
Chapter 1
Constrained density estimation

Peter Laurence, Ricardo J. Pignol, and Esteban G. Tabak

Abstract
A methodology is proposed for non-parametric density estimation, constrained by the known ex-
pected values of one or more functions. In particular, prescribing the first moment –the mean of the
distribution– is a requirement for the density estimation associated to martingales. The problem is
addressed through the introduction of a family of maps that transform the unknown density into an
isotropic Gaussian, while adjusting the prescribed moments of the estimated density.

1.1 Introduction

Density estimation, a general problem arising in many applications, consists of inferring the prob-
ability distribution ρ(x) underlying a set of independent observations x j ∈ Rn, j = 1, . . . ,N. Extra
information on the distribution ρ(x) is often available, in addition to the N observations x j, in the
form of the expected values f̄i of q functions fi(x), i = 1, . . . ,q. The availability of these expected
values may be due to a variety of reasons:

• They may be independently observed. In the natural sciences, for instance, a number of devices
and experimental procedures are designed to measure the mean value of a quantity over a large
population, an extended area or a fluctuating field. In the financial markets, the pricing of options
provide information on the expected values of future prices of the underlying assets under the
risk-neutral measure.

• Due to storage or technological limitations, or to the specific interests of the parties involved,
historical records or records from individual laboratories or polling agents may have only kept the
mean values of certain functions of interest.

• They may arise from theoretical considerations. Economic theory, for instance, requires the con-
ditional probability of the risk-neutral measure underlying a time series xt of prices to be a mar-
tingale, which imposes a condition on its mean:

E(Xt |Xt−1,Xt−2, . . .) = Xt−1.

Another example is the requirement that the support of the distribution sought should not contain
certain scenarios, a constraint that can be phrased in terms of expectations:
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E(IU (X)) = 0, (1.1)

where IU is the indicator function of the set U of excluded events.

Then the following constrained density estimation problem arises: given a set of observations x j ∈
Rn, j = 1, . . . ,N, estimate its probability density ρ(x), subject to the constraints that the expected value
of q functions fi are prescribed:

E( fi(X)) = f̄i, i = 1, . . . ,q. (1.2)

Here fi are real-valued functions defined on a domain in Rn. In the terminology of financial engineer-
ing, this may be referred to as calibration of the pricing distributions for consistency with available
market data. For instance in energy markets, a common hedging instrument is a spread option, with
payoff S2−S1−K, where S1,2 are the prices of two assets, such as crude and refined oil for the crack
spread option, and K is the option’s strike price. The price of such an option depends on the joint
distribution of the assets under the risk neutral measure. Typically the market provides a lot of infor-
mation on the marginal distributions of the two assets, via liquidly traded options with many strikes
and maturities on each asset S1 and S2. On the other hand a much more limited number of strikes trade
on the spread S2−S1, so that the market provides only limited information of the joint distribution of
the two assets. We will return to this example in the numerical section.

More generally, the estimated density may also need to satisfy inequality constraints, of the form

E( fi(X))≤ ḡi, i = 1, . . . , p. (1.3)

This is the case, for instance, when at least a certain fraction of the probability is required to lie in the
tail of the distribution, and when the density ρ(x) itself is known to be bounded above by a function
h(x), a condition that admits the weak formulation

E(φ(X))≤
∫

φ(x) h(x) dx

for all smooth positive functions φ(x), thus involving infinitely many inequality constraints of the
form (1.3).

The methodology developed in this paper builds, for a given set of observations of a random vari-
able x in Rn, a sequence of parametric maps that take the unknown probability distribution function
ρ(x) to an isotropic Gaussian µ(y). A procedure along these lines was developed in [1, 2] for uncon-
strained density estimation, using the composition of simple maps that increase the log-likelihood of
the data at each step. By keeping track point-wise of the compounded map and its Jacobian, one can
reconstruct the unknown probability density function underlying the observations, evaluating it on the
observed values themselves and on any other pre-determined set of values of x, that the algorithm
carries passively through the maps.

The estimated density takes the form

ρ(x) = Jy(x) µ(y(x)), (1.4)

where Jy(x) is the Jacobian determinant of the map y(x). The constraints on the density ρ(x) in (1.2),
(1.3) become, in view of (1.4), constraints on the allowed maps y(x). The transformation y(x) is built
gradually, through the composition of near identity maps. Thus we build a sequence yk(x), where

yk+1(x) = zk (yk(x)) , (1.5)

with
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zk(y) = y+ϕk(y), ‖ϕk(y)‖� 1. (1.6)

Correspondingly, there is a sequence of Jacobian determinants Jk(x), with

Jk+1(x) = jk(yk(x))Jk(x), (1.7)

where jk(y) is the Jacobian of zk(y).
The algorithm alternates between two kinds of steps: in the first , the functions (maps) ϕk(y) are

chosen so as to move the distribution ρ(x) towards satisfying the constraints in (1.2, 1.3). In the
second, the maps are chosen so as to improve the log-likelihood of ρ(x) on the data points x j, while
not deteriorating the current level of accommodation of the constraints.

1.2 The two objective functions

The procedure is based on two objective functions: the log-likelihood of the data

L = ∑
j

log(ρ (x j)) (1.8)

that one attempts to maximize, and a cost associated with the non-satisfaction of the constraints,

C =
1
2 ∑

i
wi C2

i , wi > 0 (1.9)

that one seeks to minimize. Here Ci is a Montecarlo estimate to be detailed below of the difference
between the current estimation for the expected value of fi(x),

E( fi(x)) =
∫

fi(x) ρ(x) dx, (1.10)

and its prescribed value f̄i. The weights wi have a dual purpose: to normalize the range or variability
around each f̄i, and to qualify the level of significance attached to each constraint. In addition, the
weights are set to zero locally in the algorithm for those inequality constraints that are currently
inactive, i.e. those that, at the current estimation, satisfy the strict inequality version of (1.3).

These two objective functions do not carry equal weight, since our problem can be formulated as
the maximization of L subject to the constraint C = 0. Thus we proceed through the iteration of two
steps: one that decreases the value of the cost C, and another that increases the likelihood L while not
increasing C, at least to leading order in the step-size.

1.2.1 Simulation of expected values and their evolution

At each stage of the map y(x), one needs to evaluate expected values of the form

Ei = E( fi;y(x)) =
∫

fi(x)ρ(x) dx =
∫

fi(x(y))µ(y) dy. (1.11)

where we have denoted by x(y) the inverse of the map y(x). It would appear natural to estimate these
through Monte Carlo simulation:
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E( fi;y(x))≈ 1
s

s

∑
l=1

fi(x(yl)),

where the yl are s independent samples of the target µ , typically a normal distribution, easy to sample.
Yet the problem with this prescription is the calculation of x(yl): these can be computed only if one
has stored all the elementary maps zk up to the current iteration and, moreover, these maps have a
closed-form inverse. Even under this ideal scenario, the cost of the calculation would grow linearly
with the iteration k, making it impractical. Instead, we propose to change measure to a yet unspecified
distribution ηk(y), and write

E( fi;y(x)) =
∫

fi(x(y))
µ(y)
ηk(y)

ηk(y) dy≈ 1
s

s

∑
l=1

fi(x(yl))
µ(yl)
ηk(yl)

, (1.12)

where the yl are now samples of ηk(y). To avoid the problem described above of evaluating x(yl), we
propose distributions ηk(y) that evolve with the algorithm in such a way that the samples xl = x(yl)
are kept fixed. To this end, it is enough to propose an initial distribution η0(y) and sample it at the
onset of the algorithm, when y = x, and then let the corresponding points yl be carried passively by
the maps. Then the corresponding x(yl) remain fixed at their original values, and the density ηk(y) is
updated at each step by division by the Jacobian of the map:

ηk+1(zk(y)) =
ηk(y)
jk(y)

. (1.13)

In addition to evaluating the current expected values E( fi;y(x)) at each step, we also need to esti-
mate how they would evolve under a candidate map

z(y) = y+ϕ(y) (1.14)

with Jacobian j(y). The function ϕ(y) is required to be small, yielding a map close to the identity.
This justifies the linearization procedure described below.

Let us denote by
ρ
−(x) = Jy(x) µ(y(x)), (1.15)

the current estimate of ρ , given the cumulative effect of the maps up to step k, and by

ρ
+(x) = κ(y(x))ρ−(x) (1.16)

the estimate after the candidate step, where

κ(y) = j(y)
µ(y+ϕ(y))

µ(y)
≈ 1+

∇ · [µ(y)ϕ(y)]
µ(y)

, (1.17)

where ∇ · denotes the divergence operator, expanded up to linear terms in ϕ . Then

∆Ei(ϕ) = E( fi;z(y(x)))−E( fi;y(x))

=
∫

fi(x)
(
ρ

+(x)−ρ
−(x)

)
dx =

∫
fi(x)(κ(y(x))−1)ρ

−(x) dx

≈
∫

fi(x(y))∇ · [µ(y)ϕ(y)] dy = dEi(ϕ). (1.18)

This can be estimated through the introduction of an auxiliary distribution ηk(y) as above.
Next we describe the algorithm’s two steps.
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1.2.2 Reduction of the cost –the C-step

In order to reduce the cost C from (1.9), we propose a map of the form

z(y) = y+ϕ(y) , ϕ(y) =
nh

∑
h=1

γhϕh(y), (1.19)

where the ϕh(y) are nh suitably picked functions (more on this below), and compute the gradient and
Hessian of C with respect to the γh:

Gh =
δC
δγh

∣∣∣∣
γ=0

= ∑
i

wi (Ei− f̄i) dEi(ϕh) (1.20)

and

Hm
k =

δ 2C
δγkδγm

∣∣∣∣
γ=0
≈∑

i
wi dEi(ϕk) dEi(ϕm). (1.21)

In terms of the matrix A and vector b with entries

A j
i =
√

wi dEi(φ j), bi =
√

wi (Ei− f̄i), (1.22)

we have that
G = A′b and H = A′A, (1.23)

so Newton’s method yields a vector γ satisfying the normal equations

A′Aγ =−A′b. (1.24)

Notice that, by invoking the linear approximation to κ(y) in (1.17), our version of Newton’s method
uses a surrogate for the Hessian H, whose exact determination would require an expansion for κ(y)
involving quadratic terms in ϕ , namely

κ(y) = j(y)
µ(y+ϕ(y))

µ(y)
≈ 1+

∇ · [µ(y)ϕ(y)]
µ(y)

+ ∑
j>i

[
δϕi

δyi

δϕ j

δy j
− δϕi

δy j

δϕ j

δyi

]
+

1
µ(y)

[
1
2
(ϕ ·∇)2

µ(y)+(∇ ·ϕ)(ϕ ·µ(y))
]
. (1.25)

The justification for using a surrogate H = A′A instead of the true Hessian, a common practice in least
square problems [3], is the following:

1. The surrogate is positive definite, while the true Hessian need not be.
2. Less and simpler calculations are required to evaluate the surrogate.
3. At the minimum C = 0, the two Hessians agree: the true Hessian is given by

Hm
k = ∑

i
wi

δCi

δγk

δCi

δγm
+∑

i
wi Ci

δ 2Ci

δγkδγm
, (1.26)

while the surrogate includes only the first of the two sums. But C = 0 implies that all the Ci’s are
zero, so the second sum vanishes.
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Regarding the number nh of parameters γh to use in this step, one is enough. We have carried the
calculation for an arbitrary number nh because some of the results above will be also used in the L-step
described below, where two free parameters are required.

1.2.3 Increase of the likelihood function –the L-step

In this section we show how to carry out the second step in our program: increasing the log likelihood
of the density ρ in (1.4) while not undoing the gains in cost of the previous step. From a geometric
viewpoint, this amounts to seeking directions in the infinite dimensional space of maps ϕ such that the
likelihood L increases while the cost C does not increase: if the gradients of L and C project positively
on each other, the chosen direction must be tangent to the the level sets of the cost functional C given
by (1.9).

We seek a map ϕ in the form

ϕ = β (γ1ϕ1 + γ2ϕ2) ,

where β is a free parameter available to ascend the log-likelihood, and the coefficients γh,h = 1,2 of
the ϕh are chosen from considerations involving also the cost C. We first set β to one and compute the
derivatives of C –as in (1.20)– and of L with respect to the gammas,

∇γC =

(
∂C
∂γ1
∂C
∂γ2

)∣∣∣∣∣
γ=0

, ∇γ L =

(
∂L
∂γ1
∂L
∂γ2

)∣∣∣∣∣
γ=0

.

If ∇γ L ·∇γC < 0, we can adopt for the ascent of L its direction of maximal growth,(
γ1
γ2

)
=

∇γ L
‖∇γ L‖2

,

while simultaneously reducing C. Otherwise, we set γ ⊥ ∇γC:

γ1
∂C
∂γ1

∣∣∣∣
γ=0

+ γ2
∂C
∂γ1

∣∣∣∣
γ=0

= 0, ‖γ‖2 = 1.

These two alternative determinations of γ are illustrated in figure 1.2.3. With γ thus fixed, we select β

through second order descent:

β =−
Lβ

Lββ

,

possibly capped to prevent unreasonably large steps.

1.2.4 Duality

The algorithm seeks a transformation
x→ y(x)

such that the y’s are distributed following an isotropic Gaussian:
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∇  L

−∇  C

−∇  C

Fig. 1.1 Q plot exemplifying the two possible situations for the L-step: if the inner product of ∇γ L and−∇γC is positive,
then γ = ∇γ L is a permitted –and optimal– direction of ascent for L. Otherwise, the algorithm is constrained to ascend
L along the line orthogonal to ∇γC, not to deteriorate the current value of the cost C.

µ(y) =
1

(2π)n/2 e−
1
2 |y|

2
.

At each stage k of the algorithm, this provides an explicit formula for the estimated distribution in
x-space:

ρk(x) = Jyk(x)µ(yk(x)).

where Jy(x) is the Jacobian of y(x) evaluated at x. Then, at the next step, with yk+1 = z(yk) with
Jacobian j(yk),

ρk+1(x) = j(yk(x))Jyk(x)µ (z(yk(x))) ,

so the log-likelihood L satisfies

Lk+1 = ∑
j

log(ρk+1(x j)) = ∑
j

log(Jyk(x j))+∑
j

log( j(y j)µ (z(y j))) , (1.27)

where y j = yk(x j), the current location of the transformed observations. Since the first summation on
the right-hand side of (1.27) does not depend on the map z(y), maximizing Lk+1 over the candidate
maps is equivalent to maximizing

L̃k+1 = ∑
j

log( j(y j)µ (z(y j))) . (1.28)

This maximization is indistinguishable from the first step (k = 1) of the algorithm, with the current y j
playing the role of the initial data x j. Thus the algorithm can be formulated as a memory-less ascent



8 Peter Laurence, Ricardo J. Pignol, and Esteban G. Tabak

of the log-likelihood, which for the purpose of increasing L, forgets at every step the original values of
the observations x j. Alternatively, we can phrase this as a duality of the flow: as the random variable
y(x) acquires a normal distribution, the estimated density ρk(x) converges to the real distribution
ρ(x) underlying the observations. One can introduce, in addition to the estimated density ρk(x), the
unknown density ρ̃k(y) evolving with the flow:

ρ̃k(y) =
ρ(xk(y))

Jyk(x)
, (1.29)

where xk(y) denotes the inverse of the map yk(x). It follows that

ρ̃k(y)→ µ(y)⇐⇒ ρk(x)→ ρ(x) : (1.30)

blindly moving the points y j toward normality improves the density estimation for the x j. Thus the
maximization of L̃k in (1.28) can be thought of as a step toward normalizing the points y j.

1.3 Fine tuning of the algorithm

1.3.1 Choice of the distribution η(y)

The distribution η is only used as a tool for computing the integrals in (1.12) and (1.18) through Monte
Carlo via a change of sampling measure. It follows that one could choose different distributions ηi
tailored to the individual functions fi(x) in the constraints. As described above, η(y) is sampled only
at the beginning of the algorithm, when y(x) = x, and then updated by the flow, through the expression
in (1.13). In order that the change of sampling measure accurately reflects the original constraints in
(1.2), the support of ηi(x) must include the support of fi(x)ρ(x). One can move further in the direction
of importance sampling, adopting an ηi for which the sampling frequency is high/low according to
high/low values of | fi(x)|ρ(x).

One possible strategy for choosing ηi(x) satisfying the requirements above is the following:

1. Compute the empirical mean µ and covariance matrix Σ of the datapoints x j.
2. Define η0(x) = N (µ,αΣ), where α > 1 is a safety factor intended to guarantee that η0 has

significant sampling frequency over the full support of the density ρ(x) underlying the samples
x j.

3. Define ηi(x) = 1
Z f (x)η0(x), where Z =

∫
f (x)η0(x) dx. This is a useful distribution for our pur-

poses if it is easily sampled, as is the case for many financial instruments. Otherwise, if f has a
well-defined maximum, we can rewrite it as f (x) = eS(x), and replace S by its quadratic approxi-
mation around its maximum, for which the resulting distribution is explicitly sampleable. Finally,
in situations that cannot be handled in this or similar ways, one can simply adopt a uniform dis-
tribution ηi = η0.

1.3.2 Choice of the functions ϕh

The building blocks of the algorithm are the functions ϕh(y), the elementary maps of each step. There
is much flexibility in the choice of a form for these maps, which must be guided by their effectiveness
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to generate general maps by composition without over-resolving, and by their computational expense
in evaluating the objective functions L and C and their derivatives.

A general strategy that we have found useful is to associate to each map ϕh a center yh and a length
scale or bandwidth αh, writing

ϕh(y) = g
(

y− yh

αh

)
. (1.31)

The scaling parameter αh must depend on the selected node yh, not to over-fit or under-resolve the data:
in areas scarcely populated, αh must be larger than in areas with high density, so that the transformation
affects the likelihood of a similar number of observations. More precisely, given a number np of points
that one would like to lie within a ball or radius αh around yh, αh is given to leading order by

αh =
(

np ρ̃k (yh)
m Ωn

) 1
n

. (1.32)

Here Ωn is the volume of the unit ball in Rn. Since ρ̃k(yh) is not known, however, we may replace it
by its target normal distribution, which yields

αh = (2π)
1
2

(
Ω
−1
n

np

m

) 1
n

e
‖yh‖

2

2n . (1.33)

If deemed necessary, one can still use (1.32) in a second pass of the algorithm, estimating ρ̃k(yh)
through ρ̄(xh)

Jk(xh) , where xh is defined by the condition that yh = yk(xh), and ρ̄(xh) is its estimated density
from the first pass.

Regarding the selection of the nodes yh, we alternate between two methodologies: to pick them at
random among the current normalized observations y j, and to sample them from the target distribution
µ(y) (see [2] for the rationale behind this alternating procedure). In the second pass of the algorithm
as described above, only the first methodology can be used, since otherwise to find xh one would need
to invert all the maps zk performed so far.

The functional form of the maps, g(y), is almost completely unconstrained in one dimension; in
the one-dimensional examples in section 1.4.1, we have used

g(y) = tan−1(y). (1.34)

In higher dimensions, a practical choice is given by radial expansions of the form

g(y) = f (|y|)y, (1.35)

with a scalar function f (r) that localizes the action of the map to a neighborhood of yh. This can range
from a slowly decaying function, such as

f (r) =
erf(r)

r
. (1.36)

to one with compact support, such as

f (r) = (1− r)2 for r < 1, f (r) = 0 otherwise. (1.37)

Yet a practical constraint arises in multidimensional scenarios when the number nh of elementary
maps in one step is larger than one, as needs be in the L-step of the algorithm, that has nh = 2: the
Jacobian determinant j(y) of the map ϕ(y) in (1.19) is a nonlinear function that couples all the γh,
which makes the procedure more computational intensive. To avoid this, one may choose functions
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f (r) with compact support –the one proposed in (1.37) in the examples below– and pick the nodes yh
and bandwidths αh so that the support of the various ϕh do not overlap, thus making the Jacobian of
the map and its derivatives as easy to compute as when nh = 1. Notice though that the nonlinearity
of the Jacobian does not manifest itself at the time of computing Lβ

∣∣
β=0, since here straightforward

superposition applies. As for Lββ

∣∣
β=0, a surrogate can be used as with the Hessian of the cost, involv-

ing the Jacobian of each map φh separately. Hence it is only at the time of updating the map that the
nonlinearity of the Jacobian comes into play, so the added computational cost from using overlapping
maps φh is not so big, at least in comparatively low dimensional settings.

One further required property of the maps is that they should “see” the constraints, at least for the
C-step of the algorithm, else they cannot decrease the cost. One easy way to satisfy this requirement
is to choose the centers yh of the spheres in such a way that fi(x(yh)) 6= 0 at least for one value of i.

1.3.3 Choice of the weights wi

The cost function C in (1.9) depends on the weights wi assigned to each individual constraint. These
have two roles: balancing the generally different intrinsic variability of the various constraints, and
enforcing the level of significance that the user attaches to each. A simple recipe appropriate to the first
role is to make the weights wi inversely proportional to the empirical variance of the corresponding
fi(x):

wi ∝

[
∑

j

(
fi(x j)− f̄i

)2

]−1

, (1.38)

with the proportionality constant fixed so that ∑i wi = 1. For certain particular functions fi, such as
the indicator functions of (1.1), the empirical variance above can yield a zero value and corresponding
infinite weight. This might be addressed by weighting in also the empirical variance of fi over the
sample points of ηi used for Monte Carlo simulation. As for the more subjective second role, it is up
to the user to multiply each of the weights above by an individual factor that quantifies the relative
importance of enforcing the corresponding constraint.

1.3.4 Inequality constraints

The procedure described so far applies almost without change to handle inequality constraints of
the form (1.3). The only extra ingredient is the determination, at the onset of each step, of whether
each inequality constraint is or not already satisfied. If it is not, the corresponding constraint can be
treated as an equality, since the local goal is to reduce it toward zero. Otherwise, the constraint is
deemed currently inactive and removed from the cost C (for instance, simply but not soundly from the
computational viewpoint, by setting its weight wi to zero.)

1.4 Examples

This section illustrates through a number of numerical examples the effect of imposing various kinds
of constraints on density estimation. All the examples presented are synthetic, though motivated by
real applications. Though the procedure developed in this article applies to arbitrarily large dimen-
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sions, the examples are low-dimensional, to facilitate visualization. In a similar tone, the densities
proposed all have simple structure and analytical forms, so that one can concentrate on the new fea-
tures brought about by the imposition of constraints.

Besides showing the algorithm at work, the main message that these examples intend to convey is
the versatility of constrained density estimation. This goes far beyond the applications that initially
motivated its development, such as enforcing the compatibility of a pricing measure with the option
prices available. In the modeler’s hand, it can be used for tasks as diverse as enforcing symmetries,
reducing oscillations and excluding forbidden areas of phase space.

In this first paper on constrained density estimation, we have not attempted to fully optimize the
algorithm’s implementation. In particular, the choice of the distribution ηi for the Monte Carlo simu-
lation of the constraints in all examples but the last, is the simplest ηi = η0, where η0 is the Gaussian
introduced in subsection 1.3.1, with safety factor α = 4.

1.4.1 One dimensional examples

We start with some simple one-dimensional examples: the exponential distribution and the uniform
distribution in the interval [0,1]. We contrast the results of unconstrained density estimation with the
refinements obtained by the imposition of a variety of constraints.

In all the one-dimensional examples presented here, we have used elementary maps as in (1.31),
with g(y) = tan−1(y) .

An exponential distribution

The exponential distribution

ρ(x) = e−x for x≥ 0, ρ(x) = 0 otherwise (1.39)

represents a severe test for the algorithm, since mapping it into a Gaussian requires a singular trans-
formation, that maps x = 0 to y =−∞. We take a random sample of 1000 observations x j from (1.39),
and use it to estimate ρ(x). Figures 1.2 and 1.3 display the results of applying the procedure to the
data without imposing any constraint. The plots in figure 1.2 represent various densities: the true ex-
ponential underlying the data, the initial Gaussian estimation, with the empirical mean and variance
of the data, and the estimated density after the first and second pass of the algorithm, the latter using
the estimation from the former to refine the calculation of the bandwidths at each step through (1.32).
The plots in figure 1.3 are histograms of the data points, before and after the normalization performed
by the algorithm.

Generally, the results in figure 1.2 exemplify the power of the density-estimation component of the
algorithm, whose non-parametric nature allows it to accurately represent distributions that are very far
from the initial Gaussian guess. The main discrepancy between the true and estimated density lies in
the mollification in the latter of the discontinuity at x = 0. The dual manifestation of this mollification
is reflected in the histogram on the right of figure 1.3, where the normalization process is clearly
incomplete: a thorough normalization would need to smear the discontinuity on the left into the whole
negative semi-axis. One can decrease this mollification by a reduction of the algorithm’s bandwidth,
but this would lead to over-resolution elsewhere.

The mollification of the discontinuity at x = 0 results is assigning non-zero probability density to
values of x smaller than zero. Even though our exponential distribution here is a synthetic construct,
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Fig. 1.2 Unconstrained density estimation of an exponential distribution. On the upper-left panel, the exact exponential
density underlying the data. The other three panels display the density estimated at various stages of the algorithm. On
the lower-left, the result of a linear preconditioning step, that maps the empirical mean to zero and rescales x so that
the empirical variance is one. The resulting estimate is a Gaussian distribution with the mean and variance of the data.
On the upper-right panel, the density estimated after the first pass of the algorithm, which computes the bandwidth α at
each step using (1.33). On the lower-right, the result of the second pass, with α from (1.32) with the density estimated
from the first pass.

it seems fair to assume that, in real applications, it would be associated with a variable x that cannot
adopt negative values, such as a waiting time. If this constraint x ≥ 0 were known a priori, we could
use the procedure of this article to impose it through the expected value of the indicator function of
the negative axis: ∫ 0

−∞

ρ(x) dx = 0. (1.40)

The results of imposing this constraint are displayed in figures 1.4, 1.5 and 1.6. One can see a much
sharper discontinuity at x = 0, with almost no mass in the negative semi-axis, and a correspondingly
more thorough normalization of the data.

A uniform distribution

As a second one-dimensional example, we consider the uniform distribution

ρ(x) = 1 for 0≤ x≤ 1, ρ(x) = 0 elsewhere. (1.41)

We draw again a sample of 1000 observations and perform first an unconstrained density estimation.
The results are displayed in figure 1.7. As before, the first pass yields reasonable results, yet greatly
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Fig. 1.3 Unconstrained density estimation of an exponential distribution. Histograms of the data-points: on the left, the
original sample; on the right, the sample after normalization. The incomplete normalization on the left of the histogram
is the dual manifestation of the mollification of the discontinuity at x = 0 in the estimated density of figure 1.2.

mollifies the discontinuities at x = 0 and x = 1. The second pass reduces this mollification, but at the
expense of overshooting at x = 0+ and x = 1−, in a pattern reminiscent of Gibb’s phenomenon.

To remedy these deficiencies using external information, we consider the scenario of a financial
application, with x representing the logarithm of the return of an asset at some future time. We assume
that, by regulation, this return has strict upper and lower bounds, yielding the constraints

0≤ x≤ 1. (1.42)

Moreover, we know the prices of 50 call and put options:

Ei =
∫ 1

0
max(ex− ki,0) dx or

∫ 1

0
max(ki− ex,0)) dx,

for strike prices ki = e∆x . . .e1−∆x, with ∆x = 1/51, arbitrarily assigned to call and put options for i
odd and even respectively. We compute the Ei explicitly and provide it to the programs as constraints,
additional to the bounds in (1.42). The results are displayed in figures 1.8 and 1.9.

The estimated distribution after the second pass is now much more accurate. The remaining wiggles
are in fact a reflection of fluctuations in the actual data, as seen on the histogram on the left of figure
1.9. One can reduce them further by adopting a coarser resolution, i.e. a larger bandwidth, but at the
expense of mollifying the two discontinuities at x = 0 and x = 1.
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Fig. 1.4 Same as figure 1.2, but with the imposed constraint x≥ 0.

1.4.2 Multidimensional examples

Though the procedure is general, we display here only two-dimensional examples of constrained mul-
tidimensional density estimation: a Gaussian mixture required to satisfy a simple symmetry, and a
two-dimensional Student t constrained by the prices of some liquid options.

In both cases, we have adopted as elementary maps the radial expansions in (1.35), with f (r) given
by (1.36).

A Gaussian mixture

As a first example, we consider the two-dimensional, two-component Gaussian mixture

ρ(x) =
2

∑
k=1

γkN(x,µk,Σk), (1.43)

with weights

γ1 = γ2 =
1
2
,

centers

µ1 =
(
−1

0

)
, µ2 =

(
1
0

)
and isotropic covariance matrices
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Fig. 1.5 Diagnostics for the estimation of an exponential distribution from a sample and the imposed constraint that
x > 0. In blue the first pass, in red the second. On the top panel, the evolution of the Kullback-Leibler divergence
between the exact density and the estimated one. On the lower panel, the evolution of the cost C associated with the
non-satisfaction of the constraint.

Σ1 = Σ2 =
(

0.2 0
0 0.2

)
.

The results of the corresponding unconstrained density estimation are displayed in figure 1.10.
The estimated density is fine qualitatively, again displaying the versatility of the non-parametric

approach through iterated maps, that can capture quite arbitrary distributions without external input
other than sample points. Yet one feature missed is the symmetry of the distribution with respect to
the y axis: due to a random sampling fluctuation, the Gaussian component on the left had a larger
number of observations than the one on the right; as a consequence, the corresponding density has a
higher peak. If we had known of the right-left symmetry from first principles of the problem in hand,
we could had imposed it at various levels of sophistication and detail, the simplest being the balancing
constraint

E(x1) = 0. (1.44)

Figures 1.14, 1.12 and 1.13 display the results of imposing this single constraint: the estimated density
is far more symmetric than in the unconstrained estimation.

A Spread Option
In our last example, we consider the problem of estimating the risk neutral joint density of two

assets at a single maturity, assuming that options are liquidly traded on each of the assets, but illiquidly
traded on the spread. The example thereof mentioned in the introduction is a crack spread option. Here,
for the purpose of illustration we assume the following:

• Each asset S1,2 has for the maturity considered options trading with 11 different strikes.
• The spread option has options trading with 6 different strikes.
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Fig. 1.6 Same as figure 1.3, but with the imposed constraint x≥ 0. Notice the more complete normalization on the left
of the histogram.
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Fig. 1.7 Same as figure 1.2, but for a uniform distribution.
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Fig. 1.8 Density estimation of a uniform distribution, constrained by lower and upper bounds and by 50 call and put
option prices. On the upper-left panel, the exact uniform density underlying the data. The other three panels display the
density estimated at various stages of the algorithm. On the lower-left, the Gaussian resulting from the linear precondi-
tioning step. On the upper-right panel, the density estimated after the first pass of the algorithm, with the bandwidth α

at each step computed from (1.33). On the lower-right, the result of the second pass, with α from (1.32) with the density
estimated from the first pass.

• We generate option prices for each underlying by simulation, assuming that the true joint distri-
bution and marginals come from a multivariate student-T distribution with 5 degrees of freedom

and correlation matrix C =
(

1 .6
.6 1

)
.

Not surprisingly, since the student-t distributions have heavy tails the call prices exhibit a distinct
smile, as illustrated in Figure 1.15.

We assume the spot prices are S1 = 10,S2 = 12. To determine the option prices, we simulate from
this known distribution with high accuracy, using 100,000 samples from a bivariate student-t with 5
degrees of freedom. We then extract an independent sample from the same distribution containing only
1,000 pairs of data points. These, together with the precise option prices mentioned above, are the data
provided to our algorithm to generate an estimate of the probability distribution. Figure 1.15 shows
the true density of the data points in the North-West corner and the estimated density in the South-
East corner. By observing the distribution of the points in our sample, it is clear that the Monte-Carlo
points used to evaluate the cost associated with the constraints should be drawn from a distribution
with fatter tails than the normal distribution used in our previous examples. Thus, in this example,
we generate Monte-Carlo points, using a distribution that is not far from normal, but has fatter tails,
namely a bivariate student-t distribution with 15 degrees of freedom.

Figure 1.18 shows the evolution of the Kullback-Leibler divergence and the evolution of the cost
with the number of steps in the algorithm, while figure 1.19 shows the initial and final Monte Carlo
points.
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Fig. 1.9 Density estimation of a uniform distribution constrained by bounds and option prices. Histograms of the data-
points: on the left, the original sample; on the right, the sample after normalization. An effect of the finite size of the
sample is the appearance of fluctuations in the histogram of the observations, that the algorithm interprets as true density
fluctuations in its estimation on the lower right panel of figure 1.8. This over-resolution can be corrected by increasing
the algorithm’s bandwidth, but at the expense of mollifying further the discontinuities at the two ends of the support of
ρ(x).

In addition we have performed the following test to see how well the algorithm can use the informa-
tion inherent in the 1,000 observations and in the option prices to estimate an additional option price
not provided as a constraint. In the experiment, we provide the algorithm with all of the call option
prices for S1 and for S2 as well as the spread option prices, in the second column of Table 1, with the
exception of the spread option with strike 3.3, which it is asked to estimate. The at the money value of
the spread corresponds to K = 2 and the spread option prices decrease rapidly for larger strikes.

Table 1 compares the performance of the algorithm, subject to different prescriptions of the weights
attached to each constraint in the global cost C. In column 4, the weights are chosen according to the
prescription (3.8) from section 3.3. In column 5 (moderate weights), we evenly weight the 6 spread
options that are used as constraints in the program (in addition to the 11 constraints on each marginal),
in such a way that the total weight assigned the spreads equals 1

2 . In column 6, we heavily weight the
spread option constraints by assigning a weight 3

4 to the spread option constraints and only 1
4 to the

rest. In this example, moderate weighting performs better on the extra option with strike 3.3, giving
an almost perfect match.
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Fig. 1.10 Two-dimensional unconstrained density estimation: equidistributed mixture of two isotropic Gaussians. On
the upper-left panel, contour lines of the exact uniform density underlying the data. On its right, the sample points used
for density estimation. On the lower panels, the estimated density in perspective and contour lines.

1.5 Conclusions

This article introduces a new methodology for density estimation with constraints on the expected
value of a given set of functionals. The methodology is based on normalizing the data through the
composition of simple near-identity maps, driven by the ascent of the likelihood of the estimated
density and the descent of a cost associated with the non-satisfaction of the constraints. The constraints
are simulated through an important-sampling Monte Carlo technique with sample points that follow
the flow defined by the maps of the algorithm.

The power and versatility of the methodology is illustrated through a few synthetic low-dimensional
examples. Many further refinements are possible; some are hinted at in the text. The applicability of
the methodology is wide, including many financial and bio-medical applications.
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Fig. 1.11 Same as figure 1.10, but imposing the constraint (1.44). Now the left-right symmetry of the distribution is
much more evident in the estimated density.
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Fig. 1.12 Diagnostics for the estimation of the Gaussian mixture in (1.43) subject to the constraint in (1.44). Blue stands
for the first pass, red for the second. On the top panel, the evolution of the Kullback-Leibler divergence between the
exact density and the estimated one. On the lower panel, the evolution of the cost C associated with the non-satisfaction
of the constraint.
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Fig. 1.13 Two plots illustrating details of the estimation of the Gaussian mixture in (1.43) subject to the constraint in
(1.44). On the left, the initial sample of η(x), used for the Monte Carlo simulation of the constraint. In this case, we
have adopted the simplest choice of a Gaussian η(x) with the empirical mean of the data points and four times its em-
pirical covariance matrix. On the right, the observations on the upper-right panel of figure 1.14, after the normalization
performed by the procedure.
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Fig. 1.14 Same as figure 1.10, but imposing the constraint (1.44). Now the left-right symmetry of the distribution is
much more evident in the estimated density.
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Fig. 1.16 The plot in the upper left hand corner depicts the true distribution, a bivariate student-T with 5 degrees of
freedom. There are 26 constraints, consisting of call options on 11 strikes on each underlying and 6 on the spread. The
lower right hand corner shows the estimated constrained density after the first pass.
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Fig. 1.17 The estimated constrained density after the second pass, using the weights indicated in (3.8), is found to be
quite similar to the true density, in the upper left hand corner of figure 1.16.
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Fig. 1.18 The evolution of the Kullback Leibler divergence and of the cost as a function of the number of iterations
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Fig. 1.19 The initial and final Monte-Carlo points chosen from a student-t distribution with 15 degrees of freedom.
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Strike Prices:
True Emp. Est. with weights

K1 (38) Moder Extreme
8 2.0469 2.0312 2.0379 2.0507 2.024

8.4 1.6734 1.6567 1.6599 1.6735 1.6544
8.8 1.318 1.3021 1.2962 1.3114 1.2938
9.2 0.9909 0.9742 0.9578 0.9825 0.9568
9.6 0.7058 0.694 0.6611 0.7005 0.6607
10 0.4756 0.4702 0.4306 0.4754 0.4295

10.4 0.3051 0.3016 0.2725 0.3122 0.2698
10.8 0.1898 0.1865 0.171 0.1954 0.1648
11.2 0.1165 0.1174 0.1016 0.1166 0.1016
11.6 0.0718 0.0753 0.0563 0.066 0.0608
12 0.045 0.0489 0.0284 0.0373 0.0383
K2
10 2.009 2.0886 2.0055 2.0219 2.0139

10.4 1.6241 1.7139 1.6307 1.6456 1.6466
10.8 1.2572 1.3557 1.2734 1.2816 1.2922
11.2 0.9214 1.0237 0.944 0.943 0.9603
11.6 0.6316 0.7366 0.6545 0.6443 0.6672
12 0.4001 0.4974 0.4214 0.4073 0.4344

12.4 0.2321 0.3198 0.2526 0.2429 0.2649
12.8 0.122 0.201 0.1453 0.1401 0.1497
13.2 0.0578 0.1252 0.081 0.0784 0.0804
13.6 0.0245 0.0805 0.0406 0.0437 0.0438
14 0.0092 0.0554 0.0206 0.0242 0.0232
Ks
0 2.0253 2.0748 0.0206 1.9511 1.9422
1 1.1093 1.1439 2.0196 1.1143 1.0979
2 0.4199 0.4337 1.1607 0.4662 0.4573
3 0.1123 0.1116 0.4913 0.1253 0.1384

3.3 0.0744 0.072 0.1647 0.0748 0.9
3.7 0.0438 0.0399 0.0821 0.0345 0.046
4 0.0301 0.0245 0.0613 0.0169 0.0265

Table 1.1 Option prices for the strikes in column 1. The true prices based in column 2, the empirical ones for the sample
of 1,000 points in column 3, and three estimated prices in the last three columns, corresponding to three different ways
to choose the weights in the cost functional, that place an increasing amount of emphasis on enforcing the spread option
constraints. The spread option with strike Ks = 3.3 was not supplied to the algorithm as a constraint to enforce, but was
instead calculated from the estimated densities.


