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Abstract. This paper deals with the diffusion approximation of a semiconductor Boltzmann-
Poisson system. The statistics of collisions we are considering here, is the Fermi-Dirac operator
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1 Introduction

We are concerned with the study of the diffusion approximation of nonlinear semiconductor Boltz-
mann equations. In semi-classical kinetic description, electrons (for example) in semiconductor
devices can be described by their distribution function f(t, x, k). The time variable is t ∈ R+, x is
the position which is in a bounded domain ω of Rd which we assume for simplicity to be periodic,
namely ω = Td := (R/2πZ)d. The pseudo wave-vector k lies in the first Brillouin zone B. B is
identified with the d dimensional torus Td.The Boltzmann equation reads as

∂f

∂ t
+ v(k).∇xf − q

~
∇xΦ .∇kf = Q(f).

Here the velocity and the acceleration terms of the electrons solve the Newton’s equations

dx

dt
= v(k) := ∇kε(k),

dk

dt
= − q

~
∇xΦ.

The diagram band, ε(k) is cell-periodic, while the constants q and ~ are respectively, the elementary
charge and the reduced Planck constant. We will assume that the energy band has a finite number
of critical values. This will be detailed later on (see for example [4]). The electrostatic potential is
self-consistent, it solves the Poisson equation

−∆xΦ(t, x) = ρ(t, x)−D

where

ρ(t, x) =
∫
B

f(t, x, k) dk

and D is a doping profile. The collision dynamics, we are considering here is the statistics of
Fermi-Dirac. It reads as

Q(f) =
∫

k′∈B
[σ(k, k′)(1− f(k))f(k′)− σ(k′, k)(1− f(k′))f(k)] dk′

when there is no ambiguity, we will denote by f , f ′, σ, σ′ respectively f(k), f(k′), σ(k, k′) and
σ(k′, k). This operator describes binary collisions between impurities and phonons in degenerate
semiconductor [16]. It takes into account the Pauli’s exclusion principle which means that two
electrons can not occupy the same state. This hypothesis implies (in particular) that during the
evolution the density of particles takes bounded values 0 ≤ f ≤ 1. We consider, here, a cross section
which does not satisfy the so-called micro-reversibility principle. This means that eε(k) σ(k, k′) is
not necessary symmetric. Usually when modelling collisions, it is assumed that the cross section
satisfies the detailed balance principle:

σ(k, k′) eε(k) = σ(k′, k) eε(k′) (1)

This assumption implies that the equilibrium state (Q(F ) = 0) is described by the Fermi-Dirac
function :

F (µ(t, x), k) =
1

1 + exp(µ(t, x) + ε(k))
.

The parameter µ ∈ R̄, is the chemical potential. This situation has been recently, investigated
in asymptotic analysis of kinetic equations [1, 2, 5, 12, 15, 17]. From physical point of view, in
heterogeneous media, like biological systems, the detailed balance principle does not hold [21]. In
[8], Degond, Goudon and Poupaud have studied the diffusion approximation for a linear transport
for non-micro-reversible processes. The derivation of a non linear fluid model, has been obtained
by Goudon and Mellet in [13]. In that work the authors studied, the present model for a given
potential. In [14], a rigorous analysis of existence, uniqueness and regularity of solutions for the
limit fluid model (coupled to Poisson equation) is presented. However, the diffusion approximation
is only studied for the one-dimensional case. We point out that this analysis is based on the
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contraction property of the collision operator [20], and the use of a Hybrid-Hilbert expansion
introduced in [5] for the resolution of such nonlinear asymptotics. We, also cite the work of Ben
Abdallah, Escobedo and Mischler [3] where the authors, use the contraction property of the Pauli
operator to obtain a decay of the solution for long time.

Our aim in the present work is to analyze the multi-dimensional case. In particular, we would
like to prove a strong convergence and exhibit a rate of convergence without restriction on the
dimension. The main idea here is to replace a Gronwall lemma by an Osgood lemma (see Chemin
[7] for an application to fluid mechanics). This idea was used by Yudovich [32] to prove existence
and uniqueness to the incompressible Euler system when the vorticity is bounded. The difficulty
there was coming from the fact that the Riesz transform is not bounded in L∞. In our case the
problem is coming from L1 and we have to replace L1 by some Lp for p close to 1.

2 Setting of the problem and main result

We consider the diffusion approximation of the Boltzmann equation

∂fα

∂t
+

1
α

( v(k) .∇xfα −∇xΦα .∇kfα ) =
Q(fα)

α2
(2)

The electrostatic potential solves the Poisson equation

−∆xΦα(t, x) =
∫
B

fα(t, x, k) dk −D (3)

We assume that fα is periodic in x and k and that Φα is periodic in x. We also impose the following
initial data

fα(t = 0, x, k) = fin(x, k), ∀ (x, k) ∈ Ω. (4)

Assumptions. We shall assume that

A1. The initial data fin is well-prepared in the sense that Q(fin) = 0. We also assume the natural
bound (see [2, 11]):

0 ≤ fin ≤ 1

A2. The cross section σ is smooth, bounded and does not necessary verify the detailed balance
principle. It satisfies

∃ σ1, σ2 / 0 < σ1 ≤ σ(k, k′) ≤ σ2, ∀ (k, k′) ∈ B2.

A3. Non degeneracy condition :

For all ξ ∈ Rd − {0}, meas ({k ∈ B, / ∇kε(k) . ξ 6= 0}) > 0

A4. Solvability condition : For all ρ ∈ [0, 1], we have∫
v(k)

∂F

∂ρ
dk = 0

where F (ρ, k) is defined in Proposition 3.2.

Main result. Our main result is the following (we refer to the next two sections for some notations):

Theorem 2.1 Under the assumptions A1, A2, A3 and A4, the solution (fα,Φα) of the scaled
Boltzmann-Poisson system (2-3-4)converges, when α goes to zero, towards (F (ρ, k),Φ) : ∀ T >
0,∃C > 0 /

‖fα − F (ρ, k)‖L∞(0,T ; Lp(Ω)) ≤ (Cα)
1
p e−C T

e
2C T

p , ∀ p ∈ [1,∞) (5)

‖Φα − Φ‖L∞(0,T ; W 2,p(ω)) ≤ Cp

p− 1
(Cα)

1
p e−C T

e
2C T

p , ∀ p ∈ (1,∞) (6)

where (ρ,Φ) is the solution of the Drift-Diffusion Poisson system (10) and C depends only on T .
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3 Preliminaries

Before starting our analysis, we would like to precise some existence results. The existence result
for the initial system can be found in Poupaud [24].

Proposition 3.1 [Existence and uniqueness [24]]. Let α be a fixed nonnegative parameter and
fin ∈ W 1,1(Ω) satisfy 0 ≤ fin ≤ 1. Under the previous assumptions, there exists a unique solution
(fα,Φα) to the Boltzmann-Poisson system such that{

fα ∈ W 1,1 ∩W 1,∞
t,x,k, 0 ≤ fα ≤ 1,

Φα ∈ W 2,∞
t,x .

The existence and the uniqueness of an equilibrium state F (ρ, k) for a given mass ρ can be
proved by applying an implicit-function theorem. More precisely,

Proposition 3.2 [14]. Let ρ ∈ [0, 1]. Under the assumption A2, there exists a unique F (ρ, k)
solution of 

0 ≤ F (ρ, k) ≤ 1,

∫
B

F (ρ, k)dk = ρ,

Q(F (ρ)) = 0.

Moreover, F is smooth with respect to the density ρ and for all n ≥ 0, the derivatives ∂n F
∂ρn belong

to L∞([0, 1]× B).

The collision operator Q is nonlinear. To derive (formally) the limit fluid model from the scaled
Boltzmann equation (when tending α to zero) we shall study the linearized operator DQ. Let us
remark that: for all f and h,

Q(f + h) = Q(f) + Lf (h) + R(h, h)

where the linearized part Lf of Q is

Lf (g) = DQ(f)g =
∫
B

( sf (k, k′)g(k′)− sf (k′, k)g(k)) dk′ (7)

and the cross section s is

sf (k, k′) = σ(k, k′)(1− f(k)) + σ(k′, k)f(k).

The quadratic part R reads as

R(g, h) =
1
2

∫
B

(σ(k, k′)− σ(k′, k)) [g(k)h(k′) + g(k′) h(k)] dk′.

The operator Lf satisfies the following spectral properties

Proposition 3.3 [19]. Let f ∈ L2(B), satisfy 0 ≤ f ≤ 1. Then,

1. Equilibrium state: ∃Mf ∈ L2
+(B) /

∫
B Mf dk = 1 and

N (Lf ) = RMf

Moreover,
σ1

σ2
≤ Mf ≤

σ2

σ1

2. Entropy dissipation: ∃ δ > 0 such that for all g ∈ L2(B)

〈−Lf (g) ,
g

Mf
〉 = −

∫
B

Lf (g)
g

Mf
dk ≥ δ

∥∥∥∥g −
(∫

B
gdk

)
Mf

∥∥∥∥2

L2(B)

3. Solvability condition: ∀h ∈ L2(B), ∃ g ∈ L2(B)/Lf (g) = h if and only if
∫
B h dk = 0. This

solution is unique under the condition
∫
B g dk = 0.

Actually, it is easy to see that if f(k) = F (ρ, k) for some ρ ∈ [0, 1], then Mf (k) = ∂F (ρ,k)
∂ρ .
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4 Formal expansion

Let us introduce the following Hilbert expansion

fα := f0 + α f1 + α2 f2 + · · · (8)

Inserting this expansion in the scaled Boltzmann equation, it becomes

∂f0

∂t
+

1
α

(v(k).∇xf0 −∇xΦ .∇kf0) + (v(k).∇xf1 −∇xΦ .∇kf1) =
1
α2

Q(f0)

+
1
α

Lf0(f1) + Lf0(f2) + R(f1, f1) + · · ·

Identifying terms with the same powers in α, we get

Q(f0) = 0,

Lf0(f1) = v(k).∇xf0 −∇xΦ .∇kf0,

Lf0(f2) =
∂f0

∂t
+ v(k).∇xf1 −∇xΦ .∇kf1 −R(f1, f1)

The first approximation of fα is a Fermi-Dirac function:

f0(t, x, k) = F (t, ρ(t, x), k)

where ρ is its associated density ρ :=
∫
B f0 dk. To solve the second equation, we replace f0 by the

above expression. We obtain

Lf0(f1) =
∂F

∂ρ
(ρ, k) v(k).∇xρ−∇xΦ .∇kF (ρ, k).

This requires the introduction of two auxiliary functions λ(ρ, k), ν(ρ, k) which are respectively the
solutions in [L∞(L2)]d of

LF (ρ)(λ) = v(k)∂F
∂ρ (ρ, k); LF (ρ)(ν) = ∇k F (ρ, k)∫

B
λ(ρ, k) dk =

∫
B

ν(ρ, k) dk = 0.

(9)

Here, the existence of λ is a consequence of A4 and proposition 3.3. For ν, the existence is insured
by the fact that

∫
∇kF dk = 0. Then, the function f1 has the form

f1(t, x, k) = λ .∇xρ− ν .∇xΦ + θ(t, x)
∂ F

∂ρ

where θ
∂ F

∂ ρ
is an arbitrary function of the null space N (LF (ρ)). Integrating the third equation we

obtain a condition on the density ρ and this is formally the limit fluid model. We remark, here
that the integral with respect to k of the remainder R(g, g) vanishes for all g and the solvability
condition stands as

∂ρ

∂t
+∇x.

∫
B

v(k)f1 dk = 0.

Replacing f1 by its expression in this equation, we get that F (t, ρ(t, x), k) satisfies

∂ρ

∂t
−∇x[ Π(ρ, x)∇xρ−Θ(ρ, x)∇xΦ ] = 0,

−∆xΦ =
∫
B

F (ρ, k)dk −D,

ρ(t = 0, x) = ρin(x)

(10)
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where the matrix Π and Θ are defined by

Π(ρ) = −
∫
B

v(k)⊗ λ(ρ, k)dk,

Θ(ρ) = −
∫
B

v(k)⊗ ν(ρ, k)dk

(11)

and λ and ν are defined in (9).
The following propositions and remark summarize the properties of this above fluid system.

We point out that the regularity of the limit model is very useful for the study of the diffusion
limit by Hilbert or Chapman-Enskog like expansions.

Proposition 4.1 [19]. Under the assumptions A2, A3 and A4:

1. The coefficients Π and Θ are continuous Lipschitz functions of the density ρ ∈ R and smooth
with respect to ρ ∈]0, 1[.

2. Πi,j and θi,j belong to L∞([0, 1]).

3. The matrix Π(ρ) is positive definite and there exists a constant β > 0 such that for all ξ ∈ Rd,

Π(ρ) ξ . ξ ≥ β |ξ|2, ∀ ρ ∈ [0, 1].

Proposition 4.2 [14]. Let T > 0. Then, the system (10-11) has a unique solution (ρ,Φ) satisfying
ρ ∈ L2((0, T ; W 1,2(ω)) ∩W 1,2(0, T ; W−1,2(ω)) and Φ ∈ L2(0, T ; W 1,2(ω)). Moreover, 0 ≤ ρ ≤ 1.

Remark 4.3 [14]. The solution (ρ,Φ) of the system (10-11) is C∞ with respect to t and x for
t > 0.

5 Proof of the convergence result

To explain the difficulty of the asymptotic analysis, we recall that when we consider the Boltz-
mann equation with a cross section satisfying the detailed balance principle ; the analysis of the
convergence uses the entropy dissipation. This idea allows to control the distance between fα and
its local equilibrium F (ρα(t, x), k) (see [23]). The function F is Lipschitz continuous with respect
to the variable ρ. By applying the velocity averaging lemma [12, 17] we can prove the compactness
of ρα in L2

t,x. This property is enough to pass to the limit (as α tends to zero) in the non linear
terms of the scaled equation and then we obtain a strong convergence of fα towards a Fermi-Dirac
function F (ρ(t, x), k). We note that this method gives a Lp−convergence. However, in the self con-
sistent case and a cross section which dos not satisfy the detailed balance principle ; the averaging
lemma does not give immediately the convergence of fα. In this case, the contraction property of
the operator Q is used. In [14], Goudon and Mellet have studied the one dimensional case. The
convergence proof uses the Gronwall lemma to approximate fα−F (ρ, k) in L1. In the present work
we deal with the multi-dimensional case.

The contraction property of the collision operator (see [3, 20]) reads as∫
B
(Q(f)−Q(g))sgn(f − g)dk ≤ 0 (12)

where sgn is the sign function. Denoting

rα = fα − (F (ρ) + α f1 + α2 f2), (13)

we can remark that

Q(fα) = Q(F (ρ) + α fα
1 + α2 f2) + N1−fα(rα)−Nrα(fα − rα)

where
Nf (g) =

∫
B

(σ(k, k′)fg′ − σ(k′, k)f ′g) dk′.
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As a consequence, rα satisfies the following scaled Boltzmann equation

∂rα

∂t
+

1
α

(
v(k) .∇xrα − q

~
∇xΦα .∇krα

)
=

1
α2

N1−fα(rα)− 1
α2

Nrα(F (ρ) + α f1 + α2 f2)

− 1
α
∇x(Φα − Φ).∇k(F (ρ) + αf1) + α Sα

rα(t = 0) = α(f1 + α f2)

where

Sα := R(f1, f2) + R(f2, f1) + α R(f2, f2)−
∂f1

∂t
− α

∂f2

∂t
− v(k) .∇xf2 −∇xΦα .∇kf2.

The term
1
α
∇x(Φα − Φ) is singular (at this stage). This is why we replace (13) by the Hybrid

Hilbert expansion (see [5, 13]):

r̃α = fα − (f0 + α fα
1 + α2 f2). (14)

The function fα
1 is the solution in N (Lf0) of

Lf0(f
α
1 ) =

∂F

∂ρ
(ρ, k) v(k).∇xρ−∇xΦα .∇kF (ρ, k)

It has the form

fα
1 (t, x, k) = λ(ρ) .∇xρ− ν .∇xΦα.

Using the Hybrid-Hilbert expansion (14), the remainder r̃α satisfies
∂r̃α

∂t
+

1
α

(
v(k) .∇xr̃α − q

~
∇xΦα .∇v r̃α

)
=

1
α2

N1−fα(r̃α)− 1
α2

Nr̃α(fα − r̃α) + α Sα
1 + Sα

2

r̃α(t = 0) = α(f1 + α f2)(t = 0)

where Sα
1 and Sα

2 are given by

Sα
1 = R(fα

1 , f2) + R(f2, f
α
1 ) + α R(f2, f2)− α

∂f2

∂t
− v(k) .∇xf2 −∇xΦα .∇kf2

and

Sα
2 = v .∇x(f1 − fα

1 ) +∇x(Φ− Φα).∇kf1 +∇xΦα.∇k(f1 − fα
1 )

+ R(fα
1 + f1, f

α
1 − f1)− α

∂fα
1

∂t .

We refer to [13] for the regularity of the source terms Sα
1 and Sα

2 . We point out that these terms
do not contain any singular term. By carefully analyzing Sα

1 and Sα
2 using the regularity of ρ, Φ

and the uniform bounds on the potential Φα in W 2,p for all p ∈ [1,∞[, we can establish that

‖Sα
1 ‖L∞(0,T ; L1(Ω)) . 1

and

‖Sα
2 ‖L∞(0,T ; L1(Ω)) . α + ‖α ∂tf

α
1 ‖L1 + ‖r̃α‖L1 .

The contraction property of the collision operator gives the differential inequality
d

dt
‖r̃α‖L1 . α‖Sα

1 ‖L1 + ‖Sα
2 ‖L1

r̃α(t = 0) = α(f1 + α f2)(t = 0)
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Indeed, ∫
B

[
Q(fα)−Q(F (ρ) + α fα

1 + α2 f2)
]

sgn(r̃α) dk ≤ 0. (15)

Hence,
d

dt
‖r̃α‖L1 . α +

∥∥∥∥α∇x
∂Φα

∂t

∥∥∥∥
L1(ω)

+ ‖r̃α‖L1 (16)

Lemma 5.1 ∥∥∥∥α ∇x
∂Φα

∂t

∥∥∥∥
L1(ω)

. α + ‖r̃α‖L1(Ω)

(
1 + | log (‖r̃α‖L1(Ω)) |

)
(17)

Proof of Lemma 5.1. The potential Φα solves the Poisson equation

−∆xΦα = ρα −D

with periodic boundary condition. In addition, the density ρα satisfies the local mass conservation

∂ρα

∂t
= −∇x .jα

These equations imply that

α
∂

∂t
∇xΦα = ∇x∆−1

x ∇x . α jα

Now, let us write α jα in terms of r̃α:

jα =
1
α

∫
B

v(k) r̃α +
∫
B

v(k) fα
1 dk + α

∫
B

v(k) f2.

Using the fact that f0 is even, the smoothness of (ρ,Φ) and

fα
1 − f1 = −ν(ρ, k) .∇x(Φα − Φ)

we infer that

α jα =
∫
B

v(k) r̃α + α Θ(ρ) .∇x(Φα − Φ) + α

∫
B

v(k) f1 + α2

∫
B

v(k)f2

=
∫
B

v(k) r̃α + α Θ(ρ) .∇x∆−1

(∫
B

r̃α dk

)
+ α Θ(ρ) .∇x∆−1

[∫
B

f1 + α

∫
B

f2

]
+ α

∫
B

v(k) f1 + α2

∫
B

v(k) f2.

where Θ(ρ) is given by (11). This implies that

∇x∆−1
x ∇x . α jα = ∇x∆−1

x ∇x .

[∫
B

v(k) r̃α

]
+ α∇x∆−1

x ∇x .

[
Θ(ρ) .∇x∆−1

x

(∫
B

r̃α dk

)]
+ O(α)L∞ .

Using the fact that r̃α ∈ L∞ and v(k) ∈ L∞, we get

‖∇x∆−1
x ∇x . α jα‖L1 ≤

∥∥∥∥∇x∆−1
x ∇x .

∫
B

v(k) r̃αdk

∥∥∥∥
L1

x

+ O(α)L∞

Now, one can control the L1 norm using interpolation argument∥∥∥∥∇x∆−1
x ∇x .

[∫
B

v(k) r̃αdk

]∥∥∥∥
L1

x

.

∥∥∥∥∇x∆−1
x ∇x .

[∫
B

v(k) r̃α

]∥∥∥∥
Lp

x

.
p

p− 1
‖r̃α‖Lp

x,k

.
p

p− 1
‖r̃α‖1/p

L1 ‖r̃α‖1−1/p
L∞
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In the first inequality, we used that the Lp norm controls the L1 norm; in the second inequality
we used that ∇∆−1∇ is bounded from Lp to Lp for 1 < p < ∞ with a norm controlled by C p

p−1
where C does not depend on p.

By remarking that r̃α is uniformly bounded in L∞ and denoting θ = (p− 1), we get∥∥∥∥∇x∆−1
x ∇x .

[∫
B

v(k) r̃αdk

]∥∥∥∥
L1

x

.
1
θ
‖r̃α‖1/(1+θ)

L1

If we differentiate, the function h(θ) = a1/1+θ

θ where a > 0 is a parameter, we obtain

h′(θ) = −a1/θ+1

θ

(
1
θ

+
log a

(1 + θ)2

)
.

This suggests that the function h(θ) attains its minimum when θ is close to 1/|loga|. We choose
θ = 1/(1 + |loga|), hence∥∥∥∥∇x∆−1∇x .

[∫
B

v(k) r̃αdk

]∥∥∥∥
L1

x

.
(
1 + | log‖r̃α‖L1 |

)
‖r̃α‖L1 ‖r̃α‖

−1
2+|log ‖r̃α‖

L1 |

L1

This ends the proof of the lemma 5.1 since a
−1

2+|loga| is uniformly bounded on R+.

Now, we return to the proof of Theorem 2.1. Using the fact that the function a → a(1+ |loga|)
is increasing for a ≥ 0, we deduce from the inequality (16) that

d

dt
‖r̃α‖L1 ≤ α + 2(‖r̃α‖L1 + α)(1 + |log(‖r̃α‖L1 + α)|)

Adding α and taking the log, we get

d

dt
log(α + ‖r̃α‖L1) ≤ C(2 + |log(‖r̃α‖L1 + α)|)

Since ‖r̃α‖L1 + α is small, we can replace |log(‖r̃α‖L1 + α)| by −log(‖r̃α‖L1 + α), hence,

d

dt

[
eC t log(α + ‖r̃α‖L1)

]
≤ 2 C eC t

Hence, by Gronwall lemma, we deduce that

log(α + ‖r̃α‖L1) ≤ log(Cα)e−Ct + 2Ct (18)

and hence ‖r̃α‖L1 ≤ (C α)e−Ct

e2 C t. This ends the proof of (5) when p = 1. The case p ∈ [1,∞)
can be deduced by interpolation. Using elliptic regularity, we also deduce that (6) holds. This
ends the proof of the main theorem.
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