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Activity-induced instability of phonons in 1D
microfluidic crystals†

Alan Cheng Hou Tsang,ab Michael J. Shelleycd and Eva Kanso *acd

One-dimensional crystals of passively-driven particles in microfluidic channels exhibit collective vibrational

modes reminiscent of acoustic ‘phonons’. These phonons are induced by the long-range hydrodynamic

interactions among the particles and are neutrally stable at the linear level. Here, we analyze the effect of

particle activity – self-propulsion – on the emergence and stability of these phonons. We show that the

direction of wave propagation in active crystals is sensitive to the intensity of the background flow. We also

show that activity couples, at the linear level, transverse waves to the particles’ rotational motion, inducing

a new mode of instability that persists in the limit of large background flow, or, equivalently, vanishingly

small activity. We then report a new phenomenon of phonons switching back and forth between two

adjacent crystals in both passively-driven and active systems, similar in nature to the wave switching

observed in quantum mechanics, optical communication, and density stratified fluids. These findings could

have implications for the design of commercial microfluidic systems and the self-assembly of passive and

active micro-particles into one-dimensional structures.

1 Introduction

The ability to manipulate and organize the collective motion of
droplets and particles in microfluidic channels is relevant to
numerous applications in physics and biology. Examples
include the pharmaceutical and food industries,1,2 lab-on-a-
chip applications,1 and the control and self-assembly of passive
and active colloids.3–6 The latter is particularly attractive as a
new paradigm for the fabrication of modular materials, such as
one-dimensional (1D) active structures, and for advancing the
field of active systems beyond the classical study of particle
suspensions.7–9

A striking phenomenon in 1D lattices of passively-driven
droplets is the propagation of waves, or phonons, due to hydro-
dynamic interactions (HIs) among the droplets.10–13 Similar
waves are observed in arrays of particles in optical traps.14,15

Phonons in these passively-driven systems are neutrally stable
and exhibit nonlinear instabilities due to mode coupling.16–18

Understanding wave instabilities in microfluidic systems is
particularly important for the self-assembly and rearrangement

of particles into 1D structures.19,20 In this study, we analytically
and computationally analyze the effect of activity on the stabi-
lity of 1D lattices of particles confined in microfluidic channels
(see Fig. 1(a)). We show that activity induces a new mode of
wave instability at the linear level that arises from the coupling
between the translational and rotational motion of the parti-
cles. The rate of growth of this instability can be controlled by
varying the intensity of the background flow. Importantly,
active lattices exhibit singular behavior in the sense that this
instability persists in the limit of vanishingly small activity. We
then report back-and forth switching of waves between adjacent
1D lattices of active and passively-driven particles, reminiscent
in nature to the wave switching observed in many other systems
such as in quantum, optical and stratified flow physics.

Fig. 1 (a) Particles confined in a microfluidic flow channel. (b) Dipolar
far-field flows induced by the background flow (top) and the particle self-
propelled motion (bottom).
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2 Model

We consider a system of particles, each is a dumbbell with
small ‘‘head’’ and large ‘‘tail’’, confined in a Hele-Shaw flow
channel of height h. The 2D height-averaged flow is irrota-
tional.21–23 Potential flow theory can thus be applied to study
the interactions of particles in the unconfined complex plane
z = x + iy; see Fig. 1(a). Indeed, one can rigorously prove that the
leading order term in the far-field expansion of the velocity field
produced by a moving particle in confinement corresponds to a
potential dipole in the (x, y) plane; see Section 1 of the ESI.† 24

The fact that the flow is dipolar is independent of the details
of the particle transport mechanism, passively-driven or self-
propelled.10,13,25–27 Mathematically, the complex conjugate of
the velocity field o(z) created by particle n, located at zn with
orientation an relative to the x-axis, can be written as �o(z) =
sn/(z � zn)2, where sn is the dipole strength. For active particles,
sn depends on the particle’s swimming speed U and orientation
an; for passive particles, the dipole strength sn is a function of
the driving flow direction and not of the particle orientation
(Fig. 1b).

The translational motion of an active particle at zn is due to
its self-propulsion at speed U in the (x, y) plane and to
advection by the uniform background flow V and the dipolar
flow disturbance created by all other particles. This advection
speed depends on the particle’s geometric properties, repre-
sented by the lumped motility coefficient m, where 0 o m o 1.
Due to confinement, the particle’s orientation an changes in
response to the local flow at zn created by the background flow
V and all other particles. This response is scaled by a rotational
motility coefficient n. Large tail particles for which n is positive
tend to align with the local flow, whereas large head particles for
which n is negative tend to align opposite to the local flow.27,28 In
this work, we analyze the stability of downstream motion for
large tail particles in flow channels; large head particles will
always align upstream. To this end, the governing equations are
given by (see ref. 28–30 and Section 2 of the ESI† 24 for more
details)

_�zn ¼ Ue�ian þ m V þ
X
man

sm
zn � zmð Þ2

 !
;

_an ¼ nReal ieian V þ
X
man

sm
zn � zmð Þ2

 !" #
:

(1)

The strength sm of the dipolar disturbance created by the
mth particle due to its self-propelled motion U and the background
flow V is given by

sm = a2Ueiam � a2(1 � m)V. (2)

Here, a represents an effective radius of the confined particle in
the (x, y) plane; a is the radius of a circular cylinder that creates
a dipolar flow equivalent in the far field to that of the confined
particle (see Section 1 of the ESI† 24).

To numerically investigate the dynamics of the infinite
system of particles in (1), it is convenient to represent it using
N particles in a periodic domain of size L; see Fig. 1(a). The HIs

between particles give rise to a bi-infinite sum which we rewrite
in closed-form as

�o ¼
P1

m¼�1
man

sm
zn � zmð Þ2

¼ p2

L2

PN
m¼1
man

sm csc2
p
L

zn � zmð Þ
h i

: (3)

Eqn (1)–(3) form a closed-system that we use to solve for the
propagation of phonons in a 1D lattice of active particles.

Passive particles (U = 0) are a special case of (1)–(3) for which
the translation and orientation equations are decoupled at the
leading order in velocity even for non-spherical particles.27

This decoupling is rooted in the fact that the strength sm of
the dipolar far-field flow depends on the direction of the
driving flow and not on am. Therefore, for passive particles, it
is sufficient to consider the translational equations in (1); see
ref. 10 and 13.

3 Results and discussion
1D active crystal

The 1D crystal lattice configuration satisfies zn+1 � zn = d and
an = 0 with constant spacing d between neighboring particles
(d 4 2a). This configuration is an equilibrium solution of (1)–(3):
all particles have zero rotational velocity _alattice = 0 and constant
translational velocity _�zlattice ¼ U þ mðV þ uÞ. Here, u = p2s/3d2

is the velocity arising from HIs among the particles and s =
a2[U � (1 � m)V] is the dipole strength. In a dilute suspension,
the velocity of active particles is Udilute = U + mV (see ref. 30). HIs
can speed up or slow down the particles relative to Udilute,
depending on the strength of the background flow V. This is
because V influences the dipolar flow disturbance created by
the particles: for V 4 Udilute, the dipole strength s is negative
and the dipolar flow points opposite to the driving flow (see top
schematic of Fig. 1b) producing negative u and slowing down
the lattice in comparison with the speed of a particle in a dilute
channel. If we tune the background flow properly such that
V = Udilute, the components of the dipole strength due to self-
propulsion and background flow cancel out; HIs are suppressed
(u = s = 0) and the lattice velocity is equal to Udilute. For
V o Udilute, both s and u are positive, increasing the speed
of each particle in the lattice. Therefore, the lattice moves
faster for weak flows V o Udilute and slower for strong flows
V 4 Udilute. This non-monotonic dependence of lattice velocity
on the speed V of the background flow is unique to active
crystals; for passive particles, the lattice velocity is given by
m(V + u) and is always smaller than the particle velocity mV in a
dilute suspension.10 In both active and passive crystals, closely-
spaced lattices with smaller d induce stronger HIs and, thus,
larger magnitudes of u and faster motions relative to the dilute
suspension – an effect referred to as the ‘peloton effect’ due to
collective drag reduction in ref. 10.

Nonlinear behavior of active phonons

We examine the stability of active lattices to small perturba-
tions in position and orientation zn � zn|lattice + dzn and
an� dan, where (dzn, dan) evolve in the lattice frame of reference.
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We particularly consider longitudinal and transverse wave
perturbations of the form dzn = Xn = Ae j(knd�ot) and dzn = iYn =
iBe j(knd�ot). Here, k is the perturbation wavenumber, o the
perturbation frequency, j the complex unit in the wave plane
( j2 = �1). The amplitudes A and B are taken to be small
compared to the inter-particle distance d. The perturbations
in particle orientation dan = Yn are initially zero.

We first numerically evolve the nonlinear, coupled transla-
tional and rotational eqn (1), using (3), for an infinite active
lattice with periodicity L subject to wave perturbations. To this
end, we give the system an initial perturbation away from the
lattice configuration in the form of a sinusoidal wave with
wavelength 2p/k. To obtain the desired value of k, we vary the
number of particles N and the domain length L while keeping
L an integer multiple of the initial lattice spacing d to ensure
periodic boundary conditions. Additional details on the numer-
ical implementation are given in Section 6 of the ESI.† 24 The
direction of wave propagation depends on the background flow
V, which in turn dictates the sign of the dipolar strength s (see
Fig. 2(a)). For a weak background flow (V o Udilute) such that
the dipole strength is positive (s 4 0), longitudinal waves
Xn propagate downstream and transverse waves Yn move
upstream, in opposite directions to their counterparts in
passively-driven lattices. If we tune the background flow prop-
erly (V = Udilute) such that s = u = 0, we obtain standing waves.
For strong background flows (V 4 Udilute) such that s o 0, the
waves propagate similarly to passive lattices. This change in
wave direction can be explained intuitively based on the HIs
among the particles. When the background flow is weak, s 4 0
and HIs cause a longitudinally-dense pack of particles to move
faster than other particles in the lattice, thus traveling with the
background flow (see top schematic of Fig. 2b). Meanwhile, HIs
push transversally-deflected particles in opposite directions
such that the transverse wave travels opposite to the flow (see
bottom schematic of Fig. 2b). The opposite effect is obtained
when the background flow is dominant, including the passive
case U = 0. Fig. 2(a) indicates that the longitudinal waves Xn are
stable while the transverse waves Yn grow in time (see the ESI,†
Movies 3 and 4) and that the growth rate of the transverse waves
depends on V. Fig. 2(c) shows snapshots depicting the growth
in wave amplitude over time. In contrast, passively-driven
lattices (U = 0) exhibit stable longitudinal and transverse waves

similar to those observed experimentally in arrays of micro-
fluidic droplets10 (see Movies 1 and 2, ESI†).

Linear stability analysis

We now analyze the lattice stability by linearizing (1) about the
uniform lattice configuration. In the linear equations, HIs give rise

to an infinite sum of the form
P1

m¼�1
2s dzn � dzmð Þ

�
ðmdÞ3, for

which we derive an exact expression for plane-wave solutions (see

the ESI† 24). We obtain
P1

m¼�1
2s dzn � dzmð Þ

�
ðmdÞ3 ¼ jdznO, where

O ¼ 2s
d3

p2

3
ðkdÞ � p

2
ðkdÞ2sgnðkÞ þ 1

6
ðkdÞ3

� �
; (4)

and sgn(�) denotes the signum function. By virtue of (4), recalling
that dzn = Xn + iYn and dan = Yn, the linear equations of motion
can be written in matrix form as

(5)

where Ṽ = V + u. For U a 0, the transverse and orientational
dynamics are coupled at the linear level and are decoupled from
the longitudinal dynamics. To obtain analytic expressions for the
wave dispersion relation o(k), we solve (5) explicitly for all
physically relevant wavenumbers k (k r p/d). For longitudinal
waves Xn, the dispersion relation is given by o = mO for both
active and passive particles. The dispersion relation o(k) is real-
valued for all k, indicating no growth in wave amplitudes over
time. Thus, longitudinal waves are linearly stable for all k. For
transverse waves Yn, the dispersion relation o(k) is given by (see
the ESI† 24)

2o ¼ � n ~Vj þ mO
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ~Vj � mO
� �2�4nUOj

q
: (6)

Here, for active particles (non-zero U), one branch is a rapidly
decaying stable solution (Im[o] o 0) and one branch is a growing
unstable solution (Im[o] 4 0) for all wavenumbers k. Thus, trans-
verse waves are always unstable. For passive particles (U = 0), the two
branches collapse to o = �mO, indicating a neutrally-stable trans-
verse mode consistent with the results in ref. 10.

Fig. 2 Active particles: (a) snapshots of the longitudinal and transverse modes for U = 1, k = 3p/10 and different background flow velocity V = 1, 2 and 3 at
t = 2000. The arrows indicate the directions of wave propagation. Initial perturbation is superimposed in grey to highlight the growth in the transverse
mode. (b) Schematic depicting hydrodynamic-interactions among neighboring particles for V o Udilute. (c) Details of the slowly growing transverse mode
for V = 1. See the ESI,† Movies 3 and 4. In all cases, m = 0.5, n = 1.
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Activity-induced instability in linear and nonlinear analysis

Fig. 3(a) and (b) show the dispersion relation Real[o] and phase
velocity c = Real[o]/k for both longitudinal and transverse modes for
various values of V. Analytical solutions of (5) are depicted in solid
lines while the ‘�’ symbols are estimated from our simulations
of (1). Blue and red colors are used to distinguish between long-
itudinal and transverse solutions, respectively. The two modes
travel in opposite directions dictated by the intensity of the back-
ground flow V, as noted earlier. However, transverse waves travel
faster than longitudinal waves for all k and V, except for V = Udilute

which results in standing waves. Fig. 3(c) shows the growth rate of
the transverse wave for increasing values of V from V = 1 to V -N.
The growth rate of the instability is non-monotonic in V. For
V o Udilute and s 4 0, an increase in V decreases the growth rate
of the instability. This result is intuitive. Increasing V suppresses
the orientation dynamics and reduces the effective dipole strength
s. Both effects suppress the instability. At V = Udilute and s = 0, the
growth rate is identically zero, indicating that in the absence of
hydrodynamic interactions, the transverse (standing) wave is line-
arly stable. As V increases past Udilute, the growth rate increases
monotonically with V. This is counterintuitive as one expects strong
background flows to suppress the orientation dynamics and, thus,
the instability. But for V 4 Udilute, increasing V results in an
increase in the magnitude of s, thereby leading to stronger hydro-
dynamic interactions among the particles and thus an increase in
the growth rate. Interestingly, in the limit V/U - N, the growth
rate becomes independent of V as discussed next.

Persistent instability in the limit of vanishingly-small activity

As V/U - N, the dipole strength s, and consequently u and O,
are proportional to V. It is thus convenient to write Ṽ = VP,

where P = 1 �p2(1 � m)/3d2 is a positive parameter, and
O = VQ(k), where Q(k) is independent of V. We substitute back
into (6) to get an explicit expression for the unstable branch of
o as V/U - N, or equivalently as U/V - 0,

o1 ¼ �mVQþ j
nmUQ2

ðn2P2 þ m2Q2Þ: (7)

Here, the dispersion relation Real[oN] = �mVQ = �mO is
unbounded. This expression takes the same form as in the
case U/V = 0. In contrast, the growth rate Im[oN] of transverse
perturbations is bounded and the limit is independent of V (see
Fig. 3(d)). More importantly, this result shows that the limit
V/U -N, or equivalently U/V - 0, is singular in the sense that
it does not converge to the case U/V = 0. That is to say, the limit
as the system approaches a passively-driven lattice is not
equivalent to the case of a passively-driven lattice. This singular
behavior arises from the fact that activity, no matter how small,
causes the transverse and rotational motion of the particles to
couple at the linear level, as manifested in (5). This coupling is
not present in passively-driven lattices, which are linearly stable
and exhibit only nonlinear instabilities.10

Switching of phonons in two trains of 1D crystals

We now examine the robustness of the passive and active 1D
crystals to interactions with neighboring 1D crystals, which we
call trains hereafter. We find that the HIs between two adjacent
trains separated by a distance b couple the longitudinal and
transverse modes, eventually destabilizing both modes in passively-
driven and active trains (see the ESI† 24 and Movies 5–8). The
instability arises at the nonlinear level in passive trains and at

Fig. 3 Active particles: (a) dispersion relation and (b) phase velocity as a
function of wavenumber k of longitudinal and transverse modes for V = 1,
2, and 3. The blue and red lines correspond to the longitudinal and
transverse solutions respectively. The solid line is obtained analytically.
The ‘�’ markers denotes the numerical solutions. For all cases, U = 1,
m = 0.5, n = 1. For V = Udilute = 2, one has o = 0. (c) Growth rate versus k for
V = 1, 1.2, 2, 3, 10, N, and (d) versus V for k = 0.5.

Fig. 4 (a) Phonons switching between two active trains; train 1 has no
wave initially and train 2 has an initial wave of k = p/(5d), U = 1, V = 1.5,
b = 6. (b) Spatial Fourier spectrum versus time showing the switching in (a).
The spectrum width is 0.06. The spectrum intensity given by the color bar
is proportional to the wave amplitudes of the two trains, and the location
of the peak of the spectrum shows the wave number. The wave amplitude
of the two trains oscillates periodically and grows in time due to linear
instability. The wave amplitude in one train reaches its maximum when the
wave in the other train disappears, featuring the switching phenomenon.
(c) Switching frequency as a function of wavenumber k for various separa-
tion distance b (top) and background flow V (bottom), where V is fixed at
1.5 for the cases shown on top, and b is fixed at 6 for the cases shown at
the bottom. In all cases, m = 0.5, n = 1.
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the linear level in active trains. At time scales shorter than the
instability time scale, we observe switching of phonons between
the two trains. Fig. 4 depicts the switching phenomenon for two
active trains subject to initially small transverse perturbations in
one train. The wave in one train induces a wave at about p/2 phase
difference in the other train and vice versa. The switching fre-
quency increases with decreasing inter-train distance b and
increasing background flow V. This switching behavior is reminis-
cent of the well-known Rabi oscillations in multi-level quantum
system,31 switching of optical waves in two-core optical fibers32

and of internal waves in two-layer density stratified fluids.33 In
these systems, the switching behavior is triggered by coupling due
to wave resonance or nonlinearity. The present microfluidic system
offers a new paradigm of wave switching due to nonlinear long-
range HIs in Stokes flow. This phenomenon opens the door to
exploring wave–wave interactions at low Reynolds numbers and, in
the continuum limit, could have implications on understanding
the synchronization of passive and active filaments in micro-
channels; see, e.g., ref. 34–36.

4 Conclusions

We presented a first-principles theory of 1D crystals of active
and passively-driven particles confined in microfluidic flow
channels. We focused on elucidating the physical mechanisms
underlying wave propagation in these crystals and the wave
dependence on the particles’ motility properties and intensity
of the background flow. This theory can be exploited to devise
novel processes for controlling the shape of the particle crystals.
We showed that by properly tuning V, one can control the
growth rate of the wave amplitude and even engineer a standing
wave to ‘‘freeze’’ the lattice at any desired configuration. This is
particularly useful for the self-assembly and fabrication of 1D
structures and chains of various shapes and geometric proper-
ties. Another compelling scenario is to harness hydrodynamic
interactions between trains of particles to control and rearrange
particles within one train by direct manipulation of the other
train. Finally, this theory can also serve as a design tool for
predicting the parameters of high-throughput microfluidic
channels when HIs between particles and trains of particles
are not desirable.
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