4 The Wave Equation

In this chapter, we study the wave equation
gy — 2Au =0 (82)

and some variations, such as adding a forcing to the right-hand side. We have
the following motivations for this study:

e The wave equation appears in a number of important applications, such
as sound waves, electromagnetic waves, surface and internal waves in the
ocean, and vibrating strings and membranes. It is one of the fundamental
equations of theoretical physics.

e It allows us to extend naturally some of the concepts of the first two
chapters (characteristics, domains of dependence and influence) to more
than one spatial dimension.

e The equation is linear. Because of this, the principle of superposition
applies (the sum of solutions is a solution; the effects of various causes
add up.) In the context of the wave equation, this principle has given rise
to elegant and insightful classical methodologies.

4.1 Physical origin

The wave equation arises in many physical scenarios. In the context of sound
waves, it follows from the linearization of the isentropic gas dynamics equations
(24, 25), extended to three-dimensional flows:

pe+V-(pd) = 0 (83)
(p)s +V - (pud@d)+VP(p) = 0, (84)
where # represents the three-dimensional velocity field. The symbol “®” above

is to be interpreted so that the the ith component of the equation (84) for
momentum conservation reads

3
0 0
(pui)e + ; oz, (puiuj) + aTCiP(P) =0,

stating that the ith component of the momentum in an element of volume
is forced by its flux across the boundaries of the element, represented by the
divergence term, and the derivative of the pressure along the direction x;.
For small perturbations around a quiescent state with density pg, we propose
an expansion
p=potepr, U=¢€u;, €K1

and obtain, neglecting all terms quadratic in €, the system

pt‘i’V(poﬁ) = 0
(po@)¢ + P'(po)Vp = 0,
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where we have dropped the subindices 1 from p and @. Cross—differentiating to
eliminate i, we obtain the wave equation

Ptt —CQAP: 0,

where ¢ = P’(pg) is the partial derivative of the pressure with respect to the
density at constant entropy, and A is the three-dimensional Laplacian

0* 0

Similarly, the extension of the shallow water equations (22, 23) to two spa-
tial dimensions, modeling lakes and oceans, followed by linearization about a
quiescent state with h = hg, yields

htt —CgAh = O,

where ¢ = g hg; and A is the two-dimensional Laplacian.

For either a channel or for gas flow in a pipe, the one dimensional equa-
tions (22, 23) and (24, 25) yield, after linearization, the one-dimensional wave
equation

Ut — c? Uz = 0, (85)

where u stands for either h or p, and ¢? for g hg or P'(py) respectively.

Equation (85) arises also in transversal wave propagation along tense strings,
with u representing the string’s vertical displacement (assumed small), and ¢
given by T'/p, where T is the tensional force along the spring, and p its mass
per unit length. Finally, the three-dimensional wave equation

Uy — *Au =0 (86)

appears also ubiquitously in electromagnetics. Here c is the speed of light, and
u represents either the electric and magnetic fields or their corresponding poten-
tials. This instance of (86) is closely related to the origin of Special Relativity.
In this context, all of Maxwell’s equations in the vacuum can be written rather
succinctly as

OA=0,

where O = 9, — c?A is the wave operator or “D’Alambertian”, and A is the
four-vector potential.

To simplify notation, we shall rescale space and time so that the speed ¢
equals one. Whenever reference is needed to the linearized shallow water or gas
dynamics equations, we shall also choose our units so that g, hg, po and P’(pg)
all equal one.

4.2 The one—dimensional wave equation

In one dimension, the wave equation (85) becomes, after normalization,

Ut — Ugy = 0. (87)
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If we think of this equation as arising from the linearized shallow water system
u+hy = 0, (89)
with initial data
h(z,0) = ho(x)
u(z,0) = up(x),
then we have already discussed how to find the solution in terms of Riemann
invariants. Adding and substracting (88) and (89), we obtain their characteristic
form
(u+h)e+ (u+h),
(wu—"h)y—(u—"h), =
Then R* = u 4 h, A* = £1 (information travels to the right and left at speed
1), and the solution is
u(z,t) + h(x,t) = ug(x — t) + ho(z — t)
u(z,t) — h(x,t) = up(x +t) — ho(z +1¢),

hwt) = ho(x —t) ;— ho(z +1t) n uo(z —t) ;uo(g; +1)
o) - Be=iniet) e hess

On the other hand, if equation (87) models a vibrating string, more natural
initial data are

u(z,0) = f(x) (91)

u(z,0) = g(z), (92)

i.e. the initial vertical displacement and velocity of the string. The solution

(90) can be translated easily to this case by realizing that, in the context of
linearized shallow waters,

ug(z,0) = —hy(x,0),
SO

u(z,t) = + -

2 2

This is the full solution to the initial value problem for the wave equation in
one spatial dimension. Another, more customary derivation, writes the general
solution to (87) as a sum of left and right traveling waves:

w(z,t)=F(x —t)+ Gz +1), (94)
and then finds (93) by fitting F' and G to satisfy the initial data (92).

T — T ot
it HD+fett) 1 / g(s)ds. (93)

—t
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4.3 A semi-infinite string
We shall now solve the wave equation (87) with boundary condition
u(0,t) =0

and initial data given by (92), but only for positive values of . Our motivation is
two-fold. On the one hand, we would like to learn about the effects of boundary
conditions; in this respect, the semi-infinite string with a fixed end is the simplest
problem with a boundary. On the other, we shall find in subsection 4.4 that,
by a mathematical twist, the solution to this problem allows us to write the
solution to the initial value problem for the wave equations in the unbounded
three-dimensional space in a rather simple way.

The wave equation preserves the oddity of solutions. To see this, note that
changing x into —x leaves equation (92) unchanged, as does turning u into
—u. Hence, if u(z,t) is a solution, so is —u(—xz,t). If the initial data are odd
(f(z) = —f(—=x), g(x) = —g(—x)), then both u(x,t) and —u(—=x,t) will solve
the same initial value problem, which has a unique solution. So wu(z,t) and
—u(—2x,t) must be equal, and the solution remains odd for all times.

Hence, to solve the semi-infinite string problem, we extend it to an odd
solution on the whole real line, since odd solutions automatically satisfy «(0,t) =
—u(0,t) = 0. Then the solution (93) applies, and we have

u(o,t) = { IO/ 4 <3 () ds for o > ¢

x

W + %j;tj:g(s) ds forxz <t.

(95)

To the right of the line x = ¢, the solution does not see the boundary at = = 0,
and has the same form as for the doubly infinite string. On the left of x = ¢, on
the other hand, we do observe the effects of wave reflection at x = 0: f changes
sign, and the reflected g cancels part of the incoming one.

4.4 The method of spherical means

In order to solve the initial value for the wave equation in dimensions higher
than one, we shall use the method of spherical means, due to Hadamard. The
intuitive grounds for this methodology lies in our conception of waves as being
made of a superposition of spherically symmetric fronts emanating from point
sources. Huygens was a pioneer of this view of waves, which he used to show
that the laws of optics suggested that light was a wave phenomenon.

A building block for the method is the exact solution to the wave equation
for spherically symmetric waves in n-dimensional space: 2

1
et — (u + 2 - u) = 0. (96)

2For a geometrical derivation of the form that the Laplacian adopts under spherical sym-
metry, first write it in divergence form: Au = V-(Vu), and then apply the divergence theorem
to a volume elemement V bounded by two surfaces of constant radius and a cone with vertex
at the origin: fv AudV = f(w Up dS, or Aur”~1dSdr = (r" lu.), dSdr , where dS is the

n—1
r

area element of a ball of unitary radius. It follows that Au = upy + U
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When n is odd, equation (96) can be reduced to the one-dimensional wave
equation (87). We perform here this reduction for n = 3, the most ubiquitous
case in applications. In this case, it is enough to introduce a variable v = r u.
Clearly vy = rug, and v = r U + 2u,-. Then (96) is just

(Uttfvrr:()a

the one-dimensional wave equation for v. Notice that v is defined only for
positive values of 7, and that v(0,¢) vanishes. Then v solves the semi-infinite
string problem of the prior subsection. Its solution (95), in terms of u = v/r,
reads

( t) (r+t) u(r+t, 0)+(r t) u(r—t,0) _|_ fT-‘rt 5,0 dS forr >t
r
(r4t) u(r+t, 0)2 T(t Nu(t=r.0) 4 = H_T sut(s, 0) ds forr <t.
(97)

With the exact solution to the spherically symmetric case in hand, we could
write the solution to the three-dimensional wave equation with general initial
data as a superposition of infinitely many spherically symmetric waves, each
arising from an individual point at time zero. In a language to be introduced
later, in the context of the heat equation, this would be the Green’s function
approach to constructing a solution. The method of spherical means, that we
describe now, can be though of as a short-cut for the construction of Green’s
functions, or rather as a twist of the idea: instead of looking for the solution
generated by each local piece of the initial data, we switch the problem around,
and figure out which points at time zero contribute to the solution for each value
of (z,t).

For a function u(z,t) satisfying the wave equation

Ou=wuy —Au=20 (98)

with initial data
u(x,O) = f(x), ut(x,O) 29(33)7 (99)

we introduce the spherical mean U(z,t,7) as the average value of u(s,t) on the
surface of a sphere with center = and radius r:

Uz, t,r) = / u(s,t)dS, = / u(z +r,t)dS1(v), (100)
B(z,r) B(z,1)

where B(z,r) is the surface of a ball or radius r centered at x, dS,, the area
element, is normalized so as to integrate to one, and v is a unit vector spanning
all spherical angles. If we find an expression for U, the solution u can be found
easily averaging it over a vanishingly small sphere:

u(xz,t) = limy_oU(x,t,7). (101)

A priori, it is not clear why finding U, a function of one extra variable,
should be any easier than computing u(xz,t). The “magical” reason is that, for
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fixed x, U solves a simpler PDE:

Us — (UW + 2 - 1Ur) —0, (102)
i.e., the spherically symmetric wave equation (96). Since we know how to solve
this equation exactly, at least for n = 3, writing the solution u(z,t) from (101)
becomes a straightforward exercise.

If u(x, t) were spherically symmetric around x, then U (x, ¢, r) and u(x+r 1, t)
would agree, so U would have to satisfy (102). The easiest way to see that (102)
holds for general data, is to average the wave equation (98) over a sphere of
radius r around z:

/ [uee(z + 710, 8) — Auz + 7, 8)] dSy () = 0.
B(z,1)

Clearly the first term yields U(z,t, 7). To evaluate the second term, we can
write the Laplacian in polar coordinates centered at x. Since all angular deriva-
tives integrate to zero over the surface of the sphere, the second term reduces
to

Sy (5 + 2528 )l + 1, )48 () =
- (50722 + 2 %) fB(x,l) u(z +ry,t)dSi(¢) =

= (86—22 4+ o=l %) U(x,t,r),

thus proving (102).
We are now ready to write the exact solution u(x,t) to the three-dimensional
wave equation, using (97) and (101):
u(z,t) = lim, o U(x,t,r) =

= Tlim, ¢ ((r+t)F(z,r+t)27T(t7r) F(z,t—r) + % t+TsG(x,s)ds> _

t—r

= D (t Fx,t)) + tG(x,1) (103)

where F(x,r) and G(x,r) are the spherical means of f(x) and g(x) respectively.

Notice that this solution has the property that the value of u(x,t) depends
only on the initial data lying ezactly at a distance ¢ from x. In other words,
information propagates at speed one along sharp fronts; once a front has past
though a point, its information is immediately forgotten. This property, the
strong version of Huygens’ principle, is valid not only for n = 3, but in all odd-
dimensional spaces other than n = 1. It does not apply, however, to the wave
equation in spaces of even dimensionality. There, even though information still
propagates at speed one, it does not do it through sharp fronts, leaving instead
a trace behind as it passes through a point. Hence, when a tsunami shakes the
two-dimensional ocean, it leaves significant wave action behind its leading front.
We shall see now that this is the case in two dimensions, using the method of
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descent. The same methodology applies to all even dimensions n = 2d, once we
have the general solution to the initial value problem in the odd-dimensional
space n = 2d + 1.

4.5 The method of descent

The method of descent, also due to Hadamard, consists simply of thinking of
any solution to the wave equation in even (n = 2d) dimensions, as a solution in
one more dimension that happens not to depend on one of the space variables.
In two dimensions, in particular, we can write

u(w,y,t) = u(x,y,2,t),

where # is a solution to the three—dimensional wave equation with initial data
that do not depend on z:

ﬂ(:ﬂ?y7z70) = f(x7yﬂz) = f(x7y)’ ﬂt(x7y72’0) :g(x’y7z) :g(x7y)'

For 4 we have the exact formula (103), so the same applies to u. However, by
definition, the corresponding F' (x,r) and é(x,r) are the spherical means over
three-dimensional balls of functions f(z) and g(z) that do not depend on z.
Then we have

Fla,r) = /B(ac,r) fo)ds, = /s<x,r) fls) T4,

where B is the surface of a three-dimensional sphere, S is the surface of a
two—dimensional circle, and J is the Jacobian

r

|s —

that projects one area element onto the other. For our purposes, it is enough
to notice that now the formula for u involves integrals over the interior of
circles of radius t, not just their circumference. Hence the strong version of
Huygens principle does not apply in two dimensions: the solution to the wave
equation at point x and time ¢ depends on all the initial data within a circle of
radius t around x, not just on their values and derivatives on the circumference
ly — x| =t.

4.6 Duhamel’s principle

Having solved the initial value problem for the wave equation, now we switch
to the forced wave equation
Uu = f((t,t) ’ (104)

where f is a prescribed function of space and time. Depending on the problem,
f may represent an external force acting on the system, or a source or sink
of mass, such as rain and infiltration for river flow. In Maxwell’s equations
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in relativistic notation, where w is the four-vector potential A, f is the four
current-density vector j.
Notice that, due to linearity, it is enough to consider the simplest initial data

u(z,0) = us(x,0) =0, (105)

since problems with more general data can be though of as the superposition
of the forced wave equation (104) with the trivial data (105), and the unforced
wave equation (98) with initial data (99), which we already know how to solve.
The idea behind Duhamel’s principle is to think of the forcing f(x,t) as the
superposition of infinitely many, spatially dependent “pushes” acting at indi-
vidual times ¢. Each of this pushes, or impulses, in the language of Newtonian
mechanics, has the effect of making u; jump by f dt. Hence the solution to (104)
can be reduced to the superposition of very many initial value problems for the
unforced wave equation (98), each with u(z,t9) = 0 and u:(z,t9) = f(z,to).
Let us denote by U(x,t,s) the solution for ¢ > s of the initial value problem

OU =0, Ux,s,8)=0 Ux,s,s)=f(z,s). (106)

Our claim is that u(z,t) can be written as a linear superposition of the U’s:

u(z,t) = /0 U(zx,t,s)ds. (107)

To prove (107), it is enough to take the D’ Alambertian of u:

4

¢ ¢
Du:D/ U(m,t,s)ds:/ OU(x,t,s)ds+

Uz, t,t)+Us(x,t,t) = f(x,t).

Notice that (107) implies a causality principle for the forced wave equation:
the solution u(z,t) depends on the forces acting from time zero up to ¢, not on
those yet to act in the future.

4.7 More to come

There is much more to learn about the wave equation. We will postpone further
treatment until we learn more about the Laplacian and about Fourier synthesis.
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