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Abstract

This is the second in a series of three papers which studies acoustic waves governed by the linearized
compressible Stokes equations in a porous medium. In particular, we want to analyze the simultaneous
inviscid and high frequency limits of fluid flows in a porous medium. The presence of time-space boundary
layers decouples the flow into an incompressible (that we call micro-incompressible) and an acoustic part
(that we call micro-acoustic) on the microscopic scale. While this paper employs the two-scale methods
used in our first paper [10], the present boundary layer phenomenon requires additional weak convergence
tools. Using the Bloch decomposition, we introduce modified Helmholtz operators, enabling us to split the
flow into its micro-incompressible and micro-acoustic parts. Closed equations for the micro-incompressible
flow are obtained using two-scale convergence, while closed equations for the micro-acoustic flow are given
in our forthcoming paper.

1 Introduction
The homogenization of the Stokes operator in a porous medium is well studied. We refer the

interested reader to text books [3, 24, 16] for some formal developments and to [25, 1, 20] for some
rigorous mathematical results. However, there are fewer works dealing with the homogenization of the
acoustic system or of the compressible Navier-Stokes system (see for instance [7, 19, 11, 18, 29]). Here,
we continue the study of the homogenization of the compressible Navier-Stokes system linearized around
(1, 0) in a porous medium which was started in [10].
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The linearized compressible Navier-Stokes equations in a porous medium read

8>>>>>>><>>>>>>>:

∂tp
ε + divuε = 0 (0,∞)× Rdε

∂tu
ε − εβ4uε +∇pε = 0

uε = 0 ∂ Rdε
pε(t = 0) = bε

uε(t = 0) = aε

(1)

where pε and uε are the pressure and velocity of the fluid, and εβ is the viscosity. Here, Rdε is the porous
medium formed by periodic repetition of an elementary fluid cell which has been shrunk to size ε (see
section 2.1). Finally, 1 < β measures the relative importance of the viscous effect to the size of each cell.
We refer the reader to [10] for a complete study of the case of strongly viscous flow (β ≤ 1) and for a
derivation of this model.

In the case of 1 < β, the presence of time-space boundary layers decouples the flow into an in-
compressible (that we call micro-incompressible, see Definition 3.5) and an acoustic part (that we call
micro-acoustic, see Definition 3.5) on the microscopic scale. We remark that this is in contrast to the case
of β ≤ 1, where not only is the boundary layer in space absent, but the boundary layers in time decouples
the velocity and pressure when ε goes to zero (see [10]). In order to motivate the goals of this paper, we
begin with a formal approach to the case when β = 2 (we refer the interested reader to [24] and [19] for a
formal and rigorous study when β=2). Formal asymptotic expansions expressing (pε, uε) in the variables
(t, x, y), y = x

ε
, yields the limiting terms (p0, u0) and the associated two-scale system

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp0 + divx

Z
Yf

u0 = 0 in Rd

∂tu0 −4yu+∇xp0 +∇yp1 = 0 in Rd × Yf
divyu0 = 0

∇yp0 = 0

u0 = 0 on ∂YsZ
Yf

p1 = 0

p0(t = 0) = b(x)

u0(t = 0) = Pya0(x, y)

y → (p1, u0) is Y -periodic

(2)

Here p1 is the Lagrange multiplier corresponding to the incompressibility of u0 and Py is the divergence
free Helmholtz operator on the domain Yf (see Remark 3.1).

We notice that two-scale convergence captures the micro-incompressible part of the flow. What is
not so apparent is the formation of a thin boundary layer in time of size ε1/2 which traps the energy
carried by the micro-acoustic part of the flow when ε goes to zero. Throughout this paper we identify the
micro-acoustic part of the flow as (qε, vε). The overall behavior of the flow near initial time can be seen
in the following diagram.
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t
ε1/2

(qε, vε) (pε − qε, uε − vε)

(bε, aε)

Figure 1: Behavior of the flow near t = 0 when β = 2.

We remark that the time behavior associated the micro-acoustic part of the flow is non-trivial. In fact, the
initial layer in time of size ε1/2 and time oscillations associated to (qε, vε) are generated by the presence
of a boundary layer in space of size ε3/2.

This paper is devoted to the complete study of the micro-incompressible flow for 1 < β. Our goal is to
describe the energy carried by the micro-incompressible part of the flow as ε goes to zero. Mathematically,
we wish to understand the local and total energies

eε(t, x) = |pε(t, x)− qε(t, x)|2 + |uε(t, x)− vε(t, x)|2

Eε(t) = ‖pε(t)− qε(t)‖2
L2(Rdε)

+ ‖uε(t)− vε(t)‖2
L2(Rdε)

(3)

when fluid flow occurs in a porous medium and the limit ε going to zero is taken. We note that the energy
carried by the micro-acoustic part of the flow is subject of our final paper [9].

A complete understanding of the underlying time-space boundary layer phenomena is necessary in
order to propose appropriate asymptotic expansions describing the energy carried by micro-incompressible
flow. In the case 1 < β < 2, we show that the boundary layer in time of size ε2−β decouples the micro-
incompressible part of the flow when ε goes to zero. More precisely, the usual formal two-scale expansions
in the variables (t, x, y), y = x

ε
, will describe the pressure pε − qε, but will fail to describe the velocity

uε − vε for all times. In order to describe the velocity near initial time, we need to introduce the time
scale τ = t/ε2−β during the homogenization process. Through this time rescaling, we deduce that the
velocity associated to micro-incompressible flow is governed by the Stokes system (16) near initial time.
The overall behavior of the flow near initial time can be seen in the following diagram.

pε − qε
uε − vε(qε, vε)

t

(bε, aε)

ε(3−β)/2 ε2−β
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Figure 2: The behavior of the flow near t=0 for 1 < β < 2.

We make a few observations. First, we note that the boundary layer in time of size ε2−β remains
from the strongly viscous regime (see [10]). Secondly, the time behavior that impacts the micro-acoustic
part of the flow, namely the boundary layer in time of size ε(3−β)/2 and associated time oscillations are
non-trivial and are generated by a boundary layer in space of size ε(β+1)/2. This time behavior associated
to micro-acoustic flow is essentially given in [6] (see also [15] for a more precise construction) for the case
β = 2, and we refer the reader to [8], [9] for further details in the general case 1 < β. Lastly, we invite the
reader to compare with Figure 1 and note that boundary layer in time of size ε2−β breaks when β = 2,
hence the coupling of the pressure and velocity of micro-incompressible flow.

When 2 < β, there is no boundary layer in time that impacts the micro-incompressible part of the
flow. Nevertheless, using a formal approach to yield the asymptotic behavior of micro-incompressible flow
yields the following information

lim
ε→0+

(uε − vε)
“
t, x,

x

ε

”
= u0(τ, x, y) 6= 0 on ∂Ys.

The failure of the no-slip condition on the microscopic level is due to the formation of a boundary layer in
space of size εβ/2, which forms as ε vanishes. It follows that linearized Prandtl boundary layer expansions
are necessary for the case 2 < β, and we hope that the reader will find the presentation given here
interesting in its own right. Using the Prandtl expansions, we show that this layer quickly dissipates the
energy carried by the waves. That is, the energy carried by micro-incompressible flow is described by the
closed equations obtained via the usual two-scale process.

In closing, we leave the reader with a few remarks concerning micro-incompressible flow. First,
we note that while β = 2 is in a sense a critical value, we do not assign definitions to the regimes
1 < β < 2 and 2 < β. Also, while there is a boundary layer in space of size ε(β+1)/2 when 1 < β, we only
briefly mentioned it since its impact is mainly related to micro-acoustic flow, which is the subject of our
forthcoming paper [9]. Moreover, while this paper employs the two-scale methods used in our first paper,
the present boundary layer phenomena requires additional weak convergence tools. For instance, as we
mentioned earlier the Prandtl expansions are necessary for the case 2 < β, but also incorporated in the
homogenization process is the Bloch decomposition. We refer the reader to [28], [5] and [12] as examples
of just some of works involving the Bloch decomposition. Using the Bloch decomposition we introduce
the modified Helmholtz operators P εM , Q

ε
M (see section 3.1), which in essence serve as the basis for the

current article as well as our forthcoming work [9]. Indeed, it is through these modified operators that we
are able to partition the flow into its incompressible and acoustic parts on the microscopic level. What’s
more, we believe the modified Helmholtz operators to be new and interesting in their own right.

2 Preliminaries

2.1 The Domain
Define Y = (0, 1)d to be the unit open cube in Rd, and let Ys be a closed smooth subset of Y with

strictly positive measure. By smoothness of ∂Ys, we mean to take it as regular as needed. The domain
Y/Ys is denoted by Yf and we refer to Ys, Yf to be the solid and fluid parts of Y . Repeating Yf by

Y -periodicity to all of Rd we get the fluid domain R0. The porous medium is now defined to be εR0 which
is denoted by Rdε . We define Y εf , Y

ε
s to be εYf , εYs and note

Rdε = {x : x ∈ Y εf + p, for some p ∈ Zd}.
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Figure 3: The elementary fluid cell

2.2 Notations
We define B = [0, 2π)d and we say that a function f(x) defined on Rd0 is θ-quasi periodic, for θ ∈ B,

provided
f(x+ p) = eiθ·p f(x), ∀p ∈ Zd. (4)

A function which is 0-quasi periodic, is simply referred to as Y -periodic.
The space of smooth functions which vanish at infinity is denoted by D(Rd), and for θ ∈ B, Ckθ (Yf ) is

the space of differentiable functions up to order k which are θ-quasi periodic. We define the space L2
θ(Yf )

to be all functions in L2
loc(R

d
0) satisfying (4). The Sobolev space Hk

θ (Yf ) is the space of the functions

with derivatives up to order k belonging to L2
θ(Yf ) and the space Hk

0θ(Yf is the subspace of functions in

Hk
θ (Yf ) that vanish on the boundary ∂Y εs . Also recall that the space H−1

θ (Yf ) is defined by the norm

‖f‖
H−1
θ

(Yf )
= sup
‖u‖

H1
0θ(Yf )=1

|< f, u >|

When θ = 0, we use the notations Ck#(Yf ), L2
#(Yf ), Hk

#(Yf ), Hk
0#(Yf ), H−1

# (Yf ). We denote Xd to be

the Banach space of vector valued functions of d-components, each component belonging to Banach space
X. We note that all the Hilbert spaces mentioned in this paper are equipped with an inner product whose
second component is conjugated, here z∗ denotes the complex conjugate of z.

Lastly, the we define the operators [ · ]1, [ · ]2 acting on Cd+1 as

[z]1 = z1, [z]2 = z2,

where z = (z1, z2) ∈ C× Cd.

2.3 Two-Scale Convergence
Two-scale convergence is a notion first introduced by G. Nguetseng, [21], and later extended by G.

Allaire [2], used to capture the parts of fε which oscillate at frequency ε−1. More precisely, two-scale
convergence is a rigorous justification of the first term in formal two-scale expansions. In our problem
two-scale convergence plays a significant role in understanding the local and total energies (3).

Definition 2.1 Let fε(x), f0(x, y) belong to L2(Rdε), L2(Rd × Y ) respectively. We say fε(x) two-scale

converges to f0(x, y) (denoted fε
2−s
⇀ f0) providedZ

Rdε
fε(x)σ

“
x,
x

ε

”
ε→0→

Z
Rd

Z
Yf

f0(x, y)σ(x, y),

for all σ ∈ D(Rd;C∞# (Y )).
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Notice that if fε(x) two-scale converges to f0(x, y) then the following always holds

lim
ε→0
‖fε‖2

L2(Rdε)
≥ ‖f0‖2L2(Rd×Yf )

.

If equality holds, we have

Definition 2.2 We say fε strongly two-scale converges to f0(x, y), denoted fε
2−s→ f0(x, y) provided fε

two-scale converges to f0 and
lim
ε→0
‖fε‖2

L2(Rdε)
= ‖f0‖2L2(Rd×Y )

.

Strong two-scale convergence is interpreted as saying that all of the oscillations of fε are of frequency
ε−1. This is due to the fact that strong two-scale convergence implies

lim
ε→0
‖fε‖L2(Rdε) = lim

ε→0

‚‚‚f0

“
x,
x

ε

”‚‚‚
L2(Rdε)

(5)

whenever f0 is continuous in either the x or y variable. More generally, (5) holds provided f0 is an
admissible test function in the sense of Allaire (see definition 1.4 of [2]). We note that given f0(x, y),
having continuity in at least one of its variables enables us to make sense of the quantity f0

`
x, x

ε

´
. We

refer the reader to Section 5 of [2] for further discussion and to [10] for a characterization of strong two-scale
convergence.

If f0(x, y) is an admissible test function, then we can improve the convergence of (5). Indeed, we
have the following

lim
ε→0

Z
Rdε

˛̨̨
fε(x)− f0

“
x,
x

ε

”˛̨̨2
= 0.

Finally, we can add a time dependence in all the limits we mentioned above. In particular if f0 ∈
C([0, T ];L2

#(Yf ;C(Rd) ∩ L2(Rd))), then we have

lim
ε→0

‚‚‚f0

“
t, x,

x

ε

”‚‚‚
L2((0,T )×Rdε)

= ‖f0‖L2((0,T )×Rd×Yf ) .

The main result of two-scale convergence is the existence of a two-scale limit for bounded sequences
in L2(Rdε). The main result is stated below; for a proof we refer the reader to [21], [2].

Theorem 2.3 Let fε belong to a bounded set of L2(Rdε). Then there exist a subsequence of ε (still
denoted by ε) and a Y -periodic function f0(x, y) ∈ L2(Rd × Y ), such that fε(x) two-scale converges to
f0(x, y).

2.4 The Bloch Decomposition of A0
In order to completely state the main results of this paper, we introduce the Bloch decomposition of

the wave operator

A0 =

„
0 div
∇ 0

«
,

on the domain Y εf . Here, ε will be fixed and one can think as if ε = 1. We keep it in the notation for later

use. We begin by defining

L2
⊕,ε = −

Z
B
L2
θ(Y εf ) dθ

to be the space of all measurable mappings

u : B → L2
θ(Y εf )

with finite norm

‖u‖2
L2
⊕,ε

= −
Z
B
−
Z
Y ε
f

|u(x, θ)|2 dx dθ <∞.

Due to the presence of the holes in our problem, one uses the test functions φ ∈ C∞c (Rdε) to deduce
the following proposition. The proof is essentially given in [23].
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Proposition 2.4 The mapping Iε : L2(Rdε)→ L2
⊕,ε defined as

(Iεu)(x, θ) = u#(x, θ) =
X
p∈Zd

u(x− εp) eiθ·p,

is unitary. The inverse is given by

`
(Iε)−1u#

´
(x) = −

Z
B
u#(x, θ) dθ.

If u, v belong to L2(Rdε), then Parseval’s formula holds,

(u, v)L2(Rdε) = (u#, v#)L2
⊕,ε

.

We now study the spectral problem with Neumann boundary conditions. More precisely, we define
for each θ ∈ B, the non-decreasing eigenvalues {µ2

k(θ)}1≤k and eigenvectors {φk(x, θ)}1≤k satisfying

8>>><>>>:
−4φk(θ) = µ2

k(θ)φk(θ) in Yf

∂φk(θ)

∂ν
= 0 on ∂Ys

φk(x+ p, θ) = ei θ·p φk(x, θ), ∀p ∈ Zd

(6)

The following proposition summarizes some of the basic properties of the eigenvalues and eigenfunc-
tions µk(θ), φk(θ). A proof is provided in subsection 4.1.

Proposition 2.5 For each θ ∈ [0, 2π)d there exist µk(θ), φk(θ), k = 1, 2, 3 . . . satisfying (6) such that

0 ≤ µ2
1(θ) ≤ µ2

2(θ) ≤ . . . ≤ µ2
k(θ) . . .

k→∞→∞.

Moreover:

(i) µk(θ) belongs to C#(B) and satisfies

sup
θ,ξ
θ 6=ξ

|µk(θ)− µk(ξ)|
|θ − ξ|

≤ 1

(ii) 0 = inf
θ∈B

µ1(θ) < inf
θ∈B

µ2(θ) ≤ . . . inf
θ∈B

µk(θ) ≤ . . . k→∞→∞. Moreover, µ1(0) = 0.

(iii) The principle eigenvalue µ1(θ) is simple in a neighborhood of the origin.

(iv) For all θ ∈ B, the eigenvectors {φk(θ)}1≤k form an orthonormal basis of L2
θ(Yf ). For θ 6= 0, the

sequence
n
∇φk(θ)
µk(θ)

o
1≤k

forms an orthonormal basis of Hθ(Yf ) where

Hθ(Yf ) = {u ∈ L2
θ(Yf )d : u = ∇p for some p ∈ H1

θ (Yf )}.
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(v) When θ = 0, the sequences {φk(0)}1<k,
n
∇φk(0)
µk(0)

o
1<k

form an orthonormal basis of L2
#(Yf )/R

and H#(Yf ) respectively where

L2
#(Yf )/R =

(
p ∈ L2

#(Yf ) :

Z
Yf

p = 0

)
,

H#(Yf ) =

(
u ∈ L2

#(Yf )d : u = ∇p for some p ∈ H1
#(Yf ) satisfying

Z
Yf

p = 0

)
.

Remark 2.6 In general, a Bloch function is the product of a plane wave and a periodic function, i.e.

f(x, θ) = eiθ·x g(x, θ)

The eigenvalues associated to (6) are in fact Bloch functions. Indeed,

φk(x, θ) = eiθ·x vk(x, θ)

where the functions vk are obtained from the periodic eigenvalue problem8><>:
− (∇+ iθ) · (∇+ iθ) vk(θ) = µ2

k(θ)vk(θ) in Yf

(∇+ iθ) vk(θ) · ν = 0 on ∂Ys

vk(x+ p, θ) = vk(x, θ), p ∈ Zd

The diagonalization of the inviscid operator A0 on the domain Y εf is now obtained using the eigen-

values and eigenfunctions of the spectral problem (6) along with an appropriate rescaling. Indeed, for
each θ 6= 0 and k ∈ Zd/{0}, we define

λεk(θ) = ε−1 λk(θ),

Φεk(x, θ) = ε−d/2 Φk

“x
ε
, θ
”
,

(7)

where
λk(θ) = sgn(k)µ|k|(θ),

Φk(x, θ) =

0BB@
φ|k|(x,θ)√

2

sgn(k)∇φ|k|(x,θ)
i µ|k|(θ)

√
2

1CCA .

Remark 2.7 When θ = 0, we use the same definition (7), but take 1 < |k|.

We conclude 8>><>>:
A0Φεk(θ) = iλεk(θ)Φεk(θ) in Y εf

[Φεk(θ)]2 · ν = 0 on ∂Y εs

Φεk(x+ p, θ) = ei θ·p Φεk(x, θ), p ∈ Zd.

(8)

Now, for each θ ∈ B, we define Sεk(θ) to be the space spanned by Φεk(θ) and we define Πεk(θ) to be

the orthogonal projection from L2
θ(Y εf )d+1 onto Sεk(θ).

We define the following mutually orthogonal subspaces on L2(Rdε)d+1

Sεk = (Iε)−1−
Z
B
Sεk(θ) dθ

= {u ∈ L2(Rdε)d+1; u#(·, θ) ∈ Sεk(θ) for a.e. θ ∈ B},
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where Iε is the mapping given in proposition 2.4. We denote Πεk as the orthogonal projection from

L2(Rdε)d+1 onto Sεk. Notice that we have

ΠεkΦ = (Iε)−1−
Z
B

Πεk(θ)IεΦ dθ .

As a result of Proposition 2.5, the mutually orthogonal spaces Sεk(θ) have the following direct sum

decomposition in L2
θ(Y εf )d+1:

M
1≤|k|

Sεk(θ) = L2
θ(Y εf )×Hθ(Y εf ), when θ 6= 0.

(9)

Integrating in θ and applying (Iε)−1 to (9), we have the following result. The proof will be given in
subsection 4.2.

Proposition 2.8 M
1<|k|

Sεk ⊆ L
2(Rdε)×H(Rdε) ⊆

M
1≤k

Sεk = L2(Rdε)×Hloc(Rdε), (10)

where
H(Rdε) = {u ∈ L2(Rdε)d;u = ∇p, for p ∈ H1(Rdε)},

Hloc(Rdε) = {u ∈ L2(Rdε)d;u = ∇p, for p ∈ H1
loc(R

d
ε)}

Furthermore, [fε]2 can be written as ∇gε and satisfies the inequality

‖gε‖L2(Rdε) ≤ Cε ‖∇g
ε‖L2(Rdε) , whenever fε ∈

M
1<|k|

Sεk. (11)

3 Main Results
Here, we state our main results. The first subsection is about the modified Helmholtz operator that allows
us to split the micro-incompressible and the micro-acoustic parts of the flow. The second one is about
some convergence results.

3.1 Modified Helmholtz Operators
Using the Bloch decomposition, we introduce the modified Helmholtz operators P εM , Q

ε
M . These

operators serve as the basis for the current article, and our final paper [9]. In summary, they enable us
to precisely partition the flow into an incompressible part and an acoustic one on the microscopic scale.
Consequently a description of the flow in all regions of time and space is possible.

We begin by recalling the usual Helmholtz operators P ε, Qε acting on L2(Rdε)d. We define them by

P ε = I −Qε, Qε = (Iε)−1−
Z
B
Qε(θ)dθ Iε, (12)

where
Qε(θ)f = ∇g for θ 6= 0

and g is defined by the system8>><>>:
−4g = divf in Y εf

∇g(θ) · ν = f · ν on ∂Y εs

g(x+ εp, θ) = ei θ·p g(x, θ), ∀p ∈ Zd
(13)
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It is not difficult to see that P εf, Qεf indeed yield the usual Helmholtz operators. That is,(
div(P εf) = 0 on Rdε
P εf · ν = 0 on ∂Rdε

and that Qεf is a gradient (see [8]).
What we find interesting is how Helmholtz operators P ε, Qε defined in (12) can also be characterized

through the projection operators Πεk. Indeed, as a consequence of direct sum (9), we have the following

Qε(θ)f(θ) =
X

1≤|k|
[ Πεk(θ)(0, f(θ)) ]2, when θ 6= 0.

Here f(θ) belongs to L2
θ(Y εf )d and (0, f(θ)) ∈ C× Cd. It follows that

Qεf =
X

1≤|k|
[ Πεk(0, f) ]2

for f ∈ L2(Rdε)d.

Remark 3.1 When θ = 0, we denote P εy , Q
ε
y the Helmholtz operators on the domain Y εf . That is

P εy = I −Qεy

where
Qεyf = ∇g

and g is defined by the system 8>>>>>>><>>>>>>>:

−4g = divf in Y εf

∇g · ν = f · ν on ∂Y εsZ
Y ε
f

g = 0

g is Y -periodic

(14)

As a result of Proposition 2.5, we have the following direct sum in L2
#(Y εf )d+1

M
1<|k|

Sεk(0) = L2
#(Y εf )/R×H#(Y εf ),

hence
Qεyf =

X
1<|k|

[Πεk(0)(0, f)]2 , (15)

where f ∈ L2
#(Y εf )d, and (0, f) belongs to R× Rd.

We now introduce the modified Helmholtz operators P εM , Q
ε
M acting on L2(Rdε)d we define P εM =

I −QεM , where QεM is given by

QεMf =
X

1<|k|
[ Πεk(0, f) ]2 .

Note that we have the following relationship

P εMf = P εf +
ˆ

(Πε1 + Πε−1)(0, f)
˜
2
,

QεMf = Qεf −
ˆ

(Πε1 + Πε−1)(0, f)
˜
2
.
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Our main results of this section are state the asymptotic properties of the quantities

gε1 =
ˆ`

Πε1 + Πε−1

´
(gε, 0)

˜
1
, P εMf

ε, QεMf
ε.

on the microscopic level. In order to precisely state the main results of this section, we extend functions
from Rdε to all of Rd in the following way.

Definition 3.2 Let f belong to L2(Rdε). We extend f to all of Rd in the following way

f̃ =

(
f(x) when x ∈ Rdε
−
R
Y ε
f,p

f(y) when x ∈ Y εs,p, ∀p ∈ Zd .

We have the following results, proofs of which can be found in section 4.

Theorem 3.3 Let gε be a bounded sequence in L2(Rdε) and suppose g̃ε ⇀ g in L2(Rdε). Then gε1 two-scale
converges to g(x).

Theorem 3.4 Let fε be a bounded sequence in L2(Rdε)d. Let f0(x, y) denote the two-scale limit of fε.
Then P εMf

ε, QεMf
ε two-scale converge to Pyf0, Qyf0 where Py , Qy are the usual Helmholtz operators

on the domain Yf (see Remark 3.1).

Motivated by the formal asymptotic analysis for the case β = 2, along with the results of Theorems
3.3, 3.4, we conclude this section with the following definitions.

Definition 3.5 Micro-incompressible flow is defined to be the solution to system (1) with initial condition
(bε1, P

ε
Ma

ε), where

bε1 =
ˆ `

Πε−1 + Πε1
´

(bε, 0)
˜
1
.

We define micro-acoustic flow to be the solution to system (1) with initial condition (bε2, Q
ε
Ma

ε),
where

bε2 = bε − bε1.

3.2 Convergence results
In order to precisely state all the convergence results associated to micro-incompressible flow, we need to
impose the following conditions on the initial data (bε, aε):

(S1) (i) (bε, aε) is a bounded sequence in L2(Rdε)d+1 and

ebε ⇀ b(x)

aε
2−s
⇀ a0(x, y).

(ii) We decompose bε = bε1 + bε2 where

bε1 =
ˆ `

Πε−1 + Πε1
´

(bε, 0)
˜
1

bε2 = bε − bε1,

and we assume that bε1 converges strongly to b(x) in L2(Rdε).

(iii) Pya0(x, y) is an admissible test function and P εMa
ε 2−s→ Pya0(x, y) .

11



Lastly, we define (qε, vε) to be the solution to (1) with initial value (bε2, Q
ε
Ma

ε). The main results read
as follows

Theorem 3.6 (1 < β < 2) Let (S1) hold, and assume T ∈ (0,∞). Assume sufficient regularity and
compatibility conditions on the initial data (b(x), Pya0(x, y)) and let (uε, pε) be the solution to (1) for
1 < β < 2. Then

sup
0≤t≤T

‖pε(t, x)− b(x)− qε(t, x)‖2
L2(Rdε)

ε→0
→ 0,

sup
0≤t≤T

‚‚‚‚uε(t, x)− u
„

t

ε2−β
, x,

x

ε

«
− vε(t, x)

‚‚‚‚2

L2(Rdε)

ε→0
→ 0,

εβ
Z T

0

‚‚‚‚∇uε − 1

ε
∇yu

„
t

ε2−β
, x,

x

ε

«
−∇vε(t, x)

‚‚‚‚2

L2(Rdε)

ε→0
→ 0,

where (p(τ, x, y), u(τ, x, y)) is the solution to the following two-scale Stokes system8>>>>>>>>>>><>>>>>>>>>>>:

∂τu−4yu+∇yp = 0 in Rd × Yf
divyu = 0

u = 0 on ∂YsZ
Yf

p = 0

u(τ = 0) = Pya0(x, y)

y → (p, u) is Y -periodic

(16)

Remark 3.7 The relationship between the time variables τ and t is given by τ = t/ε2−β . This is due to
the initial layer in time of size ε2−β that remains from the case of strongly viscous flow (see [10]). Notice
that this layer in time decouples the micro-incompressible part of the flow as ε→ 0+ (see Figure 2). We
also note that if (bε2, Q

ε
Ma

ε) goes strongly to 0 in L2, then (qε, vε) can be replaced by 0 in the statement
of the theorem.

Theorem 3.8 (β = 2)Let (S1) hold, and assume T ∈ (0,∞). Assume sufficient regularity on the initial
data (b(x), Pya0(x, y)) and let (uε, pε) be the solution to (1) for β = 2. Then

sup
0≤t≤T

‖pε(t, x)− p(t, x)− qε(t, x)‖2
L2(Rdε)

ε→0
→ 0,

sup
0≤t≤T

‚‚‚uε(t, x)− u
“
t, x,

x

ε

”
− vε(t, x)

‚‚‚2

L2(Rdε)

ε→0
→ 0,

ε2
Z T

0

‚‚‚‚∇uε − 1

ε
∇yu

“
t, x,

x

ε

”
−∇vε(t, x)

‚‚‚‚2

L2(Rdε)

ε→0
→ 0,

where (p(t, x), u(t, x, y)) is the solution to the following two-scale Stokes/Acoustic system8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp+ divx

Z
Yf

u = 0 in Rd

∂tu−4yu+∇xp+∇yp1 = 0 in Rd × Yf
divyu = 0

u = 0 on ∂YsZ
Yf

p1 = 0

p(t = 0) = b(x)

u(t = 0) = Pya0(x, y)

y → (p1, u) is Y -periodic

(17)
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Remark 3.9 Notice that the layer in time of size ε2−β disappears at β = 2, hence the micro-incompressible
part of the flow becomes coupled. In particular, we obtain the coupled macro-micro system given in (17).
We refer the reader to Figure 1 for the diagram illustrating the behavior of the flow near initial time.

Theorem 3.10 (2 < β) Let (S1) hold, and assume T ∈ (0,∞). Assume sufficient regularity on the
initial data (b(x), Pya0(x, y)) and let (uε, pε) be the solution to (1) for 2 < β. Then

sup
0≤t≤T

‖pε(t, x)− p (t, x)− qε(t, x)‖2
L2(Rdε)

ε→0
→ 0,

sup
0≤t≤T

‚‚‚uε(t, x)− u
“
t, x,

x

ε

”
− vε(t, x)

‚‚‚2

L2(Rdε)

ε→0
→ 0,

εβ
Z T

0
‖∇uε −∇vε‖2

L2(Rdε)

ε→0
→ 0,

where (p(t, x), u(t, x, y)) is the solution to the following two-scale acoustic system

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp+ divx

Z
Yf

u = 0 in Rd

∂tu+∇xp+∇yp1 = 0 in Rd × Yf
divyu = 0

u · ν = 0 on ∂YsZ
Yf

p1 = 0

p(t = 0) = b(x)

u(t = 0) = Pya0(x, y)

y → (p1, u) is Y -periodic

(18)

Remark 3.11 For β > 2, while an initial layer in time is not present, we do have a boundary layer in
space of size εβ/2 due to the fact that we can only impose the boundary condition

u · ν = 0 on ∂Ys.

A description of the boundary layer flow in space is necessary to conclude the overall behavior of the
fluid. We refer the reader to the proof of Theorem 3.10 where we apply linearized Prandtl boundary layer
expansions to conclude that the energy trapped is dissipated by heat flow.

We conclude this section with a few observations regarding the convergence results of this section.

Remark 3.12

(i) All the energy descriptions we obtained for 1 < β have a macroscopic behavior, contrasting with
the behavior of the flow when β ≤ 1. We refer the reader to [10], where there is no macroscopic
flow due to very strong viscosity.

(ii) Notice the intensity in which energy is dissipated weakens as β increases. More precisely, notice
that the micro-incompressible part of the flow only contributes to the dissipation of the energy
provided β ≤ 2. We show in our final paper [9] that the micro-acoustic part of the flow never
dissipates the energy when 3 < β. That is

εβ
Z

Rdε
|∇vε|2

ε→0
→ 0 whenever 3 < β

13



(iii) The oscillations of the pressure term pε are completely contained in qε whenever β > 1.

(iv) In the three convergence Theorems for 1 < β, we did not try to give a rate of convergence in terms
of ε. One can easily get some error estimate in terms of ε by computing the next terms in the
formal asymptotic expansions, but this is not our goal in this paper.

(v) Also, all our Theorems for 1 < β have the assumption that the initial condition (b(x), Pya0(x, y))
is sufficiently regular. We did not try to get the best possible regularity on the initial data and
one can easily lower the regularity requirement on the initial data by performing a mollification
in the x variable. We refer the reader to [10] for details.

4 Proof of modified Helmholtz decomposi-

tion
The main goal of this section is to prove Theorem 3.4. We start with the proof of some propositions

4.1 Proof of proposition 2.5:
For θ ∈ B, we recall the following characterization

µ2
k(θ) = min

F∈Σk(θ)
max
u∈F

‖∇u‖2L2(Yf )

‖u‖2L2(Yf )

, (19)

where Σk(θ) is the collection of all k-dimensional subspaces of H1
θ (Yf ). Let ξ belong to B such that ξ 6= θ.

Define F to be the linear span of {ei(ξ−θ)·xφj(θ)}kj=1 in H1
ξ (Yf ) and let u belong to F . Then

‖∇u‖2L2(Yf ) =
‚‚∇ξ−θ ũ‚‚2

L2(Yf )

= ‖∇ũ‖2L2(Yf ) + 2Re(∇ũ, i(ξ − θ)ũ) + |θ − ξ|2 ‖ũ‖2L2(Yf )

≤
`
µ2
k(θ) + 2µk(θ)|θ − ξ|+ |ξ − θ|2

´
× ‖u‖2L2(Yf ) ,

where ∇θ = ∇+ iθ, and ũ is a linear combination of {φj(θ)}kj=1. Since F has dimension k in H1
ξ (Yf ) we

conclude from (19)
µ2
k(ξ) ≤ µ2

k(θ) + 2µk(θ)|θ − ξ|+ |ξ − θ|2. (20)

Switching the roles of θ and ξ allows us to conclude (i).
We now prove (ii), beginning with the proof of

0 ≤ inf
θ∈B

µ2
1(θ) ≤ inf

θ∈B
µ2

2(θ) ≤ . . . inf
θ∈B

µ2
k(θ) ≤ . . . k→∞→ ∞. (21)

Observe that {inf
θ
µ2
k(θ)}∞k=1 is a non-decreasing sequence. To see that its only accumulations point is at

∞, we let θk be the value for which µ2
k(θ) achieves its minimum. Then from (20) we conclude

µk(θ) ≤ µk(θk) + C = inf
θ
µk(θ) + C.

Here C is a constant independent of k. Passing to the limit in k, we conclude (21).
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Now consider the max-min characterization of the principle eigenvalue

µ2
1(θ) = min

u∈H1
θ
(Yf )

u6=0

‖∇u‖2L2(Yf )

‖u‖2L2(Yf )

. (22)

Taking test function eiθ·x belonging to H1
θ (Yf ) in (22) we conclude

µ2
1(θ) ≤ |θ|2,

hence
inf
θ∈B

µ2
1(θ) = 0 = µ1(0).

We note from system (6) that

µ2
2(θ) > 0 for θ ∈ (0, 2π)d

for if µ2
2(θ) is zero at some θ ∈ (0, 2π)d, then its corresponding eigenvector must be zero due to the θ-quasi

periodic boundary conditions. Thus it remains to show µ2
2(θ) is positive for θ = 0. We have the variational

formula

µ2
2(0) = min

F∈Σ2(0)
max
u∈F

‖∇u‖2L2(Yf )

‖u‖2L2(Yf )

= max
F∈Σ1(0)

min
u∈F⊥

‖∇u‖2L2(Yf )

‖u‖2L2(Yf )

≥ min
u∈H1

#(Yf )/R

‖∇u‖2
L2

#(Yf )

‖u‖2
L2

#(Yf )

> 0,

where the inequality follows by taking the subspace F to be the constants. The proof of (ii) is now
complete.

For the proof of (iii), notice that (20) implies the inequalities

µ1(θ) ≤ |θ|,
µ2(0) ≤ µ2(θ) + |θ|.

(23)

If we take the ball
BR1 (0) = {θ ∈ Rd : |θ| < R1}, R1 = µ2(0)/2,

then the inequalities in (23) imply

µ1(θ) < µ2(θ) on BR1 (0).

Hence, our claim about the simplicity of the principle eigenvalue follows.
To prove (iv) and (v), we start by explaining the construction of the φk. We recall the Poincare

inequality. For θ ∈ (0, 2π)d there exists a constant C(θ) > 0 such that

‖u‖2 ≤ C(θ) ‖∇u‖2 ∀u ∈ H1
θ (Yf ) (24)

Let’s assume for the moment that (24) holds. Then given f ∈ L2
θ(Yf ), there exists a unique u ∈

H1
θ (Yf ) satisfying 8>>><>>>:

−4u = f in Yf

∂u

∂ν
= 0 on ∂Ys

u(x+ p, θ) = eiθ·p u(x, θ), ∀p ∈ Zd

(25)

i.e. Z
Yf

∇u(x, θ) · ∇σ(x, θ)∗ dx =

Z
Yf

f(x)σ(x, θ)∗ dx ∀σ ∈
`
H1
θ (Yf ), ‖∇·‖2

´
.
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Now, we define the mapping

L2
θ(Yf ) 3 f Kθ−→ u ∈ L2

θ(Yf ).

The mapping Kθ is linear and continuous. Using (25) we can easily deduce the self-adjointness of Kθ. Kθ
is also a compact operator as a consequence of the Poincare inequality (24) and Sobolev compactness. It
follows from Hilbert-Schmidt theorem that there exist φk(θ), µ2

k(θ), k = 1, 2, 3, . . . satisfying (6) such that
the functions φk(θ) form an orthonormal basis of L2

θ(Yf ). Using the weak formulation of the Neumann

problem (6) we conclude
n
∇φk(θ)}k
µk(θ)

o∞
k=1

forms an orthonormal basis of
`
H1
θ(Yf ), ‖∇·‖2

´
.

When θ = 0, we have the classical periodic case. We note that the principle eigenvalue is zero, and
its corresponding eigenvector is a constant. Then to obtain the remaining eigenvectors and eigenvalues of
(6), we look at the space L2

#(Yf )/R and we argue as above.

We now prove (24). For this we appeal to the closed graph theorem. We first remark

`
H1
θ (Yf ), ‖∇.‖2

´
(26)

is a Banach space for each θ ∈ (0, 2π)d. Indeed, what is required to show is the completeness, since it is a
normed space. Let um be a Cauchy sequence in (26). Then there exists v ∈ L2

θ(Yf ) such that ∇um → v
in L2(Yf ). To see v is a gradient we appeal to the following well known lemma, a proof of which can be
found in [26] (see Remark 1.9).

Lemma 4.1 Let θ ∈ [0, 2π)d and f(θ) belong to L2
θ(Y εf )d. Suppose that

Z
Y ε
f

f(θ, x) · σ(θ, x)∗ dx = 0

for all σ(θ) ∈ L2
θ(Yf )d satisfying (

divσ = 0 in Y εf

σ · ν = 0 on ∂Y εs .
(27)

Then there exists g(θ) ∈ H1
θ (Y εf ) such that f(θ) = ∇g(θ).

Now take σ ∈ L2
θ(Yf )d , divergence free in x and θ-quasi periodic. Then

Z
Yf

v · σ∗ = lim
m→∞

Z
Yf

∇um · σ∗ = 0.

It follows that v = ∇p for some p ∈ H1
θ (Yf ). Since the space defined in (26) is a Banach space, one can

apply the closed graph theorem to the identity mapping

i :

„
H1
θ (Yf ),

“
‖·‖22 + ‖∇.‖22

”1/2
«
→
`
H1
θ (Yf ), ‖∇.‖2

´
to conclude that i−1 is continuous, hence (24) follows and the proof of Proposition 2.5 is now complete.
�
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4.2 Proof of Proposition 2.8:
We begin with the proof of the first inclusion in (10) and inequality (11). Assume f belongs toM

1<|k|
Sεk; we need to show that [f ]2 belongs to H(Rdε). Notice that

−
Z
B

[Φεk(θ)]2dθ = −
Z
B

sgn(k)∇φ|k|(θ)
iµ|k|(θ)

√
2

dθ = ∇−
Z
B

sgn(k)φ|k|(θ)

iµ|k|(θ)
√

2
dθ (28)

whenever 1 < |k| (see remark 4.3 for the case |k| = 1). We therefore have the following expansion

[f ]2 =
X

1<|k|
[Πεkf ]2 =

X
1<|k|

∇gεk

where

gεk = ε−
Z
B
Bεk(θ)

sgn(k)[Φεk]1(θ)

iµ|k|(θ)
dθ,

Bεk(θ) = (f#(θ), Φεk(θ))L2(Yf ).

(29)

It follows that [fε]2 = ∇gε, where gε =
X

1<|k|
gεk. Moreover, we have the bounds

Z
Rdε
|gεk|

2 ≤
Cε

inf
θ
µ2

2(θ)
−
Z
B
|Bεk|

2 =
Cε

inf
θ
µ2

2(θ)

Z
Rdε
|[Πεkf ]2|2 . (30)

We deduce the inequality in (11) by summing (30) over k. The proof of the first inclusion is now complete.
We now prove the equality in (10) beginning with

M
1≤|k|

Sεk ⊆ L
2(Rdε)×Hloc(Rdε). (31)

Suppose f belongs to the left hand side of (31), it suffices to show [Πε±1f ]2 ∈ Hloc(Rdε). We have the

following classical lemma which characterizes the space Hloc(Rdε):

Lemma 4.2 f ∈ L2(Rdε)d belongs to Hloc(Rdε) if and only ifZ
Rdε
f · ψ = 0

for all ψ ∈ H1(Rdε)d which satisfy divψ = 0 and ψ.n = 0 on ∂Rdε .

Consider the integral Z
Rdε

[Πε±1f ]2 · ψ

where ψ ∈ H1(Rdε)d and divψ = 0, ψ.n = 0 on ∂Rdε . We haveZ
Rdε

[Πε±1f ]2 · ψ = −
Z
B

Z
Y ε
f

Bε±1(θ)[Φε±1]2(x, θ) · ψ#(x, θ) = 0

where Bε±1(θ) is defined in (29). The proof of (31) now follows from lemma 4.2.
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To prove the other inclusion, namelyM
1≤|k|

Sεk ⊇ L
2(Rdε)×Hloc(Rdε), (32)

we take f belonging to the right hand side of (32). As a consequence of Lemma 4.2 we have the following

−
Z
B

Z
Y ε
f

[f#]2(x, θ) · ψ#(x, θ) = 0, (33)

for all ψ# belonging to −
R
B H

1
θ0(Y εf )dθ and satisfying divψ# = 0. It follows that [f#(θ)]2 belongs to

Hθ(Y εf ) and as a result of Proposition 2.5 we have

[f#]2(θ) =
X

1≤|k|
[Πεk(θ)f ]2

The proof of proposition 2.8 is now complete. �

Remark 4.3 In fact, we have the strict inclusion

L2(Rdε)×H(Rdε) ⊂
M

1≤|k|
Sεk.

This follows from the fact that (28) does not hold for |k| = 1. The failure of ∇ to commute with the
integral −

R
B is due to the singularity that φ1(θ)/µ1(θ) has at the origin. In particular, we have‚‚‚‚−Z

B

φ1(θ)

µ1(θ)
dθ

‚‚‚‚
L2(Rdε)

=

‚‚‚‚ 1

µ1

‚‚‚‚
L2(B)

=∞.

4.3 Proof of theorem 3.3:
We begin with the following relationship between the weak limits of fε and f̃ε. A proof can be

found in [19].

Proposition 4.4 Let fε ∈ L2(Rdε) be a bounded sequence. Then the following statements are equivalent.

(i) fε ⇀ |Yf |f in L2(Rdε) .

(ii) efε ⇀ f in L2(Rd) .

We now define
gε1 =

ˆ `
Πε1 + Πε−1

´
(gε, 0)

˜
1
,

gε2 = gε − gε1,

and we note that

gε2 =

24 X
1<|k|

Πεk (gε, 0)

35
1

.

We show that gε2 ⇀ 0. Using the definitions of the projections Πεk, we have the equality

Z
Rdε
gε2(x)σ(x) dx =

∞X
1<|k|

−
Z
B

(gε#(θ), [Φεk(θ)]1)L2(Yf ) (σ#(θ), [Φεk(θ)]1)L2(Yf )
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Performing an integration by parts yields

(σ#(θ), [Φεk(θ)]1)L2(Yf ) =
−i ε sgn(k)

µ|k|(θ)
(∇σ#, [Φεk(θ)]2)L2(Yf ).

Hence, ˛̨̨̨
˛
Z

Rdε
gε2 σ

˛̨̨̨
˛ ≤ Cε

inf
θ
µ2

∞X
1<|k|

„
−
Z
B

˛̨̨
(gε#(θ), [Φεk(θ)]1)L2(Yf )

˛̨̨2
+
˛̨
(∇σ#(θ), [Φεk(θ)]2)

˛̨2«

≤
Cε

inf
θ
µ2

“
‖gε‖2

L2(Rdε)
+ ‖∇σ‖2

L2(Rdε)

”
,

where the last equality follows from proposition 2.8. Sending ε→ 0 we conclude gε1 ⇀ |Yf |g in L2(Rdε).
To improve this weak convergence, we let g0(x, y) denote the two-scale limit of gε1. It suffices to show

g0(x, y) is independent of y in Yf . Using the definition of the projections, we write gε1 explicitly

gε1(x) = 2−
Z
B
Bε1(θ) [Φε1(x, θ)]1 dθ

where
Bε1(θ) =

“
gε#(θ), [Φε1(θ)]1

”
L2(Y ε

f
)

Applying the gradient to gε1 we deduce

ε∇gε1(x) = 2i−
Z
B
Bε1(θ)µ1(θ)[Φε1]2(x, θ) dθ

= 2i
X
p∈Zd

µ̂1(p)hε(x+ εp)
(34)

where we have expanded the principle eigenvalue µ1(θ) into its Fourier series, and hε is defined to be

hε(x) = 2−
Z
B
Bε1(θ) [Φε1]2(x, θ) dθ

We are now in a position to compute the two-scale limit of ε∇gε1. First observe that, if we denote the
two-scale limit of hε(x) by h0(x, y), then the two-scale limit of hε(x+εp) also remains h0(x, y). Therefore,
using equality (34), we conclude that

ε∇gε1(x)
2−s
⇀ 2

X
p∈Zd

µ̂1(p)h0(x, y) = 2µ1(0)h0(x, y) = 0

Now let σ(x, y) be a test function belonging to D(Rd;C∞# (Y ))d, and satisfying σ(x, y) = 0 on Ys.

Then an integration by parts yields the formula

−
Z

Rdε
ε∇gε1 · σ

“
x,
x

ε

”
=

Z
Rdε
εgε

»
divxσ

“
x,
x

ε

”
+

1

ε
divyσ

“
x,
x

ε

”–
.

Passing to the limit yields

0 =

Z
Rd

Z
Yf

g0(x, y) divyσ(x, y)

hence the proof of theorem 3.3 is now complete. �

Remark 4.5 As a consequence of theorem 3.3 we deduce that

gε2
2−s
⇀ g(x, y)− g(x)

where g(x, y) is the two-scale limit of gε. Furthermore, notice that all oscillations of the frequency ε−1

associated to the sequence gε are contained in gε2.
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4.4 Proof of theorem 3.4:
We note that

P εMf
ε = Pfε +

ˆ `
Πε1 + Πε−1

´
(0, fε)

˜
2

= Pfε + fε2

and we compute the two-scale limits of P εfε and fε2 .
We begin with P εfε, and denote its two-scale limit by χ0. For σ ∈ D[Rd;C∞# (Y )]d we have the

equality

0 = −
Z

Rdε
div(Pfε) σ

“
x,
x

ε

”
=

Z
Rdε
Pfε ·

»
∇xσ

“
x,
x

ε

”
+

1

ε
∇yσ

“
x,
x

ε

”–
. (35)

If we take σ independent of y and pass to the limit in (35), we obtain

Z
Rd×Yf

χ0 · ∇σ(x) = 0.

On the other hand from equality (35), we must have

Z
Rdε
Pfε · ∇yσ

“
x,
x

ε

” ε→0
→ 0,

and hence Z
Rd×Yf

χ0 · ∇yσ(x, y) = 0.

Therefore, χ0 satisfies the following two-scale system

8>>>>>><>>>>>>:

divx

Z
Yf

χ0 = 0 in Rd

divyχ0 = 0 in Yf

χ0 · ν = 0 on ∂Ys

y → χ0 is Y -periodic

(36)

We now study the limit of fε2 , and denote its two-scale limit by χ1. Making use of the definition of
the projections mappings Πε±1, we obtain

fε2 (x) = 2 −
Z
B
Bε(θ) [ Φε1(x, θ) ]2 , (37)

where
Bε(θ) = (fε#(θ), [Φε1(θ)]2)L2(Y ε

f
).

Taking the divergence of (37) yields

ε divfε2 (x) =
2

i
−
Z
B
µ1(θ)Bε(θ) [ Φε1(x, θ)]1

=
2

i
−
Z
B

X
p∈Zd

cµ1(p)eiθ·pBε(θ) [ Φε1(x, θ) ]1

=
2

i

X
p∈Zd

cµ1(p)hε(x+ εp),

(38)
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where the last equality in (38) made use of the quasi-periodicity of
ˆ

Φε1
˜
1
. Here hε is defined as

hε(x) = −
Z
B
Bε(θ) [ Φε1(x, θ) ]1 .

We now pass to the limit in (38), and we begin with the left-hand side. Note that fε2 has a normal
component which vanishes on ∂Rdε , hence for σ ∈ D[Rd;C∞# (Y )] we have

− ε
Z

Rdε
divfε2 σ

“
x,
x

ε

”
=

Z
Rdε
fε2 ·

h
ε∇xσ

“
x,
x

ε

”
+∇yσ

“
x,
x

ε

”i
ε→0→

Z
Rd×Yf

χ1 · ∇yσ.

In order to pass to the limit in the right hand side of (38), we first notice that if we denote the two-scale
limit of hε by h, we have

hε(x+ εp)
2−s
⇀ h, ∀ p ∈ Zd. (39)

Indeed, from a change of variables we have the equalityZ
Rdε
hε(x+ εp)σ

“
x,
x

ε

”
dx =

Z
Rdε
hε(x)σ

“
x− εp,

x

ε

”
dx,

and passing to the limit in ε gives us (39). It follows that

2

i

X
p∈Zd

cµ1(p)

Z
Rdε
hε(x+ εp)σ

“
x,
x

ε

”
ε→0→

2

i

X
p∈Zd

cµ1(p)

Z
Rd×Yf

h σ

=
2

i
µ1(0)

Z
Rd×Yf

h σ.

Since µ1(0) = 0, we deduce the following two-scale system for χ18><>:
divyχ1 = 0 in Yf

χ1 · ν = 0 on ∂Ys

y → χ1 is Y -periodic

(40)

To compute the two-scale limit of QεMf
ε, which we denote by χ2, we recall from proposition 2.8 that

QεMf
ε = ∇gε and satisfies the inequality

‖gε‖2 ≤ Cε ‖∇g
ε‖2 . (41)

For any σ ∈ D[Rd;C∞# (Y )]d satisfying σ = 0 on Ys and divyσ = 0 we have

−
Z

Rdε
QεMf

ε · σ
“
x,
x

ε

”
=

Z
Rdε
gε divxσ

“
x,
x

ε

”
. (42)
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Using (41), we pass to the limit in (42) and deduceZ
Rd×Yf

χ2 · σ(x, y) = 0.

The functions that are orthogonal to divergence free functions are exactly gradients. We deduce that there
exist a unique function g0 ∈ L2(Rd;H#(Yf )/R) such that

χ2 = ∇g0.

If we denote the two-scale limit of fε by f0, then combining all the two-scale limits above we have

f0 = χ0 + χ1 + χ2.

Since the decomposition
f0 = Pyf0 +Qyf0

is unique the proof of theorem 3.4 is complete. �

Remark 4.6 As noted in the proof of theorem 3.4, we have the equality Pya0 = χ0 + χ1 where χ0 and
χ1 satisfy (36), (40) respectively. We can say slightly more about χ1. Indeed, notice that the

curl
ˆ `

Πε1 + Πε−1

´
(0, aε)

˜
2

= 0,

hence

curlx−
Z
Yf

χ1 = 0

curly χ1 = 0

By elliptic regularity, it follows that χ1 is regular in y.
In fact, more can be said about χ1 in dimension d = 2. We define

V = {u ∈ L2
#(Yf )d; divu = 0 on Yf , u · ν = 0 on ∂Ys}

and Γ = curl. Then the kernel of Γ is a Banach space of dimension N + 1 where N equals the number of
holes in Yf . We refer the reader to [17] for the details.

5 Proof of the convergence Results
The existence of a solution (pε, uε) ∈ C([0, T );L2(Rdε) × L2(Rdε)d) to the linear system (1) is very

classical and we do not recall it here. We only observe that the solution (pε, uε) satisfies

‖pε(t)‖2
L2(Rdε)

+ ‖uε(t)‖2
L2(Rdε)

+ 2εβ
Z t

0
‖∇uε‖2

L2(Rdε)
= ‖bε‖2

L2(Rdε)
+ ‖aε‖2

L2(Rdε)
.

We note that the proofs of the main results repeatedly make use of the Poincaré inequality and the
energy estimate satisfied by the sequence of solutions (pε, uε). We state the Poincaré inequality on the
domain Rdε (see [24])

Theorem 5.1 Let f ∈ H1
0 (Rdε). Then we have

‖f‖L2(Rdε) ≤ Cε ‖∇f‖L2(Rdε) .
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5.1 (1 < β < 2) Proof of theorem 3.6:
We introduce the following error terms

αεl = pε − b(x)−

0@ lX
j=0

ε(2j+1)(β−1)pj

„
t

ε2−β
, x,

x

ε

«1A− qε
βεl = uε −

0@ lX
j=0

ε2j(β−1)uj

„
t

ε2−β
, x,

x

ε

«1A− vε
(43)

where (p0, u0) = (p, u) is the unique solution to (16), and (pj , uj), j ≥ 1, satisfy the coupled two-scale
system 8>>>>>>>>>>><>>>>>>>>>>>:

∂τuj −4yuj +∇ypj = 0 in Rd × Yf
divyuj = −∂τpj−1

uj = 0 on ∂YsZ
Yf

pj = 0

uj(τ = 0) = 0

y → (uj , pj) is Y -periodic

(44)

We present an analysis of the error term (43) for l = 0 which is enough if β ∈ (4/3, 2). At the end
of the subsection, we will conclude with a discussion on the adjustments needed to justify the error terms
in the case 0 < l for β ∈ (1, 4/3]. For l = 0 the proposed error term (αε0, β

ε
0) = (αε, βε) satisfies the

following initial/boundary value problem

8>>>>>>>><>>>>>>>>:

∂tα
ε + divβε = F ε(t, x) in (0,∞)× Rdε

∂tβ
ε − εβ4βε +∇αε = Gε(t, x)

βε = 0 on ∂Rdε
αε(t = 0) = bε1 − b(x)− εβ−1p0(τ = 0)

βε(t = 0) = P εMa
ε(x)− Pya0

“
x,
x

ε

”
(45)

where the right-hand side terms are

F ε(t, x) = −ε2β−3∂τp− divxu,

Gε(t, x) = εβ4xu+ 2 εβ−1 divy∇xu−∇b+ εβ−1∇xp.

Remark 5.2 Due to the parabolic regularization of the Stokes equation (16) in the variable y, the trace

of the terms ∂kτ ∂
α
x ∂

β
y (p, u)

“
t

ε2−β
, x, x

ε

”
are well defined for k = 0, 1 and |α|, |β| ≤ 2.

The energy equality associated to system (45) reads

‖αε(t)‖2
L2(Rdε)

+ ‖βε(t)‖2
L2(Rdε)

+ 2εβ
Z t

0
‖∇βε(s)‖2

L2(Rdε)
=

‖αε(0)‖2
L2(Rdε)

+ ‖βε(0)‖2
L2(Rdε)

+ 2

Z t

0

Z
Rdε

(F εαε +Gε · βε) ,
(46)

and we now estimate the term Z t

0

Z
Rdε

(F εαε +Gε · βε) .
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We write Z
Rdε
F εαε = F1 + F2,

and we obtain the following bounds

|F1| ≤ ε4β−6

Z t

0

‚‚‚∂τp“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)
ds+

Z t

0
‖αε‖2

L2(Rdε)

≤ ε3β−4

Z ∞
0

‚‚‚∂τp“τ, x, x
ε

”‚‚‚2

L2(Rdε)
dτ +

Z t

0
‖αε‖2

L2(Rdε)

≤ ε3β−4

Z ∞
0
‖∂τp (τ, x, y)‖2

L2(Rd×Yf )
dτ +

Z t

0
‖αε‖2

L2(Rdε)

≤ Cε3β−4 +

Z t

0
‖αε‖2

L2(Rdε)
,

(47)

|F2| ≤ C
Z t

0

‚‚‚divxu
“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)
ds+

Z t

0
‖αε(s)‖2

L2(Rdε)

≤ Cε2−β
Z ∞

0

‚‚‚divxu
“
τ, x,

x

ε

”‚‚‚2

L2(Rdε)
dτ +

Z t

0
‖αε(s)‖2

L2(Rdε)

≤ Cε2−β
Z ∞

0
‖divxu (τ, x, y)‖2

L2(Rd×Yf )
dτ +

Z t

0
‖αε(s)‖2

L2(Rdε)

≤ Cε2−β +

Z t

0
‖αε(s)‖2

L2(Rdε)
.

(48)

We now explain the estimates above. The first inequality in the estimates of F1, F2 is just an
application of the Cauchy-Schwartz inequality. The second inequality is the change of variable s = ε2−βτ .
The third inequality in the estimates follows from strong two-scale convergence and hence holds for ε small
enough.

We now justify the energy bounds on ∂τp(τ, x, y) and divxu(τ, x, y), beginning with divxu. First, no-
tice that ∂αx u satisfies the same system (44) as u with the initial data ∂αx u(t = 0) = ∂αxPya0. Furthermore,
we have the following energy equality

‖∂αx u(τ)‖2
L2(Rd×Yf )

+ 2

Z τ

0

‚‚∂αx∇yu(τ ′)
‚‚2

L2(Rd×Yf )
= ‖∂αxPya0‖2L2(Rd×Yf )

. (49)

By the Poincaré inequality on the cell Yf , we also deduce that

Z τ

0

‚‚∂αx u(τ ′)
‚‚2

L2(Rd×Yf )
≤ C

Z τ

0

‚‚∂αx∇yu(τ ′)
‚‚2

L2(Rd×Yf )
. (50)

Hence, Z ∞
0
‖divxu (τ, x, y)‖2

L2(Rd×Yf )
≤ C.

To obtain the energy bound for ∂τp(t, x, y), we begin by taking a time derivative of the vector equation
in (44)

∂ττu−4y∂τu+∇y∂τp = 0. (51)

We impose the following compatibility conditions on the initial data ∂τu(0):

∂τu(0) = 0 = ∇y∂τu(0) on ∂Ys.
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Multiplying (51) by ∂τu and ∂ττu and integrating by parts over Yf yields the equalities

‖∂τu(τ)‖2
L2(Rd×Yf )

+ 2

Z τ

0

‚‚∇∂τ ′u(τ ′)
‚‚2

L2(Rd×Yf )
= ‖∂τu(0)‖2

L2(Rd×Yf )
,

2

Z τ

0

‚‚∂τ ′τ ′u(τ ′)
‚‚2

L2(R×Yf )
+ ‖∇y∂τu(τ)‖2L2(R×Yf ) = ‖∇y∂τu(0)‖2L2(R×Yf ) .

(52)

Now using equation (51), along with the energy bounds (49), we obtain the following estimate

Z τ

0

‚‚∂τp(τ ′)‚‚2

L2(Rd×Yf )
≤ C

Z τ

0

‚‚∇y∂τ ′p(τ ′)‚‚2

L2(Rd;H−1
# (Yf ))

≤ C ‖∂τu(0)‖2
L2(Rdε)

.+ ‖∇y∂τu(0)‖2L2(R×Yf ) .

Similarly, we write Z t

0

Z
Rdε
Gε · βε = G1 +G2 +G3 +G4

and we have the following estimates

|G1| ≤ Cεβ
„Z t

0

‚‚‚4xu“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cεβ+1

„Z t

0

‚‚‚4xu“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε2+β

Z t

0

‚‚‚4xu“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)
+
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε4 +
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G2| ≤ Cεβ−1

„Z t

0

‚‚‚divy∇xu
“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖L2(Rdε)

«1/2

≤ Cεβ
„Z t

0

‚‚‚divy∇xu
“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖L2(Rdε)

«1/2

≤ Cεβ
Z t

0

‚‚‚divy∇xu
“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)
+
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε2 +
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G3| ≤ C
„Z t

0
‖∇b‖2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cε
„Z t

0
‖∇b‖2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε2−β
Z t

0
‖∇b‖2

L2(Rdε)
+
εβ

5

Z t

0
‖∇βε(s)‖22

≤ Ctε2−β +
εβ

5

Z t

0
‖∇βε(s)‖22 ,
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|G4| ≤ Cεβ−1

„Z t

0

‚‚‚∇xp“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cεβ
„Z t

0

‚‚‚∇xp“ s

ε2−β
, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε2
Z ∞

0

‚‚‚∇xp“τ, x, x
ε

”‚‚‚2

L2(Rdε)
+
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε2 +
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)
.

Here, the second inequality in the estimates of G1, G2 made use of the Poincaré inequality on the
domain Rdε . We concluded the final inequality in the estimates G1, G2 with a change of variable in time
along with the bounds in (49), (50).

Combining all the estimates on the force terms, the energy bound (46) becomes

‖αε(t)‖2
L2(Rdε)

+ ‖βε(t)‖2
L2(Rdε)

+
εβ

5

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ ‖αε(0)‖2
L2(Rdε)

+ ‖βε(0)‖2
L2(Rdε)

+

Z t

0
‖αε(s)‖2

L2(Rdε)
+ Ct,ε,

(53)

where
Ct,ε = C

“
ε3β−4 + ε2−β + ε4 + ε2 + tε2−β

”
.

Hence, by applying Gronwall’s lemma to (53), we conclude the proof of Theorem 3.6 for β ∈ (4/3, 2)
To extend this result to β ∈ (1, 4/3], we take l > 0 large enough such that (4l + 3)(β − 1) − 1 > 0

and proceed with a similar analysis as above. Notice that we have

ε(4l+4)(β−1)−2

Z t

0

Z
Rdε
|∂τpl|2 = O

“
εml(β−1)−1

”
where ml = 4l + 3, hence the proof of theorem 3.6 is now complete. �

5.2 (β = 2) Proof of theorem 3.8:
We define the following error terms

αε = pε − p(t, x)− εp1

“
t, x,

x

ε

”
− εp2(t, x)− ε2p3

“
t, x,

x

ε

”
− qε,

βε = uε − u
“
t, x,

x

ε

”
− εu1

“
t, x,

x

ε

”
− vε,

(54)

where (p2(t, x), p3(t, x, y), u1(t, x, y)) uniquely satisfies the two-scale system8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp2 + divx

Z
Yf

u1 = 0 in Rd

∂tu1 −4yu1 +∇xp2 +∇yp3 = −∇xp1 in Rd × Yf

divyu1 = divxu− divx

Z
Yf

u

u1 = 0 on ∂YsZ
Yf

p3 = 0

p(t = 0) = 0

u(t = 0) = 0

y → (p3, u1) is Y -periodic .

(55)
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The system associated to the error term (αε, βε) reads8>>>>>>>><>>>>>>>>:

∂tα
ε + divβε = F ε(t, , x) in (0,∞)× Rdε

∂tβ
ε − εβ4βε +∇αε = Gε(t, x)

βε = 0 on ∂Rdε
αε(t = 0) = bε1 − b(x)− εp1(t = 0)− ε2p3(t = 0)

βε(t = 0) = P εMa
ε(x)− Pya0

“
x,
x

ε

”
where the force terms here are given by

F ε(t, x) = −ε∂tp1 − ε2∂tp3

Gε(t, x) = ε24xu+ 2ε divy∇xu+ ε34xu1 + 2ε2 divy∇xu1 − ε2∇xp3.

We now imitate the proof given for the case β ∈ (1, 2). Notice that (αε, βε) satisfies the energy
bound in (46) (for β = 2), hence it suffices to show˛̨̨̨

˛
Z t

0

Z
Rdε
F εαε +Gε · βε

˛̨̨̨
˛

≤ O (εγ) + C1ε
2

Z t

0
‖∇βε(s)‖2

L2(Rdε)
+ C

Z t

0
‖αε(s)‖2

L2(Rdε)
,

(56)

for some 0 < γ and constant C1 < 1.
We begin by writing Z

Rdε
F εαε = F1 + F2,

and we obtain the following bounds

|F1| ≤ ε2
Z ∞

0

‚‚‚∂τp1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+

Z t

0
‖αε‖2

L2(Rdε)

≤ ε2
Z ∞

0
‖∂τp1 (t, x, y)‖2

L2(Rd×Yf )
+

Z t

0
‖αε‖2

L2(Rdε)

≤ Cε2 +

Z t

0
‖αε‖2

L2(Rdε)
,

|F2| ≤ ε4
Z ∞

0

‚‚‚∂τp3

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+

Z t

0
‖αε‖2

L2(Rdε)

≤ ε4
Z ∞

0
‖∂τp3 (t, x, y)‖2

L2(Rd×Yf )
+

Z t

0
‖αε‖2

L2(Rdε)

≤ Cε4 +

Z t

0
‖αε‖2

L2(Rdε)
.

(57)

We now justify the energy bound on ∂tp1(τ, x, y) (the energy bound for ∂tp3 is obtained similarly).
Notice, it suffices to show that ∇y∂tp1 is bounded in L2((0,∞)× Rd;H−1

# (Yf ))d. We begin by taking a

time derivative of the vector equation in (17)

∂ttu−4y∂tu+∇x∂tp+∇y∂tp1 = 0. (58)

Multiplying (58) by ∂tu and ∂ttu and integrating by parts over Yf yields the equality

‖∂tu(t)‖2
L2(Rd×Yf )

+ |Yf | ‖∂tp(t)‖2L2(Rd)
+ 2

Z t

0
‖∇y∂su(s)‖2

L2(Rd×Yf )

= ‖∂tu(0)‖2
L2(Rd×Yf )

+ |Yf | ‖∂tp(0)‖2
L2(Rd)

,

(59)
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and the inequality

Z t

0
‖∂ssu(s)‖2

L2(Rd×Yf )
+

1

2
‖∇y∂tu(t)‖2

L2(Rd×Yf )

=
1

2
‖∇y∂tu(0)‖2

L2(Rd×Yf )
−
Z t

0

Z
Rd×Yf

∇x∂tp · ∂ttu

≤
1

2
‖∇y∂tu(0)‖2

L2(Rd×Yf )
+
|Yf |

2

Z t

0
‖∇x∂sp(s)‖2L2(Rd×Yf )

+
1

2

Z t

0
‖∂ssu(s)‖2

L2(Rd×Yf )
.

(60)

Next, we observe that ∂αx (p, p1, u) satisfies the same system (17) as (p, p1, u) with the initial data
∂αx (b, Pya0). Moreover, we have the following energy equality

‖∂αx u(t)‖2
L2(Rd×Yf )

+ |Yf | ‖∂αx p(t)‖
2
L2(Rd)

+ 2

Z t

0
‖∇y∂αx u(s)‖2

L2(Rd×Yf )

= |Yf | ‖∂αx b‖
2
L2(Rd×Yf )

+ ‖∂αxPya0‖2L2(Rd)
,

(61)

Taking a time derivative of the scalar equation in (17) yields

|Yf |∂αx ∂tp+ ∂αx divx

Z
Yf

u = 0,

and we deduce the inequality

Z t

0
‖∂αx ∂sp(s)‖

2
L2(Rd)

≤ C
Z t

0
‖∂αx divxu(t)‖2

L2(Rd×Yf )

≤ C
Z t

0
‖∂αx divx∇yu(t)‖2

L2(Rd×Yf )
.

(62)

Here, the last inequality in (62) follows from the Poincaré inequality in the cell Yf .
Combing the estimates (59), (60), (61), (62) we conclude

‖∇y∂tp1‖L2((0,∞)×Rd;H−1
# (Yf ))

≤ C

Similarly, we write Z t

0

Z
Rdε
Gε · βε = G1 +G2 +G3 +G4 +G5

and we have the following estimates
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|G1| ≤ Cε2
„Z ∞

0

‚‚‚4xu“t, x, x
ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cε3
„Z ∞

0

‚‚‚4xu“t, x, x
ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε4
Z ∞

0

‚‚‚4xu“t, x, x
ε

”‚‚‚2

L2(Rdε)
+
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε4 +
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G2| ≤ Cε
„Z ∞

0

‚‚‚divy∇xu
“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖L2(Rdε)

«1/2

≤ Cε2
„Z ∞

0

‚‚‚divy∇xu
“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖L2(Rdε)

«1/2

≤ Cε2
Z ∞

0

‚‚‚divy∇xu
“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε2 +
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G3| ≤ Cε3
„Z ∞

0

‚‚‚4xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cε4
„Z ∞

0

‚‚‚4xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε6
Z ∞

0

‚‚‚4xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε6 +
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G4| ≤ Cε2
„Z ∞

0

‚‚‚divy∇xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖L2(Rdε)

«1/2

≤ Cε3
„Z ∞

0

‚‚‚divy∇xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖L2(Rdε)

«1/2

≤ Cε4
Z ∞

0

‚‚‚divy∇xu1

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

≤ Cε4 +
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
,

|G5| ≤ Cε2
„Z t

0

‚‚‚∇xp3

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖βε(s)‖2

L2(Rdε)

«1/2

≤ Cε3
„Z t

0

‚‚‚∇xp3

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)

«1/2 „Z t

0
‖∇βε(s)‖2

L2(Rdε)

«1/2

≤ Cε4
Z ∞

0

‚‚‚∇xp3

“
t, x,

x

ε

”‚‚‚2

L2(Rdε)
+
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)

≤ Cε4 +
ε2

6

Z t

0
‖∇βε(s)‖2

L2(Rdε)
.

We remark that the final bounds in G1, G2 make use of (61) and the Poincaré inequality on the cell
Yf . We do not provide the energy bounds for the terms 4xu1, divy∇xu1,∇xp3, but note that they can
be obtained similarly to the methods presented here.
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Combing all the estimates associated with the scalar and vector force terms, (56) holds for γ = 2 and
C1 = 5/6. The proof of Theorem 3.8 is now complete. �

5.3 (2 < β) Proof of theorem 3.10:
In the case 2 < β, there is a boundary layer in space of size εβ/2 associated to the micro-incompressible

part of the flow. The asymptotic analysis necessary in the case 2 < β is interesting in its own right. We
will only detail the construction of the complete asymptotic analysis in the case 2 < β. The convergence
proof based on the estimate of the error terms (αε, βε) follows exactly as in the previous two proofs and
will be omitted.

We introduce the following asymptotic expansions

pε − qε ∼
X
k,l

εk+l(β−2)/2

„
pk,l

“
t, x,

x

ε

”
+ pbdyk,l

„
t, x,Π

“x
ε

”
,

d(x
ε

)

ε(β−2)/2

«
χ
“x
ε

”«

uε − vε ∼
X
k,l

εk+l(β−2)/2

„
uk,l

“
t, x,

x

ε

”
+ ubdyk,l

„
t, x,Π

“x
ε

”
,

d(x
ε

)

ε(β−2)/2

«
χ
“x
ε

”« (63)

Here, Πy is the projection of y on the boundary ∂Ys and d(y) denotes the distance function to the
boundary, namely the distance between y and ∂Ys. Note that Π is well defined in a small neighborhood
of the boundary ∂Ys. The function χ(y) ∈ C∞0 (Y ) is a smooth cut-off function such that χ(y) = 1 in a
neighborhood of Ys and χ(y) = 0 if d(y) > δ for some δ small enough. Here δ > 0 is taken in such a way
that Π is uniquely determined in the neighborhood {y | 0 < d(y) < δ} and ∇d is a unit normal vector on
supp(χ) ∩ Yf . We will use ν = ∇d to denote the inward normal vector to Yf . An important remark to

keep in mind is that we only need
“
pbdyk,l , u

bdy
k,l

”
when y is close to the boundary ∂Ys which justifies the

presence of the cut-off function χ(x
ε

) in (63).

The boundary layer terms
“
pbdyk,l , u

bdy
k,l

”
(t, x,Πy, ξ) satisfy

“
pbdyk,l , u

bdy
k,l

”
→ 0 (64)

when ξ goes to ∞ and

uk,l(t, x, y) + ubdyk,l (t, x,Πy, ξ = 0) = 0 when y = Πy ∈ ∂Ys. (65)

We will also need a curvilinear coordinate system Ξ = (ξ′, ξd), ξ′ = (ξ1, ..., ξd−1) adapted to ∂Ys and
defined in a neighborhood of ∂Ys such that ∂Ys = {ξd = 0} and Yf is located at the side {ξd > 0}. Of
course, we think here of Ξ → y(Ξ) as a change of variables where the expansion of the operators ∆, ∇
and div will have simpler expressions. We will follow very similar notations to those in [14, 13]. We define
the tubular neighborhood Ys,δ = {−δ < ξd < δ}. We also assume that our curvilinear coordinate system
(ξ′, ξd) is orthogonal and that

∂y

ξd
·
∂y

ξd
=

dX
1

„
∂yi

ξd

«2

= 1

which means that ξd = d(y) = ε(β−2)/2ξ in Ys,δ ∩ Yf . We introduce the vectors

gα =
∂y

ξα
=

„
∂y1

ξα
, ...,

∂yd

ξα

«
, 1 ≤ α ≤ d.

Hence, the metric (gαβ)1≤α,β≤d = (gα · gβ)1≤α,β≤d = diag(g11, ..., gdd) and gdd = 1. We will use the

notation hi =
√
gii > 0, i = 1, ..., d− 1 and h =

p
det((gαβ)1≤α,β≤d). With these notations, we can also

30



rewrite divyU , ∆yf and ∇yf in the following way. If U and f are defined in a neighborhood of ∂Ys and

such that U =
Pd
i=0 Uiei where ei = gi

|gi|
and f is scalar valued, then

divyU =
1

h

d−1X
i=1

∂

∂ξi

„
h

hi
Ui

«
+

1

h

∂(hUd)

∂ξd
, (66)

∆yf =
1

h

X
1≤i,j≤d−1

∂

∂ξi

„
h

h2
i

∂f

∂ξi

«
+
h′

h

∂f

∂ξd
+
∂2f

∂ξ2
d

, (67)

∇yf =

d−1X
i=1

1

hi

∂f

∂ξi
ei +

∂f

∂ξd
ed. (68)

If U is a vector given by U =
Pd
i Uiei, then computing ∆yU is more complicated. We will not give the

exact formula here. We refer to formula (2.17) in [13].

The first term on the right-hand side of (66) will be denoted divtgy (U). For a vector field which is
in the tangent space to ∂Ys, it corresponds to the divergence on the manifold ∂Ys. We will also use the
notation Utg to denote the tangential part of the verctor field U , namely

Utg =

d−1X
i=1

Uiei. (69)

If we consider now functions that depend on x and y, namely of the form f(x, x
ε

) and u(x, x
ε

), then
we also have the following expansions of ∇, div and ∆, namely

∇f = ∇xf +
1

ε
∇tgy f +

1

εβ/2
(∂ξf)∇d, (70)

divu = divxu+
1

ε
divtgy u+

1

εβ/2
∂ξ(u.∇d), (71)

∆f = ∆xf +
1

ε
∇x · ∇tgy f +

1

ε2
∆tg
y f +

1

εβ/2
∇d · ∇x∂ξf

+
1

εεβ/2
h′

h
∂ξf +

1

εβ
∂ξ∂ξf.

(72)

One can then write an expansion of h′/h, namely

h′

h
(ξ′, ξd) =

h′

h
(ξ′, ε(β−2)/2ξ) =

∞X
i=0

εi(β−2)/2∂iξd (
h′

h
)(ξ′, 0)ξi.

Plugging this expansion in the definition of (72), we deduce an expansion of ∆f in powers of ε. The main
observation is that it reads ∆f = 1

εβ
∂ξ∂ξf + l.o.t where l.o.t denotes terms with lower order, namely

terms with higher powers of ε. It is not difficult to see that the same holds in the vector case, namely if
U =

Pd
i Uiei then

∆U =
1

εβ
∂ξ∂ξU

iei +
1

εεβ/2
h′

h
(ξ′, 0)∂ξU

iei + l.o.t. (73)

We included the second term on the right-hand side of (73) since it is easy to compute but it will not be
crucial for the construction process.

We plug this expansion into the original system (1) and then we gather the terms of the same order
in the boundary layer and in the interior. When we do this gathering, we do not specify the value of
β since we want to find an expansion which is valid for all values of β. By doing so, we hope to get
successive systems to solve that allow us to determine the full expansion (63) (check). We will present the
construction in an inductive way starting from l = 0.
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To perform the construction of our expansion we will make the following consistency condition:
bε(x) = b(x) and aε(x) = a0(x, x

ε
) where a0 = Pya0 and a0(x, y) = 0 when y ∈ ∂Ys. Moreover, we assume

that b and a0 are smooth enough. Let us point out that if we only assume that a0(x, y) · ν = 0 when
y ∈ ∂Ys, then we need to incorporate an initial layer in time. This will not be done here (see [27] for more
about this).

Step 0: The case l = 0

We deduce from the order ε−β/2 in the second equation of (1) that ∂ξp
bdy
0,0 = 0 and hence pbdy0,0 = 0. From

the order ε1−β/2, we also deduce that ∂ξp
bdy
1,0 = 0 and hence pbdy1,0 = 0 . It is not difficult to see that

from the order εk−β/2, we also deduce that ∂ξp
bdy
k,0 = 0 and hence pbdyk,0 = 0 . In a similar from the order

ε−1+(l−1)(β−2)/2 in the second equation (1), we also deduce that pbdy0,l = 0 for all l ≥ 0. This will be used

in the Step l.

From the order ε−β/2 in the first equation, we get that ∂ξu
bdy
0,0 · ∇d = 0 and hence, ubdy0,0 · ∇d = 0

and then from the boundary condition, we can deduce the normal part of u0,0, namely we deduce that

u0,0 · ν = 0 on ∂Ys. From the order εk−β/2, we also deduce that ubdyk,0 · ∇d = 0 and hence from the

boundary condition that uk,0 · ν = 0 on ∂Ys.
From the order ε−1 in the interior, we deduce that divyu0,0 = 0 and ∇yp0,0 = 0 and hence p0,0 is

only a function of t and x, namely p0,0 = p(t, x). We also denote u = u0,0. From the order ε0 in the
interior, we deduce that (

∂tp+ divxu+ divyu1,0 = 0 in Rd × Yf
∂tu+∇xp+∇yp1,0 = 0 in Rd × Yf

(74)

Since, p does not depend on y and that
R
Yf

divyu1,0 =
R
∂Yf

u1,0.ν = 0, we can integrate in y the first

equation and deduce that (p(t, x), p1,0(t, x, y), u(t, x, y)) is the solution to the following two-scale system

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

|Yf |∂tp+ divx

Z
Yf

u = 0 in Rd

∂tu+∇xp+∇yp1,0 = 0 in Rd × Yf
divyu = 0

∇yp = 0

u · ν = 0 on ∂Ys

p(t = 0) = b(x)

u(t = 0) = Pya0(x, y)

y → (u, p1) is Y -periodic .

(75)

Solving this system is standard and we will not detail it here. Notice that this system also de-
termines completely ∇yp1,0(t, x, y) which will be useful for the iteration. Now, we want to solve for
(p1,0(t, x, y), u1,0(t, x, y)). Recall that we have divyu1,0 + divx(u − 1

|Yf |
R
Yf
u) = 0 and that p1,0(t, x, y)

can be decomposed as p1,0(t, x, y) = p1,0(t, x) + p̃1,0(t, x, y) where
R
Yf
p̃1,0(t, x, y)dy = 0. From the

previous system we know that p̃1,0(t, x, y) was completely determined.
From the order ε1 in the interior, we deduce that(

∂tp1,0 + divxu1,0 + divyu2,0 = 0 in Rd × Yf
∂tu1,0 +∇xp1,0 +∇yp2,0 = 0 in Rd × Yf

(76)

We can integrate in y the first equation, use the fact that u2,0 · ν = 0 on ∂Ys and deduce that
(p1,0(t, x), u1,0(t, x, y)) solves
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8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

|Yf |∂tp1,0 + divx

Z
Yf

u1,0 = 0 in Rd

∂tu1,0 +∇xp1,0 +∇yp2,0 = −∇xp̃1,0(t, x, y) in Rd × Yf

divyu1,0 = −divx(u−
1

|Yf |

Z
Yf

u)

u1,0 · ν = 0 on ∂Ys

p1,0(t = 0) = 0

u1,0(t = 0) = 0

y → (u1,0, p2,0) is Y -periodic

(77)

This system is very similar to (75). It has some extra forcing terms. It is important for the construction
of the solution that

R
Yf

divx(u − 1
|Yf |

R
Yf
u)dy = 0. We will not detail this construction. In particular

this system allows us to determine completely ∇yp2,0.
The rest of the construction of (pk,0, uk,0) can be done by induction. For k ≥ 2, assuming that∇ypk,0

was completely determined from the previous order, we can deduce from the order εk in the interior that
we have (

∂tpk,0 + divxuk,0 + divyuk+1,0 = 0 in Rd × Yf
∂tuk,0 +∇xpk,0 +∇ypk+1,0 = 0 in Rd × Yf

(78)

Denoting pk,0(t, x, y) = pk,0(t, x) + p̃k,0(t, x, y) where
R
Yf
p̃k,0(t, x, y)dy = 0, we know from the previous

system that p̃k,0(t, x, y) was completely determined. Integrating in y the first equation in (78) and using
that

R
Yf

divyuk,0 =
R
∂Yf

uk,0.ν = 0, we deduce that8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

|Yf |∂tpk,0 + divx

Z
Yf

uk,0 = 0 in Rd

∂tuk,0 +∇xpk,0 +∇ypk+1,0 = −∇xp̃k,0 in Rd × Yf
divyuk,0 = −divxuk−1,0 − ∂tpk−1,0

uk,0 · ν = 0 on ∂Ys

pk,0(t = 0) = 0

uk,0(t = 0) = 0

y → (uk,0, pk+1,0) is Y -periodic .

(79)

Notice that
R
Yf

divxuk−1,0 +∂tpk−1,0 = 0 follows from the previous order system. This process allows us

to solve all the terms of the form (pk,0, uk,0). Notice also that for now the term εβ∆ did not contribute
to these systems.

Meanwhile, the order ε0 in the boundary layer gives that ubdy0,0 (t, x, y, ξ) satisfies the following system

∂tu
bdy
0,0 −|∇d|

2 ∂2
ξξu

bdy
0,0 +∂ξp

bdy
1,1∇d = 0. Taking the scalar product with ∇d, we deduce that pbdy1,1 = 0 and

that ubdy = ubdy0,0 = ubdy,tg0,0 solves

8>>>>><>>>>>:

∂tu
bdy − |∇d|2 ∂2

ξξu
bdy = 0 for (t, ξ) ∈ (0,∞)× (0,∞)

ubdy · ∇d = 0

ubdy = −utg for y = Πy ∈ ∂Ys, ξ = 0

ubdy(t = 0) = 0

(80)

where we recall that the notation Utg was defined in (69). The fact that ubdy(t = 0) = 0 is consistent with
the consistency condition a0 = Pya0 = 0 when y ∈ ∂Ys which implies that utg(0, y) = 0 when y ∈ ∂Ys.
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For each x and y, system (80) is a heat equation on the half line with zero initial data and nonzero
Dirichlet data. The solution can be computed explicitly (see for instance [4] and [14, 13] for other appli-
cations in boundary layers)

ubdy = −
Z t

0
I(ξ, t− s)∂tutg(s, x,Πy) ds (81)

where I(ξ, t) = 2erfc(ξ/
√

2t) and8>><>>:
erf(z) =

1
√

2π

Z z

0
e−z̃

2/2dz̃ and

erfc(z) =
1

2
− erf(z) =

1
√

2π

Z ∞
z

e−z̃
2/2dz̃

(82)

Notice that in (81), x and Πy are just parameters.
From the order εk in the boundary layer of the second equation of (1), we get8>>><>>>:

∂tu
bdy
k,0 − |∇d|

2 ∂2
ξξu

bdy
k,0 + ∂ξp

bdy
k+1,1∇d = (known) for (t, ξ) ∈ (0,∞)× (0,∞)

ubdyk,0 (t = 0) = 0

ubdyk,0 = −uk,0 for y ∈ ∂Ys, ξ = 0

(83)

The normal part of (83) allows us to determine pbdyk+1,1 and the tangential part allows us to determine

the tangent part of ubdyk,0 by a formula similar to (90).

Step 1: The case l = 1
The order ε(β−2)/2 in the second equation and the order ε−1 in the first equation of (1) give

8>>>>>>><>>>>>>>:

∂tu
bdy
0,1 − |∇d|

2 ∂2
ξξu

bdy
0,1 −

h′

h
∂ξu

bdy
0,0 + ∂ξp

bdy
1,2∇d = 0 for (t, ξ) ∈ (0,∞)× (0,∞)

∂ξu
bdy
0,1 · ∇d+ divtgy (ubdy0,0 ) = 0

ubdy0,1 = −u0,1 for y ∈ ∂Ys, ξ = 0

ubdy0,1 (t = 0) = 0.

(84)

Hence,

ubdy0,1 · ∇d =

Z ∞
ξ

divtgy (ubdy0,0 )dξ′. (85)

Moreover, for y ∈ ∂Ys, we have the following boundary condition

u0,1 · ν =−
Z ∞

0
divy(ubdy0,0 )dξ

=

Z t

0

p
2(t− s)divtgy (∂tu

tg(s)) ds.

(86)

It is important to notice here that
R
∂Ys

u0,1 · ν = 0 which will be necessary to solve system (88). Also,

here and in the sequel, we will often use the fact that
R
∂Ys

divtgy (U)dσ = 0.

Notice that to solve (84), we need to know u0,1 on the boundary. This means that we have first to

solve the following interior problem, deduce the boundary condition utg0,1 for y ∈ ∂Ys and then solve for

the tangential part of ubdy0,1 . The equation satisfied by u0,1 is8>><>>:
∇yp0,1 = 0, divyu0,1 = 0 in Rd × Yf

∂tp0,1 + divxu0,1 + divyu1,1 = 0 in Rd × Yf
∂tu0,1 +∇xp0,1 +∇yp1,1 = 0 in Rd × Yf

(87)
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Exactly as (75) was derived, we deduce that8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp0,1 + divx

Z
Yf

u0,1 =

Z
∂Yf

u1,1.ν in Rd

∂tu0,1 +∇xp0,1 +∇yp1,1 = 0 in Rd × Yf
divyu0,1 = 0

∇yp0,1 = 0

u0,1 · ν = −
Z ∞

0
divtgy (ubdy0,0 )dξ on ∂Ys

p0,1(t = 0) = 0

u0,1(t = 0) = 0

y → (u, p1) is Y -periodic

(88)

To solve (88), we need to determine the right-hand side of the first equation. From the order 0 in the

boundary layer, we get that −∂ξubdy1,1 .∇d = ∂tp
bdy
0,0 + divxu

bdy
0,0 and hence

u1,1.ν = −ubdy1,1 .ν = −
Z ∞

0
divxu

bdy
0,0 dξ.

This will allow to solve (88).

Since the normal part of ubdy0,0 and ubdy0,1 were already determined, taking the scalar product of (84)

with ∇d, we can determine pbdy1,2 .

Now, we can solve for ubdy,tg0,1 , by looking at the part orthogonal to ∇d in (84):

8>>>><>>>>:
∂tu

bdy,tg
0,1 − |∇d|2 ∂2

ξξu
bdy,tg
0,1 =

h′

h
∂ξu

bdy,tg
0,0 for (t, ξ) ∈ (0,∞)× (0,∞)

ubdy,tg0,1 (t = 0) = 0

ubdy,tg0,1 = −utg0,1 for y ∈ ∂Ys, ξ = 0

(89)

This one-dimensional heat equation can also be solved explicitly (see [14, 13]):

ubdy,tg0,1 = −
Z t

0
I(ξ, t− s)∂tutg0,1(s, x,Πy)ds+ J+ − J− (90)

where (we recall that x and Πy are just parameters)

J± =
1

2

Z t

0

Z ∞
0

∂I

∂ξ
(ξ ± η, t− s)

h′

h
∂ξu

bdy,tg
0,0 (s, η)dηds. (91)

Arguing as in the Step 0, we can continue the construction of the terms of the form uk,1 and ubdyk,1 .

We do not detail that here since it is similar to the general construction that will be sketched below.

Step l: The general case from l − 1 to l
When β is close from 2, we need the expansion with a large number l. Here we will explain how we

can keep solving for ubdy0,l and u0,l for l = 2, 3, ..... We explain now how we can solve for these terms

inductively. Indeed, assuming that ubdyi,j ubdyi,j are known for i ≥ 0 and for 0 ≤ j ≤ l − 1, we would like to
construct the terms at the order l.

We have from the order ε(l−1)(β−2)/2−1 in the boundary layer part of the first equation of (1) that

ubdy0,l · ∇d =

Z ∞
ξ

divtgy (ubdy,tg0,l−1 )dξ′ (92)
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and hence, using that p0,j is independent of y for all j and that divyu0,j = 0 for all j, we deduce that
u0,l solves 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

|Yf |∂tp0,l + divx

Z
Yf

u0,l = 0 in Rd

∂tu0,l +∇xp0,l +∇yp1,l = 0 in Rd × Yf
divyu0,l+1 = 0

∇yp0,l = 0

u0,l · ν = −
Z ∞

0
divtgy (ubdy,tg0,l−1 )dξ on ∂Ys

p0,l(t = 0) = 0

u0,l(t = 0) = 0

y → (u0,l, p1,l) is Y -periodic

(93)

To find ubdy,tg0,l , we use that the order εl(β−2)/2 in the boundary layer part of the second equation of

(1) gives 8>>><>>>:
∂tu

bdy
0,l − |∇d|

2 ∂2
ξξu

bdy
0,l + ∂ξp

bdy
1,l+1∇d = (known) for (t, ξ) ∈ (0,∞)× (0,∞)

ubdy0,l (t = 0) = 0

ubdy0,l = −u0,l for y ∈ ∂Ys, ξ = 0

(94)

The normal part of (94) allows to determine pbdy1,l+1 which will be used at the step l + 1 and the

tangential part will allow us to solve for ubdy0,l .

Assuming that for k ≥ 1 we have constructed all the terms ubdyi,l+1, u
bdy
i,l+1 for 0 ≤ i ≤ k − 1 and that

pbdyk,l and ∇ypk,l were also determined, w e would like to construct the terms ubdyk,l , u
bdy
k,l .

First notice that we have from the order ε(l−1)(β−2)/2+i in the boundary layer part of the first
equation of (1) that

ubdyi+1,l · ∇d =

Z ∞
ξ

[divtgy (ubdy,tgi+1,l−1) + ∂tp
bdy
i,l−1 + divx(ubdy,tgi,l−1 )]dξ′. (95)

This allows us to determine the normal part of ui+1,l at the boundary for each i ≥ 0. In particular it
allows us to determine uk,l.ν as well as uk+1,l.ν when y ∈ ∂Yf .

From the order εl(β−2)/2+k−1 in the interior, we get that(
∂tpk,l + divxuk,l + divyuk+1,l = 0 in Rd × Yf
∂tuk,l +∇xpk,l +∇ypk+1,l = 0 in Rd × Yf

(96)

Recall that we can write pk,l(t, x, y) = pk,l(t, x) + p̃k,l(t, x, y) where
R
Yf
p̃k,l(t, x, y)dy = 0. Since ∇ypk,l

was already determined, we only need to construct pk,l(t, x). Integrating the first equation in (96)8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

|Yf |∂tpk,l + divx

Z
Yf

uk,l = F1 in Rd

∂tuk,l +∇xpk,l +∇ypk+1,l = F2 in Rd × Yf
divyuk,l = F3

uk,l · ν = F4 on ∂Ys

pk,l(t = 0) = 0

uk,l(t = 0) = 0

y → (uk,l, pk,l) is Y -periodic

(97)
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where the forcing terms Fa, 1 ≤ a ≤ 4 are already known and are given by F1 = −
R
Yf

divyuk+1,l =

−
R
∂Yf

uk+1,l.ν which is determined by (95), F2 = −∇xp̃k,l, F3 = −∂tpk−1,l − divxuk−1,l which is

coming from the order k − 1 of (96) and F4 = −ubdyk,l .ν which is determined from (95). There is a

compatibility condition between F3 and F4 for the system (97) to be well-posed, namely we need thatR
Yf
F3 = −

R
∂Yf

F4. This follows from the first equation of the order k − 1 of (97) since it implies thatR
Yf
F3 =

R
∂Yf

uk,l · ν.

Hence, by induction, we conclude the construction of the asymptotic expansions. The convergence
stated in theorem 3.10 can be proved by the same energy estimate as in the previous two cases and we do
not detail it here.
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