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Entrainment of a cellular circadian oscillator by light in the presence of molecular noise
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In this paper, we consider a stochastic molecular circadian oscillator described by a sequence of biological
reactions and its deterministic kinetics governed by a system of ordinary differential equations in the limit of
large numbers of molecules. The oscillations in the model are generated by negative feedback regulation of a
gene. The focus of this paper is the entrainment of the oscillator by a periodic light signal that affects the maximal
transcription rate of the gene. We introduce two scalings of the model parameters that provide independent
control over the natural frequency of the oscillator and the relative noise level. We study entrainment in two
ways: by visualizing the stochastic limit cycle in various projections of the discrete phase space of the system
and by evaluating the maximum of the normalized cross correlation of the light signal with the number of protein
molecules in the cell. The visualization method ignores the phase of the oscillator, and we find in this way that
entrainment has a subtle organizing effect on the limit cycle as a whole. The cross correlation results reveal an
interval of natural frequencies of the oscillator surrounding the frequency of the light signal within which maximal
entrainment occurs with rather sharp drops in entrainment at the edges of this interval. The width of the interval
of maximal entrainment increases with the amplitude of the light signal. These statements are applicable both to
the stochastic oscillator and to its deterministic limit, but the results are most clear-cut in the deterministic case
and degrade from there as the relative noise level increases.
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I. INTRODUCTION

This paper continues our study of entrainment of stochas-
tic oscillators. In a previous paper [1], we considered the
stochastic analog of a phase oscillator, i.e., a system that
performs a random walk around a circle of states, and we
studied the entrainment of the oscillator by a stochastic phase
resetting signal. Here we consider a schematic model of a
cellular circadian oscillator entrained by light. The model
is fully stochastic so that the integer numbers of molecules
of all molecular species are tracked, and reactions occur at
random times with specified probabilities per unit time. For
comparison, we also consider the deterministic limit in which
the system is described by ordinary differential equations
involving the concentrations of the different molecular species.

The model considered here involves one gene and four
molecular species: the messenger RNA (mRNA) and the
protein encoded by the gene, which are separately tracked
in the nucleus and in the cytoplasm of the cell. The protein
product inhibits the transcription of the gene that encodes it
thus providing negative feedback that may lead to oscillations if
the parameters of the system are properly chosen. We consider
two different feedback mechanisms in this paper. In the first
one, the protein is itself an inhibitory transcription factor [2–8],
and in the second mechanism, the protein binds to an activating
transcription factor thus sequestering the activator and thereby
reducing the rate of transcription [8–14]. In both cases, we
assume that the effect of light is to modulate the maximal rate
of transcription.

*Corresponding author: guanyu@cims.nyu.edu

The outline of this paper is as follows. First, we use the
deterministic version of the model to find parameters that
yield spontaneous limit-cycle oscillation. Next, we introduce
two different kinds of scaling: One that allows us to tune
the natural frequency of oscillation, and another that controls
the level of molecular noise. Finally, we study entrainment
by different depths of modulation of the ambient light while
holding the mean light level constant throughout our studies.
We find that the model can be entrained by a given periodic light
signal over a range of natural frequencies of the oscillator that
includes natural frequencies both above and below those of the
entraining light signal. The width of the interval of entrainment
grows with the amplitude of the light signal and is surprisingly
well defined especially in the deterministic limit.

The models used in this paper are very much simplified
in comparison to other cellular circadian clock models
[6,7,9,15–24], but we have attempted here to capture the
essential features of such models in their simplest form so
that the interaction of intrinsic molecular noise with the
phenomenon of entrainment can be elucidated.

II. CELLULAR CIRCADIAN OSCILLATOR

A. Model

We study a four-variable schematic cellular model, which
includes the negative feedback regulation that is characteristic
of the mammalian circadian clock. The circadian clock in
mammals resembles that in Drosophila and in Neurospora.
The clock gene period (Per) is a sequence homolog of the
clock gene per in Drosophila, but its response to light is more
similar to the clock gene frq in Neurospora [25–31]. The Per
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FIG. 1. A schematic cellular circadian clock.

gene is transcribed into Per mRNAs in the nucleus. The Per
mRNAs are exported from the nucleus to the cytoplasm to be
translated into PER protein and to degrade. The PER proteins
then enter the nucleus where they inhibit the transcription of
the Per gene and degrade in proteasomes in the nucleus.

The model is schematized in Fig. 1, and the reactions are
defined in Table I, where m represents the number of Per
mRNA molecules and p represents the number of PER protein
molecules, the subscripts n and c are short for nucleus and
cytoplasm, respectively, and P0 is the probability that tran-
scription happens. The influence of light will be to modulate
the maximal transcription rate α as discussed later.

A key assumption of the model is that the PER protein
inhibits the transcription of the Per gene [31–35]. Here, we
describe a model in which this inhibition is direct, and later,
in Sec. IV, we will consider instead an indirect inhibitory
mechanism known as sequestration. We assume that there
are r protein-binding sites at which this inhibition occurs
and that occupation of any one of them is sufficient to
block transcription. We further assume that the binding and
unbinding reactions are fast [19] so that it is sufficient even
in a stochastic model to consider only the probability that a
protein-binding site is unoccupied. Let pn be the total number
of PER protein molecules in the nucleus at some particular
time, counting both those that are free and those that are bound
to one of the r protein-binding sites. Let ξ be the rate that
any one protein molecule binds to any one site, let η be the
corresponding unbinding rate, and let L be the number of
occupied sites L � pn and L � r . The probability that l sites
are occupied is denoted by Pr(L = l). We assume that the net
rate of transition from L = l − 1 to L = l balances the net rate
of transition from L = l to L = l − 1. Therefore,

ξ [pn − (l − 1)][r − (l − 1)]Pr(L = l − 1) = ηlPr(L = l)

(1)

⇒ Pr(L = l)

Pr(L = l − 1)
= ξ [pn − (l − 1)][r − (l − 1)]

ηl
.

(2)

Iterating this, we find

Pr(L = l)

Pr(L = 0)
=

(
ξ

η

)l
pn!

(pn − l)!

r!

(r − l)!

1

l!
, (3)

from which it follows that

1 = Pr(L = 0)
min(pn,r)∑

l=0

(
ξ

η

)l
pn!

(pn − l)!

r!

(r − l)!

1

l!
(4)

⇒ P0 = Pr(L = 0) = 1∑min(pn,r)
l=0

(
ξ

η

)l pn!
(pn−l)!

r!
(r−l)!

1
l!

= 1∑min(pn,r)
l=0

(
1

KVn

)l pn!
(pn−l)!

r!
(r−l)!

1
l!

, (5)

in which K with units of concentration is the equilibrium
constant of the unbinding and binding reactions. Equation (5)
may also be derived by noting that

pn!

(pn − l)!

r!

(r − l)!

1

l!
=

(
pn

l

)(
r

l

)
l!, (6)

which is the number of distinct ways of choosing l of the pn

protein molecules and l of the r sites and then making a 1-1
correspondence between the chosen molecules and the chosen
sites.

Equation (5) is exact in the limit that ξ → ∞ and η → ∞
with ξ

η
held constant. Thus, we are assuming that the binding

and unbinding reactions are in rapid equilibrium, but we are
still taking into account the discreteness of the individual
molecules and binding sites.

Although we use Eq. (5) in our stochastic simulations,
we also need its macroscopic limit in order to formulate the
corresponding system of ordinary differential equations. If
pn � r , then pn!

(pn−l)! ∼ pl
n, and min(pn,r) = r . Therefore,

Pr(L = 0) ∼ 1∑r
l=0

(
r

l

)(
pn

KVn

)l
(7)

= 1(
1 + pn

KVn

)r (8)

=
(

K

K + pn

Vn

)r

. (9)

TABLE I. Reaction table.

Reaction number Reaction name Rate (probability per unit time) Result

1 Transcription of the Per gene αP0 mn → mn + 1
2 Export of mRNA from the nucleus γmmn mn → mn − 1, mc → mc + 1
3 Degradation of mRNA (in the cytoplasm) δmmc mc → mc − 1
4 Translation of Per mRNA βmc pc → pc + 1
5 Import of protein to the nucleus γppc pc → pc − 1, pn → pn + 1
6 Degradation of protein (in the nucleus) δppn pn → pn − 1
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Thus in the limit of large numbers of molecules, P0 is given
by ( K

K+ pn
Vn

)
r
, and the dynamics of the model are approximately

governed by the following kinetic equations:

dMn

dt
= α

Vn

(
K

K + Pn

)r

− γmMn, (10)

dMc

dt
= γm

(
Vn

Vc

)
Mn − δmMc, (11)

dPc

dt
= βMc − γpPc, (12)

dPn

dt
= γp

(
Vc

Vn

)
Pc − δpPn, (13)

in which the capitalized variables are concentrations of
molecules, Vn is the volume of the nucleus, and Vc is the
cytoplasmic volume. Note that Eqs. (10)–(13) are a special
case of the Goodwin oscillator [36,37].

B. Stability analysis

To determine the range of parameter values in which the
system (10)–(13) can produce sustained periodic oscillations,
we perform a stability analysis of the system.

The steady-state equations of Eqs. (10)–(13) are

α

Vn

(
K

K + P 0
n

)r

= γmM0
n , (14)

γm

(
Vn

Vc

)
M0

n = δmM0
c , (15)

βM0
c = γpP 0

c , (16)

γp

(
Vc

Vn

)
P 0

c = δpP 0
n , (17)

where M0
n , M0

c , P 0
c , and P 0

n are steady-state values of the
corresponding concentrations. Multiplying Eqs. (14)–(17) to-
gether gives

α

Vn
β

(
K

K + P 0
n

)r

= δmδpP 0
n . (18)

The graphical solution of Eq. (18) verifies that there is a unique
positive steady state. Linearization around the steady state
gives us the following equations:

dM̃n

dt
= −aP̃n − γmM̃n, (19)

dM̃c

dt
= γm

(
Vn

Vc

)
M̃n − δmM̃c, (20)

dP̃c

dt
= βM̃c − γpP̃c, (21)

dP̃n

dt
= γp

(
Vc

Vn

)
P̃c − δpP̃n, (22)

where a = r
δmδp

β

P 0
n

K+P 0
n

and the variables with tildes are the
deviations from the steady-state values.

Let x̃ =
⎛⎝M̃n

M̃c

P̃c

P̃n

⎞⎠, A =
⎛⎝ −γm 0 0 −a

γm

(
Vn
Vc

) −δm 0 0
0 β −γp 0
0 0 γp

(
Vc
Vn

) −δp

⎞⎠, then

dx̃

dt
= Ax̃. (23)

The eigenvalues of A satisfy

0 = det(λI − A) (24)

= det

⎛⎜⎜⎜⎝
λ + γm 0 0 a

−γm

(
Vn
Vc

)
λ + δm 0 0

0 −β λ + γp 0

0 0 −γp

(
Vc
Vn

)
λ + δp

⎞⎟⎟⎟⎠ (25)

= (λ + γm)(λ + δm)(λ + γp)(λ + δp) + aβγmγp (26)

= (λ + γm)(λ + δm)(λ + γp)(λ + δp) + Gγmδmγpδp

(27)

where G = ( P 0
n

K+P 0
n

)r . Now consider the special case1 in which
γm = γp = δm = δp = ν, then Eq. (27) becomes

0 = (λ + ν)4 + Gν4, (28)

λ + ν = (−1)1/4G1/4ν, (29)

λ = ν[−1 + (−1)1/4G1/4]. (30)

There will be a root with Re(λ) > 0 if and only if

G > 4. (31)

Since r is an integer, to get instability we need

r � 5. (32)

This power is larger than the one found in the secant condition
of the Goodwin oscillator with four variables [11,38]. The
reason is that we have a different nonlinearity in Eq. (10).
With r = 5, Eq. (31) requires

P 0
n > 4K. (33)

To achieve this, by Eq. (18), we also need

α

Vn

β

δmδp

> K
4(
1

1+4

)5 = K4(1 + 4)5. (34)

Substitute δm = δp = ν into Eq. (34); this is then equivalent to

α

Vn
β > ν2K4(1 + 4)5. (35)

When this inequality is reversed, the system evolves towards
a steady state via damped oscillations. Our model parameters
are chosen to satisfy Eq. (35) and yield periodic oscilla-
tions with a period close to 24 h in continuous dark. We
use2 α

Vn
= 1800 000/(pL h), β = 10/h, ν = 2π

22 /h, and K =

1Although we do not prove it here, it can be shown that this is
the most unstable case, i.e., the case in which it is easiest to obtain
oscillations.

2In this paper, concentration is represented by the number of
molecules per unit volume. pL is short for picoliter, and h is short
for hour.
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FIG. 2. Deterministic circadian oscillations in continuous dark
after the system has reached a periodic steady state. The result shown
here is the numerical solution of Eqs. (10)–(13).

200/pL, which produces an oscillator with autonomous period
of T0 = 23.2 h in continuous dark. Although in this case,
the overall phase is arbitrary, we fix the phase by specifying
the following initial conditions: Mn(0) = 10.9/pL, Mc(0) =
1.88/pL, Pc(0) = 129.21/pL, and Pn(0) = 3531.75/pL. As
Fig. 2 shows, during continuous dark, the concentration of
PER protein peaks about 6 h after the concentration of Per
mRNA, in agreement with the observed phase relationship in
mouse liver in vivo [6,25].

C. Analysis and simulation of the oscillator

In order to vary the free-running period of the oscillator
before exposing it to light, we scale all of the rate constants
(α, β, and ν) by a factor of θ = T0

T
, where T0 = 23.2 h is

the autonomous period of the oscillator. This has the effect
of setting the period of the oscillator to T .

It is known that light-induced resetting of the mammalian
circadian clock is associated with rapid induction of Per mRNA
transcription [25,39–42]. We incorporate the effect of light into
the model by making the maximal transcription rate α of the
Per gene be a function of the light level. We set

α(t) = α0 + ᾱ[1 + ε(t)]. (36)

In this equation, α0 denotes the maximum rate of transcription
in the dark, and the second term on the right-hand side repre-
sents the effect of light on the maximum rate of transcription. In
the studies presented in this paper, we hold α0 and ᾱ constant,
and we choose ε(t) to be a periodic square wave with a period of
24 h such that ε(t) = +ε0 for 12 h and then ε(t) = −ε0 for 12 h,
where ε0 ∈ [0,1]. The function ε(t) therefore has mean zero,
and ε0 is a dimensionless measure of the depth of modulation
of the light signal. The parameter ε0 can also be called the
relative amplitude of the light signal. The case ε0 = 1 (which
we consider in this section) corresponds to 12 h of light and 12 h
of dark in each 24-h period, and the case ε0 = 0 corresponds
to a constant intermediate light level. We emphasize that the
mean light level remains constant as ε0 varies.
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FIG. 3. (a) Deterministic circadian oscillators with free-running
period T = 23.5 h (solid curve) and 24.5 h (dashed curve) in constant
light. (b) Both oscillators are entrained by the 12:12 LD cycles (white
and black bars along the horizontal axis).

1. Entrainment under 12:12 light-dark cycles

We solve the system (10)–(13) with free-running period
T = 23.5 and 24.5 h using Euler’s method under constant light
conditions and under 12:12 light-dark (LD) cycles (i.e., 12 h
of light followed by 12 h of darkness each day). Note that
one of the oscillators has a shorter free-running period and the
other a longer free-running period than that of the entraining
signal. We plot the concentrations of Per mRNA in cytoplasm
in Fig. 3. We see from the bottom plot that both oscillators are
entrained by the 12:12 LD cycles.

In addition to looking for a deterministic solution, we want
to investigate the entrainment behavior of the oscillator by
simulating it stochastically, so we simulate the oscillator with
the corresponding initial condition as used in the deterministic
case by the Gillespie method [43]. To get the correspond-
ing initial condition, we multiply each concentration by the
appropriate volume to get a number of molecules, rounding
to the nearest integer if necessary. To compare the stochastic
simulation result with the numerical solution of the differential
equations for the deterministic case, we draw a figure of one
representative run with the deterministic solution superim-
posed. As Fig. 4 shows there is good agreement between the
two cases under 12:12 LD cycles. In the unentrained case, there
is good agreement for the first few cycles, but eventually the
phase of the stochastic simulation drifts, so the two plots are
no longer comparable at corresponding times, even though the
stochastic and deterministic oscillators are still showing similar
behaviors. This is unavoidable and is an inherent difficulty in
the study of unentrained stochastic oscillators.

2. Scaling to vary the amount of noise

By the law of large numbers, we expect that the relative
noise level of the system will be smaller when the numbers of
molecules are larger. This can be achieved by increasing the
volume of the cell. We use the following scaling under which
the deterministic model Eqs. (10)–(13) is invariant. Recall
that Vn is the volume of the nucleus, Vc is the volume of the
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FIG. 4. Top: Stochastic simulation and deterministic solution for oscillators with free-running period (a) T = 23.5 h and (c) 24.5 h in
constant light. Bottom: Both oscillators with free-running period (b) T = 23.5 h and (d) 24.5 h are entrained by the 12:12 LD cycles, and the
stochastic model shows good agreement with the deterministic model. In this figure the numbers of molecules from the stochastic simulation
have been expressed as concentrations for comparison with the deterministic result.

cytoplasm, and α is the parameter that governs the transcription
rate of the Per gene. In the scaling used here, α

Vn
, Vn

Vc
, and the

initial concentrations are all held constant. To describe the
results we use the cell volume V = Vn + Vc as a parameter.
In particular, we show results for V = V0 and V = 4V0, where
V0 is a realistic mammalian cell volume of 2.1 pL (Vn = 0.1 pL
and Vc = 2 pL).

Figure 5 gives only a qualitative impression of the noise
level in the system by comparing different realizations. To
make this quantitative we consider the autocorrelation of the
circadian rhythm under constant light. We let f (t) = pn(t) +
pc(t), that is, the total number of PER protein molecules in
the cell at time t and define the normalized autocorrelation
φ(τ ) as

φ(τ ) =
∫ tmax−τ

0 [f (t) − f̄1(τ )][f (t + τ ) − f̄2(τ )]dt∫ tmax

0 [f (t) − f̄ ]2dt
, (37)

where

f̄ = 1

tmax

∫ tmax

0
f (t)dt, (38)

f̄1(τ ) = 1

tmax − τ

∫ tmax−τ

0
f (t)dt, (39)

f̄2(τ ) = 1

tmax − τ

∫ tmax−τ

0
f (t + τ )dt, (40)

and where tmax = 600 days = 14 400 h is the total duration
of a simulation. Thus φ(τ ) is a function that takes values in
[−1,1]. For each oscillator with cell volumes V0 and 4V0, we
perform seven independent simulations under constant light
and calculate their autocorrelations. Then we plot the averaged
autocorrelation with shaded standard deviation. We expect that
the autocorrelation will have a damped oscillatory character
with a period close to 24 h; and, moreover, we expect that in a
smaller cell, the stochastic process will lose correlation faster
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FIG. 5. Independent realizations (dotted curve) of concentrations of Per mRNAs and PER proteins under 12:12 LD cycles with the
deterministic solution (solid curve) superimposed. Cell volume in (b) is four times that in (a). As in the previous figure, the numbers of
molecules have been expressed as concentrations for comparison with the deterministic result.
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FIG. 6. Averaged autocorrelation φ(τ ) over seven independent
realizations each of 14 400-h (600-day) duration of the total number
of PER proteins with shaded standard deviation under constant light.
Cell volume in (b) is four times that in (a).

than in a larger cell because of the relatively larger amount
of molecular noise in the smaller cell. These phenomena are
captured in Fig. 6.

III. ANALYSIS OF ENTRAINMENT

A. Visualization of entrainment

In a deterministic model of an oscillator with or without
entrainment we can visualize the oscillation by choosing any
two variables and by plotting the trajectory of the system on
the plane of those two variables thus producing a limit cycle.
In the stochastic case, the noise obscures such a plot, which
in principle becomes dense on the phase plane if we run the
system indefinitely. To overcome this difficulty, we keep track
of the cumulative time that the system is in any of its discrete
states, and then at the end of the run we divide by the total time
of the run to get the fraction of time spent in any discrete state.
This fraction is plotted in Fig. 7 on two different phase planes,
the axes of which are the numbers of Per mRNA molecules in
Fig. 7(a) and the numbers of PER protein molecules in Fig. 7(b)
(note different scales). Both figures show that the limit cycle
becomes more organized as the amplitude of the entrainment
signal increases.

B. Measurement of entrainment

We now seek a quantitative measure of entrainment. For
this purpose, we use the maximum of the cross correlation
between f (t) = pn(t) + pc(t) and the normalized light signal
s(t) = 1 + ε(t). We define the normalized cross correlation
between the stochastic output of the model and the input light
signal as

ϕ(τ ) =
1

tmax−τ

∫ tmax−τ

0
f (t)−f̄1(τ )

f̄1(τ )
s(t+τ )−s̄1(τ )

s̄1(τ ) dt√
1

tmax

∫ tmax

0

(
f (t)−f̄

f̄

)2
dt

√
1

tmax

∫ tmax

0

(
s(t)−s̄

s̄

)2
dt

,

(41)
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FIG. 7. Fraction of time spent in each system state projected onto
the (mn,mc) plane in (a) and onto the (pc,pn) plane in (b), with the
deterministic limit cycle superimposed (red curve). The label ε0 on
each plot indicates the depth of modulation of the entraining light
signal, see Eq. (36) and the text that follows that equation. Note that
the stochastic limit cycle becomes more organized as ε0 increases.
The bin width in these images is 1. That is, each bin corresponds to a
unique pair of integers.

where

f̄ = 1

tmax

∫ tmax

0
f (t)dt, (42)

s̄ = 1

tmax

∫ tmax

0
s(t)dt, (43)

f̄1(τ ) = 1

tmax − τ

∫ tmax−τ

0
f (t)dt, (44)

s̄1(τ ) = 1

tmax − τ

∫ ttmax−τ

0
s(t)dt, (45)

and where the duration of the simulation is tmax = 600 days =
14 400 h. Then ϕ(τ ) is a function with values in [−1,1], and the
maximal value ϕmax can serve as a good indication of how well
the system is entrained by the signal. Note that the maximal
value of the cross correlation ϕ(τ ) can occur at any τ , not
necessarily τ = 0.

Using the numerical solution of system (10)–(13), we
calculate ϕmax of the oscillators with free-running period T

ranging from 18 to 30 h for various relative intensities ε0 of
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FIG. 8. Degree of entrainment ϕmax for free-running period T from 18 to 30 h and depth of modulation ε0 from 0.2 to 1. We show results
for V = V0,2V0,4V0,8V0 in (a)–(d) and for the deterministic system in (e). The roughness of curves in the stochastic cases is a result of the
finite duration of the stochastic simulations (tmax = 14 400 h) and can be used to gauge the error that results from that finite duration.

the entraining light signal which has a fixed period of 24 h,
and then we plot ϕmax in Fig. 8(e). For each oscillator with
increasing cell volumes, we also measure the entrainment level
by simulating the oscillator stochastically and plot ϕmax in
Figs. 8(a)–8(d). Note that

(1) The circadian oscillator can be entrained regardless of
whether the free-running period is shorter or longer than that
of the entraining signal.

(2) The entrainment level increases with increasing depth
of modulation of the light.

(3) The deterministic case [Fig. 8(e)] shows an envelope of
maximal entrainment that can be achieved over a wider range of
free-running periods T when the amplitude of the light signal
is larger. It is striking that the departure from the envelope of
maximal entrainment is very abrupt as the free-running period
becomes too large or too small for maximal entrainment to
occur.

(4) The stochastic cases [Figs. 8(a)–8(d)] show some of the
same trends as in the deterministic case but in a more diffuse
form, and of course the resemblance to the deterministic case
is stronger when the cell volume is larger.

IV. SEQUESTRATION MODEL

In the model considered in the foregoing, the PER protein
directly inhibits transcription of the Per gene. Here we consider
an alternative possibility known as sequestration [8–14] in
which the PER protein instead acts indirectly by binding to
an activator of Per transcription and thereby preventing the
activator from carrying out its function.

In the sequestration model, we assume that the regulation
of transcription involves two reactions: The PER protein
molecules tightly bind activators to form an inactive 1:1
stoichiometric complex, and only free activators can activate
transcription by binding to DNA. Let pn be the total number of
PER protein molecules in the nucleus at some particular time

counting both those that are free and those that are bound to the
activators. Let a be the total number of activator molecules in
the nucleus counting both those that are free and those that are
bound to the PER protein or to the regulatory site on the DNA
where activation occurs. Let ξ be the rate that any particular
free PER protein molecule binds to any particular free activator
molecule, and let η be the corresponding unbinding rate. Let
λ be the rate that any particular free activator molecule binds
to the site that activates transcription of the Per gene on the
DNA, provided that site is not already occupied, and let μ

be the corresponding unbinding rate. Let s = 1 if an activator
molecule is bound to DNA, allowing transcription; 0 otherwise.
Let c be the total number of protein-activator complexes c �
min(a − s,pn). Let Pij = Pr(s = i and c = j ). By the same
analysis as in the previous model [Eq. (3)], we have

P0j = P00

(
ξ

η

)j
pn!

(pn − j )!

a!

(a − j )!

1

j !
, (46)

P1j = P10

(
ξ

η

)j
pn!

(pn − j )!

(a − 1)!

(a − 1 − j )!

1

j !
, (47)

from which it follows that

P0 = Pr(s = 0) (48)

=
min(a,pn)∑

j=0

P0j (49)

=
⎛⎝min(a,pn)∑

j=0

(
ξ

η

)j
pn!

(pn − j )!

a!

(a − j )!

1

j !

⎞⎠P00 (50)

= f (a,pn)P00. (51)
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Similarly,

P1 = Pr(s = 1) (52)

= f (a − 1,pn)P10 (53)

= f (a − 1,pn)
λa

μ
P00. (54)

P0 + P1 = 1, so

P00 = 1

f (a,pn) + f (a − 1,pn) λa
μ

, (55)

and therefore,

P1 =
f (a − 1,pn) λa

μ

f (a,pn) + f (a − 1,pn) λa
μ

(56)

=
f (a−1,pn) λa

μ

f (a,pn)

1 + f (a−1,pn) λa
μ

f (a,pn)

. (57)

Equation (57) is exact in the limit that ξ → ∞ and η → ∞
with ξ

η
held constant. We further assume tight binding between

the proteins and the activators (i.e., ξ

η
→ ∞) so that it is

sufficient to consider only the probability that a free activator
binds to DNA when the total number of activator molecules is
greater than the total number of protein molecules, i.e., when
a > pn, and then we have

P1 = λ(a − pn)

λ(a − pn) + μ

= 1

1 + K ′Vn
a−pn

, (58)

in which K ′ with units of concentration is the equilibrium
constant of the unbinding and binding reaction from or to DNA.
Therefore,

P1 =
{

0, a � pn,
1

1+ K′Vn
a−pn

, a > pn.
(59)

Note that in the sequestration model P1 plays the same role as
P0 did in the previous model since now transcription can only
proceed if the regulatory site is occupied, whereas previously,
transcription could only proceed if all of the regulatory sites
were unoccupied.

In the limit of large cell volume, the dynamics of the model
are governed by

dMn

dt
= F (Pn) − γmMn, (60)

dMc

dt
= γm

(
Vn

Vc

)
Mn − δmMc, (61)

dPc

dt
= βMc − γpPc, (62)

dPn

dt
= γp

(
Vc

Vn

)
Pc − δpPn, (63)

FIG. 9. Averaged autocorrelation φ(τ ) for the total number of
PER proteins in the sequestration model. Compare Fig. 6, and see the
legend of Fig. 6 for additional details.

where

F (Pn) =
{

0, A � Pn,
α
Vn

(
1

1+ K′
A−Pn

)
, A > Pn,

(64)

the capitalized variables are concentrations of molecules, Vn is
the volume of the nucleus, and Vc is the cytoplasmic volume.
Note that the rate of transcription here has essentially the same
form microscopically and macroscopically. This was not the
case in the previous model. In the sequestration model with the
tight-binding limit, it is necessary to scale up the number of
activator molecules along with the cell volume in order to get a
sensible limit, and this is fundamentally why the microscopic
and macroscopic rates depend on the amount of PER protein
in the nucleus in essentially the same way.

We choose parameters such that the steady-state values are
the same as in the original model. We use A = 2300/pL and
K ′ = 5.11 × 107/pL. Simulation results for the sequestration
model are shown in Figs. 9–11, and for comparison with those
of the previous model, see Figs. 6–8, respectively. Note that the
noise level is reduced compared to that in the original model:
The decay of correlation is slower in Fig. 9 than in Fig. 6; the
limit cycle is more organized in each frame of Fig. 10 than
in the corresponding frame of Fig. 7; and the degree of en-
trainment reached at maximal entrainment is somewhat higher
for each plot in Figs. 11(a)–11(d) than in the corresponding
plot of Figs. 8(a)–8(d). Another effect, which can be seen
by comparing Figs. 11(e) and 8(e), is that the sequestration
oscillator seems to be more sharply tuned so that the width of
its entrainment region is smaller for each depth of modulation
of the light signal. This sharper tuning in the case of the
sequestration model may explain the relatively smaller impact
of molecular noise in that case, but we do not have any
explanation of what makes the sequestration oscillator more
sharply tuned. In any case, these effects are not large, and
the two oscillators in all respects show similar qualitative
behavior.
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FIG. 10. Fraction of time spent in each system state for the
sequestration model. Compare Fig. 7, and see the legend of Fig. 7
for additional details.

V. SUMMARY AND CONCLUSIONS

In this paper, we have introduced and studied a schematic
model of a cellular circadian clock in which a single gene

encodes a protein that inhibits the transcription of that gene.
The model is fully stochastic with intrinsic noise that arises
from the random nature of biochemical reactions. The focus
of the paper is the entrainment of the oscillator by light, which
we introduce as a periodic signal that affects the maximal rate
at which the gene in question is transcribed.

In the study of entrainment, we have made use of two
scalings of the model parameters, one of which allows us to
control the relative noise level by varying the cell volume, and
we have included in our paper the case of zero noise level,
which is the large-volume deterministic limit of the model.
The second scaling allows us to specify the natural frequency
of the oscillator to study how entrainment depends on the
difference between this natural frequency and the frequency
of the entraining light signal. The reason that we vary the
parameters of the oscillator rather than those of the light signal
is that, in the natural world, the light signal always has the same
24-h period but the oscillators presumably have parameters that
vary from species to species, from individual to individual, and
perhaps even from cell to cell within an individual.

In all of our studies of entrainment, we have kept the mean
light level constant while varying the relative amplitude, i.e.,
the depth of modulation, of the light signal. We have studied
entrainment in two ways. The first method is to visualize the
fraction of time spent by the system in each of its discrete
states. This is performed for two variables at a time so that
the result is a plot of intensity over a plane (actually, over the
lattice of points with non-negative integer coordinates within
the plane) in each case (Figs. 7 and 10). The pairs of variables
chosen are the numbers of mRNA molecules in the cytoplasm
and in the nucleus and the numbers of protein molecules in the
cytoplasm and in the nucleus. This choice has the effect that
within each pair we have comparable numbers of molecules.
The conclusion of this visual study is that entrainment seems
to organize the limit cycle of the stochastic oscillator. With
increasing amplitude of the light signal, the limit cycle of the
oscillator becomes increasingly well defined. This is somewhat
surprising when we consider that the method we are using to
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FIG. 11. Degree of entrainment ϕmax for the sequestration model. Compare Fig. 8, and see the legend of Fig. 8 for additional details.
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visualize the results is completely insensitive to the frequency
and phase of the oscillator, which are the quantities that
entrainment is known to affect. Thus, we are dealing here
with a subtle consequence of entrainment that deserves further
attention. We have not quantified this phenomenon, and we
certainly have not explained it.

The second method for studying entrainment is to record
the maximum of the normalized cross correlation between the
periodic light signal and the number of protein molecules in the
cell. We interpret this maximum value, which by construction
lies in [0,1], as a measure of the degree of entrainment, and
we study its behavior as a function of the natural period of the
oscillator for various amplitudes of the entraining light signal
(Figs. 8 and 11). It is especially striking in the deterministic
case that there is an envelope of maximal entrainment that is
independent of the depth of modulation of the light signal,
although the interval of natural periods over which maximal
entrainment is achieved does depend on the amplitude of the
light signal, the interval being wider (as one would expect)
for larger amplitudes. Also striking in the deterministic case
is how sharply defined the interval of maximal entrainment
is at any given depth of modulation of the light signal. Note,
too, that the 24-h period of the entraining light falls roughly
in the middle of the interval of maximal entrainment, which
shows that entrainment is possible when the natural frequency
of the oscillator is longer or shorter than the frequency of
the light signal. This is in contrast to some other nonlinear
oscillators, such as electrically active cells with pacemaker
activity, that can only be entrained when the natural frequency
of the oscillator is lower than the frequency of the entraining
stimulus.

The properties of entrainment that we have just described
in the deterministic limit seem to be reflected also in the
corresponding stochastic results but in a somewhat degraded
form. In particular, as the noise level increases, the envelope
of maximal entrainment is pushed down to somewhat lower
degrees of entrainment, and the minimum amplitude of the
light signal that is needed to reach that envelope increases.
Also, the interval of oscillator periods over which maximal
entrainment occurs at any given amplitude of the light signal
becomes less and less sharply defined.

We have also studied a model in which transcriptional
repression occurs indirectly by sequestration of an activator
instead of by direct binding of an inhibitor to the DNA. In this
model, the noise level is somewhat reduced compared to that
in the original model, but the qualitative picture remains the
same.

The models of this paper are simplified and schematic
ones, but they contain elements that are characteristic of actual
cellular circadian clocks, including the stochasticity that arises
from the random nature of biochemical reactions. We hope that
the methods employed here will be useful in the future study
of more complicated models of this kind and that the results
obtained here will help to illuminate the phenomenology of
entrainment in stochastic cellular circadian oscillators.
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