the standard energy estimate gives

|u(τ)|2 +
∫ τ

0
|∂Zu|2 . |u0|2 +

∫ τ

0
|F |2 +

∫ τ

0
|u|2

and since the right hand side is already estimated thanks to (99), we also get

||∂ZG(q, ξ)F(τ)||Θ,2 . |w0|+ ||F ||Θ,2 (101)

To estimate higher order derivatives, we use again Lemma 6 (with ε = 1), we get

||∂Zu||2Θ,∞ + ||∂τu||2Θ,2 + ||∂ZZu||2Θ,2 . |∂Zu0|2 + ||F ||2Θ,2 + ||u||2Θ,2

and since the right hand side is again already bounded thanks to (99), we get that

||∂ZG(q, ξ)F||Θ,∞ + ||∂τG(q, ξ)F||Θ,2 + ||∂ZZG(q, ξ)F||Θ,2 . |w0|+ ||F ||Θ,2.

This ends the proof of (83), (84) for m=0.
The general case follows by induction, we shall just explain how to handle the case m = 1.

The regularity of the solution of (78) with respect to q follows from standard regularity results for
solutions of parabolic equations whose coefficients smoothly depend on a parameter [9]. Taking the
differential of (78) with respect to q in the direction h, we find that(

∂τ − P+(ξ)L+(τ, q, ξ)
)
Dqu · h = R1

with

R1 = −
(
(DqV · h) ·

(
iξ
∂Z

)
u + u ·

(
iξ
∂Z

)
DqV · h

)
and Dqu · h/t=0 = 0. Consequently, we have

Dqu · h = G(q, ξ)(R1, 0).

By using (83), (84) for m = 0, we get

|Dqu · h|Θ,∞ + |Dqu · h|Θ,2 + |∂ZDqu · h|Θ,2

+|∂ZDqu · h|Θ,∞ + |∂τDqu · h|Θ,2 + |∂ZZDqu · h|Θ,2

. |R1|Θ,2

. |h|
(
|u|Θ,2 + |∂Zu|Θ,2

)
.

Consequently, we can use again (83), (84) for m = 0 to get the result for m = 1.

3.6 Estimates of the gradient

The aim of this section is to estimate ||∇v(T )||2, we first give a crude estimate :

Theorem 11 Under the assumptions of Theorem 4, we have

ε3||∇v(T )||2 +
∫ T

0

(
ε2||∂tv||2 + ε4||∇2v||2 + ε2||∇p||2

)
(102)

. ε3||∇v0||2 + eγT
(
||v0||2 + ||vHF ||21,ε +

∫ T

0
|(κsF, κsv)|+ ε

∫ T

0
||F ||2

)
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Note that this estimate is relatively crude since we have only a control of ε3||∇v(T )||2 whereas,
because of the size of the boundary layers, we would expect a control of ε2||∇v(T )||2 as we had
for the large frequency part of the solution. Nevertheless, this estimate will be useful in section 4.
The reason is that in the proof we do not use in an optimal way the structure of the singular term
ε−1e× v.

Proof of Theorem 11

To get (102), it suffices to use Lemma 6, then multiply the estimate (35) by ε and finally use (30). �

To get better estimates of some components of ∇v, we shall rewrite the equation (28) under an
equivalent form which is classically used in fluid mechanics. We define η = ∂1v2−∂2v1 and w = v3.
Note that η is the third component of the curl of v. Taking the curl of (28) and using that v is
divergence-free, we easily get that the equation for η is given by

∂tη −
∂zw

ε
− ε∆η (103)

= ∂1

(
uapp · ∇v2 + v · ∇uapp

2 + F2

)
− ∂2

(
uapp · ∇v1 + v · ∇uapp

1 + F1

)
.

For the equation on w, we first derive the equation for the pressure. We take the divergence of (28)
to get

∆p =
η

ε
+∇ ·

(
F − uapp · ∇v − v · ∇uapp

)
(104)

and next, we take the Laplacian in the third component of (28) and we use (104) to get

∂t ∆w +
∂zη

ε
− ε∆2w =

(
∆ ◦ π3 − ∂z∇ ·

)(
− uapp · ∇v − v · ∇uapp + F

)
(105)

where π3 stands for the projection on the third component i.e. π3(v) = v3. Next, thanks to (2)
and the fact that ∇ · w = 0, we notice that the boundary condition for (103), (105) is given by

η/∂Ω = w/∂Ω = ∂zw/∂Ω = 0. (106)

For the system (103), (105), we can prove :

Theorem 12 Under the same assumptions as in Theorem 4, we have

ε2(||η(T )||2 + ||∇w(T )||2) . eγT
(
||v0||21,ε +

∫ T

0
|(κsF, κsv|+ ε

∫ T

0
||F ||2

)
(107)

and also

ε2(||∇hvh(T )||2 + ||∇w(T )||2) . eγT
(
||v0||21,ε +

∫ T

0
|(κsF, κsv)|+ ε

∫ T

0
||F ||2

)
(108)

for some γ > 0.
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Proof

To estimate the solution of (103), (105), we multiply (103) by η and (105) by −w and we add the
two equations. We use (106) to get thanks to integration by parts that

d

dt

1
2

(
||η||2 + ||∇w||2

)
+ ε(||∇η||2 + ||∆w||2)− ε−1

(
(∂zw, η) + (∂zη, w)

)
.

(
||∇v||+ ε−1||v ∂Zub||+ ||F ||

)(
||∇η||+ ||∆w||

)
.

The crucial fact in the above identity is that

(∂zw, η) + (∂zη, w) = 0

so that the singular term vanishes. Consequently, we can use the Young inequality, the estimate
(38) and multiply by ε2 to get

ε2(||η(T )||2 + ||∇w(T )||2) + ε3

∫ T

0
(||∇η||2 + ||∆w||2)

. ε2(||η0||2 + ||∇w0||2) +
∫ T

0

(
ε||∇v||2 + ||v||2 + ε||F ||2

)
.

Since the right hand side of the above estimate was already estimated in (30), we get (107).
To get (108), we use that ∇ · v = 0, to get

∆hv2 = ∂1η − ∂2∂zw, ∆hv1 = −∂2η − ∂1∂zw, ∆h = ∂2
1 + ∂2

2 .

This immediately yields that

||∇hvi|| . ||η||+ ||∂zw||, i = 1, 2

and hence (108) follows from (107).

4 Higher order conormal derivatives

The estimates of Theorem 4 are sufficient to get a nonlinear stability result when it is possible
to construct a very accurate approximate solution. Indeed, we can very easily estimate weighted
derivatives under the form ε|α|∂α

y . It suffices to apply the operator ε|α|∂α
y to (28), to rewrite the

obtained equation as
T ε(ε|α|∂α

y v, ε|α|∂α
y p) = ε|α|∂α

y F + C

where C is a well-controlled commutator and then to apply Theorem 4. The drawback of this
approach is that this yields by Sobolev embedding a bad control of the L∞ norm which is needed
to prove the nonlinear stability by a fixed point argument. Since here, we have been only able to
construct an approximate solution with ||Rε|| . ε we cannot use this rough approach to conclude.

In order to conclude, we would want to prove as it was done in [25], [27] that we can estimate
tangential derivatives i.e ∂yv where v is still the solution of (28) without loss. This means that we
want to estimate ||∂α

y v|| and not ε|α|||∂α
y v||. Here a new difficulty appears which was not present
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in the well prepared case. Indeed, when we apply ∂y to (28), we have in particular to handle the
commutator

[∂y, (uint + ub) · ∇]v = ∂yu
int · ∇v + ∂yu

b · ∇v.

The second term has the same property as in the well-prepared case since ub
3 = 0, we get that

||∂yu
b · ∇v||2 . ||∇hv||2

and hence this term can be handled by a Gronwall type argument since it involves only first order
tangential derivatives. The main difficulty comes from the term ∂yu

int · ∇v. In the well prepared
case, we have uint

3 = 0 and hence the same argument as above is valid. Nevertheless, here we do
not have uint

3 = 0, we only have uint
3/∂Ω = 0. Consequently, we have the estimate

||∂yu
int
3 ∂zv|| . ||ϕ ∂zv||

where ϕ(z) is a smooth bounded function which behaves as z and 1 − z in the vicinity of z = 0
and z = 1 respectively. The usual method in the case of initial boundary value problems for
viscous conservation laws (see [23], [18], for example) is to work in conormal spaces and to consider
simultaneously the derivatives in the directions tangent to the boundary and the additional vector
field ϕ∂z. Note that, it is legitimate to apply this last vector field ϕ∂z to the equation since
(ϕ∂zv)/∂Ω = 0. Nevertheless, in the case of our singularly perturbed incompressible Navier-Stokes
equation, it does not seem easy to use readily this method. Indeed ϕ∂zv does not verify the
incompressibility condition and moreover ∇ · (ϕ∂zv) is not small. To overcome this difficulty, we
shall use that uint

3 is highly oscillating in time. We recall that uint
3 is defined by

uint
3 =

∑
k

b(t,k)eiλ(k)τeik·y2i sin(k3z) =
∑

k, k3 6=0

b(t,k)eiλ(k)τeik·y2i sin(k3z).

Thanks to this definition, we introduce

W ε
j (t, x) =

∑
k, k3 6=0

kj
b(t,k)
λ(k)

eiλ(k)t/εeik·y2i sin(k3z).

Note that we have
∂tW

ε
j = ε−1∂ju

int
3 +O(1). (109)

and that
W ε

j/∂Ω = 0. (110)

Next, we introduce the vector fields

Zj = ∂j + εW ε
j (t, x)∂z, j = 1, 2, Z3 = ε Γϕ(z)∂z

where Γ ≥ 1 will be chosen sufficiently large. Since |W ε
3 | . ϕ thanks to (110), we have

|∂jv| . |Zjv|+ |Z3v| (111)

and hence we can recover good estimates on ∂yv from estimates on Zv. The main property of these
vector fields as we shall see below is that they have good commutation property with respect to T .
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Consequently, let us define the weighted norms

||v||2m =
∑
|α|≤m

||Zα3
3 Zα2

2 Zα1
1 v||2,

Ym(v) = ||v||2m + ε2||∇hvh||2m + ε2||∇v3||2m + ε2||∇vHF ||2 + ε3||∇v||2,
YT,m(v) = sup

[0,T ]
Ym(v(T )),

DT,m(v, p) =
∫ T

0

(
ε−1||vHF ||2m + ε||∇v||2m + ε2||∂tv||2m + ε2||∇p||2m + ε4||∇2v||2m

)
.

Note that the norm || · ||m that we have just defined is equivalent to the norm || · ||m defined in (18)
because of (111), this is why we have abusively used the same notation. In order to deal with the
source term in an optimal way, we also use the notation

(u, v)m =
∑
|α|≤m

∣∣∣(Zα3
3 Zα2

2 Zα1
1 u,Zα3

3 Zα2
2 Zα1

1 v
)∣∣∣.

Our main result is :

Theorem 13 Under the same assumptions as in Theorem 4, we have for every m

YT,m(v) + DT,m(v, p) . eγT
(
Ym(v0) +

∫ T

0
(κsF, κsv)m + ε

∫ T

0
||F ||2m

)
. (112)

Proof of Theorem 13

We shall prove (112) by induction on m. In the proof, the harmless numbers contained in . are
also independent of Γ ≥ 1.

Note that for m = 0, the estimate (112) follows by collecting (102), (30), (108). To present the
main idea without too much technicalities, we first give the proof of (112) for m = 1. At first, let
us study what happens to (28) when we apply the vector field Zi for i = 1, 2. The case where we
apply Z3 is easier because of the ε weight in the vector field will not be detailled. Moreover, most
of the terms which appear in the computation are similar to the ones which appear when we apply
Zi to the equation since εW ε

i ∂z behaves in the same way as Z3.
For i = 1, 2, we get

T ε(Ziv, Zip) = ZiF − CZ (113)

where
CZ = CZ

1 + CZ
2 ,

CZ
1 = Ziu

app · ∇v − ε∂tW
ε
i ∂zv

CZ
2 = εuapp · ∇W ε

i v + v · Zi∇uapp + ε∂zp∇W ε
i + ε∆W ε

i v + 2ε∇W ε
i · ∇v.

Note that thanks to the crucial property (109), we have, using the notation vh = (v1, v2) for vectors
of v ∈ R3, that

CZ
1 = (∂iu

int
3 − ε∂tW

ε
i )∂zv + ∂i(ub + ur) · ∇v + ∂iu

int
h · ∇hv − εW ε

i ∂zu
app · ∇v

= O(ε)∂zv + ∂i(ub + ur) · ∇v + ∂iu
int
h · ∇hv − εW ε

i ∂zu
app · ∇v. (114)
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By using that
ϕ(z)∂zu

b = O(1)

since ϕ(z) vanishes on the boundary and by using also the inequality (38), we get that∫ T

0
||CZ ||2 .

∫ T

0

(
ε2||∇v||2 + ε2||∇p||2 + ||∇hv||2

)
. DT,0(v, p) +

∫ T

0
||v||21 (115)

where in the second inequality we have used the property (111).
Finally, let us notice that

∇ ·
(
Ziv

)
= ε∇W ε

i · ∂zv := di. (116)

A difficulty comes from the nonvanishing divergence of Ziv. To estimate the solution of (113), we
follow the same scheme as in the proof of Theorem 4. We use the same localization in frequencies.
We begin with the small frequencies which is actually the more difficult. We apply κs(εDy) to
(113) to get

T ε(κsZiv, κsZip) = κsZiF − κsCZ + Cs (117)

where the commutator Cs satisfies the estimate

||Cs||2 . ε2||∇v||21 + ||v||21. (118)

We use the estimates (115), (118) and the standard energy estimate for (117) to obtain

||κsZi(T )||2 + ε

∫ T

0
||κs∇Ziv||2 + (κs∇Zip, κsZiv)

. Sε + DT,0(v, p) +
∫ T

0

(
||v||21 + ε2||∇v||21 + (F, v)1

)
where the singular term Sε is defined as

Sε =
∣∣∣(Ziv · ∂zu

b, Ziv)
∣∣∣.

As in the proof of Proposition 7, we can estimate the singular term

Sε . εr||∇Ziv||2

and hence we can absorb it in the left hand side. Next, we have to be careful with the term involving
the pressure since Ziv is not divergence free. We write thanks to integration by parts and (116)

(κs∇Zip, κsZiv) = ε(κsZip, κs∇W ε
i · ∂zv)

= −ε(κs∂zZip, κs∇W ε
i · v)− ε(κs∂zZip, κs∇∂zW

ε
i · v)

and hence we get ∣∣∣(κs∇Zip, κsZiv)
∣∣∣ . ε||∇p||1||v||1.

so that we finally find

||κsZi(T )||2 + ε

∫ T

0
||κs∇Ziv||2 (119)

. DT,0(v, p) +
∫ T

0

(
||v||21 + ε2||∇v||21 + ε||∇p||1 ||v||1 + (F, v)1

)
.
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In a similar way, by combining the previous argument and the arguments in the proof of proposition
5, we get in the high frequency region

||κLZi(T )||2 +
∫ T

0

(
ε−1||κLZiv||2 + ε||κL∇Ziv||2

)
(120)

. DT,0(v, p) +
∫ T

0

(
||v||21 + ε2||∇v||21 + +ε||∇p||1 ||v||1 + (F, v)1

)
.

It remains the medium frequency estimates. In this range of frequency, we can lift the nonzero
divergence and use the result of Proposition 8. Indeed, let us first establish some usefull estimates
on di. Thanks to (116), we have∫ T

0
||di||2 . ε2

∫ T

0
||∇v||2 . εDT,0(v, p) (121)

and ∫ T

0
||∇di||2 . ε2

∫ T

0
||∇2v||2 . ε−2DT,0(v, p). (122)

Moreover, we notice that

||di||2 .
1
Γ2
||Z3v||2 + ε2||∂zv3||2 .

1
Γ2
||Z3v||2 + ε2||∇hvh||2 .

( 1
Γ2

+ ε2
)
Y1(v) (123)

and hence, by taking the time derivative, we also have∫ T

0
||∂tdi||2 .

∫ T

0
||∂tv||21. (124)

Now let us choose as before Di which satisfies the boundary condition (2) and such that

∇ ·Di = di. (125)

By using (121), (122), (123), (124), we get∫ T

0

(
||Di||2 + ||∇Di||2

)
. εDT,0(v, p), (126)∫ T

0
||∇2Di||2 . ε−2DT,0(v, p), (127)

||∇Di||2 .
( 1

Γ2
+ ε2

)
||v||21, (128)∫ T

0

(
||∂tDi||2 + ||∇∂tDi||2

)
.

∫ T

0
||∂tv||21. (129)

To estimate κlZiv, we shall consider the equation satisfied by

u = Ziv −Di. (130)

A very usefull remark already used to get (60) is that

ε−2||κlDi||2 . ||κl∇Di||2. (131)
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Combined with (126)-(129), this gives very good estimate on Di.
Thanks to (113), we get

T ε(κlu, Zip) = κlZiF − κlCZ + Cl +Rl, ∇ · (κlu) = 0 (132)

where Cl is the commutator [κl, T ε] and hence still satisfies the estimate (118) and Rl is defined by

Rl = T ε(κlDi, 0). (133)

Consequently, by combining (126), (127), (129) and (131), we get the estimate∫ T

0
||Rl||2 .

∫ T

0

(
ε2||∂tv||21

)
+ ε2DT,0(v, p). (134)

Next, since u solves (132), we can use the result of Proposition 8 to get

||κlu(T )||2 + ε2||∇(κlu)(T )||2 +
∫ T

0

(
ε−1||κlu||2 + ε||κl∇u||2

)
. eγ0T (||κlu0||2 + ε2||∇(κlu0)||2) + εeγ0T

∫ T

0

(
||F ||21 + ||κlCZ ||2 + ||Cl||2 + ||Rl||2

)
.

Now, we can use (126), (128) and (131) and the fact that u = Ziv −Di plus the estimates (115),
(118) and (134). From now on, we restrict ε and T such that εeγ0T ≤ 1. This yields

||κlZiv(T )||2 + ε2||∇(κlZiv)(T )||2 +
∫ T

0

(
ε−1||κlZiv||2 + ε||∇(κlZiv)||2

)
(135)

. eγ0T (||v0||21 + ε2||κl∇v0||21) + DT,0(v, p) +
∫ T

0

(
εeγ0T ||F ||21 + ||v||21 + ε2||∇v||21 + ε3||∂tv||21

)
.

Note that by combining (119), (120), (135), we have actually proven that

||Zv||2 +
∫ T

0

(
ε||∇Zv||2 + ε−1||ZvHF ||2

)
(136)

. eγ0T Y1(v0) + DT,0(v, p) +
∫ T

0

(
||v||21 + εeγ0T ||F ||21

)
Next, since u solves

T ε(u, Zip) = ZiF − CZ +R, ∇ · u = 0 (137)

where
R = T ε(Di, 0),

we get thanks to the result of Lemma 11 that

ε3||∇u(T )||2 +
∫ T

0

(
ε2||∂tu||2 + ε4||∇2Zv||2 + ε2||∇Zp||2

)
. ε3||∇u0||2 +

∫ T

0

(
||u||2 + ε2||∇u||2 + ε2||CZ ||2 + ε2||R||2

)
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and hence by using (130) and (126), (127), (128), (129), we find

ε3||∇Zv(T )||2 +
∫ T

0

(
ε2||∂tZv||2 + ε4||∇2Zv||2 + ε2||∇Zp||2

)
(138)

. ε3(||v0||21 + ||∇v0||21) + DT,0(v, p) +
∫ T

0

(
||v||21 + ε2||∇Zv||2 + DT,0(v, p) + ε2||F ||2

)
To conclude, we can add (112) for m = 0 and a large constant (independent of ε) times (136) plus
(138) to get

||v(T )||21 + ε3||∇v(T )||21 + DT,1(v, p)

. Y1(v0) +
∫ T

0

(
(F, v)1 + ε||∇p||1||v||1 + ||v||21 + ε||F ||21

)
.

Next, we use the Young inequality to write for every δ > 0

ε||∇p||1 ||v||1 ≤
δ

2
ε2||∇p||21 + C(δ)||v||21

and we choose δ sufficiently small to absorb ε2||∇p||21 in DT,1(v, p) so that we get

||v(T )||21 + ε3||∇v(T )||21 + DT,1(v, p)

. eγ0T Y1(v0) +
∫ T

0

(
(F, v)1 + ||v||21 + εeγ0T ||F ||21

)
.

and we conclude by using the Gronwall inequality as in the end of the proof of Theorem 4.

It remains to estimate ||∇hZivh|| and ||∇v3||. We use again (137). The result of Theorem 12
gives

ε2(||∇huh(T )||2 + ||∇w(T )||2) . ||u0||21,ε +
∫ T

0

(
ε||F ||21 + ε||CZ ||2 + ε||R||2 + ||u||2 + ε||∇u||2

)
and hence we can use that u = Ziv −DI and (126)-(129) and (115) to get

ε2(||∇hZiv(T )||2 + ||∇Ziv3(T )||2) . Y1(v0) + DT,1(v, p) + ||v(T )||21 +
∫ T

0

(
ε||F ||2 + ||v||21

)
and we can conclude since all the terms in the right-hand side have already been estimated.

We have given the proof for m = 1, the general case follows by induction, this is left to the
reader.

5 Nonlinear stability

In this section we prove the main theorem 2. We introduce a new notation, namely for f ∈ Hm
anis(Ω),

we denote for z ∈ (0, 1)
|f |2m(z) =

∑
α∈N3, |α|≤m

|Zαf |L2(T2
a)
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where the integration only takes place in the y variable. An important remark is that for every
f ∈ Hm

anis(Ω), we have by Sobolev imbedding

|f(., z)|L∞(T2
a) ≤ |f(., z)|m m ≥ 2.

Consequently by Leibnitz formula, we find

|fg|m . |f |m |g|m, m ≥ 2.

5.1 Proof of Theorem 2

For the proof of theorem 2, we recall that uapp = uint + ub + ur, then we can see that uapp is an
approximate solution to (1) with an error term F ε which has size

√
ε in L∞(0, T ;L2(Ω)). Moreover,

we can describe more precisely the structure of F ε. Namely, we have

F ε = ∂tu
app +

e× uapp

ε
− ε∆uapp + uapp · ∇uapp +∇p (139)

and we can see that F ε can be decomposed as

F ε = F ε,1 + F ε,2

with two types of terms. The first term F ε,1 contains boundary layer terms such as uapp · ∇ub and
hence has an L2 norm of size

√
ε and is concentrated near z = 0 or z = 1. The other type is F ε,2

which has an L2 norm of size ε and which comes for instance from the time derivative of Y.
For each ε > 0, the existence theory for the Navier-Stokes system yields the existence and

uniqueness of a solution uε to (1) in L∞(0, T ε;H1(Ω)) with the initial data uε,0 on some time interval
T ε > 0. Proving that the time T ε > 0 can be taken uniform in ε and the convergence of uε−L( t

ε)w
to zero will be done together. We set v = uε − uapp where we recall that uapp = uint + ub + ur.
Note that v depends on ε, but we drop this dependence in ε in the notation. We find that v solves

∂tv + uapp · ∇v + v · ∇uapp + e×v
ε − ε∆v +∇p = −F ε − v · ∇v

div(v) = 0, v = 0 on ∂Ω v(t = 0) = uε,0 − uapp(t = 0).
(140)

We start with the case 3/4 < α ≤ 1. Let us define

T ε = sup{t0 | ∀t ∈ [0, t0], Ym(v(t)) ≤ C2
0ε2α}

for some big constant C0. We recall that Ym(v(0)) ≤ c2ε2α for some constant c, hence by continuity
T ε > 0 with the choice C0 > c. Notice that (140) can be written as T ε(v, p) = −(F ε + v · ∇v).
Hence, we can use Theorem 13 to deduce that for 0 < T < T ε, we have

YT,m(v) + DT,m(v, p) . eγT
(
Ym(v0) +

∫ T

0
(κs(F ε + v · ∇v), κsv)m + (141)

ε

∫ T

0
||(F ε + v · ∇v)||2m

)
. (142)
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We have to estimate the different terms appearing on the right hand side of (141). We recall that
F ε can be written as F ε = F ε,1+F ε,2 (for simplicity of notation, we assume that F ε,1 is a boundary
layer at z = 0, the term at z = 1 can be treated in a similar way by replacing z by 1− z). We have∫ T

0
|
∫

Ω
(κs(F ε,1 + F ε,2), κsv)m|

.
∫ T

0
||F ε,2||2m + ||v||2m +

∫ T

0

∫
T2

a

( ∫ 1

0
|z1/2F ε,1|mdz

( ∫ 1

0
|∂zv|2mdz

)1/2)
dyds

.
∫ T

0
||F ε,2||2m + ||v||2m + Cε3/2

∫ T

0
||∇v||mds

.
∫ T

0
||v||2m + C(1 + T )ε2 +

ε

8

∫ T

0
||∇v||2mds

Moreover, we also have ∫ T

0
|
∫

Ω
(κs(v · ∇v), κsv)m|

≤ C

∫ T

0
||v||3/2

m ||∇v||3/2
m ds

≤ CT 1/4C
3/2
0 ε3/2α−3/4

(
ε

∫ T

0
||∇v||2m

)3/4

≤ CTC6
0ε6α−3 +

1
8
ε

∫ T

0
||∇v||2mds

The first term in the above estimate yields the restriction 6α− 3 > 2α that is α > 3/4.
Besides,

ε

∫ T

0
||v · ∇v||2m . ε

∫ T

0

∫ 1

0
|vh|2m |∇hv|2m + |v3|2m |∂zv|2m dzdt

≤ ε

∫ T

0
||∂zvh||m ||vh||m ||∇hv||2m + ||∂zv3||m ||v3||m ||∂zv||2m dt

≤ ε sup
[0,T ]

(
||vh||m (||∇hv||m + ||∂zv3||m

) ∫ T

0
||∇v||2m

≤ ε−1 sup
[0,T ]

Ym(v(t))2 DT,m(v, p)

≤ C2
0 ε2α−1 DT,m(v, p)

and this term can be absorbed in the left hand side if ε is small enough since α > 1/2. Finally, we
have

ε

∫ T

0
||F ε||2m . CTε2.

Hence, by Gronwall lemma, we deduce that for all T > 0, there exists an ε0 such that for ε < ε0,
we can take T ε > T and we have

sup
0≤t≤T

||v(t)||2 +
∫ T

0
ε||∇v||2 ≤ CT ε2α (143)
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if α > 3/4.

Remark 14 The proof of Theorem 2 shows that for α = 3/4, we have a similar result but only on
a finite time interval (0, T0) where T0 depends on the initial data w0 and the constant c appearing
in (19). In some sense, it appears from the proof of the theorem that the value α = 3/4 is critical.
However, it may seem more natural to have a critical result at the value α = 1/2. But we were not
able to prove the theorem 2 when 1/2 < α < 3/4. The main problem comes from estimating the
nonlinear term

∫ T
0 |

∫
Ω(κs(v.∇v), κsv)m|.
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Appendix

A Simple results about operator valued semi-classical pseudo-
differential calculus

We consider smooth symbols A(y, ξ). Here, for each y, ξ, A(y, ξ) is an operator from Hξ to L2(R+)
where Hξ is a closed subspace of L2(R+). We only need to consider operators associated with
symbols of degree zero which basically verify

|∂α
y ∂β

ξ A(y, ξ)|L(Hξ,L2(R+) ≤ Cα,β. (144)

We associate to A a semi-classical pseudo-differential operator acting on functions on T2
a × R+

defined by
A(y, ε∂y)w = OpAw(y, z) =

∑
k∈Z2

eik·yA(y, εk)ŵ(k, ·)(z) (145)

where ŵ(k, z) are the Fourier coefficients of w(·, z) that is to say :

w(y, z) =
∑

k

eik·yŵ(k, z), ŵ(k, z) =
∫

T2
a

e−ik·yw(y, z)dy,

here we assume that dy is normalized such that
∫

T2
a
dy = 1. We shall only give the proof of the

properties that we have used, for more detail, we refer for example to the book [7].

A.1 Continuity in L2

Let us define
|A|M,0 = sup

y,ξ
sup
|α|≤M

|∂α
y A(y, ξ)|L(Hξ,L2(R+)).

We also introduce the space H ⊂ L2(T2
a × R+)

H = {w ∈ L2(T2
a × R+), ŵ(k, ·) ∈ Hεk}.

We have the following result

Lemma 15 There exists C > 0 such that for every ε, ε ∈ (0, 1),

∀w ∈ H, ||OpAw||L2(T2
a×R+) ≤ C|A|M,0||w||L2(T2

a×R+)

for M > 2.
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Proof

We follow the method to prove the boundedness of pseudo-differential operator in [30]. We expand
A(y, εk)ŵ(k, ·) in Fourier series :

A(y, εk)ŵ(k, ·) =
∑

l

eil·yÂ(l, εk)ŵ(k, ·), Â(l, εk) =
∫

T2
a

e−il·yA(y, εk) dy.

Since A(y, εk) is smooth in y, we have

(1 + |l|2)N Â(l, εk) =
∫

T2
a

(I −∆y)N (e−il·y)A(y, εk) dy =
∫

T2
a

e−il·y(I −∆y)NA(y, εk) dy

and hence we get

|Â(l, εk)|L(L2(R+) .
1

(1 + |l|2)N
|A|2N,0 (146)

Since
OpAw =

∑
l

eil·y
( ∑

k

eik·yÂ(l, εk)ŵk

)
,

we get by using the Bessel identity that for N > 1

||OpAw|| .
∑

l

∣∣∣∣∣∣∑
k

eik·yÂ(l, εk)ŵk

∣∣∣∣∣∣ =
∑

l

(∑
k

|Â(l, εk)wk|2
) 1

2

and hence thanks to (146), we obtain

||OpAw|| . |A|2N,0

∑
l

1
(1 + |l|2)N

∑
k

|wk|2

which finally gives by a new use of Bessel identity

||OpAw|| . |A|N,0 ||w||.

This ends the proof.

A.2 Product

Here we only need to study the product of a differential operator and of a pseudo-differential
operator of order 0 which is obvious and the product of a bounded Fourier multiplier and a pseudo-
differential operator of order zero. Note that here we want to prove that the residual is small in
ε.

Lemma 16 Let B(ξ) ∈ L(L2) and A(y, ξ) two symbols then

OpBOpAw = OpBAw + ε OpRw, ∀w ∈ H

where there exists C such that for every ε ∈ (0, 1),

∀w ∈ H, ||OpRw||(L2(T2
a×R+)) ≤ C|B|0,1|A|M,0||w||H

for M > 5 where
|B|0,1 = sup

ξ
|∇ξB(ξ)|L(L2(R+).

41



Proof

We write

OpBOpAw(y, ·) =
∑
k,l

∫
T2

a

eik(y−y′)eily′B(εk)A(y′, εl)ŵ(l, ·) dy′

=
∑

l

eily
∑

k

ei(k−l)yB(εk)
(∫

T2
a

e−iky′A(y′, εl)dy′
)
ŵ(l, ·)

=
∑

l

eily
∑

k

ei(k−l)yB(εk)Â(k, εl)ŵ(l, ·)

=
∑

l

eily
(∑

k

eikyB(ε(k + l))Â(k, εl)
)
ŵ(l, ·).

Consequently, the symbol of OpBOpA is C defined by

C(y, εl) =
∑

k

eikyB(ε(k + l))Â(k, εl)

Note that the object is well-defined since B is uniformly bounded and Â(k, εl) is fastly decreasing
in k. By Taylor expansion, we can write

B(ε(k + l)) = B(εl) + εB1(εl, εk) · k, B1(ξ, ζ) =
∫ 1

0
DB(ξ + tζ) dt

and hence we get
OpBOpAw(y, ·) = OpBAw(y, ·) + εOpRw(y, ·)

where R is defined by
R(y, ξ) =

∑
k

eik·yB1(ξ, εk) · kÂ(k, ξ).

Since B1 is uniformly bounded and Â is fastly decreasing, we easily get that R satisfies (144). More
precisely, we have

|R|M,0 . |B|0,1 |A|M+4,0.

We end the proof by using Lemma 15.

A.3 Version with time dependence

Here, we consider the case where for each y, ξ, A(y, ξ) is an operator from L2(0, T ;Hξ) or L∞(0, T ;Hξ)
to L2((0, T )× R+) or L∞((0, T );L2(R+)). Let us set

||w||T,2 = ||w||L2([0,T ],L2(T2
a×R)+), ||w||T,∞ = ||w||L∞([0,T ],L2(T2

a×R)+)

and

||A||M,0,T,2 = sup
y,ξ

sup
|α|≤M

|∂α
y A(y, ξ)|L(L2([0,T ],Hξ),L2([0,T ],L2(R+)))

||A||M,0,T,∞ = sup
y,ξ

sup
|α|≤M

|∂α
y A(y, ξ)|L(L∞([0,T ],Hξ),L2([0,T ],L2(R+))),

||B||0,1,T,2 = sup
ξ
||∇ξB||L(L2([0,T ],L2(R+))),

||B||0,1,T,∞ = sup
ξ
||∇ξB||L(L∞([0,T ],L∞(R+))).
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Then we have the following properties :

Lemma 17 There exists C > 0 such that

∀w ∈ L2([0, T ],H), ||OpAw||T,2 ≤ C||A||M,0,T,2||w||T,2,

||OpAw||T,∞ ≤ C||A||M,0,T,∞||w||T,2,

and
OpBOpAw = OpBAw + εOpR

with

∀w ∈ L2([0, T ],H), ||OpRw||T,2 ≤ C||B||0,1,T,2||A||M,0,T,2||w||T,2,

||OpRw||T,∞ ≤ C||B||0,1,T,∞||A||M,0,T,∞||w||T,2.

The proof can be obtained by the same method as in the previous version and we shall not detail
it.

B The Leray Projection

B.1 The case of a half space

In this section, we study the symbol P+(k) for k 6= 0. We look for a decomposition

v = u +
(

ikp
∂zp

)
, z > 0, ik · uh + ∂zu3 = 0, u3(0) = 0 (147)

and we set P+(k)v = u. It is convenient to introduce also Q+(k) = Id − P+(k). We have the
following properties :

Lemma 18 i) The operator P+(k) can be written for every v ∈ L2(R+) as

P+(k)v(z) = Ihv(z)−
∫

R+

K+(k, z, z′)v(z′) dz′, ∀z ≥ 0

where

Ihv(z) =
(

vh(z)
0

)
and there exists C > 0 such that the matrix K+(k, z, z′) satisfies the estimate

∀k 6= 0, |K+(k, z, z′)| ≤ C|k|
(
e−|k| |z−z′| + e−|k|(z+z′)

)
(148)

ii) There exists C > 0 such that the operators P+(k) satisfy for k 6= 0 the uniform estimates

∀v ∈ L2(R+), |P+(k)v|L2(R+) ≤ C|v|L2(R+) (149)

iii) Let κ(ξ) be a smooth bounded function which vanishes in the vicinity of zero and χ(z) another
smooth bounded function then there exists C > 0 such that we have the uniform estimate

∀ε ∈ (0, 1), ∀v ∈ L2(R+),
∣∣∣[χ(z), P+(k)κ(εk)

]
v
∣∣∣
L2(R+)

. ε|v|L2(R+). (150)

The precise expression of K+ will be given in the proof.
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Proof

Note that ii) is a direct consequence of i) and the Schur Lemma since

sup
z′≥0

∫
z≥0

|K+(k, z, z′)| ≤ C, sup
z≥0

∫
z′≥0

|K+(k, z, z′)| ≤ C.

Let us prove iii), we have[
χ(z), P+(k)κ(εk)

]
v = −

[
χ(z), Q+(k)κ(εk)

]
v

=
∫

z′
K+(k, z, z′)κ(εk)

(
χ(z)− χ(z′)

)
v(z′) dz′

and hence since χ is smooth, we get thanks to (148)∣∣∣ ∫
z′

K+(k, z, z′)κ(εk)
(
χ(z)− χ(z′)

)
v(z′) dz′

∣∣∣
.

∫ (
|k|e−|k| |z−z′||z − z′|+ |k|e−|k|(z+z′)(z + z′)

)
κ(εk)|v(z′)| dz′

.
∫ (

e−
|k|
2
|z−z′| + e−

|k|
2

(z+z′)
)
κ(εk)|v(z′)| dz′

.
∫ (

e−
c
ε
|z−z′| + e−

c
ε
(z+z′)

)
|v(z′)| dz′

for some c > 0, where in the two last lines, we have used the inequality Xe−X . e−
X
2 for X ≥ 0

and the fact that on the support of κ, we have ε|k| ≥ c > 0. The result follows by a new use of the
Schur Lemma since

sup
z′≥0

∫
z≥0

e−
c
ε
|z−z′| + e−

c
ε
(z+z′) dz ≤ Cε, sup

z≥0

∫
z′≥0

e−
c
ε
|z−z′| + e−

c
ε
(z+z′) dz′ ≤ Cε.

It remains to prove i). The result follows by an explicit computation. Thanks to (147), we find
that p solves the ODE (

∂zz − |k|2
)
p = ikvh + ∂zv3, ∂zp(0) = v3(0).

The unique bounded solution is given by

p(z) = −
∫ +∞

z

(
ik · vh(z′) + ∂zv3(z′)

)
e−|k|z

′ cosh(|k|z)
|k|

dz′

−
∫ z

0

(
ik · vh(z′) + ∂zv3(z′)

)
e−|k|z

cosh(|k|z′)
|k|

dz′ − v3(0)
|k|

e−|k|z

and hence, after an integration by part, we find

p = −
∫ +∞

z
ik · vh(z′)e−|k|z

′ cosh(|k|z)
|k|

+ v3(z′)e−|k|z
′
cosh(|k|z) dz′

−
∫ z

0
ik · vh(z′)e−|k|z

cosh(|k|z′)
|k|

− v3(z′)e−|k|z sinh(|k|z′) dz′.
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Note that this also yields

∂zp = v3(z)−
∫ +∞

z
ik · vh(z′)e−|k|z

′
sinh(|k|z) + v3(z′)|k|e−|k|z

′
sinh(|k|z) dz′

−
∫ z

0
−ik · vh(z′)e−|k|z cosh(|k|z′) + v3(z′)|k|e−|k|z sinh(|k|z′).

Finally, since

P+v = v −
(

ikp
∂zp

)
= Ihv −

∫ +∞

0
K+(k, z, z′)v(z′) dz′,

it suffices to read the expression of K+, we find

K+(k, z, z′) =


k2
1
|k|e

−|k|z′ cosh(|k|z) k1k2
|k| e−|k|z

′
cosh(|k|z) −ik1e

−|k|z′ cosh(|k|z)
k1k2
|k| e−|k|z

′
cosh(|k|z) k2

2
|k|e

−|k|z′ cosh(|k|z) −ik2e
−|k|z′ cosh(|k|z)

−ik1e
−|k|z′ sinh(|k|z) −ik2e

−|k|z′ sinh(|k|z′) −|k|e−|k|z′ sinh(|k|z)

 , 0 ≤ z < z′

(151)
and

K+(k, z, z′) =


k2
1
|k|e

−|k|z cosh(|k|z′) k1k2
|k| e−|k|z cosh(|k|z′) ik1e

−|k|z sinh(|k|z′)
k1k2
|k| e−|k|z cosh(|k|z′) k2

2
|k|e

−|k|z cosh(|k|z′) ik2e
−|k|z sinh(|k|z′)

ik1e
−|k|z cosh(|k|z′) ik2e

−|k|z cosh(|k|z′) −|k|e−|k|z sinh(|k|z′)

 , z > z′ ≥ 0.

(152)
The estimate (148) follows immediately from the above expressions.

B.2 The case of a strip.

We now study the operator P(k), for k 6= 0. We now look for the decomposition

v = u +
(

ikp
∂zp

)
, z ∈ (0, 1), ik · uh + ∂zu3 = 0, u3(0) = 0, u3(1) = 0.

Lemma 19 i) The operator P(k) can be written for every v ∈ L2(R+) as

P(k)v(z) = Ihv(z)−
∫

(0,1)
K(k, z, z′)v(z′) dz′, ∀z ≥ 0

where

Ihv(z) =
(

vh(z)
0

)
and there exists C > 0 such that the matrix K(k, z, z′) satisfies the estimate

∀k 6= 0, |K+(k, z, z′)| ≤ C|k|
(
e−|k| |z−z′| + e−|k|(1−z+1−z′)

)
(153)

ii) There exists C > 0 such that the operators P(k) satisfy for k 6= 0 the uniform estimates

∀v ∈ L2(R+), |P(k)v|L2(0,1) ≤ C|v|L2(0,1) (154)

iii) Let κ(ξ) a smooth function bounded function which vanishes in the vicinity of zero and χ(z)
another smooth bounded function then there exists C > 0 we have the uniform estimate

∀ε ∈ (0, 1), ∀v ∈ L2(0, 1),
∣∣∣[χ(z), P+(k)κ(εk)

]
v
∣∣∣
L2(0,1)

. ε|v|L2(0,1). (155)
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Proof

We now solve the ODE

∂zzp− |k|2p = ik · vh + ∂zv3, z ∈ (0, 1), ∂zp(0) = v3(0), ∂zp(1) = v3(1).

The explicit resolution gives

p =
∫ z

0

(
ik · vh + ∂zv3

)
)
sinh(|k|(z − z′))

|k|
dz′

−
∫ 1

0

(
ik · vh + ∂zv3

)cosh(|k](1− z′)
|k| sinh |k|

cosh(|k|z) dz′

−v3(0)
cosh(|k|(z − 1)
|k| sinh |k|

+ v3(1)
cosh(|k|z)
|k| sinh |k|

and hence after an integration by parts, we find

p = −
∫ 1

z

(
ik · vh

cosh(|k|(1− z′)) cosh(|k|z)
|k| sinh |k|

+ v3
sinh(|k|(1− z′))

sinh |k|
cosh(|k|z)

)
dz′

+
∫ z

0

(
ik · vh

(sinh(|k|(z − z′))
|k|

− cosh(|k|(1− z′))
|k| sinh |k|

cosh(|k|z)
)

+ v3

(
cosh(|k|(z − z′))− sinh(|k|(1− z′))

sinh |k|
cosh(|k|z)

))
dz′.

Note that we have used the fact that

v3(0)
( cosh |k|
|k| sinh |k|

cosh(|k|z)− sinh(|k|z)
|k|

− cosh(|k|(z − 1)
|k| sinh |k|

)
= 0.

Finally, we can rewrite the pressure under the more convenient form

p = −
∫ 1

z
i

k

|k|
· vh

(e−|k|z
′
cosh(|k|z)

1− e−2|k| +
e−|k|(2−z′) cosh(|k|z)

1− e−2|k|

)
dz′

−
∫ 1

z
v3

(e−|k|z
′
cosh(|k|z)

1− e−2|k| − e−|k|(2−z′) cosh(|k|z)
1− e−2|k|

)
dz′

−
∫ z

0
i

k

|k|
· vh

(e−|k|z cosh(|k|z′)
1− e−2|k| +

e−|k|(2−z) cosh(|k|z′)
1− e−2|k|

)
dz′

+
∫ z

0
v3

(e−|k|z sinh(|k|z′)
(1− e−2|k|)

+
e−|k|(2−z) sinh(|k|z′)

1− e−2|k|

)
dz′.

By taking the derivative with respect to z, we also find

∂zp = v3(z)−
∫ 1

z
i

k

|k|
· vh|k|

(e−|k|z
′
sinh(|k|z)

1− e−2|k| +
e−|k|(2−z′) sinh(|k|z)

1− e−2|k|

)
dz′

−
∫ 1

z
v3|k|

(e−|k|z
′
sinh(|k|z)

1− e−2|k| − e−|k|(2−z′) sinh(|k|z)
1− e−2|k|

)
dz′

−
∫ z

0
i

k

|k|
· vh|k|

(
− e−|k|z cosh(|k|z′)

1− e−2|k| +
e−|k|(2−z) cosh(|k|z′)

1− e−2|k|

)
dz′

+
∫ z

0
v3|k|

(
− e−|k|z sinh(|k|z′)

(1− e−2|k|)
+

e−|k|(2−z) sinh(|k|z′)
1− e−2|k|

)
dz′.
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Consequently, since

Pv = v −
(

ikp
∂zp

)
= Ihv −

∫ +∞

0
K(k, z, z′)v(z′) dz′,

we find

K(k, z, z′) =

1
1− e−2|k|


k2
1
|k|a+(k, z, z′) k1k2

|k| a+(k, z, z′) −ik1a−(k, z, z′)
k1k2
|k| a+(k, z, z′) k2

2
|k|a+(k, z, z′) −ik2a−(k, z, z′)

−ik1b+(k, z, z′) −ik2b+(k, z, z′) −|k|b−(k, z, z′)

 , 0 ≤ z < z′, (156)

=
1

1− e−2|k|


k2
1
|k|a+(k, z′, z′) k1k2

|k| a+(k, z′, z) −ik1b+(k, z′, z)
k1k2
|k| a+(k, z′, z) k2

2
|k|a+(k, z′, z) −ik2b+(k, z′, z)

ik1a−(k, z′, z) ik2a−(k, z′, z) −|k|b−(k, z′, z)

 , 0 ≤ z′ < z (157)

where

a+(k, z, z′) = e−|k|z
′
cosh(|k|z) + e−|k|(2−z′) cosh(|k|z),

a−(k, z, z′) = e−|k|z
′
cosh(|k|z)− e−|k|(2−z′) cosh(|k|z),

b+(k, z, z′) = e−|k|z
′
sinh(|k|z) + e−|k|(2−z′) sinh(|k|z),

b−(k, z, z′) = e−|k|z
′
sinh(|k|z)− e−|k|(2−z′) sinh(|k|z).

Thanks to (156), (157), the estimate (153) follows easily and next, we obtain ii) and iii) as previously.

B.3 Estimate of P− P+

Lemma 20 Let κ(ξ) a smooth function bounded function which vanishes in the vicinity of zero
and χ1(z), χ2(z) two smooth bounded function which are compactly supported in [0, 1), then there
exists C > 0 and c > 0 such that we have the uniform estimate

∀ε ∈ (0, 1), ∀v ∈ L2(R+), |χ1

(
P− P+

)
κ(εk)χ2v|L2(R+) ≤ Ce−

c
ε |v|L2(R+) (158)

Proof

We can use the explicit expressions given by (156), (157) and (151), (152). This yields

|χ1(z)
(
P− P+

)
κ(εk)χ2(z)v|

≤
∫ +∞

0
χ1(z)χ2(z′)κ(εk)|v(z′)|

(
|k|e−|k||z−z′|(

1
1− e−2|k| − 1) + |k|e−2|k|+|k|z+|k|z′

)
dz′

and hence if the support of κ(ξ) is in |ξ| ≥ r > 0 and the support of χ and χ′ are in [0, δ], δ < 1,
we find

|χ1(z)
(
P− P+

)
κ(εk)χ2(z)v|

≤
∫ +∞

0
χ1(z)χ2(z′)κ(εk)|v(z′)|

(
|k|e−|k||z−z′|e

−2r
ε + |k|e−2|k|(1−δ)

)
dz′

.
∫ +∞

0
χ1(z)χ2(z′)κ(εk)|v(z′)|e−

r
ε dz′.
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The estimate (158) follows by using again the Schur Lemma.
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