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We extend the penalty immersed boundary (pIB) method to the interaction between
a rigid body and a surrounding fluid. The pIB method is based on the idea of splitting
an immersed boundary, which here is a rigid body, notionally into two Lagrangian
components: one is a massive component carrying all mass of the rigid body and
the other is massless. These two components are connected by a system of stiff
springs with 0 rest length. The massless component interacts with the surrounding
fluid: it moves at the local fluid velocity and exerts force locally on the fluid. The
massive component has no direct interaction with the surrounding fluid and behaves
as though in a vacuum, following the dynamics of a rigid body, in which the acting
forces and torques are generated from the system of stiff springs that connects the
two Lagrangian components. We verify the pIB method by computing the drag
coefficients of a cylinder and ball descending though a fluid under the influence of
gravity and also by studying the interaction of two such descending cylinders and
likewise the interaction of two such descending balls. The computational results are
quite comparable to those in the literature. As a further example of an application, we
include a freely falling maple seed with autorotation. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4944565]

I. INTRODUCTION

We extend the penalty immersed boundary (pIB) method to simulate the interaction between
a rigid body and a surrounding fluid. The immersed boundary (IB) method has been widely used
to investigate the problems in which an elastic boundary or body is immersed in and interacts with
a surrounding fluid.1–3 Kim and Peskin4 have introduced an extension of the IB method which can
easily deal with an elastic boundary with mass. We call it the pIB method and have shown in Ref. 4
that the pIB method can solve many problems in which mass of the immersed boundary plays an
important dynamical role. For more examples of the application of the pIB method, see Refs. 5–7.
One advantage of the pIB method is that its numerical implementation is a simple modification of
the framework of an existing IB method code for the massless case.

The pIB method is based on the idea of splitting an immersed boundary notionally into two
Lagrangian components: one is a massive component carrying all mass of the boundary and the
other is massless. These two components are connected by a system of stiff springs with 0 rest
length. The massless component interacts with the surrounding fluid: it moves at the local fluid
velocity and exerts force locally on the fluid. The massive component has no direct interaction with
the fluid and behaves as though in a vacuum, following Newton’s law of motion, in which the
only forces that appear are the force of the springs that connect the two Lagrangian components
and the gravitational force acting on the massive component. As the stiffness of the springs that
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link the massless component to the massive component goes to infinity, the massive component
accompanies the massless component and provides it with mass. For the quantitative verification of
this behavior, see Ref. 4.

Using the same idea of the pIB method, we introduce two representations for a rigid body: a
massless component and a massive component which are connected by stiff springs. The massless
component moves at the local fluid velocity and exerts force locally to the fluid. The force that it
applies to the fluid is the force generated from the stiff springs that link it to its massive counterpart.
On the other end of the spring, the massive component moves as though in a vacuum following
the dynamics of a rigid body in which forces and torques acting on the massive component are the
gravitational force and those generated from the springs that connect it to the massless counterpart.

In the pIB method, we separate the dynamics of a rigid body only through a system of stiff
springs from the whole system that, otherwise, would strongly couple the rigid body dynamics to
the fluid dynamics through constraints. By doing that, we allow the equations for the fluid motion
itself to be as simple as possible. Particularly, we keep the density of the fluid equations to be uni-
formly constant. This idea of uncoupling a given dynamical system using a penalty parameter has
also been used in the immersed boundary-lattice Boltzmann method8,9 in which the fluid equations
are solved using lattice Boltzmann method to simulate the sedimentation of rigid bodies.

There has been a considerable amount of work done on the design of numerical methods to
provide an accurate computational tool for the interaction between fluid and rigid bodies. Arbi-
trary Lagrangian-Eulerian (ALE) schemes have been successfully employed for direct simulations
of fluid-solid systems.10,11 Coquerelle and Cottet introduced a vortex method for the simulation
of the interaction of an incompressible flow with rigid bodies.12 A Lagrange-multiplier-based
fictitious-domain method (DLM) for the direct numerical simulation of rigid particulate flows in a
Newtonian fluid has also been used extensively.13–15

The IB method, but with a different way of enforcing the rigid-body constraint from the one
described here, has also been applied for rigid body motions in an incompressible Navier-Stokes
flow.16–21 The authors in Ref. 17 give the mass effect of the immersed body by using the Boussinesq
approximation which can be applied only for low Reynolds number flows with an extremely small
added mass. Also they construct a mechanical model for the rigid body using a network of stiff
springs which generate spring forces to enforce the rigidity of the immersed body.17,18 These spring
forces for the mechanical model and the penalty force of our method are different, but they both lead
to numerical stiffness which requires very small time steps when these forces are explicitly handled.
A number of direct forcing IB methods19–21 also have been developed which use the body force
computed directly from the governing equations so as to satisfy the no-slip boundary conditions
exactly on the rigid body. Whereas these methods avoid the severe time step restriction arising
from very stiff springs, they are considerably more complicated to implement, especially when the
immersed body is moving.

In order to verify that the present pIB method is a robust and efficient numerical technique
to simulate a rigid body interacting with a surrounding fluid, we simulate a well-known bench-
mark problem: a freely falling cylinder. In this test, we compare drag coefficients obtained by our
numerical simulation with the experimental data in Ref. 22 and perform a convergence study, which
shows that the pIB method is first-order accurate. The interaction between two cylinders falling in
a fluid-filled channel is investigated. We also simulate the sedimentation of a single sphere and the
interaction of two falling spheres in 3D flow. Finally we apply the pIB method to the simulation of
the rotational motion of a falling maple seed. Our simulation results on the descent rate, the speed of
rotation, and the coning angle, which characterize the autorotation of a maple seed, agree well with
those obtained experimentally23 and numerically using another method.18 In fact, the method used
in Ref. 18 was the original pIB method, so it was necessary there to construct a mechanical model of
the maple seed. Here, we just use the rigid-body constraint.
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II. EQUATIONS OF MOTION

Consider a 3D viscous incompressible fluid containing a rigid body. In the pIB method, we
use two Lagrangian descriptions of the immersed body. One of its descriptions, denoted X(q,r, s, t)
where (q,r, s) are curvilinear coordinates and t is time, has no mass and plays the same role as
an immersed boundary in a more traditional IB method with massless boundary assumption. The
other description, which we denote Y(q,r, s, t), carries all of the excess mass and is connected to
X(q,r, s, t) by a system of stiff springs. The excess mass is the difference between the mass of the
body and the mass of the fluid it displaces. The different points of the massive boundary have no
direct connection to the fluid and move together as though a rigid body in a vacuum, with the only
forces and torques applied on the body being the force of gravity and those generated from the
springs that connect the massless description to the massive description of the rigid body.

Then the equations of the motion for a 3D viscous incompressible fluid interacting with an
immersed body are the following:

ρ(∂u
∂t
+ u · ∇u) = −∇p + µ∆u + f, (1)

∇ · u = 0, (2)

F(q,r, s, t) = K(Y(q,r, s, t) − X(q,r, s, t)), (3)

f(x, t) =


F(q,r, s, t)δ(x − X(q,r, s, t))dqdrds, (4)

∂X
∂t

(q,r, s, t) = u(X(q,r, s, t), t) =


u(x, t)δ(x − X(q,r, s, t))dx. (5)

The equations of motion of the rigid body itself will be given later.
Eqs. (1) and (2) are the Navier-Stokes equations for a viscous incompressible fluid in which

the parameters ρ and µ are constant representing the fluid density and viscosity, respectively. The
unknowns in the Navier-Stokes equations are the velocity field, u(x, t); the fluid pressure, p(x, t);
and the external force per unit volume applied by the immersed body X(q,r, s, t) to the fluid, f(x, t).
Here t is the time, and x = (x, y, z) are the Cartesian coordinates. Note that the domain on which
the Navier-Stokes equations (1) and (2) are defined includes the domain occupied by the rigid body.
In the IB method, there is always fluid everywhere. Anything immersed in the fluid is regarded as a
part of the fluid in which forces are applied and in which additional mass may be present.

Eq. (3) defines the force density F which is applied by the massless component X(q,r, s, t) of
the immersed body to the fluid so that F(q,r, s, t)dqdrds is the force transmitted to the fluid by
the volume element dqdrds of the body. The force density F is generated by the stiff springs that
connect the massive and massless descriptions of the immersed body. As the stiffness parameter K ,
which is called the “penalty” parameter of the method, gets large, the energy penalty increases that
must be paid to separate the two descriptions Y(q,r, s, t) and X(q,r, s, t) by any given amount. We
shall discuss below the case in which K → ∞.

The interaction Equations (4) and (5) express the local character of the interaction through the
three-dimensional Dirac delta function δ(x) = δ(x)δ(y)δ(z). Eq. (4) relates the two corresponding
force densities f(x, t)dx and F(q,r, s, t)dqdrds, which can been seen by integrating each side of
Eq. (4) over an arbitrary region Ω. Eq. (5) is the equation of motion of the massless component
X(q,r, s, t) of the immersed body. It simply says that the body X(q,r, s, t) moves at the local fluid
velocity, i.e., by no-slip condition.

We remark that the previous versions of the pIB method in Refs. 4 and 5 also use Eqs. (1)-(5) as
the basic framework. In fact, the pIB method was applied to simulate flows with a nonuniform den-
sity by using these equations only.5 When the immersed boundary is elastic, we add the elastic force
density generated from the deformation of the elastic body X(q,r, s, t) to the force term F(q,r, s, t)
in Eq. (3).4 Here we focus on an extension of the pIB method to the case in which the immersed
boundary is a rigid body. Thus the pIB method is a unified framework for handling both elastic and
rigid structures.
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If the force density F in Eq. (3) were a function of the massless representative X(q,r, s, t) only,
that is, if Y(q,r, s, t) were given, then Eqs. (1)-(5) would be complete and give the traditional IB
formulation.1–3 However, since the force density F is also a function of the unknown massive repre-
sentative Y(q,r, s, t) of the rigid body, we need to take into account the rigid-body dynamics. To do
that, let Ycm(t) be the center of mass of the body, and let {E1(t),E2(t),E3(t)} be the orthonormal
basis for a coordinate system fixed to the body with its origin at the center of mass. Then the
position of the material points q, r, s of the body can be written as

Y(q,r, s, t) = Ycm(t) + c1(q,r, s)E1(t) + c2(q,r, s)E2(t) + c3(q,r, s)E3(t). (6)

Since the coordinates are fixed to the body, the coefficients ci(q,r, s)’s are independent of time. Note
that Eq. (6) allows for general curvilinear coordinates q, r, s that are fixed to the body. We get the
special case of Cartesian coordinates by setting c1(q,r, s) = q, c2(q,r, s) = r , and c3(q,r, s) = s.

Before proceeding further, let us introduce two notations: one is a 3 × 3 matrix E(t) of which
the i-th column is the 3 × 1 vector Ei(t), and the second is the 3 × 1 vector-valued function C(q,r, s)
of which the i-th component is ci(q,r, s). Then Eq. (6) is the same as

Y(q,r, s, t) = Ycm(t) + E(t)C(q,r, s). (7)

Now the equations of motion of the rigid body Y(q,r, s, t) are a dynamical system for the
variables Ycm(t), Ei(t), i = 1,2,3, Vcm(t), and L(t), where Vcm(t) is the velocity of the center of mass
and L(t) is the angular momentum of the body. Each of these is a 3 × 1 vector, and its components
are expressed in the laboratory frame of reference. The equations for Ycm(t) and Vcm(t) are

dYcm

dt
= Vcm(t), (8)

M
dVcm

dt
= −


F(q,r, s, t)dqdrds − Mg e3, (9)

where F is defined in Eq. (3), e3 is a unit vector in the positive z direction, and g is the gravitational
acceleration. Here and in the following, any integral with respect to q,r, s is understood to extend
over the whole of the immersed body. In Equation (9), M is the excess mass of the body, i.e., the
difference between its mass and the mass of the fluid displaced. Later on, we shall need the density
of the excess mass, which we denote by m(q,r, s). This is the difference between the density of the
rigid body and the (constant) fluid density and, of course, M =


m(q,r, s)dqdrds. Note that the

motion of Ycm(t) depends on only the gravitational force and the total force generated by the stiff
springs that connect the massive and massless descriptions of the immersed body. Thus the massive
body Y(q,r, s, t) has no direct interaction with the surrounding fluid.

The equation for the angular momentum L(t) is

dL
dt
= T(t), (10)

where T is the total torque on the rigid body. In our case, the torque is the sum of the torques applied
by all the springs that connect the points of the rigid body to their massless twins. It is important that
the origin used in calculating this torque is the center of mass of the body. Thus the total torque is

T(t) =


(Y(q,r, s, t) − Ycm(t)) × (−F(q,r, s, t))dqdrds. (11)

The equations for the orthonormal frame given by the Ei(t)’s are

dEi

dt
= Ω(t) × Ei(t), i = 1,2,3, (12)

where Ω(t) is the angular velocity of the body which can be calculated from L(t) as follows. First,
recall the definition of the angular momentum L(t),

L(t) =


(Y(q,r, s, t) − Ycm(t)) × (m(q,r, s)V(q,r, s, t))dqdrds

=


m(q,r, s)(Y(q,r, s, t) − Ycm(t)) × (V(q,r, s, t) − Vcm(t))dqdrds, (13)
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where V(q,r, s, t) is the velocity of each point of the rigid body Y(q,r, s, t). In the second equation,
we subtract Vcm(t) from V(q,r, s, t) without any consequence because of the definition of center of
mass.

Now, since the angular velocityΩ(t) is defined by

V(q,r, s, t) − Vcm(t) = Ω(t) × (Y(q,r, s, t) − Ycm(t)), (14)

by substituting this relation into (13) and using expression (7), we obtain

L(t) =


m(q,r, s)(E(t)C(q,r, s)) × (Ω(t) × E(t)C(q,r, s)) dqdrds. (15)

This can be simplified with the help of the vector identity u × (v × w) = (u · w)v − (u · v)w. In our
case, since u = w, we have u × (v × u) = (|u|2 I3 − uuT)v, where uT is the transpose of u and I3
is the 3 × 3 identity matrix. Using the orthogonal property of the matrix E(t), we can therefore
simplify (15) as follows:

L(t) =


m(q,r, s)((E(t)C)T(E(t)C)I3 − (E(t)C)(E(t)C)T)Ω(t) dqdrds

=


m(q,r, s)(CTCI3 − E(t)CCTE(t)T)Ω(t) dqdrds

= E(t)


m(q,r, s)(CTCI3 − CCT) dqdrds E(t)T Ω(t)
= E(t) I0 E(t)T Ω(t), (16)

where, for any matrix A, AT denotes the transpose of A. The 3 × 3 matrix E(t) I0 E(t)T is
the “moment of inertia tensor” which is expressed in terms of the time-independent matrix I0
=


m(q,r, s)(CTCI3 − CCT) dqdrds and the time-dependent orthogonal matrix E(t), i.e., the col-
umns of which are the Ei(t)’s. The angular velocity Ω(t) can be calculated by the inversion of
Eq. (16), i.e.,Ω(t) = E(t) I−1

0 E(t)TL(t).
The mathematical formulation of the pIB method for a three-dimensional viscous incompress-

ible fluid interacting with a rigid body is fully described by Eqs. (1)-(5), (7)-(12), and (16). Consider
the case in which K → ∞ in Eq. (3). Then the massless body X(q,r, s, t) coincides with the massive
body Y(q,r, s, t) and obeys rigid-body kinematics. Even though K cannot be infinite in practice, we
can choose K to be so large that Y(q,r, s, t) and X(q,r, s, t) move as closely as we like. However, a
large value of K may generate computational instability, and thus there is a trade-off between the
size of K and the time step restriction. This issue will be discussed in Section IV A.

III. NUMERICAL IMPLEMENTATION OF THE pIB METHOD

For the numerical implementation to solve Eqs. (1)-(5), (7)-(12), and (16), we adopt a “formally”
second-order IB method which was used in Refs. 24 and 25 and generalize it to consider the dynamics
of the massive body that is connected to the massless body by stiff springs.4,5 This method is based
on the framework of a second-order Runge-Kutta method in which each time step is divided into two
substeps: the preliminary and final substeps. The preliminary substep computes data at time level
n + 1

2 using data at time level n by a first-order accurate Euler method. Then the final substep uses
the data at time levels n and n + 1

2 to update the data at time level n + 1 by a second-order accurate
midpoint rule.

Here we use a superscript to denote the time level. Let ∆t be the time step, Xn(q,r, s) is
shorthand for X(q,r, s,n∆t), and all other variables can be written in similar shorthands. A subscript
is used to denote the spatial discretization of the immersed body. Thus Xn

k
, k = 1, . . . ,N , denote the

marker points representing the immersed body where N is the total number of points used in the
discretization.

Before describing the time iteration of the numerical scheme, we need the initialization of some
variables. Initially the massive points Y0

k
are exactly the same as the immersed body points X0

k
. Let

us choose the initial orthonormal frame {E0
1,E

0
2,E

0
3} for the coordinate system fixed at the body with
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its origin at the center of mass as the standard basis for the 3D space {i, j,k}. Then the corresponding
orthonormal matrix E0 is the 3 × 3 identity matrix, and thus Eq. (7) determines the coordinates Ck

for the point Y0
k

as

Ck = Y0
k − Y0

cm, (17)

where Y0
cm is the center of mass of the body at time 0. Note that Ck’s are constants in time.

Let mk be the excess mass density of the marker point X0
k

of the body. Then the total excess
mass M of the body can be computed as

M =
N
k=1

mk∆q∆r∆s, (18)

where ∆q, ∆r , and ∆s are the spatial meshwidths for the immersed body. Since the initial moment of
inertia tensor I0 used in (16) is independent of time, it is desirable to compute I0 initially before the
time iteration begins,

I0 =

N
k=1

mk(CT
k Ck I3 − CkCT

k )∆q∆r∆s. (19)

Now a typical time iteration of the numerical scheme starts with the preliminary substep which
proceeds from time level n to n + 1

2 as follows.

First, we update the position of the massless body Xn+ 1
2

k
,

Xn+ 1
2

k
= Xn

k +
∆t
2


x

un(x)δh(x − Xn
k)h3, (20)

where x = (x1, x2, x3) is the fluid mesh point and h is the spatial mesh width of the fluid domain. The
function δh is a regularized version of the Dirac delta function.1,3 Here and throughout the paper,


x

represents the sum over the cubic lattice in physical space on which the fluid variables are defined.
The key idea of extending the formally second-order method to the case for massive body is

that the numerical treatments of the massive body and massless body are closely parallel to each

other. Thus, we update the massive body Yn+ 1
2

k
in a similar manner to Xn+ 1

2 ,

Yn+ 1
2

cm = Yn
cm +

∆t
2

Vn
cm, (21)

Ω
n = En I−1

0 (En)T Ln, (22)

En+ 1
2

i = R( Ω
n

|Ωn | ,
∆t
2
|Ωn |)En

i , i = 1,2,3, (23)

Yn+ 1
2

k
= Yn+ 1

2
cm + En+ 1

2 Ck . (24)

Here Vn
cm is the velocity vector of the center of mass (a known value at time n∆t, like un). The

matrix R(v, θ) in (23) represents the orthogonal matrix that describes the rotation through an angle θ
about the axis specified by the unit vector v. We can write R(v, θ) explicitly as follows:

R(v, θ) = cos θ I3 + (1 − cos θ) vvT + sin θ (v×). (25)

Eq. (23) along with definition (25) is our discretization of Eq. (12). It guarantees that the En+ 1
2

i ’s
remain exactly as mutually orthogonal unit vectors, which would not be the case if we used a typical
Euler’s method update.

Next, we calculate the two force densities Fn+ 1
2

k
and fn+

1
2 ,

Fn+ 1
2

k
= K(Yn+ 1

2
k
− Xn+ 1

2
k

), (26)

fn+
1
2 (x) =


k

Fn+ 1
2

k
δh(x − Xn+ 1

2
k

)∆q∆r∆s. (27)
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These are discretizations of Eqs. (3) and (4), respectively. The total torque can be computed in a
similar fashion,

Tn+ 1
2 =

N
k=1

(Yn+ 1
2

k
− Yn+ 1

2
cm ) × (−Fn+ 1

2
k

)∆q∆r∆s. (28)

Once we obtain fn+
1
2 , we are ready to solve the Navier-Stokes equations,

ρ
�un+ 1

2 − un

∆t/2
+

1
2


i=1,2,3

(uiD0
iu + D0

i (uiu))n� + Dpn+ 1
2 = µLun+ 1

2 + fn+
1
2 , (29)

D · un+ 1
2 = 0, (30)

where D0
i is the central difference formula for the partial derivative in the spatial direction denoted

by i, where i = 1,2,3, and L is the standard 5-point discrete formula for Laplace operator. We use
the skew-symmetric differencing for the convection term which enables us to convert correctly the
force, torque, and power back and forth between Lagrangian and Eulerian forms by our scheme
and to prove the conservation of energy for the spatially discretized IB method with uniform mass
density.1,24

Again we have to calculate the velocity Vn+ 1
2

cm and the angular momentum Ln+ 1
2 in the same

manner as un+ 1
2 ,

Vn+ 1
2

cm = Vn
cm +

∆t
2M

N
k=1

(−Fn+ 1
2

k
)∆q∆r∆s − ∆t

2
g e3, (31)

Ln+ 1
2 = Ln +

∆t
2

Tn+ 1
2 . (32)

This is simply a Euler’s method for (9) and (10), respectively, and the preliminary substep completes.
The final substep uses data at time levels n and n + 1

2 to update the corresponding data at time
level n + 1 by the second-order accurate midpoint rule.

First, we update the massless body configuration Xn+1
k

and massive body position Yn+1
k

,

Xn+1
k = Xn

k + ∆t


x
un+ 1

2 (x)δh(x − Xn+ 1
2

k
)h3, (33)

Yn+1
cm = Yn

cm + ∆tVn+ 1
2

cm , (34)

Ω
n+ 1

2 = En+ 1
2 I−1

0 (En+ 1
2 )T Ln+ 1

2 , (35)

En+1
i = R( Ω

n+ 1
2

|Ωn+ 1
2 |
,∆t |Ωn+ 1

2 |)En
i , i = 1,2,3, (36)

Yn+1
k = Yn+1

cm + En+1Ck . (37)

Finally, we need to update the fluid velocity, the velocity of the center of mass, and the angular
momentum of the immersed body,

ρ
�un+1 − un

∆t
+

1
2


i=1,3

(uiD0
iu + D0

i (uiu))n+ 1
2
�
+ Dpn+1 =

1
2
µ(Lun+1 + Lun) + fn+

1
2 , (38)

D · un+1 = 0, (39)

Vn+1
cm = Vn

cm +
∆t
M

N
k=1

(−Fn+ 1
2

k
)∆q∆r∆s − ∆t g e3, (40)

Ln+1 = Ln + ∆t Tn+ 1
2 . (41)
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In order to solve the fluid equations ((29)-(30) and (38)-(39)), we use the assumption of
periodic boundary conditions and adopt the discrete Fourier transform (implemented by the FFT
algorithm). This is because the fluid equations can be solved efficiently by using the FFT algorithm.
(Note, however, that there is no fundamental restriction on the fluid solver and the boundary condi-
tions in the pIB method.) Though we use periodic boundary conditions in all three space directions
for computational efficiency and also to avoid wall effects, we here “break” the periodicity in the
vertical direction in the following way.

In all the problems considered, in order to keep a rigid body inside the computational domain,
we generate an updraft within a rectangular slab that spans the bottom of the computational domain.
To do that, we apply to the fluid equations a body force in the slab which is adjusted locally to
achieve a desired velocity within the slab. The desired velocity, in turn, is adjusted by the following
control mechanism:

dW0(t)
dt

= γ(ztarget − Zcm(t)) − σWcm(t), (42)

where Zcm(t) and Wcm(t) represent the z-components of the position and velocity of the center of
mass of the massive body, respectively. These values can be computed in each time iteration. The
velocity (0,0,W0(t)) defines the desired updraft at time t, ztarget is the fixed value representing the
height which is targeted by the center of mass, and γ and σ are positive constants. The updraft
increases or decreases depending on the height of the center of mass and also is damped according
to Wcm(t) in order to avoid large oscillations of the updraft velocity.

In addition to keeping the rigid body within the computational domain, the updraft flow within
the bottom slab of the domain has the effect of preventing the features of the wake of the body from
leaving the periodic domain at the top and from re-entering it at the bottom. Thus, the method to
generate the updraft provides a nearly uniform upward flow from the bottom of the domain in which
the rigid body falls.

IV. NUMERICAL VERIFICATION OF THE pIB METHOD

We verify the present pIB method by simulating some simple systems in which a fluid flows
past rigid bodies in 2D and 3D. First, we simulate a flow past a cylinder in 2D and compare drag
coefficients obtained by our numerical simulation with those found experimentally.22 This has been
widely used as a benchmark problem for numerical schemes.24,26 We validate the present method
further by a convergence study, which shows that it is first-order accurate. Although formally
second-order accurate in space and time, the method of this paper is only first-order accurate
spatially, since it is applied to problems whose solutions lack sufficient spatial smoothness for the
formal second-order accuracy of the method to be realized in practice. Note that what we mean by
a cylinder is an infinite circular cylinder which, when seen in a perpendicular plane to the cylinder,
is a disc. Next, we consider two cylinders which simultaneously descend in a channel filled with a
fluid. The simulation results will be compared with those in the literature. Finally, we simulate the
sedimentation of a single sphere and the interaction of two descending spheres.11 Throughout this
section, we distribute the mass uniformly over the rigid body (cylinder or ball), and thus the center
of mass is the geometrical center of the rigid body. Note, however, that mass could be distributed
non-uniformly, which would affect the moment of inertia tensor.

In all the problems considered in this paper, we implement the pIB method (Eqs. (17)-(42))
described in Sec. III using Fortran 90 and use the HP workstation equipped with Intel(R) Xeon(R)
3.3 GHz CPU and 128 GB memory.

A. Flow past a single cylinder

When a fluid flows past a body which partially blocks the flow, the body feels a force in the
flow direction which is called drag force. A drag force on a particular body can be characterized by
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a dimensionless value, the drag coefficient CD, which is computed by

CD =
FD

1
2 ρW 2

0 D
, (43)

where ρ is the fluid density, W0 is the far-field uniform velocity, and D is the reference length of the
body which is the diameter of the cylinder in our case. The value FD is the force exerted parallel
to the flow direction. Here, FD can be seen as the force per unit length of the infinite cylinder. See
Ref. 22 for more details.

In typical computational simulations and physical experiments, the usual way to compute
the drag coefficient of a body is to generate a uniform flow past the body which is fixed in the
domain.22,24,26 In our simulation, however, we want to test the apparatus of the pIB method, in
particular the gravitational effect of mass, and so we drop the body and let it fall freely. In order to
keep the body within the computational domain, we drive an upward flow from below at a velocity
W0(t), and we adjust W0(t) by a control mechanism discussed in Sec. III, see Eq. (42). When the
position of the body and the upward flow velocity W0(t) both settle down, the body feels no total
force, and the drag force FD of the body must be equal to its buoyant weight Mg, where M is the
excess mass of the body and g is the gravitational acceleration. (In the present 2D problem, FD is
the drag force per unit length instead of the drag force, and M is the buoyant mass per unit length
instead of the buoyant mass.) The value to which W0(t) settles down may be regarded as the uniform
upward velocity that generates the drag force FD.

Table I shows physical parameters of the problem. The fluid density is chosen as ρ = 1.0 g/cm3

and the viscosity µ = 0.01 g/(cm s). These values are the same as those of water. The computational
domain is [0,1.2] × [0,2.4] cm2, and the mesh width of the computational domain is uniform and
fixed at h = 1.2/512 cm. The time step ∆t = 10−6 s, and the simulation requires 0.5 × 106 iterations
(up to 0.5 s) which take about 10 h to complete. The left panel of Fig. 1 shows vorticity contours at
t = 0.5 s for the freely falling cylinder in an upward flow in which we can observe oscillatory vortex
shedding from the cylinder.

Unlike in a traditional IB calculation, the present pIB method uses the penalty parameter K
which forces the two descriptions of the body to be close to each other. A large K causes a large
force for any given displacement and may then lead to a computational instability which can be
avoided by reducing the time step ∆t. Our strategy of choosing the parameter K is by trial and
error. We first choose an allowed distance between the two Lagrangian descriptions, then adjust
K so that the computed distance between the two Lagrangian descriptions does not exceed the
allowed distance and reduce the time step ∆t, if needed to avoid numerical instability for a large K .
Normally we choose the allowed distance to be one-tenth the meshwidth, i.e., ∥X − Y∥∞ ≤ h/10.
This goal is achieved here by setting K = 2.56 × 1012 g/(cm4 s2). The upper right panel in Fig. 1
plots the maximum distance between the two descriptions X and Y of the cylindrical cross section.
The plot shows that ∥X − Y∥∞ is less than h/10.

In order to see that our control mechanism (42) has the desired effect that it makes the cylin-
der to stay at a constant height with a uniform inflow, we plot the applied upward velocity W0(t)
(right-middle) and the height of center of mass of the cylinder Zcm(t) (lower right) as functions of
time in Fig. 1. We can see that the height of the center of mass of the cylinder approaches a constant
value, ztarget = 0.8 cm, and that the speed of updraft W0(t), which the control mechanism requests to

TABLE I. Parameters of the simulation.

Parameter Magnitude

Fluid density, ρ 1.0 g/cm3

Fluid viscosity, µ 0.01 g/(cm s)
Cylinder diameter, D 0.1 cm
Cylinder excess mass per unit length, M 3.3 × 10−2 g/cm
Gravity, g 980 g cm/s2

Domain size 1.2 cm × 2.4 cm



033603-10 Y. Kim and C. S. Peskin Phys. Fluids 28, 033603 (2016)

FIG. 1. The left panel shows the vorticity contours of flow past a freely falling cylinder at t = 0.5 s. Although falling freely
through the water, the rigid body maintains a constant height because of the control mechanism that specifies the updraft
velocity from below to levitate the body. The upper right panel plots the maximum distance between the two descriptions
of the cross section of the cylinder. This plot shows that ∥X−Y∥∞ is less than h/10. The right-middle panel represents the
applied upward velocity W0(t) which, after about 0.4 s, stays around 21 cm/s. The lower right panel shows the height of the
center of mass Zcm(t) which approaches a constant value, ztarget= 0.8 cm.

support the falling body, approaches the constant value, W0(t) = 21 cm/s. This is the exact goal that
the control mechanism tries to achieve. Parameter values for control mechanism (42) are γ = 104/s2

and σ = 103/s.
When the simulation approaches almost a steady state, the cylinder stays around one position

with 0 velocity of the center of mass, in which case, using the almost uniform updraft W0(t), we can
calculate two dimensionless quantities, the Reynolds number ρDW0(t)/µ and the drag coefficient
Mg/(0.5 ρW0(t)2 D). Fig. 2 shows the Reynolds number (upper panel) and the drag coefficient
(middle panel) as functions of time. Our simulation result gives a Reynolds number of about 210,
in which case, the drag coefficient CD of a cylinder is expected to be between 1.4 and 1.5 from the
literature.22,24,26 The drag coefficient CD in our simulation is around 1.465, which is within the range
in the literature. The lower panel plots the angular velocity ωz of the cylinder which stays 0 initially
for some time and then oscillates around 0. This oscillation of the angular velocity is a consequence
of oscillatory vortex shedding.

We now perform a convergence study to verify that the rigid body dynamics in a fluid is
correctly solved by the present pIB method. We consider the same problem as above, i.e., a freely
falling cylinder in an upward flow. Then we vary the mesh sizes of the x and y directions of the
domain as (Nx,Ny) = (128,256), (256,512), (512,1024), and (1024,2048) so that the mesh width
becomes h = 1.2/Nx correspondingly. We also choose ∆s and ∆t proportional to h, so that the
refinements for the fluid mesh width, the boundary mesh width, and the time step duration are done
by the same factor. When we refine the mesh width and time step, we increase the penalty parameter
as K = 9.7656 × 106N2

x dynes/cm5.
Table II shows the Reynolds numbers and drag coefficients, respectively, for each case of

the four mesh sizes (Nx = 128, 256, 512, and 1024). These dimensionless quantities are averaged
temporally from t = 0.4 to t = 0.5 in the almost steady state. We can see that, when Nx increases,
the Reynolds number increases and drag coefficient decreases. However, the increment in Reynolds
number and the decrement in drag coefficient reduce as Nx increases, and the difference of the two
dimensionless quantities between the cases of two consecutive grid sizes decreases, which suggests
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FIG. 2. The Reynolds number (upper), the drag coefficient (middle), and the angular velocity ωz (lower) as functions of
time for 2D cylinder.

convergence. Note that the drag coefficients are between 1.4 and 1.5 only when Nx = 512 and 1024,
i.e., when the computational grids are fine enough.

Table III shows the convergence ratios of the Reynolds number, drag coefficient, and ve-
locity field. The convergence ratio of the velocity field is computed by (∥uNx − u2Nx∥2

2 + ∥vNx

− v2Nx∥2
2)1/2/(∥u2Nx − u4Nx∥2

2 + ∥v2Nx − v4Nx∥2
2)1/2 for each of the cases Nx = 128 and 256. The

convergence ratios of Reynolds number and drag coefficient are defined similarly. Whereas the
updraft W0(t) used in computing the Reynolds numbers and drag coefficients is the averaged value
from t = 0.4 s to t = 0.5 s, the velocity field is chosen at t = 0.1 s. One can see that the convergence
ratios for the velocity field are around two, which indicates the first-order accuracy of the present
method. As remarked above, the IB method is typically first-order accurate, despite its formal
second-order accuracy. There are some special situations in which actual second-order accuracy is
achieved,4 but these seem to be those that avoid a delta-function layer of force at the solid-fluid
interface. Such a delta-function layer is needed here, despite the thickness of the solid, to enforce
the no-slip condition at a rigid boundary.

B. Two freely falling cylinders

Here, we consider the interaction between two circular cylinders falling freely in a steady
fluid. We choose a computational domain [0,2] × [0,8] cm2 filled with a fluid of which the vis-
cosity is 0.01 g/(cm s) and the density is 1 g/cm3. The excess mass densities of the two cylinders
are 0.01 g/cm3 and their radii are both 0.1 cm. Gravity with g = 980 cm/s2 acts in the negative
y-direction. The simulation is started at t = 0 s by releasing the two cylinders at the initial posi-
tions (1.0 cm, 7.2 cm) and (1.0 cm, 6.8 cm). The meshwidth is h = 2/256 cm, the time step is

TABLE II. Reynolds numbers and drag coefficients for meshsize Nx.

Nx 128 256 512 1024

Reynolds number 188 203 210 213
Drag coefficient 1.82 1.56 1.46 1.42
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TABLE III. Convergence ratios.

Nx = 128, 256, 512 Nx = 256, 512, 1024

Reynolds number 2.30 1.84
Drag coefficient 2.6 2.0
Velocity field 1.66 1.90

∆t = 5 × 10−5 s, and the final time is 5 s which requires about 10 h to complete the simulation.
This case is identical to the one presented in Ref. 14 except that we here use periodic boundary
conditions for the fluid equations instead of Dirichlet boundary conditions used in Ref. 14.

The left panel of Fig. 3 shows the motion of the falling cylinders at some chosen times, and
the right panels plot the streamlines at those times. It is known that two cylinders dropped close
to each other in a Newtonian fluid undergo drafting, kissing, and tumbling.19,16,27 Initially the two
cylinders have the same downward acceleration. Later, the velocity of the upper cylinder becomes
faster than that of the lower one, since the lower cylinder is falling into essentially still fluid, but
the upper cylinder is falling through fluid that is being pulled downward by the lower cylinder. Thus
the lower cylinder drafts the upper one continuously (t = 1.0 s), and then the two cylinders kiss
and temporarily move together like one rigid body (t = 2.0 s). Then an instability sets in, and the
upper cylinder tumbles over the lower one (t = 3.0 s). After tumbling through an angle of about
130◦ is complete, the cylinders come apart and continue to fall (t = 3.5 s). Note that, as a result of
symmetry breaking, the cylinders have both been displaced horizontally in the same direction and
by different amounts, so that they are no longer aligned one below the other.

Fig. 4 shows the centers of mass (Xcm(t),Ycm(t)) of the two cylinders (upper panels), their falling
speeds Vcm(t) (lower-left), and their angular velocities ωz of rotation about their centers of mass
(lower-right) as functions of time. The vertical velocity of the initially upper cylinder is larger in
magnitude than that of the lower cylinder until t = 1.2 s, and then both vertical velocities are the

FIG. 3. Numerical simulation of drafting, kissing, and tumbling of two cylinders falling in fluid. The left panel shows the
cylinder positions at some selected times, and the right panels plot the streamlines at those selected times. Throughout the
figure, blue color indicates the cylinder that is initially the upper one, and red indicates the initially lower cylinder.
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FIG. 4. The horizontal and vertical positions of the centers of mass (upper panels), the vertical velocities of the centers of
mass (lower-left), and the angular velocities of rotation of the two cylinders about their centers of mass (lower-right). In the
plots, the solid blue lines refer to the initially upper cylinder, and the dashed red lines refer to the initially lower one.

same from t = 1.2 s to 2.6 s. These correspond to drafting and kissing, respectively. After about
t = 2.5 s, the vertical velocities, the x-components of the center of mass of the two cylinders,
and the angular velocities of rotation of the two cylinders bifurcate and the differences of these
values become larger for some time. These correspond to the tumbling followed by separation. Our
numerical results in Figures 3 and 4 have a good agreement with data in Refs. 14, 19, and 16.

C. Sedimentation of spherical balls

In this section, we consider the descent under gravity of a spherical ball through a fluid and the
interaction of two such descending spherical balls. These are the 3D analogs of the 2D problems
considered in Sec. IV B. In the first case, we drop a ball with radius 0.05 cm in the domain
[0,1.2] × [0,1.2] × [0,2.4] cm3, and we drive an upward flow from below at a velocity W0(t) deter-
mined by control mechanism (42). The ball has excess mass density 2 g/cm3 and total excess mass
M = 1.05 × 10−3 g. The other physical parameters are the same as those in Table I. The mesh width
of the computational domain is fixed at h = 1.2/128 cm, and the time step duration ∆t = 5 × 10−6 s.
The total iteration number 4 × 105 (up to 2 s) requires about 126 h to complete the simulation.

The left panel of Fig. 5 shows the streamlines of the flow past a freely falling ball in an upward
flow in which we can observe the vortex shedding above the ball. The right panels of Fig. 5 show
the Reynolds number (upper) and the drag coefficient (lower) as functions of time after the height of
the center of mass of the ball approaches a constant value, ztarget = 0.8 cm, with an almost uniform
speed of updraft W0(t) ≈ 13 cm/s. The Reynolds number is around 130 (dotted line), in which case,
the drag coefficient CD of a 3D ball is expected to be around 0.92 based on experimental data.22 We
can see, however, that our result is around 1.5 (dotted line) which is larger than the experimental
data, see the dotted line in the lower-right panel.

The difference between our result and the real data comes from a numerical effect that is
inherent in the IB method: since the numerical implementation of the IB method uses a continuous
delta function with a finite support, the effect of the immersed body extends slightly beyond the real
body. When we use the four-point supported delta function,1,3 it has been documented in Ref. 28
that immersed boundaries may have an effective thickness of as much as 2 × 1.42 h where h is the
meshwidth of the computational domain. This would increase the radius of the ball by 1.42 h and its
diameter by 2 × 1.42 h. The solid line in the right panels of Figure 5 represents the Reynolds num-
ber and the drag coefficient of the ball with the effective radius 0.05 cm + 1.42 h. Calculating the
drag coefficient in this way, we get CD = 0.93, which is close to the experimental data CD = 0.83
given in Ref. 22 when the Reynolds number is 165.
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FIG. 5. The left panel shows the streamlines of flow past a freely falling ball at t = 2 s. The right panels depict the Reynolds
number (upper) and the drag coefficient (lower) as functions of time for the 3D ball.

As in the case of two falling cylinders in fluid, it is known that two balls which are initially
aligned vertically fall with the behaviors called “drafting, kissing, and tumbling.”11 The upper
panels of Fig. 6 show the interaction of two descending balls together with streamlines of the flow
at some chosen times: t = 0.05 s, 0.2 s, 0.25 s, and 0.35 s. The wake behind the lower ball reduces
the drag on the trailing ball which thus falls faster than the leading ball. This is called drafting
(t = 0.05 s), and the increasing falling speed draws the trailing ball into a kissing contact with the
leading ball (t = 0.2 s). Since an elongated rigid body is unstable when its center line is along the
flow direction, the kissing balls, which temporarily act somewhat like such a rigid body (but see
below), tend to tumble (t = 0.25 s). After tumbling, the balls move apart and continue to fall with
almost no interaction (t = 0.35 s). This well-known mechanism of the interaction of two descending
balls is clearly seen in Fig. 6, in which we have used two identical balls with the same properties as
the above single descending ball. The initial positions of the two balls were vertically aligned with
their centers separated by 0.3 cm, which is 6× the radius of either ball.

The middle panel of Fig. 6 depicts the distance between the centers of the two balls as a func-
tion of time, which also shows the behaviors of drafting, kissing, tumbling, and falling separately.
The lower panel shows the x-component ωx(t) (solid line with “◦”) and z-components ωz(t) (solid
line) of the angular velocity of the two balls as functions of time. The blue color refers to the ball
that is initially the upper one, and the red refers to the initially lower ball. The y-component of the
angular velocity behaves similarly to the x-component. Both the x and z components of the angular
velocities of the two balls are 0 until around 0.18 s when the kissing balls start to rotate. In this
tumbling motion, the z component of the angular velocity of the two balls is smaller than the x
component. Also the initially lower ball (red) has a larger angular velocity than the initially upper
ball (blue). This indicates that, in the kissing state, the two balls are not rotating as a rigid body. (If
they were, their angular velocities would be the same.) Instead, the initially lower ball is rotating
and the initially upper ball is more or less in a state of orbital translation around it, without much
rotation.

V. AUTOROTATION OF A MAPLE SEED

In this section, we introduce a model of a single maple seed and simulate the flight dynamics
as it descends. Many samaras or winged seeds such as maple seeds exhibit autorotational flight
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FIG. 6. The upper panels show the interactive motion of a pair of balls settling in a Newtonian fluid with streamlines: from
right to left, drafting at t = 0.05 s, kissing at t = 0.2 s, tumbling at t = 0.25 s, and falling separately at t = 0.35 s. The middle
panel depicts the distance between the centers of the two balls, and the lower panel shows the x-component ωx(t) (solid line
with “◦”) and the z-component ωz(t) (solid line) of the angular velocities of the two balls. The blue color refers to the ball
that is initially the upper one, and the red refers to the initially lower ball.

during their fall. Autorotation of winged maple seeds, which is the result of a delicate equilibrium
between gravity, inertia, and aerodynamic forces, reduces the falling speed and increases the flight
time and thus the distance which maple seeds can reach. Many experimental and theoretical studies
have been done to describe and explain the flight performance of maple seeds18,29,23,30–32 and to
determine how the rate of descent, the spinning rate of autorotation, and the coning angle of the
rotating seeds depend on the geometrical configuration, total mass, and distribution of mass within a
maple seed.

Our model of maple seed has two parts: one is the “nut” which we model as a spherical ball
and the other is the “seed wing” which has the shape of a leaf appended to the nut, see Fig. 7 which
shows a picture of a real maple seed (left) and our model of the maple seed as seen in the x y-plane,
which contains the seed wing (right). The configuration of the model seed wing is planar. In body
coordinates, it is the part of the x y-plane that is enclosed between two parabolas,

4h1x(x − L)/L2 ≤ y ≤ −4h2x(x − L)/L2, 0 ≤ x ≤ L, (44)

where L is the length and h1 + h2 is the maximal width of the seed wing.
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FIG. 7. A real maple seed (left) and the reference configuration of the model of a maple seed indicating its center of mass
(right). The grid points on the seed wing represent the marker points of the immersed body. The mass densities of the upper
part (red markers) and lower part (blue markers) of the seed wing are 0.028 g/cm2 and 0.0028 g/cm2, respectively. The
position of the center of mass (black marker) is Ycm(0)= (0.267,0.005,0) cm3.

The dynamics of a maple seed depends on its geometrical shape, its total mass, and the loca-
tion of its center of mass. The nut in our model is a ball with radius 0.05 cm and mass density
18.0 g/cm3. The parameters which define the seed wing are chosen as h1 = 0.4 cm, h2 = 0.16 cm,
and L = 1.5 cm, which make the seed wing area be 2

3 (h1 + h2)L = 0.56 cm2. The seed wing is
divided into two parts by a parabola y = −4h x(x − L)/L2, where h = 0.06, see the blue and red
markers in Fig. 7. The mass densities of the upper part (red markers) and lower part (blue markers)
of the seed wing are 0.028 g/cm2 and 0.0028 g/cm2, respectively. These two different mass densi-
ties of the seed wing shift the center of mass to the upper part of the wing which then becomes
the leading edge when the maple seed rotates. With these values of the parameters, our model
of the maple seed has the total mass M = 0.013 g and the position of the center of mass in the
reference configuration Ycm(0) = (0.267,0.005,0) cm3. The wing area and the total mass of our
model are equal to the values given in Refs. 18 and 23. The fluid density and viscosity are the
same as those of air: ρ = 0.0012 g/cm3 and µ = 0.0002 g/(cm s). The computational domain is
[0,10] × [0,10] × [0,20] cm3, and the mesh width of the computational domain is h = 10/128 cm,
which is uniform and fixed in time. We use the time step duration ∆t = 5 × 10−6 s and the final time
t = 1 s which require about 70 h to complete the simulations.

As in the simulations of Sec. IV, while the maple seed is falling, we drive an updraft from
below to keep the seed within the computational domain. Here, however, we do not use a control
mechanism but instead prescribe a constant updraft velocity W0(t) = 100 cm/s for all time t. Also
the initial fluid velocity is u = (0,0,100 cm/s) and the initial velocity of the center of mass is
Vcm = (0,0,100 cm/s). This makes the descent velocity, which is defined as Wcm(t) −W0(t), be the
same as if the seed had been dropped from rest in still air and turns out to keep the seed within the
computational domain.

Figs. 8(a) and 8(b) show the typical motion of the falling maple seed. The two pictures (a) and
(b) have different initial orientations of the maple seed as shown at the top of each panel. We can
observe that, independent of the initial orientation, the seed nut initially falls faster than the seed
wing. This is because the drag force of the surrounding fluid is higher on the seed wing than on the
nut. After a transitional phase, the maple seed in both cases settles down to a steady spinning motion
with the upper and heavier part of the seed wing being the leading edge of the rotation.

Figs. 8(c) and 8(d) show the streamlines around the falling maple seed in the steady rotational
state. The maple seeds in (c) and (d) are viewed from the more massive part of the seed wing (red
markers in Fig. 7) and from the nut, respectively. We can observe that the upward uniform flow
below the maple seed veers away from the maple seed. We can also see from (d) that the streamlines
are more accumulated in the region around the heavier part of the seed wing (red markers), which
implies that the flow moves faster around the heavier part. This means that the pressure is smaller
around the heavier part of the seed wing which then becomes the leading edge of the rotational
motion of the maple seed.

Autorotational motion of a maple seed can be characterized by the descent rate, the speed
of rotation, and the coning angle.23,18,29–32 These physical quantities, which are determined by the
balance between the lift force due to the spinning motion of the maple seed and the gravitational
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FIG. 8. Motion of a maple seed dropped from two different initial orientations in a constant-velocity updraft. In (a) and (b),
three phases of motion can be discerned. First, the maple seed falls without much change in orientation (the frames labeled
“translation” in the figure). Then the nut starts to lead as air resistance takes hold of the wing, and the seed starts to rotate
(“transition”). The transition phase involves only a little more than one cycle of rotation, and after that the wing becomes
more nearly horizontal, the speed of descent slows, and the motion becomes steady (“steady rotation”). Panels (c) and (d)
show streamlines during the steady rotation phase. In (c), the wing is viewed with the leading edge in front, and in (d) it is
viewed with the nut facing forward. Note that the leading edge is on the part of the wing with the higher mass density, which
is colored red in the figure.

force, can be easily computed in our computational procedure. Since we drive an upward flow from
below at a velocity W0(t), the descent velocity (a negative quantity) is the updraft velocity W0(t)
subtracted from the z-component Wcm(t) of the velocity of the center of mass, i.e., Wcm(t) −W0(t).
The upper-left panel of Fig. 9 depicts the descent velocity as a function of time. It shows that the
descent velocity of the maple seed increases rapidly in magnitude at the beginning of the fall, then
goes through a transitional phase, and finally settles down to about −87 cm/s, which is similar to the
descent velocity observed in Refs. 23, 18, and 32.

The upper-right panel of Fig. 9 shows the angular momentum of the falling maple seed as a
function of time. The angular momentum is initially 0, and then the seed begins to accelerate down-
ward with a rotary spinning motion being initiated. The x component Lx of the angular momentum
changes irregularly at first and then settles down to a repetitive oscillation. The y component Ly,
which is not shown in the figure, behaves similarly. The z component Lz of the angular momentum
is initially 0, and, after a transient that lasts about 0.6 s, settles down to a constant value. This
constant value of Lz indicates that the maple seed flies in the air with screw-like rotation during its
fall. If we project the image of the maple seed to the x y-plane and watch it from above or below, we
can see a spinning motion, but there is no other viewpoint from which the motion looks so simple.

Maple seeds start to rotate soon after their release. Rotation reduces the descent rate and in-
creases the distance that wind can carry the seeds. When a maple seed rotates in a steady state, the
angle between the maple seed and the x y plane becomes almost a constant. This angle is called the
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FIG. 9. The descent velocity (upper-left), the x and z components Lx and Lz of the angular momentum (upper-right), the
coning angle (lower-left), and the azimuthal angular velocity ωz (lower-right) of a falling maple seed. After a transient
period, the descent velocity stays around −87 cm/s, the x component Lx of the angular momentum settles down to a
repetitive oscillation, and both the z component Lz of the angular momentum and the azimuthal angular velocity ωz become
approximately constant. Thus the maple seed falls and rotates at almost constant linear and azimuthal angular velocities. In
this steady rotational state, the coning angle is around 16.34◦ and the azimuthal rotational frequency ωz/2π is 18.635 Hz.

coning angle which can be computed by

β = arctan


L2
x + L2

y

|Lz | , (45)

where L = (Lx,Ly,Lz) is the angular momentum. The lower-left panel of Fig. 9 depicts the coning
angle of the falling maple seed as a function of time. We can observe that, after a transient, the
maple seed starts to rotate and maintains a fairly constant coning angle. The transient time is around
0.6 s, after which the coning angle stays around 16.34◦ which is comparable to the coning angle
15.0◦ in Ref. 23 and 17.1◦ in Ref. 32.

The lower-right panel of Fig. 9 shows the z component of the angular velocity of the maple
seed as a function of time. The z component of the angular velocity, which describes azimuthal
rotation, starts at 0, varies irregularly for about 0.7 s, and then settles down to about −117 rad/s.
This indicates that, after a transient, the maple seed settles down to a steady spinning motion at an
almost constant spinning rate with one direction of the rotation. The leading edge of the rotation
turns out to be the heavier part of the seed wing. When the maple seed is in the steady rotational
state, the azimuthal rotational frequency ωz/2π is about 18.635 Hz or approximately 1118 rotations
per minute (rpm). This value is lower than the rotational speed 1800 rpm in Ref. 23 and 1652 rpm in
Ref. 32 but is 3 times higher than the value given in Ref. 18.

We conclude this section with some remarks on Zhao’s model for a maple seed in Ref. 18.
Zhao used the original version of the pIB method4 by considering the maple seed as an elastic body
with stretching and bending resistances. As the coefficients of these stretching and bending energy
functionals get larger, the maple seed becomes less flexible (or more rigid). Even though we assume
in this study that the maple seed is perfectly rigid, we can combine Zhao’s method and the present
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pIB method to model a maple seed with both flexible and rigid parts. The investigation of the flight
performance of the combined flexible/rigid maple seed will be a possible future work. Zhao’s and
our models are almost identical in terms of the shape, mass, and area of the maple seed; however,
the simulation results on the descent velocity, angular velocity, and coning angle are quite different.
(The results of our model are closer to the experimental data in Ref. 23.) The difference between
these two simulation results might come from different rigidity, grid resolution, and mass density
distribution.

VI. SUMMARY AND CONCLUSIONS

We have introduced a new extension of the pIB method that can handle a rigid body immersed
in a viscous, incompressible fluid. This method conceptually separates the rigid body into two parts,
one of which has the mass density of the ambient fluid, while the other one carries the excess mass
of the body. The part with the mass density of the ambient fluid is modeled as a part of the fluid, and
the other part is modeled as a rigid body. The two parts are linked by a system of stiff springs, which
effectively force their motions to agree.

This approach has the virtue of simplicity. The fluid equations are defined on the whole domain,
including the region occupied by the body, and they have constant density and viscosity everywhere.
(The viscosity within the region occupied by the body has no physical consequences, since the
motion there is effectively a rigid-body motion anyway.) Also, the rigid-body equations are those of
Euler, with forces and torques applied by the stiff springs that link the body to the fluid. Because the
springs are not infinitely stiff, we avoid the complication of imposing a rigid body constraint on the
fluid motion. The method is easy to implement as an add-on to any incompressible Navier-Stokes
solver for the uniform density, uniform viscosity case.

We have applied this new extension to some benchmark problems, including sedimentation
in 2D and 3D, as well as the autorotation of a falling maple seed. Since our aim here was only
to illustrate the new method, we have not pursued these applications in as much detail as they
deserve. In particular, the maple seed problem should be studied further to delineate how the shape
of the seed and its mass distribution influence its autorotation and ultimately its descent speed. Such
studies would benefit, no doubt, from adaptive mesh refinement.33 There is quite a variety of shapes
and sizes of maple seeds in nature, and it would be interesting to know whether each of them is
somehow optimally adapted to a particular set of environmental conditions.

More generally, it is our hope that this new method will find many applications to the fluid
dynamics of rigid immersed bodies, possibly of complicated geometry, either by themselves or in
combination with the kinds of elastic immersed boundaries that have always been the application
domain of the immersed boundary method.
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