
8 Characteristic lines and surfaces

In this section, we revisit the characteristic lines that we studied for first order
systems before. We relate them to the existence and uniqueness of solutions to
the Cauchy –or initial value– problem and to the propagation of singularities,
and use them to classify quasi-linear equations in two independent variables.
Then we switch to more that two independent variables, and draw a distinction
between characteristic surfaces and their bi-characteristic lines.

8.1 Preliminaries

We begin by drawing new conclusions from a simple example that we studied
before. Consider the equation

ut + ux = 0, (162)

which can be restated as follows: along the characteristic lines x = x(t) with
slope

dx

dt
= 1,

u(x, t) does not vary:
du

dt
= 0.

In our previous studies, we mainly though of this formulation in terms of
characteristics as a simple way of solving a partial di↵erential equation, reducing
it to a system of ordinary ones. From initial data at t = 0,

u(x, 0) = u0(x),

we can find the solution at all times by following the characteristics:

u(x, t) = u0(x� t).

Now we change perspective. Consider the more general situation in which
we are given initial data not at t = 0 but along an arbitrary line (x(s), t(s)):

u(x(s), t(s)) = u0(s).

Can we still solve equation (162) using characteristics? More fundamentally,
will the equation still have solutions consistent with the initial data and, if so,
only one?

The answer is simple. If the line (x(s), t(s)) is transversal –i.e., nowhere
tangent– to the characteristic lines x � t = const., then we can still follow
characteristics, along which u is constant, to extend the data u0 to a solution
valid throughout the plane (x, t). On the opposite case, when (x(s), t(s)) is a
characteristic (i.e. x(s) = t(s) + const.), two problems arise: first, u0(s) cannot
be given arbitrarily, as it needs to be a constant in order to satisfy the equation.
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Second, even if u0(s) is a constant, the equation tells us nothing about the
behavior of u(x, t) nearby, since it only informs about variations of u along the
characteristic direction dx

dt = 1, which in this case stays on the line (x(s), t(s))
where the data are provided.

The intermediate, perhaps more typical case, where (x(s), t(s)) is tangent
to the characteristic field at isolated points s = sj , brings in two kinds of
constraints on the data. On the one hand, we need to have u

0
0(sj) = 0, for

consistency with the characteristic equation at (x(sj), t(sj)). On the other,
when a characteristic crosses the initial line (x(s), t(s)) twice, we would need
to have the same value of u0 on both intersections, since there should be a
single value of u on each characteristic. We will not consider this second, global
problem here though (We have seen characteristics crossing before, bringing in
contradictory information, in quasi-linear first order equations, and we found a
way to solve this contradiction by extending the notion of a solution –i.e., by
allowing shocks.) In this section, we will only concern ourselves with extending
the solution locally to a small neighborhood of the initial curve (x(s), t(s)).

Clearly, everything that we have said so far in the context of our simple
example extends to the more general class of equations

ut + a(x, t, u)ux = b(x, t, u),

with characteristics
dx

dt
= a(x, t, u),

along which u satisfies
du

dt
= b(x, t, u).

The only di↵erence is that now whether or not the initial curve (x(s), t(s)) is a
characteristic depends not only on (x(s), t(s)), but also on u0(s).

Yet let us stick for a little longer to the simple example in (162) to gain one
more perspective on the meaning of characteristics. The di↵erential equation
(162) provides information on the derivative of u along characteristics. The
initial value, on the other hand, provides u and hence its tangential deriva-
tives along the initial line (x(s), t(s)). Putting these two pieces of information
together, we know along (x(s), t(s)) all first derivatives of u; this makes it pos-
sible for us to extend u to a neighborhood of the initial curve. Unless, of course,
the two directions coincide: if the initial curve is locally characteristic, then
both the equation and the data provide information on the derivative tangent
to the curve. Then, for there to be a solution, both pieces of information need
to agree. In addition, the derivative of u normal to the curve is still unknown.

This latter conclusion allows us to rethink the characteristics in terms that do
not involve the Cauchy problem. Consider a solution u(x, t) of equation (162).
For it to make sense as a classical solution, its first derivatives need to exist, but
they do not necessarily need to be continuous. Could there be a line (x(s), t(s))
across which the first derivatives jump? The answer is that, for this to be
possible, the line in question needs to be a characteristic. For otherwise, since u
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adopts some value u(x(s), t(s)) on the line, this and the equation determine all
first derivatives of u, which are therefore the same on both sides of the line. It
is only when (x(s), t(s)) is a characteristic that the normal derivative of u can
jump across it. Hence, from this perspective,

Characteristic lines are those along which weak singularities propagate; i.e.,

across which the normal derivative of u may jump.

In order to extend the notion of characteristics to more general situations, it
is convenient to re-compute them using this latter characterization. A prescribed
value u0(s) along the initial curve (x(s), t(s)) implies the following compatibility
constraint on the first derivatives of u on the curve:

t
0(s) ut + x

0(s) ux = u
0
0(s).

Then this constraint and the di↵erential equation provide a system of equations
for ut, ux: ✓

t
0(s) x

0(s)
1 1

◆✓
ut

ux

◆
=

✓
u
0
0(s)
0

◆
,

a system that always has a solution unless the determinant

t
0(s)� x

0(s)

vanishes, yielding the characteristic lines

x� t = const.

If the line (x(s), t(s)) is characteristic, then the system above only has solutions
when the right-hand side is orthogonal to the left null-space of the matrix (the
Fredholm alternative), yielding the condition

u
0
0(s) = 0,

consistent with the evolution of u along characteristics. When this constraint
holds, the system has the infinitely many solutions

✓
ut

ux

◆
/

✓
�1
1

◆
,

i.e. the derivative normal to the curve is arbitrary. Then we can make this nor-
mal derivative jump, adopting one value on each side of (x(s), t(s)). This jump,
however, can only be prescribed at one point s. For consider a general solution
with a prescribed jump f(s) of the normal derivative across a characteristic:

[ut(x(s), t(s))� ux(x(s), t(s))] = f(s),

where the brackets denote the intensity of the jump. Since, along the line
(x(s), t(s)), we have that u0

0(s) = 0, di↵erentiating this equations with respect
to s yields

0 =
d

ds
[ut(x(s), t(s))� ux(x(s), t(s))] = f

0(s).
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So, even though the normal derivative of u may jump across a characteristic,
the evolution along the characteristic of the strength of the jump is constrained;
in our simple example, the intensity of the jump is constant throughout.

It should be clear how to extend these results to general first order equations
for a function of two independent variables. Our next job, therefore, is to extend
them to equations of higher order and to more dimensions.

8.2 Classification of second-order, quasi-linear equations
in two independent variables

Consider the equation
auxx + 2buxy + cuyy = d, (163)

where a, b, c and d can be functions of x, y, u, ux and uy. The Cauchy problem
for this equation consists of u(s) and its normal derivative @u

@n (s) along a line
(x(s), y(s)). We can mimic the argument above, and write two compatibility
conditions (one for ux and one for uy) and the equation itself as a system for
the second derivatives of u. To this end, it is best to think that we are given
ux = f(s) and uy = g(s) along the initial line, which follow from knowing u(s)
and @u

@n (s). Then the system becomes

0

@
x
0(s) y

0(s) 0
0 x

0(s) y
0(s)

a 2b c

1

A

0

@
uxx

uxy

uyy

1

A =

0

@
f
0(s)

g
0(s)
d

1

A ,

with a unique solution unless the determinant is zero, which yields the charac-
teristic condition

ay
0(s)2 � 2bx0(s)y0(s) + cx

0(s)2 = 0,

which can be re-written as a di↵erential equation for y(x):

dy

dx
=

y
0(s)

x0(s)
=

b±
p
b2 � ac

a
.

We notice that, through each point, there are two, one or no real characteristic
slopes, depending on the sign of the discriminant � = b

2 � ac. We classify
the equation (163) accordingly as hyperbolic, parabolic or elliptic, depending on
whether � is positive, zero or negative. Then hyperbolic equations have two
real characteristic families, parabolic equations only one, and elliptic equations
none. It follows that Cauchy data should always determine a local solution for
elliptic equations, but only on non-characteristic lines for equations that are
parabolic or hyperbolic. We will qualify this statement later through examples
and through the theorem of Cauchy and Kovalewski.

It is convenient to compute the characteristics in a di↵erent way. First we
rewrite equation (163) in a new set of coordinates, ⇠(x, y) and ⌘(x, y). The
resulting equation adopts an entirely similar form:

Au⇠⇠ + 2Bu⇠⌘ + Cu⌘⌘ = D, (164)
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where
A = a⇠x

2 + 2b⇠x⇠y + c⇠y
2
,

B = a⇠x⌘x + b (⇠x⌘y + ⇠y⌘x) + c⇠y⌘y,

C = a⌘x
2 + 2b⌘x⌘y + c⌘y

2

and, for our purposes here, we do not need to compute D. So far the coordinates
⇠ and ⌘ have been arbitrary. But say we want ⇠ to represent the characteristic
field, so that ⇠(x, y) = const. are characteristic lines. Then, by definition, we
shouldn’t be able to compute the second derivative of u in the direction normal
to ⇠ = const. from the equation, i.e. u⇠⇠. It follows that A should be zero, so ⇠

needs to satisfy the PDE

a⇠x
2 + 2b⇠x⇠y + c⇠y

2 = 0. (165)

Then, along a characteristic, we have

dy

dx
= �⇠x

⇠y
=

b±
p
b2 � ac

a

as before.
Notice that (165) is a nonlinear, first order PDE. Then we can compute its

own characteristics, as in section (3.3). These are given by

ẋ = 2a⇠x + 2b⇠y,

ẏ = 2b⇠x + 2c⇠y,

and
⇠̇ = ⇠xẋ+ ⇠y ẏ = 2

⇥
a⇠x

2 + 2b⇠x⇠y + c⇠y
2⇤ = 0,

so ⇠ is constant along the characteristics of (165), and then these agree with
the characteristics of (163). This sounds like a tongue twister; we will come
back to it, understand it more deeply and prove it in more generality, when
we consider situations with more that two independent variables, where we will
need to discriminate between characteristic surfaces and bi-characteristic lines.

When the equation is hyperbolic, there are two characteristic families. We
can use one for ⇠ and one for ⌘, thus eliminating both A and C from (164),
which acquires the canonical form

u⇠⌘ = E,

where E = D
2B . The simplest hyperbolic equation has E = 0:

u⇠⌘ = 0,
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with general solution
u = F (⇠) +G(⌘).

The change of variables ⇠ = x � t, ⌘ = x + t reveals that we have just solved
again the one-dimensional wave equation,

utt � uxx = 0,

a prototype for hyperbolic equations. The prototypical elliptic and parabolic
equations are Laplace’s

uxx + uyy = 0,

and the heat equation
ut = uxx

respectively.

8.3 More than two independent variables and equations
of higher order

Much of what we said above extends to equations in more that two indepen-
dent variables. The main di↵erence is that now the Cauchy problem involves
initial data given on surfaces, not lines, and so those surfaces where Cauchy
data are insu�cient –and possibly inconsistent– are now characteristic surfaces.
Instead of attempting a general discussion, let us work out the details in a rep-
resentative –and significant– example: the 2-dimensional wave equation in an
inhomogeneous medium:

utt � c(x, y)2 (uxx + uyy) = 0.

A surface �(x, y, t) = const. will be characteristic if we cannot figure out u��

from the equation. As before, this implies that the following nonlinear first
order PDE is satisfied:

F (�x,�y,�t, x, y) = �t
2 � c(x, y)2

�
�x

2 + �y
2� = 0,

an equation that we have called Eikonal in one of our old homeworks. The char-
acteristic curves of this equation are called bi-characteristics of the original PDE;
they correspond to the rays of light in the geometrical optics approximation to
the wave equation. A seemingly magical fact is that these bi-characteristic lines
lie on the characteristic surfaces –this was our tongue-twister before, when all
characteristics were lines, and the statement was that characteristics and bi-
characteristics agreed. To prove this fact in general –not just for the present
example–, it is enough to notice that, along a bi-characteristic,

�̇ =
dX

j=1

�xj

@F

@�xj

= nF
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for functions F that are homogeneous of degree n (2 in our case) in the �xj ’s.
Since F = 0, � is constant along bi-characteristics, and hence these lie on the
characteristic surfaces, that are precisely defined by the constancy of �. Note
that this argument applies to equations of any order –hence the n– and in any
number d of dimensions; in our case, d = 3, and xj , j = 1, 2, 3 stand for x, y
and t.

8.4 Can we actually give Cauchy data? Some typical ex-
amples

From the discussion above, it would appear that we can always give Cauchy
data on non-characteristic surfaces and solve the di↵erential equation nearby,
while we cannot do the same on characteristic surfaces. Yet this seems to
contradict things we have learned before while studying some classical equations.
In this subsection, we attempt to clarify these apparent contradictions through
examples.

8.4.1 One-directional wave equation

For the first-order (i.e. one-directional) wave equation

ut + ux = 0,

the intuition that we have built is clearly true; in fact, this is the equation that
we used for building our intuition. The characteristics are

⇠(x, t) = x� t = const.,

along which u is constant. Hence, when Cauchy data u0(s) = u(x(s), t(s)) are
given on a non-characteristic line, we can extend them to a global solution by
following these characteristics:

u(x, t) = f(x� t),

with the function f defined by the condition that

f(x(s)� t(s)) = u0(s).

If, on the other hand, Cauchy data u0(s) are given on a characteristic line with
x(s) � t(s) = const., then continuous solutions –in fact, infinitely many– will
only exist when u0(s) is constant. In the exact solution above, only the value
of f at one point is provided by the data.

8.4.2 The one-dimensional wave equation

For the full wave equation in one spatial dimension,

utt � uxx = 0,

82



the intuition also holds. It is easiest to see this from the exact general solution,

u(x, t) = F (x� t) +G(x+ t),

where F is constant along the characteristic family x� t = const. and G along
the other family, x+ t = const. If Cauchy data [u(x(s), t(s)), @u

@nu(x(s), t(s))] are
given along a non-characteristic line, they can be used to find F and G uniquely.
Otherwise, the data need to satisfy a compatibility condition for solutions to
exist, and then there will be infinitely many, since one of the functions F and
G will be specified at only one point.

This is a general situation for hyperbolic systems: Cauchy data provided
along non-characteristic surfaces can be extended to a solution nearby, while
data along characteristics need to satisfy constraints and do not fully determine
a local solution.

8.4.3 The two-dimensional Laplace’s equation

Laplace’s equation
uxx + uyy = 0,

as all elliptic equations, has no real characteristic lines, and so it would appear
that Cauchy data could be safely provided along any line (or surface for the cor-
responding equation in higher dimensions.) How would this work, for instance,
for data provided on the y = 0 line? We would be given

u(x, 0) = f(x)

and
uy(x, 0) = g(x),

and asked to compute u(x, y) nearby. To this end, we can di↵erentiate the
equation with respect to y, and write

@
n+2

u(x, 0)

@yn+2
= � @

2

@x2

@
n
u(x, 0)

@yn
,

which allows us to compute all normal derivatives of u recursively. Cauchy-
Kovalewky’s theorem tells us that the correspondingly built Taylor expansion
for u(x, y) will converge, for |y| small enough, to a solution u(x, y), provided
that f(x) and g(x) are analytic functions.

Yet analytic functions are very special; what will happen with more general
Cauchy data? This is most easily seen by writing a general solution u(x, t) as a
superposition of Fourier modes:

u(x, t) =

Z h
A(k)e|k|y +B(k)e�|k|y

i
e
ikx

dk,

where the functions A(k) and B(k) are a linear combination of the Fourier
coe�cients of f(x) and g(x). Clearly, for this integral to converge for |y| 6= 0,
no matter how small, we need the coe�cients A and B to decay exponentially,

|A(k)|, |B(k)| < e
�↵k

,
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with ↵ > |y|. This will only be the case if f(x) and g(x) are analytic. So, for
non-analytic Cauchy data, a solution does not exist even locally, even though
the line y = 0 is non-characteristic.

For analytic data, a solution exists, but the problem is ill-posed. Because,
for any y 6= 0, there will be an analytic small perturbation of the data that will
make the solution not only change by an arbitrary amount, but even cease to
exist: it is enough to make an analytic perturbation with ↵ < |y|.

Thus, for elliptic problems, it is not right to conclude from the absence of
real characteristics that the Cauchy problem is fine. Rather, a more robust
conclusion is that all solutions to the equation are very smooth in the interior
of their domain of existence, since weak singularities can only occur across
characteristic surfaces, and elliptic equations have none.

8.4.4 The heat equation

For the one-dimensional heat equation,

ut = uxx,

the only characteristic family is given by t = constant. Consider, in particular,
the line t = 0. Clearly, Cauchy data

u(x, 0) = f(x), ut(x, 0) = g(x)

need to satisfy the constraint given by the equation itself:

g(x) = f
00(x).

Hence, it is enough to provide u(x, 0) = f(x). But will this determine the
solution for t > 0? (We have seen before that, for t < 0, the problem is ill-
posed. Moreover, an argument in Fourier space like the one carried out before
for Laplace’s equation shows that solutions typically do not even exist for t < 0.)

It would appear that the solution is uniquely determined by f(x) = u(x, 0).
On the one hand, we have computed the solution to this problem in closed form
before, both through a convolution with the fundamental solution G(x, t) and
through Fourier synthesis. On the other, for smooth enough data f(x), we could
compute all normal derivatives of u at y = 0:

@
n+1

u(x, 0)

@yn+1
=

@
2

@x2

@
n
u(x, 0)

@yn
,

and do a Taylor expansion à la Cauchy-Kovalewsky. Yet the problem here is
that, for the heat equation, information propagates infinitely fast. Hence, even
if f(x) is zero in an interval, making the expansion above equal to zero to all
orders, the solution for any positive time t may be made arbitrarily far from
zero by picking initial data su�ciently big outside of the interval where f(x)
is zero. This can be done explicitly, for instance using the exact solution that
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we computed long ago for initial data given by the step function (page 49): the
function �(x, y, t) satisfying the heat equation

�t = �xx

with piecewise constant initial data

�(x, y, 0) =

⇢
f(y) for x  y

0 for x > y

is given by the complementary error function

�(x, y, t) =
f(y)p
4⇡

Z 1

x�yp
t

e
� s2

4 ds.

Fixing x = 0 and t = ⌧ and letting y approach �1, we obtain to leading order

�(0, y, ⌧) ⇡
r

⌧

⇡

f(y)

|y| e
� y2

4⌧ .

Then we can define

f(y) =

r
⇡

⌧
|y| e

y2

4⌧ ,

and obtain a family of initial value problems for the heat equation that, as
y ! �1, has initial value equal to zero for all finite values of x, yet solution
equal to one at x = 0, t = ⌧ , contradicting the result based on the Taylor
expansion above.

The solution that we have built grows unboundedly for large negative values
of x. It can shown that the exact answer that we found through convolution
with G(x, t) is the only one consistent with a decay condition at infinity.
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