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Abstract

This is the second in a series of three papers which studies acoustic waves governed by the linearized
compressible equations in a porous medium. In particular, we want to analyze the simultaneous
inviscid and high frequency limits of fluid flows in a porous medium. The presence of time-space boundary
layers decouples the flow into an incompressible (that we call micro-incompressible) and an acoustic part
(that we call micro-acoustic) on the microscopic scale. While this paper employs the two-scale methods
used in our first paper [10], the present boundary layer phenomenon requires additional weak convergence
tools. Using the Bloch decomposition, we introduce modified Helmholtz operators, enabling us to split the
flow into its micro-incompressible and micro-acoustic parts. Closed equations for the micro-incompressible
flow are obtained using two-scale convergence, while closed equations for the micro-acoustic flow are given
in our forthcoming paper.

1 Introduction

The homogenization of the Stokes operator in a porous medium is well studied. We refer the
interested reader to text books [3, 24, 16] for some formal developments and to [25, 1, 20] for some
rigorous mathematical results. However, there are fewer works dealing with the homogenization of the
acoustic system or of the compressible Navier-Stokes system (see for instance [7, 19, 11, 18, 29]). Here,
we continue the study of the

medium which was started in [10].
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The linearized compressible Navier-Stokes equations in a porous medium read

8p® +divu® =0 (0,00) x RZ
Bu — P Aut +Vp =0

ww=0 OR? 1
pe(t=0)=1b°
u®(t =0) =a®

where p® and uf are the pressure and velocity of the fluid, and ef is the viscosity. Here, Rg is the porous
medium formed by periodic repetition of an elementary fluid cell which has been shrunk to size e (see
section 2.1). Finally, 1 < 8 measures the relative importance of the viscous effect to the size of each cell.
We refer the reader to [10] for a complete study of the case of strongly viscous flow (3 < 1) and for a
derivation of this model.

In the case of 1 < [, the presence of time-space boundary layers decouples the flow into an in-
compressible (that we call micro-incompressible, see Definition 3.5) and an acoustic part (that we call
micro-acoustic, see Definition 3.5) on the microscopic scale. We remark that this is in contrast to the case
of B < 1, where not only is the boundary layer in space absent, but the boundary layers in time decouples
the velocity and pressure when ¢ goes to zero (see [10]). In order to motivate the goals of this paper, we
begin with a formal approach to the case when 8 = 2 (we refer the interested reader to [24] and [19] for a
formal and rigorous study when 8=2). Formal asymptotic expansions expressing (p°, u®) in the variables

(t;z,y), y = %, yields the limiting terms (po,uo) and the associated two-scale system

[Y¢|0epo + dive / ug =0 in R?
Yy
Oruo — Ayu+ Vzpo + Vyp1 =0 in R% x Yy
divyug =0
Vypo =0
ug =0 on 9Ys (2)

/ p1 =0
Yy

po(t =0) = b(x)
uo(t = 0) = Pyao(x, y)
y — (p1,u0) is Y-periodic

Here p;1 is the Lagrange multiplier corresponding to the incompressibility of up and Py is the divergence
free Helmholtz operator on the domain Yy (see Remark 3.1).

We notice that two-scale convergence captures the micro-incompressible part of the flow. What is
not so apparent is the formation of a thin boundary layer in time of size €!/2 which traps the energy
carried by the micro-acoustic part of the flow when ¢ goes to zero. Throughout this paper we identify the
micro-acoustic part of the flow as (g%, v®). The overall behavior of the flow near initial time can be seen
in the following diagram.



(6%, a%)

(qs’vs) (ps _ qs,us _ ,UE)

t
1/2

Figure 1: Behavior of the flow near t = 0 when § = 2.

We remark that the time behavior associated the micro-acoustic part of the flow is non-trivial. In fact, the
initial layer in time of size £!/2 and time oscillations associated to (¢%,v%) are generated by the presence
of a boundary layer in space of size 3/2.

This paper is devoted to the complete study of the micro-incompressible flow for 1 < 8. Our goal is to
describe the energy carried by the micro-incompressible part of the flow as € goes to zero. Mathematically,
we wish to understand the local and total energies

e (t,x) = [p°(t, @) — ¢ (t,2)* + [u® (t,2) — v°(t, )|

3
B(0) = 16°() = O gy + 45 (0) = 0" (022 ®)
when fluid flow occurs in a porous medium and the limit € going to zero is taken. We note that the energy
carried by the micro-acoustic part of the flow is subject of our final paper [9].

A complete understanding of the underlying time-space boundary layer phenomena is necessary in
order to propose appropriate asymptotic expansions describing the energy carried by micro-incompressible
flow. In the case 1 < 8 < 2, we show that the boundary layer in time of size €2~# decouples the micro-
incompressible part of the flow when & goes to zero. More precisely, the usual formal two-scale expansions
in the variables (¢,z,y), y = %, will describe the pressure p® — ¢, but will fail to describe the velocity
u® — o€ for all times. In order to describe the velocity near initial time, we need to introduce the time
scale 7 = t/e2~8 during the homogenization process. Through this time rescaling, we deduce that the
velocity associated to micro-incompressible flow is governed by the Stokes system (16) near initial time.
The overall behavior of the flow near initial time can be seen in the following diagram.

A

(6%, a%)

~(3-5/2 28



Figure 2: The behavior of the flow near t=0 for 1 < 5 < 2.

We make a few observations. First, we note that the boundary layer in time of size £2~7 remains
from the strongly viscous regime (see [10]). Secondly, the time behavior that impacts the micro-acoustic
part of the flow, namely the boundary layer in time of size £(3=0)/2 and associated time oscillations are
non-trivial and are generated by a boundary layer in space of size e(8+1)/2, This time behavior associated
to micro-acoustic flow is essentially given in [6] (see also [15] for a more precise construction) for the case
B = 2, and we refer the reader to [8], [9] for further details in the general case 1 < 3. Lastly, we invite the
reader to compare with Figure 1 and note that boundary layer in time of size e2~° breaks when 8 = 2,
hence the coupling of the pressure and velocity of micro-incompressible flow.

When 2 < 3, there is no boundary layer in time that impacts the micro-incompressible part of the
flow. Nevertheless, using a formal approach to yield the asymptotic behavior of micro-incompressible flow
yields the following information

lim (u® —v%) <t,m, E) =wuo(r,z,y) #0 on OYs.
e—0+ €

The failure of the no-slip condition on the microscopic level is due to the formation of a boundary layer in
space of size €#/2 which forms as ¢ vanishes. It follows that linearized Prandtl boundary layer expansions
are necessary for the case 2 < (3, and we hope that the reader will find the presentation given here
interesting in its own right. Using the Prandtl expansions, we show that this layer quickly dissipates the
energy carried by the waves. That is, the energy carried by micro-incompressible flow is described by the
closed equations obtained via the usual two-scale process.

In closing, we leave the reader with a few remarks concerning micro-incompressible flow. First,
we note that while 5 = 2 is in a sense a critical value, we do not assign definitions to the regimes
1< B < 2and 2 < 8. Also, while there is a boundary layer in space of size £(3+1)/2 when 1 < 3, we only
briefly mentioned it since its impact is mainly related to micro-acoustic flow, which is the subject of our
forthcoming paper [9]. Moreover, while this paper employs the two-scale methods used in our first paper,
the present boundary layer phenomena requires additional weak convergence tools. For instance, as we
mentioned earlier the Prandtl expansions are necessary for the case 2 < 3, but also incorporated in the
homogenization process is the Bloch decomposition. We refer the reader to [28], [5] and [12] as examples
of just some of works involving the Bloch decomposition. Using the Bloch decomposition we introduce
the modified Helmholtz operators Py, Qf, (see section 3.1), which in essence serve as the basis for the
current article as well as our forthcoming work [9]. Indeed, it is through these modified operators that we
are able to partition the flow into its incompressible and acoustic parts on the microscopic level. What’s
more, we believe the modified Helmholtz operators to be new and interesting in their own right.

2 Preliminaries

2.1 The Domain

Define Y = (0, l)d to be the unit open cube in R%, and let Y; be a closed smooth subset of Y with
strictly positive measure. By smoothness of 0Y;, we mean to take it as regular as needed. The domain
Y/Ys is denoted by Y; and we refer to Ys, Yy to be the solid and fluid parts of Y. Repeating Yy by
Y -periodicity to all of R% we get the fluid domain Rg. The porous medium is now defined to be eRg which
is denoted by Rg. We define YfE, Ys to be €Yy, €Ys and note

Rg:{x:xerE—&-p, for some p € Z9}.



Figure 3: The elementary fluid cell

2.2 Notations

We define B = [0,27)? and we say that a function f(x) defined on Rg is f-quasi periodic, for 6 € B,
provided
fl@+p)=e?Pfx), Vpezh (4)
A function which is 0-quasi periodic, is simply referred to as Y-periodic.
The space of smooth functions which vanish at infinity is denoted by D(R?), and for 6 € B, C¥(Y}) is
the space of differentiable functions up to order k which are 6-quasi periodic. We define the space Lg (Yy)
to be all functions in L? (RZ) satisfying (4). The Sobolev space HF(Y7) is the space of the functions

with derivatives up to order k belonging to Lg (Yy) and the space H(’fe (Y} is the subspace of functions in
HE(Yy) that vanish on the boundary Y. Also recall that the space Hg_l(Yf) is defined by the norm

sty =, s 1< fou>]
|IuHH(1)9(Yf)7

When 6 = 0, we use the notations C;;(Yf), LZ(Yy), H;’;(Yf), H(}):‘#(Yf)7 H;I(Yf). We denote X? to be
the Banach space of vector valued functions of d-components, each component belonging to Banach space
X. We note that all the Hilbert spaces mentioned in this paper are equipped with an inner product whose
second component is conjugated, here z* denotes the complex conjugate of z.
Lastly, the we define the operators [ - |1, [- ]2 acting on C%+1 as
[zh =21, [2]l2 =22,

where z = (21, 22) € C x C9.

2.3 Two-Scale Convergence

Two-scale convergence is a notion first introduced by G. Nguetseng, [21], and later extended by G.
Allaire [2], used to capture the parts of f¢ which oscillate at frequency e~ +. More precisely, two-scale
convergence is a rigorous justification of the first term in formal two-scale expansions. In our problem
two-scale convergence plays a significant role in understanding the local and total energies (3).

Definition 2.1 Let f°(z), fo(z,y) belong to L?(R%), L?(R? x Y') respectively. We say f¢(x) two-scale
converges to fo(z,y) (denoted f° s fo) provided

/Rg fo(z)o (a:7 g) €30 /Rd ., folz,y) o(z,y),

for all o € D(R%; C(Y)).



Notice that if f¢(z) two-scale converges to fo(z,y) then the following always holds
. 2 2
slgn() ”fsllL?(Rg) > HfOHL2(Rd><yf) .
If equality holds, we have

Definition 2.2 We say f°© strongly two-scale converges to fo(z,y), denoted f* 2 fo(z,y) provided f¢
two-scale converges to fp and

. 2 2
EIEI%)HJCEHLZ(R?) = Ifollz2 gaxy) -

Strong two-scale convergence is interpreted as saying that all of the oscillations of f¢ are of frequency
e~ 1. This is due to the fact that strong two-scale convergence implies

T
lim, |1/ 2 gy = lim || o (=, E)‘ 2 (5)
whenever fo is continuous in either the = or y variable. More generally, (5) holds provided fo is an
admissible test function in the sense of Allaire (see definition 1.4 of [2]). We note that given fo(z,v),
having continuity in at least one of its variables enables us to make sense of the quantity fo (x, g) We
refer the reader to Section 5 of [2] for further discussion and to [10] for a characterization of strong two-scale
convergence.
If fo(z,y) is an admissible test function, then we can improve the convergence of (5). Indeed, we
have the following
lim
e—0 Rg

5@ = fo (2, 2)[ =0

Finally, we can add a time dependence in all the limits we mentioned above. In particular if fo €
c([o, T]; L?“#(Yf; C(R%) N L2(R%))), then we have

x
i 5 1.5
e—0 I3

The main result of two-scale convergence is the existence of a two-scale limit for bounded sequences
in L2(R%). The main result is stated below; for a proof we refer the reader to [21], [2].

L2((0,T)xR%) - ”folle((O,T)dexyf) .

Theorem 2.3 Let f° belong to a bounded set of L?(R%). Then there exist a subsequence of & (still
denoted by €) and a Y-periodic function fo(z,y) € L?(R? x Y, such that f¢(zx) two-scale converges to

fo(z,y).
2.4 The Bloch Decomposition of Ay

In order to completely state the main results of this paper, we introduce the Bloch decomposition of

the wave operator
0 div
AO - ( \v4 0 ) )

on the domain YF. Here, € will be fixed and one can think as if ¢ = 1. We keep it in the notation for later
use. We begin by defining

I3 = f 130) a0
to be the space of all measurable mappings
w: B — Lj(Yy)

with finite norm

lull2. :][][ lu(, 8)|? d d6 < oo
D.e B Y;



Proposition 2.4 The mapping I¢ : LQ(Rg) — Léye defined as

(IFu)(z,0) = ug(z,0) = Z w(z — ep) €,
peZd

is unitary. The inverse is given by

((1°) ug) (2) =][ wy(x, 0) db.

B
If u, v belong to L?(R%), then Parseval’s formula holds,
(ur U)Lz(]Rg) = (’LL# ’ ,U#)L%; .

‘We now study the spectral problem with Neumann boundary conditions. More precisely, we define
for each 6 € B, the non-decreasing eigenvalues {u? (0)}1<), and eigenvectors { ¢ (,60)}1<y satisfying

— Dy (0) = 17.(0)p1 (0) in Yy
‘%g V(@) —0 on BY, (6)

dr(z +p,0) =P dp(z,0), Vpezd

The following proposition summarizes some of the basic properties of the eigenvalues and eigenfunc-
tions pg(0), ¢k(0). A proof is provided in subsection 4.1.

Proposition 2.5 For each 0 € [0,27)¢ there exist u(0), ¢x(0), k = 1,2,3... satisfying (6) such that

k— o0

0<ud(0) <pd(0) <...<p2(9)... > .
Moreover:

(i) ui(6) belongs to Cx(B) and satisfies

sup |l (0) — px ()] <
0.¢ |6 — &
0F£E

k— o0

ii =i i <. i <...— o0 =0.
(i) 0 912};#1 0) < 912};“2(9) < elgg,uk (9) < c0. Moreover, p1(0) =0

(iii) The principle eigenvalue p1(0) is simple in a neighborhood of the origin.

(iv) For all 6 € B, the eigenvectors {¢y(6)}1<k form an orthonormal basis of L3(Yy). For 6 # 0, the
Vér(9)

sequence
d me® Ji<

. forms an orthonormal basis of Hg(Y}) where

Ho(Yy) = {u € LI(Y;)? : u= Vp for some p € Hy(Y})}.



(v) When 0 = 0, the sequences {¢x(0)}1<rk, {Vui’?é?) ek form an orthonormal basis of Li (Yy)/R

and H4 (Yy) respectively where

L%(Yy)/R = {p € L5 (Yy): /Yfp = 0}7

Hy(Yy) = {u € Li(Yf)d :u = Vp for some p € H;L(Yf) satisfying / p= 0} .
Yy

Remark 2.6 In general, a Bloch function is the product of a plane wave and a periodic function, i.e.
f(x,0) = e® g(x,0)
The eigenvalues associated to (6) are in fact Bloch functions. Indeed,
or(z,0) = €7 vg(x,0)
where the functions vy, are obtained from the periodic eigenvalue problem

—(V 410) - (V + i) v (0) = p2 (0)vi(6) in Yy
(V+i0)ve () -v=0 on 9Y
vk (z + p, 0) = vi(z, 0), pezd

The diagonalization of the inviscid operator Agp on the domain st is now obtained using the eigen-

values and eigenfunctions of the spectral problem (6) along with an appropriate rescaling. Indeed, for
each 6 # 0 and k € Z¢/{0}, we define

R (0) = et A(0),

_ z (7
i(e.0) =< V70 (2.6,
where
Ak (0) = sgn(k)pr (0),
Pk (x,6)
V2
(bk (l‘, 9) =
sgn(k)V e (z,6)
i) (0)V2
Remark 2.7 When 6 = 0, we use the same definition (7), but take 1 < |k|.
We conclude
A0®5(0) = 0N} (0)5,(6) in v
[®7(0)],-v=0 on 9Y¢ (8)

% (x4 p,0) = ' 0P &5 (2,0), pezt

Now, for each § € B, we define S5 () to be the space spanned by @ () and we define I1% (6) to be
the orthogonal projection from Lg(Yf)d+1 onto S ().
We define the following mutually orthogonal subspaces on L2 (Rg)d+1

S = (F)*l]{B S5(6) do

= {u € LARH; uy(-,0) € SE(0) for ae. 0 € B},

8



where I¢ is the mapping given in proposition 2.4. We denote IIj as the orthogonal projection from
L2(R%)4+1 onto S£. Notice that we have

e = (IE)*l]g3 E(0)I°D df .

As a result of Proposition 2.5, the mutually orthogonal spaces S§(6) have the following direct sum

decomposition in L2 (st)dJrl:

P Si(0) = LF(YF) x Ho(YF), when 6 # 0. )
1<|k|

Integrating in 6 and applying (I¥)~! to (9), we have the following result. The proof will be given in
subsection 4.2.

Proposition 2.8

P s; € LARE) x H(RE) € €D S5 = LA (RZ) x Hioe(RD), (10)
1<|k| 1<k

where
H(RE) = {u € L*(RE)%u = Vp, forp € H'(RE)},
Hloc(Rg) = {u € LQ(Rg)d§u = Vp,forp € Hlloc(Rg)}
Furthermore, [f€]2 can be written as Vg° and satisfies the inequality

||9€HL2(Rg) <Ce HVHSHL?(JRg)v whenever f€ € @ Sk (11)
1<|k]|

3 Main Results

Here, we state our main results. The first subsection is about the modified Helmholtz operator that allows
us to split the micro-incompressible and the micro-acoustic parts of the flow. The second one is about
some convergence results.

3.1 Modified Helmholtz Operators

Using the Bloch decomposition, we introduce the modified Helmholtz operators Pj;, Q5,- These
operators serve as the basis for the current article, and our final paper [9]. In summary, they enable us
to precisely partition the flow into an incompressible part and an acoustic one on the microscopic scale.
Consequently a description of the flow in all regions of time and space is possible.

We begin by recalling the usual Helmholtz operators P¢, Q¢ acting on LQ(Rg)d. We define them by

Pe=1-Q°, QG:(F)*l]{B Q°(0)do I°, (12)

where
Q°(0)f = Vg for 0#0
and g is defined by the system
—Ag =divf in Yy
Vg) - v=7f-v on Y7 (13)
gz +ep,0) = e "Pg(x,0), VpeL

9



It is not difficult to see that P f, Q¢ f indeed yield the usual Helmholtz operators. That is,

div(Pf)=0  on RY
Pef-v=0 on ORY
and that Q¢ f is a gradient (see [8]).

What we find interesting is how Helmholtz operators P¢, Q¢ defined in (12) can also be characterized
through the projection operators II;,. Indeed, as a consequence of direct sum (9), we have the following

Q°(0)f(0) = > [T5(6)(0, £(6))]2, when 6 #0.

1<|k|

Here f(6) belongs to Lg(YfE)d and (0, f(0)) € C x C<. Tt follows that

Q f= > [15(0,f)]2

1<]k|
for f € L2(R%).
Remark 3.1 When 6 = 0, we denote Py, QZ the Helmholtz operators on the domain st. That is
Py =1-0Q5
where

Qyf=Vyg

and g is defined by the system
—Ag=divf inYf

Vg-v=f-v on 9Y;
[ o= (14)
YE

f
g is Y-periodic

As a result of Proposition 2.5, we have the following direct sum in Li (Yfa)d+1

P Si(0) = LL(YF)/R x Hy(YF),
1<k|

hence
Qyf = > [M3(0)(0, ), (15)

1<|k|

where f € Lf‘#(st)d7 and (0, f) belongs to R x R9.

We now introduce the modified Helmholtz operators Py, Q5 acting on LQ(Rg)d we define Py, =
I — Q5;, where QF, is given by

Quf= > [1(0,£)],-

1<|k|

Note that we have the following relationship

Py f=Pof+ [ +12,)(0,f) ],

10



Our main results of this section are state the asymptotic properties of the quantities
g1 = [(I +112,) (¢°,0)],, PR f°, Quf°.

on the microscopic level. In order to precisely state the main results of this section, we extend functions
from RY to all of R? in the following way.

Definition 3.2 Let f belong to L2(R%). We extend f to all of R? in the following way

- f(x) when z € R?
f= fre 1) whenw € VS, Vp ez

We have the following results, proofs of which can be found in section 4.

Theorem 3.3 Let g° be a bounded sequence in L2(RZ) and suppose §¢ — g in L2(R%). Then g5 two-scale
converges to g(z).

Theorem 3.4 Let f° be a bounded sequence in L?(R%)%. Let fo(z,y) denote the two-scale limit of f<.
Then Py, f¢, Q5,f¢ two-scale converge to Py fo, Qyfo where P, Qy are the usual Helmholtz operators
on the domain Yy (see Remark 3.1).

Motivated by the formal asymptotic analysis for the case 8 = 2, along with the results of Theorems
3.3, 3.4, we conclude this section with the following definitions.

Definition 3.5 Micro-incompressible flow is defined to be the solution to system (1) with initial condition
(b, P;a®), where
§ = [, +115) (0°,0) ],

We define micro-acoustic flow to be the solution to system (1) with initial condition (b5, Q3,a%),
where
bS5 = b° — bE.

3.2 Convergence results

In order to precisely state all the convergence results associated to micro-incompressible flow, we need to
impose the following conditions on the initial data (b¢,a®):

(S1) (i) (v%,a®) is a bounded sequence in L2(R%)4+1 and

b5 — b(x)

a® =% ag(z, y).

(ii) We decompose b® = b5 + b5 where

bg =0 _bfirv

and we assume that b converges strongly to b(x) in L?(RZ).

(iii) Pyao(z,y) is an admissible test function and P§, a® fay Pyap(z,y) .

11



Lastly, we define (g%, v®) to be the solution to (1) with initial value (b5, Q5,a°). The main results read
as follows

Theorem 3.6 (1 < 8 < 2) Let (S1) hold, and assume T' € (0,00). Assume sufficient regularity and
compatibility conditions on the initial data (b(z), Pyao(z,y)) and let (u,p®) be the solution to (1) for
1 < B < 2. Then

e—0
sup ”pE(th) - b(x) - qE(t7I)HiZ(Rd) - 07
0<t<T d
t x 2 e—0
sup |(uf(t, @) —u | 55,2 = | —v°(t @) — 0,
0<t<T g2-h € L2(RZ)
T 2
1 t e—0
EB/ Vu® — =Vyu (—,x, E) — Vv (¢, x) — 0,
0 € e2=B"" ¢ L2(RY)

where (p(7,z,y), u(t,z,y)) is the solution to the following two-scale Stokes system

Oru— Ayu+Vyp=0 in R% x Y5
divyu =0
u=0 on 0Ys
[ r=0 (16)
Yy
u(T =0) = Pyao(z,y)
y — (p,u) is Y-periodic

Remark 3.7 The relationship between the time variables 7 and ¢ is given by 7 = t/82’f8. This is due to
the initial layer in time of size £2~7 that remains from the case of strongly viscous flow (see [10]). Notice
that this layer in time decouples the micro-incompressible part of the flow as ¢ — 07 (see Figure 2). We
also note that if (b5, Q5,a%) goes strongly to 0 in L2, then (g%, v®) can be replaced by 0 in the statement
of the theorem.

Theorem 3.8 (3 = 2)Let (S1) hold, and assume T € (0,00). Assume sufficient regularity on the initial
data (b(x), Pyao(x,y)) and let (u®,p®) be the solution to (1) for 5 = 2. Then

e—0
sup ||p*(t,@) = p(t,x) — ¢°(t,)l|7 2 (gay — O,
<t<T E

0
x 2 e—0
sup Hus(t,z) 7u(t,:p, 7> 7v5(t,x)‘ — 0,
0<t<T € L2(RY)
T 2
1 x e—0
52/ HVuE - -Vyu (t,z, 7) — Vo®(t, z) — 0,
0 € 3 Lz(Rg)

where (p(t, z), u(t, x,y)) is the solution to the following two-scale Stokes/Acoustic system

|Yf|8tp+div1/ uw=20 in R?
Yy
Oy = Dyu+ Vap+ Vypr =0 in RY x Y}
divyu =0
u=0 on 0Y
(17)
/ p1=20
Yy
p(t =0) = b(x)
u(t = 0) = Pya0($7y)
y — (p1,u) is Y-periodic

12



Remark 3.9 Notice that the layer in time of size e2~# disappears at 8 = 2, hence the micro-incompressible
part of the flow becomes coupled. In particular, we obtain the coupled macro-micro system given in (17).
We refer the reader to Figure 1 for the diagram illustrating the behavior of the flow near initial time.

Theorem 3.10 (2 < ) Let (S1) hold, and assume T' € (0,00). Assume sufficient regularity on the
initial data (b(z), Pyao(z,y)) and let (u®, p®) be the solution to (1) for 2 < 8. Then

e—0
sup ”ps(tv $) 7p(t,$) 7q5(t7 x)”i2<Rd) - 0»
0<t<T d
x 2 e—0
sup Hu‘g(t,x)—u(t,x,f> —Ue(t,z)H — 0,
0<t<T € L2(RZ)

8 T e en2 e—0
5 /0 [[Vu® — Vo ”L2(]R<g)_’0’

where (p(t, z), u(t,z,y)) is the solution to the following two-scale acoustic system

|Y¢ |0t + divx/ u=0 in R?
Yy
Ou+ Vaep+ Vyp1 =0 in RY x Yy
divyu =0
u-v=0 on 0Y;
(18)
/ p1 =0
Y,
plt = 0) = b(z)
u(t = 0) = Pyao(z,y)
y — (p1,w) is Y-periodic

Remark 3.11 For 8 > 2, while an initial layer in time is not present, we do have a boundary layer in
space of size €0/2 due to the fact that we can only impose the boundary condition

uw-v =0 on Y.
A description of the boundary layer flow in space is necessary to conclude the overall behavior of the

fluid. We refer the reader to the proof of Theorem 3.10 where we apply linearized Prandtl boundary layer
expansions to conclude that the energy trapped is dissipated by heat flow.

We conclude this section with a few observations regarding the convergence results of this section.

Remark 3.12

(i) All the energy descriptions we obtained for 1 < 8 have a macroscopic behavior, contrasting with
the behavior of the flow when 8 < 1. We refer the reader to [10], where there is no macroscopic
flow due to very strong viscosity.

(ii) Notice the intensity in which energy is dissipated weakens as (3 increases. More precisely, notice
that the micro-incompressible part of the flow only contributes to the dissipation of the energy
provided 8 < 2. We show in our final paper [9] that the micro-acoustic part of the flow never
dissipates the energy when 3 < 3. That is

8 -2 e—0
€ [Vv®|* — 0 whenever 3 < 3
RrRd

=
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(iii) The oscillations of the pressure term p° are completely contained in ¢° whenever 8 > 1.

(iv) In the three convergence Theorems for 1 < 3, we did not try to give a rate of convergence in terms
of £. One can easily get some error estimate in terms of € by computing the next terms in the
formal asymptotic expansions, but this is not our goal in this paper.

(v) Also, all our Theorems for 1 < 3 have the assumption that the initial condition (b(x), Pyao(z,y))
is sufficiently regular. We did not try to get the best possible regularity on the initial data and
one can easily lower the regularity requirement on the initial data by performing a mollification
in the x variable. We refer the reader to [10] for details.

4 Proof of modified decomposi-
tion

The main goal of this section is to prove Theorem 3.4. We start with the proof of some propositions

4.1 Proof of proposition 2.5:

For 6 € B, we recall the following characterization

IVullZ
oy (19)

pui(0) = min  max

T FER(0) ueF ||u||iz(yf>

where X (6) is the collection of all k-dimensional subspaces of Hel (Yy). Let £ belong to B such that £ # 6.
Define F' to be the linear span of {e*(§=9)%¢, (9)}?21 in Hg1 (Yy) and let u belong to F. Then

2 ~112
||V“HL2(Yf) = ||V§*9U‘HL2(YJF)
= IVl Z2(y,) + 2Re(Va, i€ — 0)a) + 10 — & [|a] 72y,

< (R (0) + 2u(0)10 — €] + € = 01%) X [[ullZ2(y,) »

where Vg = V + 6, and 4 is a linear combination of {¢; (0)}"?:1. Since F' has dimension k in H€1 (Yy) we

conclude from (19)
1 () < uZ(0) + 20 (0)10 — €| + € — 6] (20)

Switching the roles of § and ¢ allows us to conclude (i).
We now prove (ii), beginning with the proof of

< inf p2(0) < inf p2(0) < ... inf p2(0) < ... "2 . 21
0_6)12}3#1(9)_9123”2(9)_ ;gBuk(G)_ — 00 (21)

Observe that {ir(}f p2(0)}22; is a non-decreasing sequence. To see that its only accumulations point is at

oo, we let 6, be the value for which ;2 (6) achieves its minimum. Then from (20) we conclude
#k(0) < e (9k) + € = inf g, (6) + C.

Here C' is a constant independent of k. Passing to the limit in k, we conclude (21).

14



Now consider the max-min characterization of the principle eigenvalue

Hvu||i2(y)
BO) = min — 20D, (22)
uw€H}(Yy) ”ullL?(yf)
u#0

Taking test function e??'® belonging to H}(Y}) in (22) we conclude
IHORSI

hence

Jnf pi(0) = 0= 1 (0).

We note from system (6) that
u2(6) >0 for 6 € (0, 2m)?

for if u% (6) is zero at some 6 € (0,27)?, then its corresponding eigenvector must be zero due to the 6-quasi
periodic boundary conditions. Thus it remains to show u%(@) is positive for § = 0. We have the variational
formula

2
||v““i2(yf) . ||VuHi2(Yf) ) HquLi(Yf)

p3(0) = mi =

= min max 5 = X min 5 > in 5 > 0,
FEX3(0) ueF Hu”L?(Yf) FeX(0) ueF+ ||“||L2(yf) weHL(Yp)/R ||lull72
#

(Yy)

where the inequality follows by taking the subspace F' to be the constants. The proof of (ii) is now
complete.
For the proof of (iii), notice that (20) implies the inequalities
p1(0) <161,

p2(0) < pa(8) +16]. (23)

If we take the ball
Bp,(0)={0 €R?:|0] < R1}, Ri=u2(0)/2,
then the inequalities in (23) imply
n1(0) < p2(6)  on Bg,(0).
Hence, our claim about the simplicity of the principle eigenvalue follows.

To prove (iv) and (v), we start by explaining the construction of the ¢;. We recall the Poincare
inequality. For @ € (0, 27)¢ there exists a constant C(6) > 0 such that

lully < CO) [Vully  Vu e Hy(Yy) (24)

Let’s assume for the moment that (24) holds. Then given f € Lg(Yf)7 there exists a unique u €
H}(Yy) satisfying

—Nu=f in Yy
9u =0 on OY; (25)
ov

u(z + p,0) = P u(x,0), Vpezd
ie.

Vu(z,0) - Vo(z,0)" de = / f(z)o(z,0)" dz Vo € (Hg(Yy), IV-|lp) -
Yy Y

15



Now, we define the mapping
2 Ko 2
Lg(Yf) ) f — u € Lg(Yf).
The mapping Ky is linear and continuous. Using (25) we can easily deduce the self-adjointness of Ky. Ky
is also a compact operator as a consequence of the Poincare inequality (24) and Sobolev compactness. It

follows from Hilbert-Schmidt theorem that there exist ¢ (8), p?(6), k =1,2,3, ... satisfying (6) such that
the functions ¢ (6) form an orthonormal basis of L2(Yy). Using the weak formulation of the Neumann

Vo (0 ©° .
problem (6) we conclude %}kzl forms an orthonormal basis of (Hj(Y?), ||V-||5).

When 6 = 0, we have the classical periodic case. We note that the principle eigenvalue is zero, and
its corresponding eigenvector is a constant. Then to obtain the remaining eigenvectors and eigenvalues of
(6), we look at the space Li (Yy)/R and we argue as above.

We now prove (24). For this we appeal to the closed graph theorem. We first remark
(Ho(Yp), IV-112) (26)

is a Banach space for each 6 € (0, 27r)d. Indeed, what is required to show is the completeness, since it is a
normed space. Let uy, be a Cauchy sequence in (26). Then there exists v € Lg(Yf) such that Vuy, — v
in LQ(Yf). To see v is a gradient we appeal to the following well known lemma, a proof of which can be
found in [26] (see Remark 1.9).

Lemma 4.1 Let 6 € [0,27)% and f(6) belong to L2 (Yfa)d. Suppose that
/ f0,z)-0(0,2)"dx =0
YE
f
for all o(0) € L2(Yy)¢ satisfying

! (27)

dive =0 inY}
c-v=0 ondY;.

Then there exists g(6) € Hé(Yf) such that f(0) = Vg(0).
Now take o € Lg(Yf)d , divergence free in x and #-quasi periodic. Then
/ v-o* = lim Vum - o* = 0.

It follows that v = Vp for some p € H(} (Yy). Since the space defined in (26) is a Banach space, one can
apply the closed graph theorem to the identity mapping

i (30, (B4 1918) ") = (130, 191,

to conclude that i~1 is continuous, hence (24) follows and the proof of Proposition 2.5 is now complete.

O
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4.2 Proof of Proposition 2.8:

We begin with the proof of the first inclusion in (10) and inequality (11).
@ Sg; we need to show that [f]> belongs to H(RY). Notice that
1<|k]|

][[‘I’k )]2db = ][ sgn(k V¢\k|(9)d9:v]iw do

ipgr) ()V2

z,u,‘k‘ V2

Assume f belongs to

(28)

whenever 1 < |k| (see remark 4.3 for the case |k| = 1). We therefore have the following expansion

(fla= > [Mifla= > Vi

1<|k| 1<|k|
where (k)[B5]1(0)
e e sgn 1
g =€ Bk(g)i db,
B ipg)(0)

BE(O) = (F4(0). B5(0)) 2(x)-

It follows that [f¢]2 = Vg¢, where ¢g¢ = Z g%.- Moreover, we have the bounds
1<|k|

Ce Ce

2 |2 2
gr|° < ——— Bl = —5— / 115 f2| .
/| , o] 12%(9)7{3\ = @) ey

(29)

(30)

We deduce the inequality in (11) by summing (30) over k. The proof of the first inclusion is now complete.

We now prove the equality in (10) beginning with

P Si € L2 (RY) x Hioe(RE).
1<|k|

Suppose f belongs to the left hand side of (31), it suffices to show [I15; fla € Hioc(R

following classical lemma which characterizes the space Hloc(Rg):

Lemma 4.2 f € L?(R%)% belongs to Hyoc(R?) if and only if
fov=0
R¢

for all ¢» € H'(R%)? which satisfy divy) = 0 and ¢.n = 0 on ORZ.

[ s

€

Consider the integral

where ¢ € H'(R%)4 and divy = 0, ¢.n = 0 on IRE. We have
[ msasiaw=f [ B 0)0%]a(0,0) v(0.0) =0
e 5 y;
where B, (0) is defined in (29). The proof of (31) now follows from lemma 4.2.

17
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To prove the other inclusion, namely

P Si 2 L2 (RY) x Hioe(RY), (32)
1< k|

we take f belonging to the right hand side of (32). As a consequence of Lemma 4.2 we have the following
£ [ 151200.0)-v400) =0, (33)
BJYF

for all ¢4 belonging to f5 H YE)dG and satisfying divey = 0. It follows that [fx(6)]2 belongs to
Hg(st) and as a result of Proposmon 2.5 we have

[f4]2(0) = D [MM5(0)f]2

1<|k|
The proof of proposition 2.8 is now complete. [J

Remark 4.3 In fact, we have the strict inclusion

L*RY) x HRE) ¢ €D Sk
1<[k|

This follows from the fact that (28) does not hold for |k| = 1. The failure of V to commute with the
integral f5 is due to the singularity that ¢1(6)/u1(0) has at the origin. In particular, we have

If, 5

= oo.
L2(B)

L2(Rg) B HE

4.3 Proof of theorem 3.3:

We begin with the following relationship between the weak limits of f¢ and fg. A proof can be
found in [19].

Proposition 4.4 Let f¢ € L?(R%) be a bounded sequence. Then the following statements are equivalent.
(i) fo— Yylf in L2(RY).
(i) fe— f in L2(RY) .

We now define

gi = [( E1:+Hil) (gE7O)J17
g5 =9 — g,

and we note that

1<|k| 1

We show that g5 — 0. Using the definitions of the projections IIf, we have the equality

/R G@o@d= 3 £ @500, (B0 20y, ((0). @0 20y,

1<|k|

18



Performing an integration by parts yields

(04(0), [B50))) 12y, = %ﬁggk)(v% (5 (0)],) 2 v, -
Hence,
' Lo < o 3= (f |30 0500050 [ + 170, 07 01)?)
€ 0 1<|k|
Ce

<

s U912 mg) + V012 a) )
0

where the last equality follows from proposition 2.8. Sending ¢ — 0 we conclude g§ — |Y¥|g in L2(RY).
To improve this weak convergence, we let go(z,y) denote the two-scale limit of g5. It suffices to show
go(z,y) is independent of y in Y. Using the definition of the projections, we write g§ explicitly

o (@) = ][B B2 (0) [®5(x,0)], do

where
CHORYCAONCHOD I
!

Applying the gradient to g; we deduce

eVygi(z) = 2i . 1(0) p1(0)[7]2(x,0) dO

34
=2i y_ 1 (p)h°(z + ep) )
pEZl

where we have expanded the principle eigenvalue 1 () into its Fourier series, and h® is defined to be
he (@) =2f B (0) [@F)2(a,0) a0
B

We are now in a position to compute the two-scale limit of eVg]. First observe that, if we denote the
two-scale limit of he(x) by ho(z,y), then the two-scale limit of h®(xz +ep) also remains ho(z,y). Therefore,
using equality (34), we conclude that

eVgi(x) =2 3 i (p) ho(e,y) = 201 (0) ho(,y) = 0
pezd

Now let o(x,y) be a test function belonging to D(]R”l;C;’;’(Y))"l7 and satisfying o(z,y) = 0 on Ys.
Then an integration by parts yields the formula

1
—/ eVygi o (a;, E) = / eg® |:divwa (m, E) + —divyo (m, E)} .
R4 € R4 € € €
Passing to the limit yields
0= / / go(z,y) divyo(z,y)
R J Yy
hence the proof of theorem 3.3 is now complete. []

Remark 4.5 As a consequence of theorem 3.3 we deduce that

e 2

g5 = g(z,y) — g(x)

where g(x,y) is the two-scale limit of g°. Furthermore, notice that all oscillations of the frequency e~!
associated to the sequence g° are contained in g5.
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4.4 Proof of theorem 3.4:

‘We note that
Py fe = Pfe+ [(I +124) (0, £9)],

=P+ f;

and we compute the two-scale limits of P f* and f5.
We begin with P f¢, and denote its two-scale limit by xo. For ¢ € D[RY; cx (Y)]? we have the

equality
0= _/Rg div(Pf?) o (=, g) =) Pfe- |:an (= %) + é Vy0 (o, g)} . (35)

If we take o independent of y and pass to the limit in (35), we obtain

/ xo0 - Vo(z) = 0.
RexYy

On the other hand from equality (35), we must have
x\ €—0
Pf*-Vyo <x 7) =,
Rd e
and hence

/ Xo - Vyo(z,y) = 0.
IRdef

Therefore, xo satisfies the following two-scale system

divx/ xo=0 in R4
Yy

divyxo =0 inY} (36)
xo0-v=0 on dYs
y — Xxo is Y-periodic

We now study the limit of f5, and denote its two-scale limit by x1. Making use of the definition of
the projections mappings 115 |, we obtain

f5@) =2 ]{3 BE(0) [95(x,0)],, (37)

where
35(9)::(f%(9)7[¢§(9ﬂ2)L2(Y;y

Taking the divergence of (37) yields

cdivs(z) = 2 ]{B 11.(0) B=(0) [®5 (2, 0)],

=2 S @) (250,

pEL?

2 —
= D Fi(p) h(w +ep),
peZd

(38)
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where the last equality in (38) made use of the quasi-periodicity of [@f } 1 Here h® is defined as

h%x)z]{BBf(e) (9% (2,0)]; -

We now pass to the limit in (38), and we begin with the left-hand side. Note that f$ has a normal
component which vanishes on OR?, hence for o € D[RY; CZ (Y)] we have

_e/ﬂegdivffa(a:,g)
:/Rg J5 - [e Va0 (:cf) +Vy0o (:cg)]
530/ X1 - Vyo.

RA XYy

In order to pass to the limit in the right hand side of (38), we first notice that if we denote the two-scale
limit of h® by h, we have

hE(x+ep) =°h,  Vpezd (39)

Indeed, from a change of variables we have the equality

/Rg h®(x +ep)o <1’, g) dx = /Rg he(z)o (x—ep, g) dx,

and passing to the limit in € gives us (39). It follows that

Since p1(0) = 0, we deduce the following two-scale system for x1

divyx1 =0 in Yy
x1-v=0 ondYs (40)
y — x1 is Y-periodic

To compute the two-scale limit of Q5,f¢, which we denote by x2, we recall from proposition 2.8 that
53¢ = Vg° and satisfies the inequality

gl < CellVa©lly - (41)

For any o € D[RY; @iy (Y)]? satisfying ¢ = 0 on Yy and divyo = 0 we have

_/Rg Q5 ff ~J(x,§) :/Rggedivza (:mg) (42)
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Using (41), we pass to the limit in (42) and deduce

/ x2 - o(z,y) =0.
RIXYy

The functions that are orthogonal to divergence free functions are exactly gradients. We deduce that there
exist a unique function go € L2(R%; Hy (Ys)/R) such that

x2 = Vgo.
If we denote the two-scale limit of f¢ by fo, then combining all the two-scale limits above we have
fo=x0+x1+ X2

Since the decomposition

fo=Pyfo+Qyfo

is unique the proof of theorem 3.4 is complete. [J

Remark 4.6 As noted in the proof of theorem 3.4, we have the equality Pyao = xo + x1 where xo and
x1 satisfy (36), (40) respectively. We can say slightly more about x1. Indeed, notice that the

curl [ (II§ + 112 1) (0, a®)]

curlz][ x1 =0
Y

f
curly x1 =0

2 =0,

hence

By elliptic regularity, it follows that x1 is regular in y.
In fact, more can be said about x1 in dimension d = 2. We define

V={ue Li(Yf)d; divu =00nYy, u-v=0o0ndYs}

and I = curl. Then the kernel of I" is a Banach space of dimension N + 1 where N equals the number of
holes in Yy. We refer the reader to [17] for the details.

5 Proof of the convergence Results

The existence of a solution (p°, u®) € C([0,T); L2(RZ) x L?(R%)9) to the linear system (1) is very
classical and we do not recall it here. We only observe that the solution (p®, u®) satisfies

t
||p6(t)||i2(Rg) + Hus(t)Hiz(Rg) + 2EB/O ||VU6||%2(R¢€1) = HbEHiQ(Rg) + HasHZLZ(Rg) .

‘We note that the proofs of the main results repeatedly make use of the Poincaré inequality and the
energy estimate satisfied by the sequence of solutions (p¢, u®). We state the Poincaré inequality on the
domain RY (see [24])

Theorem 5.1 Let f € H}(R%). Then we have

||fHL2(Rg) <Ce vallm(Rg) :
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5.1 (1 < < 2) Proof of theorem 3.6:

We introduce the following error terms

l
; _ t T
af =p° —b(x) — | D FTDEy, (EQ_B,m,E) —q
=0
(43)

l
: t x
Bf =u® — 252](ﬁ_1)uj (82_[37% g) -
=0

where (po,uo) = (p,u) is the unique solution to (16), and (p;, uj), j > 1, satisfy the coupled two-scale
system

Bfuj - Ayuj' + Vyp]' =0 in Rd X Yf
divyu; = —0rpj—1
u; =0 on OYs
/ p;=0 (44)
Yy
uj(t=0)=0

y — (uj, pj) is Y-periodic

We present an analysis of the error term (43) for I = 0 which is enough if 8 € (4/3,2). At the end
of the subsection, we will conclude with a discussion on the adjustments needed to justify the error terms
in the case 0 < I for 8 € (1,4/3]. For I = 0 the proposed error term (af, 8§5) = (a, 8%) satisfies the
following initial/boundary value problem

Ora® 4+ divB® = F*° (¢, z) in (0, 00) x RY
B — P NG+ Vs = GE(t,x)
B°=0 on 9RZ (45)

af(t =0) = b5 — b(z) — P 1po(r = 0)
B (t = 0) = P5af (x) — Pyao (m g)

where the right-hand side terms are

Fe(t,z) = —20730,p — divyu,
Ge(t,z) = P Apu+ 2687 divy Vau — Vb + 627 1V,p.

Remark 5.2 Due to the parabolic regularization of the Stokes equation (16) in the variable y, the trace
of the terms 853535(17, u) <52%B,$, f) are well defined for k = 0,1 and |o|, |3] < 2.

The energy equality associated to system (45) reads

t
0 132 g + 157 O3 e + 257 [ 198 @)1 e =
t (46)
07OV 32 ey + 18O 3aegy +2 [ [ (Fa® 467 5°),

/Ot/Rg(FgoerGE-ﬁE).
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We write
/ Fefaf = Fy + Fy,
R4

C

and we obtain the following bounds

t
[Fy S€4ﬁ_6/ ‘
0

<63574/°°)
- 0

s x\ |2 t a2
Orp (ﬂﬂ%g)’ ds—l—/o [l ||L2(Rg)

L2(Rd)
z 2 k e12
Orp (77337 g)) L2(Re) dr +/O [l ||L2(]Rg)

(47)
3g—a [ 2 b
< [T omp (e sy b+ [ 107 R,
t
<0874 [t 3ae
0 €
t s T 2 t
< ivy R = € 2
|| _c/o Jdiveu (52502, %))] o ds+/0 o ()32 )
oo 2 t
SCEQ_B/ Hdivxu (T,m,f)‘ dT+/ o ()22 ga)
0 e/ lL2(r2) 0 g (48)

o] t
< 0P /O ldivew (7,2, 922 ey 47+ /0 o ()12

t
<04 [0 (62,

We now explain the estimates above. The first inequality in the estimates of Fj, F> is just an
application of the Cauchy-Schwartz inequality. The second inequality is the change of variable s = £2—Fr.
The third inequality in the estimates follows from strong two-scale convergence and hence holds for € small
enough.

We now justify the energy bounds on 0-p(7, z,y) and divgu(r, z,y), beginning with divgu. First, no-
tice that 0w satisfies the same system (44) as u with the initial data 03u(t = 0) = 0% Pyag. Furthermore,
we have the following energy equality

(6% T [e3 2 (o3
103 U(T)Hiz(Rdef) + 2/0 Haz vyu(T/)HLZ(Rdef) =[]0z Py‘IOHQL2(Rdef) . (49)

By the Poincaré inequality on the cell Yy, we also deduce that

L1020 e gy, <€ [ 102900 e gy, - (50)

Hence,

(e @)
/0 HdiV;EU(Tyw7y)||iz(]Rd><Yf> sC

To obtain the energy bound for d-p(t, z,y), we begin by taking a time derivative of the vector equation
in (44)
Orr — AyOru+ VyOrp = 0. (51)

We impose the following compatibility conditions on the initial data d-u(0):

97u(0) =0 = V,0ru(0) on 9Ys.
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Multiplying (51) by 0-u and O-ru and integrating by parts over Y} yields the cqualitics

T 2
||8T”(T)||2LZ(mdef) + 2/0 ||V67'/u(7—/)||L2(]Rd><Yf) = ”87“(0)”%2(Rdxyf) )
. (52)
2
2/0 HaT,T/u(T/)HLQ(]Rfo) + “VyaTu(T)”%Q(RXYf) = ||VyaTU(0)||2L2(Rny) .

Now using equation (51), along with the energy bounds (49), we obtain the following estimate

L0 ateryy <€ [ 1900022 g1,

< ClOru(O) 72 (rg) - + IVy0r w02y, ) -

Similarly, we write

t
/ G- B°=G1+G2+G3+Gy
0 JrY

and we have the following estimates

‘ s z 1/2 1/2
Gi<ce ([an(za0), ) (/ 18°(6)aqes) )
g [ s z\ |2 I 1/2
S CE (/0 HAJJU (62775’17 g)‘ Lz(Rg)) (/0 Hvﬂ (S)HLZ(]Rg))

< Ceto /0z [2e (5 D) e, + % /ot 195 ()2 ag)

<o+ 2 [Nvee)e
= 5 o L2(Rg)’

t
|Ga| < Ot (/ ’
0
et ([ oo (2. )
0
t 2
8 i s z
< Ce /0 Hdwyvzu (gQ—ﬁ T, E)‘
66 t
<0+ = [IVE e -
5 Jo e
t 9 1/2 t 5 1/2
Gal<e ([ I90s) ([ 1570
t 1/2 t 1/2
< Ce [ IVl 2ga) IV6° ()17 2 (gay
0 € 0 €

B t Bt
c [ IVHE g, + 5 [ 19513

Eﬁ t 2
<o P4 S / VB (s)]2,
0

L2(RE)

1/2 1/2
rsn) (L 1)
9 1/2 1/2
y Rd)) (L1985 @l

/0 198 ()12 e

. s T
divyVazu (52?’ , 7) ’

+ _
L2([RZ) D
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1/2

51 t s N 1/2 t )
— - £
Gal< e ([ver (G5 ) ) (L 15 @)

<o ([ oo (mrn May) ([ 19500 )
<02 [ 9er (55 )+ 5 195 Ol

<o+ 2 [Mvee)
= 5 Jo L2(rd) -

L2(RE)

Here, the second inequality in the estimates of G1, G2 made use of the Poincaré inequality on the
domain Rg. We concluded the final inequality in the estimates G1, G2 with a change of variable in time
along with the bounds in (49), (50).

Combining all the estimates on the force terms, the energy bound (46) becomes

el ot
”ae(t)”i2(Rd) + Hﬁa(t)HiZ(Rd) + E/ ||V55(5)||2L2(Rd)
€ (=) 0 € (53)

t
< ot Ol ey + 18O 2y + [ 0 (9laag) + Cece

where
Cie=C (535*4 +e2 Pt 2 tsQ’B) .
Hence, by applying Gronwall’s lemma to (53), we conclude the proof of Theorem 3.6 for 8 € (4/3,2)

To extend this result to 8 € (1,4/3], we take [ > 0 large enough such that (41 +3)(8—-1)—1> 0
and proceed with a similar analysis as above. Notice that we have

t
8(4z+4>(ﬁ—1)—2// 0rmal? = O (e (F=1=1)
o Jrd

where m; = 4l + 3, hence the proof of theorem 3.6 is now complete. [J

5.2 (8 =2) Proof of theorem 3.8:

We define the following error terms

xT X
of =p° —p(t,z) —ep1 (t, x, g) — epa(t,x) — %ps3 (t,ﬂm g) -4,

(54)
B85 =u—u (t,m, f) —euy (t,m, E) — %,
€ €
where (p2(t, ), p3(t,x,y), ui(t, z,y)) uniquely satisfies the two-scale system
|Yy|0ep2 + divx/ u; =0 in R4
Yy
Oru1 — Ayuy + Vgpa + Vyps = —Vap1 in R? x Yy
divyui = diveu — dive / u
Yy
up =0 on 9Y; (55)
/ p3 =0
Yy
p(t=0)=0
u(t=0)=0

y — (p3,u1) is Y-periodic .
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The system associated to the error term (o, 3°) reads

Ora® +divp® = F*°(¢,,z) in (0, 00) x RY¢
0:8° — P ABE + Vot = G5, z)
BE=0 on 9R?

af(t =0) = b5 — b(x) — ep1(t = 0) — e2p3(t = 0)
B°(t = 0) = Pf;a®(2) - Pyao (2, %)
€
where the force terms here are given by

Fe(t,x) = —edyp1 — 20up3
G*(t,z) = 2 Agu + 2e divy Veu + 3 Agut + 262 divy Vyuy — 2V 4 p3.

We now imitate the proof given for the case 8 € (1,2). Notice that (a®, 3°) satisfies the energy
bound in (46) (for 8 = 2), hence it suffices to show

t
/ / Féaf + G¢ 'IBE
0 JRY

(56)
t t
< 0(av)+clg2/0 ||vﬁs(s)||iQ(Rg)+c/0 0% ()12 g
for some 0 < v and constant C; < 1.
‘We begin by writing
/ Fea® = F| + F»,
R¢
and we obtain the following bounds
2 [ z\ |12 ¢ 2
F|<e ‘6 (t,,—)’ / c
|Fi| < /0 1 (4 L2(Rg)+ A o172 ga)
2 [ 2 ¢ 2
<2 [T 1oem o) tery) + [ 1o e
t
<02+ [ 0.
0 (57)
4 [T 5 to Z 2 b2
|Fo| <e ; ‘ D3 ( ,9072)’ L2 ad) + A le®lIZ2 rg)

oo t
4 2 2
<e A H(’?TPB (tyxyy)”LZ(leny) +/O ||O¢5HL2(R§>
t
4 2
<cet+ [ 1o g,
We now justify the energy bound on 9:p1 (7, z,y) (the energy bound for d:p3 is obtained similarly).

Notice, it suffices to show that V,8:p1 is bounded in L2((0,00) x R%; H;I(Yf))d. We begin by taking a
time derivative of the vector equation in (17)

Oppu — Ayatu + Vaz0ip + Vyatp1 =0. (58)

Multiplying (58) by d¢u and d¢u and integrating by parts over Yj yields the equality

t
||8tu(t)H2Lz(Rd XYy) + ‘Yf‘ Hatp(t)||i2<Rd) + 2/0 ||vy83u(5)||i2(Rdxyf)

= llatU(O)HQLz(Rdef) + 1Y 10ep(0)II7 2 ay »

(59)
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and the inequality

t
1
S 10uu(9) By + 5 19000

1 2 t
5 \|vyatu(o)HL2(Rdef) —/0 /]Rdxyf VOip - Opru (60)

A

| vyl o L
< 5\|vyatu(o)u§2(Rdef)+7f/o ||vmasp(s)||iz(wa>+§/o 19sst(5) 22 g -

Next, we observe that 0% (p,p1,u) satisfies the same system (17) as (p,p1,u) with the initial data
0% (b, Pyag). Moreover, we have the following energy equality

t
10200 22 ey, + VT IOEPON 2 oy +2 [ IT00R0( B gy

(61)
= |Yy| ||8gb||2Lz(Rdxyf) + HacccleGOHQLz(Rd) )
Taking a time derivative of the scalar equation in (17) yields
IY}1020,p + 02 diva / w=0,
Yy
and we deduce the inequality
¢ 2 ‘ 2
[ 1020020 < € [ 102 dvau®) ey,
0 0 (62)

t
< c/o ||8§‘divzvyu(t)H2LQ(Rdny).

Here, the last inequality in (62) follows from the Poincaré inequality in the cell Y.
Combing the estimates (59), (60), (61), (62) we conclude

HVyatpl ||L2((0,oo) de;H;l(Yf)) =C

Similarly, we write

t
/ dGE-5€:G1+G2+G3+G4+G5
o Jrd

and we have the following estimates
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1/2

2 1/2 t 5
15
L2<Rs>) (/0 17 (S)”L?(Rz)>
o x\ |12 1/2 t 1/2
S C‘ES (/ HAxu (t7$ 7)‘ LQ(Rd)) (/ Hvﬁs(S)Hi2(Rd))

<cet [7]ae(ne Mo, + —/nw Mgy

E
<o+ S [ IvB Oa

|G2| < Ce (/ Hdlvyvzu (t z, x)‘

Gilzce ([ o (e ?)]

1/2
LW)) (/ 186 saces) )
- 1/2
2 2 €
e ([ ) (19Ol

gcg/ Hdwyvxu (1.2, f”)‘Lz(Rd) f/ IV ()2 a)

E
<o+ = [ IvB Oa
oo 112 1/2 ; pt 1/2
|Gs| < Ce® (/0 |2au (t,m,g)’Lz(Rd) (/0 IIBE(S)H;(R?))
oo 9 1/2 t 1/2
4 o e 2
oot ([Taan (e D)) (L1950

< CeS / HAxul (t z, ,)’2 %/Ot ”Vﬁa(s)”iQ(Rg)

L2(RZ)

divy Vau (t, x, E) ‘

E
<084 /0 195 (5)1125 g

|Ga| < Ce? (/OO‘
0

< Cel (/ Hdlvyvzul (t x, I)‘

< 054/ Hdlvyvzzu (t x, x)\ 2

L2(RZ)

divy Vzuy (t z, x)’

5 1/2 , ot 1/2
([

5 1/2 , 1/2
venn) ([ 19O

2 t
+ 5 [ I8 Oy

&
<oet —/ I96°()22(agy

1/2
Gl <0 ([ [Vama (12, %) me)) ( 186 a )
1/2
<ce? (/ HVIPS (t z, L2(]Rd)) ( IVB=(s) ”LZ(Rd))
4 i 5
<cet [T erm Wu;) v 3 JAZCT

<oty = [N vsEe)
= 6 o LQ(Rg)'

We remark that the final bounds in G, G2 make use of (61) and the Poincaré inequality on the cell
Y. We do not provide the energy bounds for the terms Agui,divyVgui, Vzps, but note that they can
be obtained similarly to the methods presented here.
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Combing all the estimates associated with the scalar and vector force terms, (56) holds for v = 2 and
C1 = 5/6. The proof of Theorem 3.8 is now complete. [

5.3 (2 < ) Proof of theorem 3.10:

In the case 2 < (3, there is a boundary layer in space of size e#/2 associated to the micro-incompressible
part of the flow. The asymptotic analysis necessary in the case 2 < 3 is interesting in its own right. We
will only detail the construction of the complete asymptotic analysis in the case 2 < 3. The convergence
proof based on the estimate of the error terms (a®, 3%) follows exactly as in the previous two and
will be omitted.

‘We introduce the following asymptotic expansions

= B0 (o (n2) w2t (1 (2). 255 (2)

"ol e (63)
U — o~ ;Eku(ﬁﬂ)m (uk’l (t,m, §> +up (t,x,H (g) ’75(5—62)/2) X (g))

Here, Ily is the projection of y on the boundary 0Ys and d(y) denotes the distance function to the
boundary, namely the distance between y and dYs. Note that II is well defined in a small neighborhood
of the boundary 9Ys. The function x(y) € C§°(Y) is a smooth cut-off function such that x(y) =1 in a
neighborhood of Y and x(y) = 0 if d(y) > ¢ for some § small enough. Here § > 0 is taken in such a way
that IT is uniquely determined in the neighborhood {y|0 < d(y) < ¢} and Vd is a unit normal vector on
supp(x) NYy. We will use v = Vd to denote the inward normal vector to Yy. An important remark to
keep in mind is that we only need (pzdly , uzdly ) when y is close to the boundary 0Ys which justifies the
presence of the cut-off function x(£) in (63).

The boundary layer terms <pzdly7 uzdly) (t,z, Ty, £) satisfy

bd bd
(pk,ly’ “k?) - 0 (64)
when £ goes to co and
up,i(t,z,y) + uzdly(t7 z, 1y, £ =0) =0 when y=IIy € §Ys. (65)

We will also need a curvilinear coordinate system Z = (£/,&4), ¢ = (€1, ...,€4—1) adapted to 8Ys and
defined in a neighborhood of Y5 such that 9Ys = {{4 = 0} and Y} is located at the side {{g > 0}. Of
course, we think here of 2 — y(E) as a change of variables where the expansion of the operators A, V
and div will have simpler expressions. We will follow very similar notations to those in [14, 13]. We define
the tubular neighborhood Y s = {—d < g < d}. We also assume that our curvilinear coordinate system

(¢',&q) is orthogonal and that
%y @_i(am)?_l
&a & &d

1

which means that £4 = d(y) = e(B=2)/2¢ in Y5, s NYy. We introduce the vectors

78y7<8y1 0Yq
ga=7= (7110

= s ), 1<a<d
€a &a a

Hence, the metric (g9ag)i1<a,p<d = (9o - 98)1<a,8<d = diag(gi1,...,9dqa) and ggg = 1. We will use the
notation h; = \/g;; > 0,i=1,...,d — 1 and h = \/det((gap)i1<a,s<a). With these notations, we can also
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rewrite divyU, Ay f and Vy f in the following way. If U and f are defined in a neighborhood of 9Ys and
such that U = Z?:o U,e; where e; = % and f is scalar valued, then

d—1

1SN0 (kY 100U
divyU = N ; % (hiU) + T (66)
1 o (h af) W of | *f
Avf =7 02 67
uf h1<i§d_1 o€, (hg o€, t4 o6, + = ek (67)
d—1 18 9
Vyf = Z h; 3€fz i + %e (68)

If U is a vector given by U = Zf U;e;, then computing AyU is more complicated. We will not give the
exact formula here. We refer to formula (2.17) in [13].

The first term on the right-hand side of (66) will be denoted dlv 7(U). For a vector field which is
in the tangent space to 9Ys, it corresponds to the divergence on the manlfold Y. We will also use the
notation U9 to denote the tangential part of the verctor field U, namely

d—1
Ut =" Use;. (69)
=1

If we consider now functions that depend on x and y, namely of the form f(xz, £) and u(z, £), then
we also have the following expansions of V, div and A, namely

1 1
Vf=Vaf+ thygf + m(agf)Vdu (70)

dive = divgu + dlvtgu + —7 0¢(u.Vd), (71)

B/2

Af=Apf+ = Vz Vt9f+ At9f+ —75Vd - Vi f
1 (72)
+ o7 haff+ agagf

One can then write an expansion of h’/h, namely
R R (s—2)/2 o~ i(3=2)/2mi (W pr g
5 (€)= (€ e =3 ¢ 9, (57)(€, 0)¢"
i=0

Plugging this expansion in the definition of (72), we deduce an expansion of Af in powers of . The main
observation is that it reads Af = E—lﬁagagf + l.o.t where l.o.t denotes terms with lower order, namely
terms with higher powers of €. It is not difficult to see that the same holds in the vector case, namely if
U= Zf U;e; then

1 7 1 hl ! 7
AU = EfﬁagagU e; + EET/Q;@ ,O)B§U e; + l.o.t. (73)

We included the second term on the right-hand side of (73) since it is easy to compute but it will not be
crucial for the construction process.

We plug this expansion into the original system (1) and then we gather the terms of the same order
in the boundary layer and in the interior. When we do this gathering, we do not specify the value of
[ since we want to find an expansion which is valid for all values of 3. By doing so, we hope to get
successive systems to solve that allow us to determine the full expansion (63) (check). We will present the
construction in an inductive way starting from [ = 0.
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To perform the construction of our expansion we will make the following consistency condition:
b°(z) = b(z) and a®(x) = ao(=, T) where ag = Pyao and ao(z,y) = 0 when y € 9Y,. Moreover, we assume
that b and ap are smooth enough. Let us point out that if we only assume that ag(z,y) - v = 0 when
y € Y5, then we need to incorporate an initial layer in time. This will not be done here (see [27] for more
about this).

Step 0: The case [ =0

We deduce from the order e=#/2 in the second equation of (1) that agpgdg = 0 and hence pgdg = 0. From
the order e'=P/2, we also deduce that 8§p’idg = 0 and hence pl{dg = 0 . It is not difficult to see that

bdy __ bdy __
k,0 — k,0 —

e—1+(=1)(8-2)/2 ip the second equation (1), we also deduce that pgdly =0 for all I > 0. This will be used
in the Step . ’

From the order e=#/2 in the first equation, we get that agugiié’ - Vd = 0 and hence, ug%’ -Vd =0
and then from the boundary condition, we can deduce the normal part of ug,0, namely we deduce that

ng - Vd = 0 and hence from the

from the order €¥=P/2 we also deduce that O¢p 0 and hence p . In a similar from the order

up,0 - ¥ = 0 on 9Ys. From the order ak’ﬁ/z, we also deduce that u
boundary condition that uj ¢ - v = 0 on 9Ys.

From the order e~ ! in the interior, we deduce that divyug,0 = 0 and Vypo,0 = 0 and hence po g is
only a function of ¢ and x, namely po,o = p(t,z). We also denote u = up,0. From the order €° in the
interior, we deduce that

{ atp + divgu + divyu1’0 =0 in Rd X Yf (74)

Otu+Vep+Vyp1o0=0 in R4 x Yy

Since, p does not depend on y and that fo divyui,0 = fan u1,0.v = 0, we can integrate in y the first

equation and deduce that (p(t, z),p1,0(t, z,v), u(t,z,y)) is the solution to the following two-scale system

|Y¢|Orp + divy / u=0 in RY
Yy
Otu+ Vap+ Vypi,0 =0 in RY x Yy
divyu =0
Vyp =0 (75)
u-v=0 on 9Y;
p(t=10) = b(z)
u(t = 0) = Pyao(z,y)
y — (u, p1) is Y-periodic .

Solving this system is standard and we will not detail it here. Notice that this system also de-
termines completely Vyp1,0(t,z,y) which will be useful for the iteration. Now, we want to solve for
(p1,0(t,z,y),u1,0(t, ,y)). Recall that we have divyuy,0 + divey(u — \Yilfl fo u) = 0 and that p1,0(¢,z,y)

can be decomposed as p1,0(t,z,y) = Py (¢ ) + p1,0(¢,7,y) where fo P1,0(t,z,y)dy = 0. From the

previous system we know that p1,0(¢, z,y) was completely determined.
From the order e! in the interior, we deduce that

{ Otp1,0 + divguy o + divyus o =0 in RY x Yy (76)

Oyu1,0 + Vep1,0 + Vyp2,0 =0 inRYx Yy

We can integrate in y the first equation, use the fact that uz v = 0 on 9Ys and deduce that
(ﬁl,o(t,z),ulyo(t,x, y)) solves
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|Yf|at171 o tdive / u1,0 =0 in RY
, v
Oru1,0 + Vaby,0 + Vyp2,0 = —Vap1,0(t, z,y) in RY x Yy
divyuy,0 = —divg (v — — u)
uio-v =0 on Y
P1,o(t=0)=0
u1,0(t=0)=0
y — (u1,0,p2,0) is Y-periodic

This system is very similar to (75). It has some extra forcing terms. It is important for the construction
of the solution that fo divg (u — |Y71f\ fyf u)dy = 0. We will not detail this construction. In particular

this system allows us to determine completely Vyp2 0.
The rest of the construction of (pk o, ug,0) can be done by induction. For k > 2, assuming that Vypy o

was completely determined from the previous order, we can deduce from the order ¥ in the interior that
we have

{ Otpr,0 + divaug,o + divyug110 =0 inR? x Yy 78)

8tuk’0 + vmpkp + Vypk+1,0 =0 in R4 x Yf

Denoting pg,o(t, %,y) = Py,0(t; ) + Pr,0(t, =, y) where fo Pr,o(t,z,y)dy = 0, we know from the previous

system that py o(t,z,y) was completely determined. Integrating in y the first equation in (78) and using
that fo divyug,o = fayf ug,0-v = 0, we deduce that

[Y¢10tPp 0 + dive / Ug,0 =0 in R4
, v,
Otug,0 + Vabr,o + VyPrt1,0 = —VaPr,o in R% x Yy
divyug,0 = —divaur_1,0 — OtPr—1,0
' : (79)
Ugo-v =0 on 9Ys

Dro(t=10)=0
ugo(t=0)=0

Yy — (U0, Pr+1,0) is Y-periodic .

Notice that fo divgug—1,0 + 0tpr—1,0 = 0 follows from the previous order system. This process allows us

to solve all the terms of the form (py,o,ux,0). Notice also that for now the term eP A did not contribute
to these systems.

Meanwhile, the order € in the boundary layer gives that ugdg(t, z,y, &) satisfies the following system

8tug%’ — |Vd\2 ngug%y + nglijﬂde = 0. Taking the scalar product with Vd, we deduce that pliijly =0 and

that ubdy = ugdg = ugdg’tg solves

deub® — |Vd|? Fub® =0 for (t,€) € (0,00) x (0,00)
uwb . vd =0
ub® = —yt9  fory =TIy € OYs, £ =0
uwbW(t=0)=0

(80)

where we recall that the notation U9 was defined in (69). The fact that u’%¥ (¢ = 0) = 0 is consistent with
the consistency condition ap = Pyag = 0 when y € 9Y;s which implies that u'9(0,y) = 0 when y € 9Ys.
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For each z and y, system (80) is a heat equation on the half line with zero initial data and nonzero
Dirichlet data. The solution can be computed explicitly (see for instance [4] and [14, 13] for other appli-
cations in boundary layers)

t
ub® = f/ I(&,t — 8)0ut9 (s, z,Ily) ds (81)
0

where I(£,t) = 2erfc(&/+/2t) and

1 ? s
erf(z) = E/O e=*/2dz  and

1 1 [ 2 (82)
erfczzf—erfz:—/ e~ dz
Notice that in (81), z and Iy are just parameters.
From the order € in the boundary layer of the second equation of (1), we get
bdy 2 92  bdy bdy _
Ovuyq — [Vd|” Ogeuy o + Ogpyyy | Vd = (known)  for (¢,€) € (0,00) X (0,00)
wtW(t=0)=0 (83)

ung = —u,o for y € Ys, £ =0
The normal part of (83) allows us to determine pl,;(_ifl ; and the tangential part allows us to determine
the tangent part of ung by a formula similar to (90).

Step 1: The case I =1
The order £(3=2)/2 in the second equation and the order e~! in the first equation of (1) give

h/
Ovugt — V| Oggug't — S-Ocug’s + Ocp)y Vd =0 for (t,€) € (0,00) x (0,00)
Oeug® - Vd + divi? (ug®¥) = 0 (84)
u’g‘f{’ = —ug,1 foryedYs, £&=0
ug (t=0) = 0.
Hence,
oo
Wbl g — / div9 (ub)dg’. (85)
) p ,
Moreover, for y € 0Ys, we have the following boundary condition
o0
uo,1 vV =— / divy, (ugijg)df
’ (86)

:/Ot V2(t — s)div_@q(atutg(s)) ds.

It is important to notice here that faY ug,1 - ¥ = 0 which will be necessary to solve system (88). Also,

here and in the sequel, we will often use the fact that |, oY, divtyg (U)do = 0.
Notice that to solve (84), we need to know ug,1 on the boundary. This means that we have first to

solve the following interior problem, deduce the boundary condition u(t)gl for y € 9Ys and then solve for

the tangential part of ugdly, The equation satisfied by wug,1 is

Vypo,1 =0, divyug,1 =0 in RY x Yy
atpo’l -+ divzu()’l -+ divyul’l =0 inR%x Yf (87)
Orup1 + Vapoa + Vyp1,1 =0 inRY x Yy
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Exactly as (75) was derived, we deduce that

[Y¥|0tpo,1 +divz/ u0,1 =/ u,1.v in R4
Yy oYy
Otuo,1 + Vzpo,1 + Vyp11 =0 in R x Yy
divyug,1 =0
Vypo,1 =0

- (88)
ug,1 V= 7/0 divz (ugdg)dé on O0Ys
Po,1 (t = 0) =0
uo,l(t = 0) =0
y — (u, p1) is Y-periodic

To solve (88), we need to determine the right hand side of the first equation. From the order 0 in the
boundary layer, we get that —Bgul 7-Vd = Btpo ot le(,(;U/O o and hence

oo
Ui,V = ful{dly v = 7/ dlnguO d§
0

This will allow to solve (88).
Since the normal part of ugdoy and ugdly were already determined, taking the scalar product of (84)
with Vd, we can determine pl{d2y

Now, we can solve for ugiily’tg, by looking at the part orthogonal to Vd in (84):

h/
Drug " — V| Oggugi"? = S-0cug’s"™ for (1,€) € (0,00) x (0, 00)

bd
U, Pt =0)=0 (89)

3‘? it — 691 for y € Y5, £ =0

This one-dimensional heat equation can also be solved explicitly (see [14, 13]):

t
ugdlg/,tg = —/0 I(g,t— s)atuffl (s,z,My)ds + J4 — J— (90)

’

where (we recall that z and Ily are just parameters)

/ / O (¢t — ) oty s, myads. (o1)

Arguing as in the Step 0, we can continue the construction of the terms of the form wuy ; and uzdf.

We do not detail that here since it is similar to the general construction that will be sketched below.

Step I: The general case from [ —1 to [
When (3 is close from 2, we need the expansion with a large number I. Here we will explain how we
can keep solving for ugdly and ug; for I = 2,3,..... We explain now how we can solve for these terms

inductively. Indeed, assuming that u’% u?djy are known for 4 > 0 and for 0 < j <1 — 1, we would like to

i3
construct the terms at the order .
We have from the order e(!:~1)(6-2)/2=1 ij the boundary layer part of the first equation of (1) that

oo
ug¥ - Vd = /5 divt? (ug %) de’ (92)
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and hence, using that po ; is independent of y for all j and that divyug,; = 0 for all j, we deduce that
ug,; solves

[Y¢[Otpo,i + diVm/ ug, =0 in R?
Yy
Otug,; + Vapo, + Vyp1,; =0 in R x Yy
diVy’LLO,l_;'_l =0
v =0
yPo,l N (93)
ug V= —/ divlt!g (ugdly_’ﬁg)df on 9Y
o ,
poi(t=0)=0
ug,(t=0)=0

y — (uo,1, p1,1) is Y-periodic

To find ugdly’tg, we use that the order £/(8=2)/2 in the boundary layer part of the second equation of

(1) gives
ovud™ — |Vd|? 9Zcul’y + 0ep}, | Vd = (known)  for (t,€) € (0,00) x (0,00)
bd
ub®(t=0)=0 (94)
ug‘fly = —ug, fory e dYs, £€=0

The normal part of (94) allows to determine pll’iilﬂl which will be used at the step [ + 1 and the
tangential part will allow us to solve for ugiily.

Assuming that for £ > 1 we have constructed all the terms ufiil, u%il for 0 < ¢ < k—1 and that
pz‘,ily and Vypj,; were also determined, w e would like to construct the terms uzc,lly, uzzy.

First notice that we have from the order e(!=1)(8=2)/2+i jn the boundary layer part of the first
equation of (1) that

oo
W vd = /E [ivES (b9 ) 1 9l |+ div (w81 (95)

This allows us to determine the normal part of u;41; at the boundary for each 4 > 0. In particular it
allows us to determine uy ;.v as well as ug11,;.v when y € 9Y5.
From the order e!(8=2)/2+k=1 i the interior, we get that

{ Otpg, + divpug, + divyug41, =0 in R4 x Yy (96)

Oty + Vb + Vypry1, =0 inRYx Yy

Recall that we can write pg i (t, z,y) = By i (t, ) + Pr,i(t, =, y) where fo D, (t, 2, y)dy = 0. Since Vypy

was already determined, we only need to construct p ;(¢,z). Integrating the first equation in (96)
[Y¢10:Dy, +divz/ uk,=F1 inR
Yy
8tuk71 + Vlﬁk,l + Vypk+1yl = Fy in RY x Yf

divyug, = F3

(97)
up,-v=>Fy ondY;s
Pri(t=0)=0
ug,i(t=0)=0

y — (ug,1, pr,) is Y-periodic
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where the forcing terms Fg, 1 < a < 4 are already known and are given by F; = — fyf divyug41,; =
7f8Yf Up+1,1-v which is determined by (95), Fo = —Vapr,, F3 = —0tpr—1, — divgup_1,; which is

coming from the order k — 1 of (96) and Fy = 7uzdly.1/ which is determined from (95). There is a

compatibility condition between F3 and Fy for the system (97) to be well-posed, namely we need that
fo F3 = — fan Fy. This follows from the first equation of the order k — 1 of (97) since it implies that

fo F3 = fBYf uk,l V.

Hence, by induction, we conclude the construction of the asymptotic expansions. The convergence
stated in theorem 3.10 can be proved by the same energy estimate as in the previous two cases and we do
not detail it here.
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