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The caustics of weak shock waves are studied through matched asymptotic expansions. It is shown
that these caustics are thinner and more intense than those of smooth waves with a comparable
amplitude. This difference in scalings solves a paradox that would have the caustics of weak shock
waves behave linearly, even though linear theory for discontinuous fronts predicts infinite
amplitudes near the caustic and in the reflected wave. With the new scalings, the behavior of shocks
both near the caustic and in the far field is described by nonlinear equations. The new scales are
robust, in the sense that they survive the addition of a small amount of viscosity to the equations.
As a viscous shock approaches the caustic, its intensity amplifies and its width decreases in such a
way that the new scalings are actually reinforced. A new paradox arises, however: The nonlinear
Tricomi equation which describes the behavior of the fronts near caustics does not appear to admit
the triple shock intersections which have been observed experimentally. This new open problem is
closely related to the von Neumann paradox of oblique shock reflection1998 American
Institute of Physicg.S1070-663(197)03912-3

I. INTRODUCTION ment of the locus of the caustic from its linear position. On
the other hand, the linear theory of caustics involves a Hil-
High frequency waves can be described in the languagbert transform which, if applied to a discontinuous incident
of geometrical optics, with fronts propagating along one-profile, yields a logarithmic singularity across the reflected
dimensional rays and energy being conserved along rawavefront. Such singularities concentrated along lines are
tubes. However, this description fails in the neighborhood oincompatible with the hypothesis behind linear theory.
caustics, the envelopes of the rays, where the effects of the In this paper, we develop a way out of this contradictory
variations along fronts and along rays become comparablaituation. We find that the caustics of weak shock waves are
Thus a two-dimensional theory is required near caustics, &hinner and more intense than those of smooth waves of
situation similar to the one taking place near the singulacomparable amplitude, and they behave nonlinearly. These
rays of diffraction theory. A good description of the causticsresults may have important practical implications for the
is particularly important, since there the wave intensity am-growing number of devises which utilize the amplification of
plifies significantly, due to the collapse of infinitesimal ray- focusing sound waves for medical and engineering purposes.
tubes into points. Thus the caustics are layers with strong The plan of the paper is the following. In section II, we
energy concentration, often requiring careful control. review the linear theory of caustics. We introduce a number
The caustics of linear waves have been well understoodf coordinate systems useful for the description of waves
for some time, since the pioneering work of Buchal andnear a caustic, develop the caustic expansion for linear isen-
Keller' and Ludwig? Their analysis involves a local tropic gas dynamics, and match it with the outer expansion
multiple-scale expansion near the caustics, where not onlgf linear geometrical optics. Out of this matching, a Hilbert
the fast scale transversal to the fronts, but also an intermediransform appears which relates the waves before focusing to
ate scale along the fronts contribute to the leading order behose past the caustic, denoted from now on as incident and
havior of the waves. This analysis has been extended bseflected waves, respectively. Then we apply this theory to
Hunter and Keller to the caustics of smooth weakly nonlineadiscontinuous incident fronts, and show that it predicts re-
waves® Their surprising result is that even waves strongflected waves with infinite amplitude. These asymptotic re-
enough to require a weakly nonlinear treatment away fronsults are verified with the exact solution corresponding to a
the caustics behave linearly at the caustics. The reason &rcular caustic.
that, even though the waves amplify near the caustics, they In section Ill, we describe the weakly nonlinear theory
spend too little time there for nonlinear effects to accumu-of waves away from focus and near caustics. The resulting
late. equations in the caustic layer are equivalent to a nonlinear
This result leads to contradiction, however, if naively Tricomi equation. We then consider matching the inner and
applied to the caustics of weak shock waves. On the oneuter expansions, and describe the Hunter and Keller’s argu-
hand, these caustics have been observed by Sturtevant amgnt, which shows that the caustics of smooth weakly non-
Kulkarny to behave nonlinearly even for waves of very smalllinear waves should behave linearly. This result, however, is
amplitude? The main manifestations of this nonlinearity are inconsistent for weak shock waves.
the occurrence of triple shock intersections and the displace- In section IV, we solve this apparent contradiction. We
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find that the caustics of weak shock waves are thinner and wavefront ray
more intense than those of smooth waves, and behave non-
linearly. A clue to this realization is the fact that shock waves
do not have a natural length scale, so matching the inner and
outer layers should be based on amplitude and not on wave-
length, as is normally done for smooth waves. We study the
more general scenario of a shock within a smooth wave, and
describe a setting that allows us to combine the two different
scalings in a single framework. Then we consider the focus-
ing of viscous shocks. One would naively expect that viscos-
ity would restore the scaling for smooth waves, since it does
provide a typical width for the shocks. We show, however,
that this is not the case: As a shock wave amplifies near a
caustic, its width decreases in such a way that it allows the|c. 1. Typical focusing wave front propagating to the right. The front
nonlinear scale of inviscid shocks to take over. propagates normal to itself along the rays, at unit speed. The rays starting

In section V, we briefly discuss an open problem: Thehear the point of maximum curvature cross first, at thaear®ther rays

. . . ., _cross later, forming the caustienvelope of the raysAs the front propa-
nonlinear equations for the caustic Iayer do not allow t”plegates, it folds on itself along the caustic. The front is shown at three differ-
shock intersections, one of the most prominent nonlinear feaent times: before any focusing occurs, precisely when the first focusing
tures of the caustics of weak shock waves. We comment ogccurs(at the arée), and at a later time, with a fold along each caustic
the relation between this problem and the von Neumam}franch. Also displayed is a ray tube collapsing at the caustic.
paradox of oblique shock reflection. The elucidation of this
paradox is the subject of much present w(sge for instance
Refs. 5, 6, 7, 8, and)9and is not pursued any further here. waves, we let the Wave|eng(hnd period of the waves be
Finally, we put forward some concluding remarks. 2melk, with 0<e<1 andk=O(1) The wave fronts are

described by th@hase

caustic

Il. CAUSTICS OF LINEAR WAVES o P (x,y)—t
€

: 1)
In this section, we review the Linear Theory of Caustics,
as it applies to high frequency waves. Many of the argumentsvhere the action variable ®(x,y) satisfies theEikonal
in the following sections derive from particular features of equation,
this theory, so it is important to summarize it here in a uni- (Vd)2=1 @
fied way. Although we shall attempt to make this section as '
self-contained and clear as possible, many details will b&his is equivalent to the statement that the wave fromts (
omitted for the sake of brevity. We refer the interested readet const) move normal to themselves at speed 1, along
to the original papers where the theory of caustics was esstraight lines denotethys
tablished in the framework of Linear Geometrical Optics, A typical focusing wave front is shown on the left in Fig.
particularly Refs. 1, 2, and the review arti¢fawhich has an 1. As it moves normal to itself along the rays, it develops
extensive list of references. folds. The envelopes of rays where this folding occurs are

The plan of this section is the following. After some the caustics Typically, caustics begin at aaréte, corre-
general remarks, we introduce in subsection Il A three coorsponding to the point with maximal curvature on the original
dinate systems useful for the description of waves near caugront (whose neighborhood is the first to focus and folthe
tics: Two Caustic Polar Coordinate Systems, associated witlocation of the caustics, as well as the detailed behavior of
the incident and reflected waves, and a Normal Caustic Cahe state variables close to them, are particularly important,
ordinate System which serves as a unifying framework forsince at the caustics the wave intensity amplifies enormously.
both. In this latter system, we propose a coordinate stretchin§his occurs because, away from the caustics, the wave en-
which magnifies the vicinity of the caustic. In subsectionergy is conserved along ray tubes. Thus formally, in this
II B, we develop the caustic expansion for the equations of. GO outer expansionthe energy density becomes infinite
linear isentropic gas dynamics, which we proceed to matclvhen the ray tubes collapse into points at a caustic. In order
with the outer Linear Geometrical Optics expansion in subto determine the behavior near caustics more precisely, an
section Il C. In subsection Il D, we discuss the singular beinner expansiomecomes necessary; we describe such an ex-
havior of discontinuous fronts near caustics predicted by linpansion below. In this work, we shall concentrate on the
ear theory, a behavior which is confirmed in subsection |l Ebehavior at caustics far from the gggthe more complicated
by the exact solution to the linear equations corresponding tetructure near an @eerequires additional care.

a circular caustic.

Consider a Linear Geometrical OptidsGO) expansion
in two space dimensions in an homogeneous isotropic me- Next we shall develop various systems of coordinates
dium. Assume a nondimensionalization such that the soundalid near a caustic, which are useful in describing the local
speedc is one and the radius of curvature of the wave frontsbehavior of the waves. To this end, consider a smooth con-
is generically O(1). Since we consider high frequency vex causticl’ given parametrically by

A. Caustic coordinate systems
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s=S+7T incident front Advanced CPCS Retarded CPCS

caustic

?(srt)

?(si,T)

FIG. 3. Advanced and Retarded Caustic Polar Coordinate Sys@RGS,
with coordinates ¢ , ;) and (s, ,7,), respectively, defined on the wavefront
side of the caustic. Both; and 7, are non-negative. The systems are singu-
lar at the caustier;=7,=0, where they fold into each other with a square
FIG. 2. Parametric description of the incidébefore folding and reflected  root type of singularity.

(after folding fronts near the caustic. For the incident front,is the dis-
tance along the ray to the caustic, wh8e- 7; is the value of the arclength
parameters on the caustic at the tangency point of the ray. A similar de-
scription holds for the reflected front. The figure is for a circular caustic.

s=S-1 reflected front

choice for describing the incident and reflected fronts, re-
spectively. Clearly, the following simple formulas apply:

d;=s5—7 and &,=s+7,. 5)

x=X(s) and y=Y(s). However, they are not good for describing a neighborhood of

_ _ ) _ B _the caustic, since there they become singular and fold into

Heres is the caustic arclength, which can be identified withgach other. Therefore, we introduce a third coordinate sys-
the value of the action variabke along it: tem, the Normal Caustic Coordinate System (NCCS),

d(X(s),Y(s))=s. shown in Fig. 4. The coordinates in NCCS are the arclength

) along the caustis and the signed distance to the caustic
[Note that the wavefronts—as given [ and(2)—are nor-  Tpys

mal to the caustic, where they fold defining iagidentfront . oz .
and areflectedfront. The contact point then moves along the ~ r(s,d)=(x,y)'=R(s)—dn(s). (6)

caustic at unit speeOf course,® is defined—and two Thjs system does not degenerate at the caustic. The wave-

valued—only on one side df. Let now x= «(s) denote the  front region isd>0 while d<0 corresponds to the region in

curvature of", which we shall assume positive without 10Ss e shade. The incident and reflected wavefrabts S and

of generality. We denote by ®,=S do not have a closed form in this new coordinate
f(s):()'((s)"Y(S))t and ﬁ(s):(_'Y(s),)'((S))t, system, but they can be expanded in powerd_l(ﬂ‘near the

caustic, as follows from the exact expressions(3(5)

the unit vectors respectively tangent and normal to the causspon expansion of the coordinate change from the CPCS'’s to

tic I" ats, where the dot indicates a derivative with respect toNCCS. The incident front in NCCS is given by

s. We have chosen them so that the tangent vector points in

the direction of propagation and the normal vector points  S=S+  v2«(S)d¥*+0(d?), (7)

towards the region without waves.

We can now describe the incident wave frdmnt=S by
the timer; it will take each point along the front to reach the
caustic, i.e. the distance to the caustic along the normal to the
front (see Fig. 2 A similar construction applies to the re- NCCS
flected wave frontb,=S. Let R=R(s)=(X(s),Y(s))! de-
note a point on the caustic, ame (x,y)! a generic point in
space. Then we have, for the incident frdnt=S, the para-
metric representation

and the reflected front by

Fi:§(8+Ti)_TiE(S+Ti). (3)
Similarly, for the reflected frontb, =S,

F.=R(S—7)+71(S—1). (4)

(Note that we are taking both; and 7, positive) This

amounts to introducing tw@austic Polar Coordinate Sys- G 4. N | Caustic Coord SvStENCCS. Th g

tems (CPCS), both valid on the side of the caustic whebe |~ = ormal Caustic Coordinate SystéNCCS. The coordinates are
e distance along the caustic, athdthe signed distance to the caustic, with

is defined(see Fig. ¥ an advanced CPCS(s;, 7)) and @ 4= on the wavefront side of the caustic. This system is nonsingular in a
retarded CPCS (s,,7;). These systems are the natural neighborhood of the caustic.
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s=S— 2 \2x(S)d¥2+0(d?). (8) U1yt po,=0. (16)

In view of these expansions, it appears natural to introducé can be shown that this expansion is valid fdf< e, or
two fast variables near the caustic, where Geometrical Opticb7| <e '
fails: An imperfect phase, to take care of the fast depen- Since the problem is linear, we can separate variables. In
dence normal to the fronts, particular, since the coefficients of the equations are indepen-
dent of ¢, the dependence o# must be exponential. Thus
_st (9)  We can write

. . ) . p;j=pj(n.5)e*’, (17)
and a transversal intermediate variableto incorporate the ) ) )
fast variation along the fronts near the caustic, where theiWith similar expressions for the other variables—whiers
curvature becomes infinite: an O(1) nonzero real constant. Then we obtain thigt

=po, andvy=0. (Note thatv, vanishing is consistent with
d the fact that the wave motion near the caustic is mainly par-
€ allel to the causti¢. The equationg15)—(16) reduce to an
Airy equation that we can solve as

€

Then the phase#=(® —t)/e has the expansion, near the
caustic, po=f(S)AI(—an)e?, (18
6=+ % V2k(s) %%+ O(¥3?), (11)

1 :

-~ re_ iky
where the uppeflower) sign corresponds to the incideme- V17K af(S)AI"(—an)e™, (19
flected phase. This expansion for the phase applies when 0 L . .
<p<e ?® (0=<d<1). The higher order terms are uni- vyhereqz(ZK(s)kz)l’3>O and A=Ai(2) is the Airy func-
formly small provided that & n<e Y% (0<d<+€). On tion which decays as—. . .
the other hand, it can be shown that the LGO expansion i% In the W_avefront region out&de_t?/g caustic layer, where
valid near the caustic fod> €%® (that is, 7>1). Thus we the expansion is valid, i.e.4n<e™ ™ we can use the

can use the two term expansion for the phase above as Io ymptotic behavior of the Airy function for large values of
as 1< p<e U6 the argument, to obtain

_ 3 2 o\
B. Example of an expansion near the caustic Uo=po~2€""d 1’4F(s)co{§ V2k(s)|k| 9*%~ Z) ey,
The equations we shall consider are (20
p+Ugtoy=0, U+py=0, vi+p,=0, (12  WhereF(s)= (1/2\m) £(s)(2k(s)k?) “ Y2 In these formulas

f(s) is an arbitrary function that must be determined by

corresponding td.inear Isentropic Gas Dynamics nondi-  matching with the incoming LGO wave into the caustic re-
mensionalized so that the unperturbed dengifyand the gion, as explained next.

sound speed are both equal to 1. Transforming these equa-
tions into the NCCS introduced above, we obtain

(1+ k(s)d)py+Us— ((1+ «(s)d)v)4=0, C. Linear geometrical optics and matching

(1+k(s)d) U+ ps=0, (13 In this subsection, we match the inner solut{@0) with

the outer solution provided by Linear Geometrical Optics
(LGO). This matching provides the connection between the
whereU andv are the components of the velocity respec-incident and reflected waves at the caustic. The main result is
tively parallel and normal to the caustifNamely, if ¢  that these two waves are connected by a Hilbert Transform, a
= ¢(s) is the caustic angleX=cos¢e, Y=sin ¢, so thatx critical fact for the analysis of shock waves in later sections.
= ¢; thenlU=u cose+v sin g andv = —u sin ¢+v cose.] The LGO expansion for a single mode solution(12)

We expand in terms of the variablgsand » introduced  has the form
above, with expansion parametef:

pNPO(‘pi 7715)+ El/spl( lzbv 7715)+ T
ENEO( 17[,1 7715) + 61/3[11( (/fv 7715) tee, (14)

’{;NUO( lﬂu 7]13) + 61/351( lﬂ: 77!8) +ee

and obtain at the leading orders tl{gtv, does not depend
on the fast variablegs and 7, (ii) Uy and py have the same
dependence oW [that is, @/dy)(Uy— po) =01, and(iii) po

and v, satisfy the following system of partial differential 2(V®P)-Vag+(Ad)ay=0. (22
equationgequivalent to the Tricomi equati@n

’Jt_pdzoi

p~[ag(x,y) +eas(x,y)+---]e'’,
U~[U0(X,Y)+€U1(X:Y)+“']eik0’ (21)
v~[vo(X,y)+ evs(X,y)+---]e*’,

where 6=[®(x,y)—t]/e, up=P,a,, andvy=>a,. The
action variabled satisfies the Eikonal equatid@) and the
leading order amplitude, satisfies the transport equation

In order to solve(22), it is best to work with the char-
2k(S) mpoy+v1,=0, (15  acteristics for the Eikonal equatid®)—which corresponds
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to writing the equations in the advanced and retardetbe connected to(s) through matching with the inner layer,

CPCS’s. Letky=®, andk,=P,. Then the rays are given
by

d_X = kl and d_y kz (23)
d dr

Along them the Eikonal equation takes the form
%=%=0 and di)zl. (29
dr dr dr

Clearly, since from the Eikonal equatié+k3=1, the pa-
rameterr is the arclength along ray@creasing in the direc-
tion of propagation For each ray, we set=0 at the caustic,
so that the incident wave corresponds#aQ and the re-
flected wave tor>0. Then we obtain the following repre-
sentation for the rays and the action variaible

=X'(s), kp=Y'(s), ®=

x=X(s)+kyT,

S+, 25)

and y=Y(s)+k,T.

It is also easy to see thatd =1/r. It follows that the char-
acteristic form of the transport equati¢®?) is

da, 1
ZF + —ag= 0 (26)
Thus
1 - o
ao=\/__7_ I(s) for the incident wave and
1 .
ao=ﬁ R(s) for the reflected wave, (27

where the functiori (s) is determined by the wave focusing
at the causti¢as produced by initial or boundary conditions
andR(s) must be determined fromby matching across the
caustic layer.

Thus, along any ray tangent to the caustic,

ik
~ ex;{: (s+r—t)),

1
e
VIl

with u~k;p andv ~kyp.
The actual solutiorp we are after is the sum of the

R (28)

incident and the reflected waves. These were computed for

i.e. with (20). Notice that bot29), (30) and(20) are valid in
the same range ¢ n<e ® and matching is possible.
Clearly we must have

*1/4’\ T
—) R(s)= el/eF(s)ex;{ —iz sigr(k)) , (3

k(S)
2 71/4A T
(@) I(s)= elfﬁF(s)exp<i 7 sigr(k)). (32
Thus the desired connection formula is
R(s,k)=—i sign(k)1(s,k). (33

Notice the amplification factoe¢ ™/ between the outer LGO
solution and the inner caustic expansion.

So far, we have considered a single mode solution, with
frequencyk/e. Clearly, the whole procedure generalizes to

waves which do not have a sinusoidal profile. In fact, these
waves can be obtained from the single mode solution above
through Fourier Analysis. The incident and reflected waves

are now given, in the outer expansion, by

pi~ I(s,0) and p,~ R(s,0). (34

1 1
el VIl

The functionsl andR admit the Fourier representations,

I(s,0)= J% fli(s,k)eik(’dk, (35)
R(s,6)= % f :ﬁa(s,k)ei”dk, (36)

wherel andR satisfy the connection formul@3). It follows
then that the function

2
h=1+iR=— f I(s,k)e'kdKk, 37)
2n (s,k) (
is analytic in the upper half-plane I#¢0 and decays as
Im(#)—oe. Thus| andR are related by the Hilbert Trans-

form:

I(s.{)

R(s,a)=—%P.v.f —22 dg=H(1),

ease in characteristic coordinates, i.e. the advanced and fgith | = — H(R).

tarded CPCS described above. However, to do the matching,

it is convenient to have all solutions written down in a uni-
fied framework, specifically the NCC8with coordinates

In summary, we have shown the followin@ The am-
plification factor for the amplitude near a caustic is given by
e Y& (b) The width of the caustic layer €%, and(c) The

(s,d)]. In these coordinates, the incident and reflected WaVeﬁlCldent and reflected wave profiles are connected by the

take the form
2d —1/4A 2
—) I(s)exp{ik(w—g 2K(s)773’2”, (29

k(S)

2d 71/4’\
—)) R(s)ex;{ik

k(s

pi~

.

The full solution, valid for ik n<e~

¢/+§ 2K(s)7;3’2”. (30

16 is the sum of these

Hilbert Transform. These facts play a crucial role in the ar-
guments of the following sections.

D. Linear theory for discontinuous fronts

Although we have concentrated so far on linear waves,
our purpose in this work is to study caustics for nonlinear

two waves. The functioh(s) is determlned by the data away waves. Given enough time, nonlinear hyperbolic waves will

from the caustic; the funcUoR(s) on the other hand, has to
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derstand how a shock wave behaves at a caustic. As a firs Connection Formula effect on a Discontinuity in the incident Wave
step in this direction, we study now the linear caustics of U ' ' ‘ ' '
discontinuous fronts. 6 Log Singularity in R
From the results of the previous subsection, we know
that the incoming and reflected waves are related by the Hil-
bert Transform. But the Hilbert Transform. But the Hilbert o
Transform of a function with a discontinuity has a logarith-
mic singularity. Therefore, if the incoming wave is discon-
tinuous, the amplitude of the reflected wave will be un- Incident Wave: | __.
bounded. This shows that there is a fundamental difficulty b ——
with the theory when the waves are discontinuous. No mattel o
how small the wave amplitude, linear theory in this case T
appears to eventually “self-destruct,” since the linearizing
assumption must fail sufficiently close to the caustic for a

| and R

Reflected Wave: R -

Discgntinuity inl

discontinuous wave. But the way nonlinearity plays a role in %3 Py 3 . ] 2 3
resolving this difficulty involves a rather subtle effect: a “na- 0

ive” approach to the problem quickly leads to a

contradiction—as shown below in Section II. FIG. 5. Logarithmic singularity produced by the Hilbert Transform in the

There are many similar situations, where linear theoryconnection formul&38) when the incident wave has a discontinuous profile.
fails for discontinuous wavefronts across some layer or inThe example here is for a saw-tooth incident wayéut the effect is very
terface due to a Hilbert Transform type of connection for_general. The spike iR is exponentially narrow, but it reaches
mula. In most cases an appropriate nonlinear theory is un-
known. The first example of such a situatites far as we
know) was pointed out by Lighthitt in 1950. E. A simple example: Circular caustics

As a prototypical example of the singularity predicted by
the connection formulg38), consider an incoming wave
consisting of a periodic saw-tootin this case we must use
Fourier Series instead of Transforms

When the caustic is a circle, a number of simplifications
occur: The incoming and reflected fronts, which can be con-
structed using the approach in subsection Il A, become spi-
rals with rather simple formulas. In fact both the advanced

R(6#)=—log

1(6)= % (6—m), for 0<g<2m, extended periodically. and 'the re.ta.rded Caustic Eolar Coordinate Syst@ms
admit explicit and rather simple representations in terms of
This is the real part of the analytic functidn=—i log(1 the Standard Polar Coordinate Systé®®CS. Furthermore,
—d?, which decays as Indf approaches«. Thus the re- the Normal Caustic Coordinate SystedCCS is in this
flected wave is given by the imaginary part of this function,case essentially the SPCS, in which the solutions of the wave
ie. equation can be written explicitly by the separation of vari-
ables.
2 sir(f) To see this, consider a circular caustic of radius one,
2 which we parametrize by=X(s)=cosf) and y=Y(s)
These incoming and reflected wave profiles are representeﬁsm(s)'as in subsection Il A. Then, ifr(9) is the SPCS, it
in Fig. 5. We see that, at the points whé(®) is discontinu- Is easy to see that
ous,R(#) develops a logarithmic singularity. This behavior, r2=1+ riz and tams—9) =7 (with 0<s;—9<3 m),
shown here in an example, is completely general. In fact, it is 5 ) .
easy to show that if=1(6) is piecewise smooth and has a " =1+7 and tafd—s)=r (with 0<d—s <3 m),
simple discontinuity at som&= 6,, with jump w=1(6y r=d+1 and 9=s. (40)
+0)—1(69—0), then neam,,

So, if we writer=secf (with 0<B<1/27), for r>1 we
obtain the simple relations

R(6)= "= log|6— 6|+ O(1). (39)
™ r=tanB and s=9+8,

It is not surprising that a focusing front with a disconti- “4D
nuity should produce an infinity at the caustic. After all, the
linear amplification factor at the caustic goes like )*/®. Thus a circular caustic provides an ideal scenario to check
Since discontinuities are dominated by the energy in thdéhe validity of the various conclusions of the asymptotic
large ks, an infinite amplification at the caustic is to be analysis.

expected. What is surprising though, is the fact that the in-  Consider now the wave equatigim SPCS

finity occurs not only within the caustic layer, but propagates 1

outside this layer with the reflected wave! To confirm that W,=— (rV,),+—=Vye. (42

this result is not an artifact of the asymptotics, we carry out ' '

in the next subsection an example where we can solve thlow we can write the following special exact solutions ob-
equations exactly: the case where the caustic is a circle. tained by separation of variables:

=tanB and s,=3J—p.
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* Archimedian spirals centered at the origin of step—=2far
P = 2 a,Jy(nne"?Yicc., (43 away from the caustiéwhich is 27) and their radius of cur-
n=1 vaturer>1.

where thel,’s are the Bessel Functions of the first kilfd,
the a,’s are arbitrary complex constants, and c.c. stands for
Comp|ex Conjugate_ Ill. WEAKLY NONLINEAR ASYMPTOTICS

There is noe in equation(43), as we have not yet intro-
duced any high frequency assumption. Thus, consider now .,
the limit in which the only contributions that matter fér in
(43) arise from n>1. Then, outside the caustidor r
=secB>1, as in(41)] we can use the asymptotic formufa,

In this section, we develop inner and outer expansions
r a caustic similar to those in section Il, but including
nonlinear effects. Nonlinearity brings in two new important
ingredients: the existence of critical amplitudes required for
the nonlinear corrections to appear at the same order as the

2 ) linear terms; and the lack of exact solutions for the
Jn(nr)~ na@n g cogntanf—nB—zm), (44  asymptotic equations, which makes matching the inner and

outer expansions less straightforward than for the linear case.

valid for n>1. This and(41) yield The section that follows after this is devoted to solving these
difficulties, bypassing the need for exact solutions and intro-
Ww% (D, —t)+ \/i_ R(®,—1), (45) ducing a new scale, totally absent in the linear case.
7i Tr A. Caustic expansion

where®; and @, are as in(5), ®;,=®;—t is the incident
phase®,=®,—t is the reflected phase, and the functidns
andR are given by

The material in this subsection follows very closely that
in subsection 1l B, but for a weakly nonlinear example.
Again, we consider, for the equations of two-dimensional

L 1 _ Isentropic Gas Dynamics a small perturbation from an
1(0)=e"13T > ——=ae"+c.c., equilibrium state. We assume that the equations have been
n=1 y27n (46) nondimensionalized so that the equilibrium state has density
o and sound speed equal to one and flow velocity equal to
R( e)ze—i%wz 1 a,e"’+c.c. zero. We further assume that the length scales are such that
n=1 2mn typical curvatures for the wavefronts and caustics are order
one.

Clearly, bothl(8) andR(6) are 27-periodic and their Fou-
rier Series coefficients are related by equati@®), so thatR

is the Hilbert Transform of —exactly as in subsection Il C.
Thus, if thea,’s are chosen so th&{d) has a discontinuity, pitUxtoy+(pu)+(pv),=0,
R(6) will have a logarithmic singularity.

Writing the density as +p and the flow velocity as
(u,v)Y, so thatp, u, andv are small, the equations are

We note that the calculation above shows that, in gen- Ut Qe Ut touy =0, (47)
eral, the convergence properties (@) outside the caustic v+ Qy+ Uvyg+ oo, =0,
(r>1) are characterized by the series with general term : . .
(a,/yn)e" coshé) where q=q(p) is defined in terms of the pressure
n " — —
On the other hand, inside the caustic we can write =P(p) (or c=vdP/dp, the sound spe¢dy
=secha, with «>0. Then, forn>1, we havé® J,(nr) dg 1 dP ¢?
~(2n7 tanhe) 2 exd —n(a—tanha)], where a>tanha. dp 1tpdp 1tp

Thus, the convergence properties (dB) are exponentially _ ) )
accelerated and the solution inside the caustic will generally "€ variablesj andc have expansions in powers pbf the

be very smooth. form
Finally, the convergence near the caustic can be obtained q(p)=p+(8-0.5p2+--- ,
from the asymptotic behavior @f,(nr) for n>1 andr near (48)
1, which involves arO(1/yn) behavior times an Airy func- c(p)=1+Bp+t---,
tion of r. This also can be used to obtain the expansions ifyhere g is a positive constant. Thus these equations reduce
subsection |1 B for this case. to those in(12) whenp, u, andv are infinitesimal,
One can also consider equatiof) for r>1, without Next we consider a neighborhood of a caustic like the

the explicit high frequency assumption that lead us to Us@ne in subsection Il A, and rewrite the equations above in the
formula (44). In this case we must use the asymptoticNCCS. As in subsection Il B we I&t andv be the compo-

formula'® nents of the flow velocity respectively parallel and normal to
\F the caustic. Then we obtain the following extension 18):
SO Nl 1l 1 - -
In(2)~ \ 77 codzm 2 = g ), (1+ kd)p+ (L4 p)TW)s— (L4 p) (1+ x)T)g=0,
valid for z>1. We then obtain exactly the same result as  (1+ xd)U,+(q+ 2T 2~ ((1+ «kd)U)4=0, (49
(45). The small parameter here arises from the quotient of
the wavelength of the incoming and reflected waves—  (1+«d)v;+Uvs—(1+«d)(q+ 37 2)4=— KU 2,
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wherex= k(s)>0 is the caustic’s curvature. 1
We introduce again the small parametex <1, the (V®)-Vpot 5 (Ad)po+
variablesy and » from (9)—(10), and expand in one-third

powers ofe. However, since the equations are now nonlin-Notice that, in the linearized case, we can separatesthe
ear,the overall size op, u, andv is important We cannot  dependence a*? [as in(21)]. Then this expansion reduces
start, as in(14), with O(1) leading order terms and only tg the one in subsection Il C.

later, when it becomes necessary for matching, multiply the |t can be shown that equatia®4) has the appropriate
whole expansion by some convenient parameter, such as t@@nservation form to deal with shocks, even though) is

+1
'BTpé) =0. (54)
6

e~ Y°needed in subsection Il C. Now the prefactor is signifi-not in conservation forniiThe simplest way is to check that
cant from the very beginning. Thus we propose the ansatz,54) does give the correct jump conditioh§he same result
- 7.5)+ el DS ), applies to the caustic equatiof&l)—(52).

P~ ¥(pol ¥ 7.8)+ € 7pa( . 79) ) We could include an explicit dependence on the time

U~ y(Uo(th,7,9)+ €Y (4, p,8)+ ), (50)  variablet in the expansior{53—to consider “nonsteady”

- - . wavetrains. The only change this introduces in the equations

v~ y(vol¢h, 7,8) + € v1(¢h,7,8) + ), above is an additional terpy, in the transport equatiofb4).
wherey>0 is the prefactor. To be consistent, we should then also includedapendence

The size of the parameterwill determine whether the in the caustic expansio(b0). This, however, introduces no
dominant behavior is linear and the analysis in section lIchanges in equationg1)—(52); that is to say, the depen-
applies or not. In particular, we want to determine the criticaidence ont at the level of the caustic equations is merely
size orthreshold value y, of y (as a function o) for which parametric. We will not do any of this in this paper, since our
nonlinearity first appears at leading order. Fpy, the main concern is the study of the behavior of shocks at a
behavior will be dominated by the linear terms; fg& ., caustic, so that nonsteadiness is of secondary interest.
on the other hand, nonlinearity will dominate and the scal- AS before, we introduce the ragharacteristit coordi-
ings we used at the caustic may not even make s@isee  Nates for the Eikonal equatiosee (23)—(25)]. Then (54)
they correspond to the folding of wavefronts in a linear sys< eads, along each ray, as
tem). A straightforward calculation shows that the threshold

. d B+1
value is I (\/mpo)-f-(T \/|7|p§) =0. (55
(4
o= €23
When we takey= vy, in (50), the resulting asymptotic equa-

tions are the following extension @i5)—(16) (a nonlinear
Tricomi equation:

2k(S) 1poy+V1,=((B+1)pd) . (51)

1
14+ Poy=0, (52 po(s.6.7)= =

where we have taketiy=p, andv,=0 [as we eventually
had to do in(17)—(19), for the linear case

Use now the ray variables(r) to replace X,y), where(as
in subsection 1l ¢, s indicates the value of the arclength
along the caustic where the ray is tangent to it andnishes
there[in particular(25) applied. Then the transformation,

f(s,6,2)

[where z=sign(r) V| 7|] reduces the equation above to the
well known constant coefficient Hopf equation,

f,+((B+1)1%),=0, (56)

B. Weakly Nonlinear Geometrical Optics  (expansion wherez< 0 corresponds to the incident wave and0 to the

away from the caustic ) reflected wave. Note that this equation is not to be applied
An analysis similar to that in subsection Il C applies acrossz=0, where matching with the caustic layer must be

away from the causti¢see for instance Refs. 13-91%ith ~ used instead.

appropriate corrections for the presence of nonlinearity. Here It is clear that the limit near the caustic of this outer

the critical size for the variablgs u, andv (required to have Weakly Nonlinear Geometrical Opti¢g¥VNGO) expansion,

nonlinear terms appearing at leading order in the asymptotibas exactly the same form as that provided by the linear

equationgis simply €, with corresponding expansions theory (LGO): Namely, equatior{34) applies, where
p~6p0+62p1+"‘ y U""€U0+€2U1+"' ’ |(5.9):f(5,9,0_) and R(S!a):f(s’6’0+)’ (57)
and for the incident and reflected waves, respectively. Here 0

and 0" stand for the limitg— 0 with z<0 andz>0, respec-
tively. One important difference with LGO is that, in the
where the variables are functions &fx, andy, with #as in  linear case, the wave shape does not evolve as propagation
(1). Then® satisfies the same Eikonal equati@) that ap- along the rays occurs, while in WNGO the wave shape does
plies in the linear case and it is still true thaj=®,p, and  change, following equatio(b6). In fact, even if a wave starts
vo=Pypo, very much as in21). But the transport equation with a smooth profile, shocks may form by the time the wave
(22) is modified by nonlinear terms into reaches the caustic, giving a discontinuous incident wave.

v~ev0+62v1+~-- , (53
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A second important point is that now we must be carefuland the amplitude is small enough that linear theory applies,
when constructing the full solution outside the caustic layetthe amplification factor at the caustic é /%, as shown in
as the sum of the incident and reflected waves, as was doseibsection Il C. The threshold amplitude of the incoming
in the linear case. Because of the nonlinear interactions bevave for nonlinearity to show up in the outer expansion is
tween these two waves, this cannot be done without som@(e), as described in subsection Il B. Linear theory near
care. However, if the following circumstances apply, tiiien  the caustic will then apply, since this predicts an amplitude
leading order at leastdding the two waves is correct. near the caustic of ordeP®= ex e~ /6 (which is smaller than
L . : : the threshold value?® for nonlinear caustic behavior de-
(1) If the incident wave s a single wavefrofds in the case scribed in subsection Il A Thus the first onset of nonlin-

of a single weak shock focusipghen outside the caus- i f th i hen th litude of
tic layer the incident and reflected fronts do not occupyearI y occurs away from the caustic, when theé amplhitude o

the same region of space and thus do not interact the incoming wave has an amplitude comparable to its wave-
(2) In the case of Gas Dynamics, in the absence of Ieadinbenglgh' with thc? IgallllSt'C Iaye(; Srt]I.” behaving Ilfnearlyil. |

order entropy or vorticity variationgas in the example _unter and nefler e_xten this ar_gume_nt ormatly, _to e

provided by (47) and the expansior(53)], acoustic termine for which amplitude of the incoming wave will the

waves do not interadresonat at leading order caustic layer behave nonlinearly. The validity of this formal
' extension, however, is doubtful. Once the outer domain is

Generally, however, for oscillatory wavetrains, onestrongly nonlinear, there is no reason to think that the geom-
needs to worry about the incident and reflected waves beingtry of the caustic layer will scale similarly to that of a linear
in resonance in the sense of Ref. {Bhere is also a coher- wave. Thus the very ansatz of the inner expansion may not

ence condition one has to considefhese conditions are make sense. For that matter, even the notion of caustic may
rather complicated and not easily satisfied by the waves a$ave to be revised.

sociated with a caustic. Thus it seems fair to assume that, in At first sight the result above, with the waves behaving
most cases, simply adding the incident and reflected waves jfearly near the caustiéeven though they behave nonlin-

the correct approach. early outsidg¢ may seem puzzling. It is, however, as Hunter

and Heller point out, not so surprising. Nonlinear behavior in
C. Problems with matching: Linear rates of growth small amplitude waves arises not just from amplitude con-
and thresholds of nonlinearity siderations, but also from how long the nonlinearity acts. For

The next step is matching the outer and inner expana quadratic nonlinearity, it is the product of these two factors
sions. As in the linear case, this matching should providéhat counts. The caustic layer is fairly thiro¢e”?), as
enough information to determine the shape and amplitude gthown earlier. The waves spend only a short time in it:
the reflected wave from knowledge of the incoming wave. InO(€'), instead of theD(1) time they spend outside. Thus
addition, it should provide the amplification factor of the an amplitude larger by this exact amount is needed for the
wave amplitude in a neighborhood of the caustic, a moshonlinearity to affect the caustic layer.
important prediction for practical purposes. In this work, we study caustics of shock waves. The

The first difficulty that arises is that we do not know a arguments above, if naively applied to shock waves, yield
priori which are the expansions that we need to match. In théhe result that the caustics of weak shock waves should be-
linear case, we could carry out both expansions beforehanéiave linearly. There are two reasons why we cannot accept
and later multiply the inner expansion by the amplificationthis answer.
factor necessary for matching. For the full equations, howThe first reason is experimental: Sturtevant and Kulkarny
ever, this amplification factor will determine whether the in- studied the focusing of weak shock waves in Ref. 4. They
ner equations are linear or nonlinear; it is thus not somethingound that the behavior at a caustic of a weak shock wave is
that can be left as a small detail to be taken care of at the endlways nonlinear, no matter how small the amplitude of the

To resolve this difficulty, we can attempt the following incoming wave. The caustic always has an internal wave
thought experiment: starting with a linear regime, where thestructure including a triple shock intersection, a very nonlin-
results are known, gradually increase the amplitude of thear and puzzling configuratiofsee section Y Numerical
incoming wave, until nonlinearity shows up, either in the calculations of focusing weak shocks yield the same re8ults.
outer, in the inner expansion, or in both. At this point, at  The second reason is purely analytical: If the caustic of a
least one of the expansions has to be replaced by its weaklyeak shock wave were to be properly described by linear
nonlinear analog, as developed in the previous two subsetheory, then the connection between the incoming and re-
tions Il A and 11l B. flected wave profiles should be given by the Hilbert Trans-

Hunter and Keller carried out this procedure in Ref. 3 forform (38). As described in subsection Il D, this implies that
smooth waves. They found that the threshold of nonlinearitythe reflected wave has a logarithmic singularity, with un-
is reached first in the outer domain, when the waves in dounded amplitude. But how can we justify making a linear,
neighborhood of the caustic are still behaving linearly. Theyor even a weakly nonlinear approximation, based on small
concluded that the caustics of smooth Weakly Nonlineammplitudes, when the amplitude takes infinite values?
Geometrical Optics waves can be described by linear theonGlearly, such asymptotic approximation would be question-
as the following argument shows. able. An unbounded reflected wave, surprising yet consistent

The Hunter and Keller's argument for smooth WNGOfor linear waves, becomes rather unacceptable for the full
waves If a typical wavelength for the incoming wave é  nonlinear equations.
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Thus the hypothesis of linear behavior at the caustics of Let us reexamine these scalings for the example of a
weak shock waves does not agree with experiments and &ngle incident shock. Clearly, an inviscid shodkes not
internally inconsistent. It has to be discarded and replaced bgrovide any transversal short wave scale, since the shock has
a globally nonlinear theory, developed in the following sec-no thickness. For pure shock solutiofssich as the one we
tion. are now consideringthe e~ scale introduced by WNGO

through the variabl@d=(® —t)/e, serves only as an order-
ing parameter. The expansion is really an expansion in pow-
IV. CAUSTICS OF WEAK SHOCK WAVES: A NEW ers of the distance to the shock, and valid only near the shock
NATURAL SCALE front. Now, in equation58), € clearly has an interpretation
In this section we introduce a new scaling, induced byas an amphtudg, but Iiﬁ59) the inner variables) and
. . follow from an interpretation ofe as a wavelength. Thus,
the nonlinear effects near the caustics of weak shock waves, . . .
. . Since the incoming wave has no length scale, assuming the
Caustic layers for weak shock waves are thinner than those

: . . —scales in(59) is really arbitrary: We pull out a length scale
of smooth weakly nonlinear waves, and the amplification ; .
: : . out of nowhere, and then are puzzled when the nonlinearity
factor for the amplitude is correspondingly larger.

does not conform with this length scale leading us to para-
A. The width of the caustic layer doxical results!

The proper approach is to accept that we do not teave
riori a transversal length scale at the caustic, i.e. the proper
€’ for length scaling is an unknown to be determined, that

e shall denotes,. We shall still assume that the relation
ﬁ/etween transversal and longitudinal scalings at the caustic is

First we shall rewrite the arguments concluding the pre-
vious section more formally. Consider a weak shock wavé?
which (away from focusing hasO(1) curvature and)(e)
amplitude. The propagation of this wave can be describe
using Weakly Nonlinear Geometrical Opti@&/NGO), as in ) . )
subsection 11l B. If a caustic forms, WNGO is valid for the the same as in the linear case, so—agb§)—we introduce
description of the propagating front away from the caustic,the variables
for d>€%°, and near the front, foid —t|<1, where® sat- s—t
isfies the Eikonal equatiof2) and® =t is the approximate y=—— and 7=—p. (60)
location of the front. ¢ ¢

As the front approaches the caustic, WNGO predicts amThen we will let the nonlinearity “choose’s;. That is, we
plitudes of order, will let €, have exactly the right size so that nonlinear effects

A= ed- 14 (58) occur in the caustic laydthese should eliminate the infini-

¢ ' ties that linearized theory predigtdhe ultimate verification
whered is the NCCS coordinate. The behavior of the Eiko-of this assumption will be provided by the consistency of the
nal fronts near the caustic, on the other hand, suggests thesulting matched expansions.

inner variables Under this scaling, using8), it follows that the ampli-
S—t fication factor at the caustic is given by
V=—o and 7= _p, (59 A~ Vi ¢ 6,104

wheres=® is the arclength along caustics, the other NCCSOn the other hand, we know that the behavior at the caustic

coordinate. As discussed in subsection Ill A, an expansion ifayer has to involve nonlinear effects, since otherwise a Hil-

terms of these variables yields the result that nonlinearityhert Transform appeargiving rise to a logarithmic singu-

only plays a role if the amplitude at the caustic is at leastarity). So ¢, is determined by the condition that the ampli-

O(e?). But, from (58), tude at the caustic reach the nonlinear threshold discussed in
"B<a <%, subsection Il A. That is,

in the domain where both WNGO and the caustic expansion elP=ee; ",

are valid, i.e., for & n<e 6. Since this amplitude does

23 \ve conclude that the behav- where the term on the right follows from tleeiter amplitude

F‘O‘?t;ffﬁ: ;ge;rg'(;ilov?éuge oll described by linear theor times the amplification factor at the caustic and the term on
: ust u W ' y Yihe left is the critical threshold amplitude for a nonlinear

Tr_us is essentially the argument that Hunter and Keller AP, austic. Thus we have
plied to smooth waves.

Yet a problem arises when the incident front is a shock  e.= €®®. (61)
wave. We saw in subsection Il D that, when the caustics are
linear, the connection between the incident and reflecteg
waves is given by a Hilbert Transform which, for a discon- €
tinuous incident front(such as a shogkyields a reflected |d|<\eo= €35,
wave with unbounded amplitude. Such waves clearly cannot
be handled by either linear or weakly nonlinear theories, savhile the outer WNGO expansion is valid for
we reach an impasse. Since after assuming the inner scales in d> 23
(59), everything else follows by deduction, we conclude that '
the scales in(59) must fail for shocks. Since 2/3>3/5, the two regions overlap in the range

With this new scale, the resulting caustic expansion will
valid for

>e€
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TABLE I. Scales near caustics of smooth and discontinuous waves. As a counterpart, now we have to solve a more complex
(nonlineay problem in the caustic layer—one that cannot be
solved exactly using separation of variables, as it is the case
— with the Linear Caustic Equations. Furthermore, as shown
Caustic basic below in section V, this nonlinear problem leads to some
length scales: - : “« " ;

interesting “paradoxes” of its own.

Smooth waves witlD(e€) Weak shock waves
amplitude and frequency with O(e) strength

Longitudinal € €= €%
Transversal €23 65/32 45 .
Amplitude at caustic 516 8= 5 B. Shocks within smooth waves
ifi i —1/6 -1/6_ _—1/5 . .
Amplicaton ‘ e € In order to better understand the way in which the new

nonlinear scales resolve the questions posed in subsection
Il C, consider a situation in which both the old and the new
scales are present: a periodic incident wave, with period and
amplitude ofO(e), including at least one shock. A simple
and matching of the two expansions is possible. Except foexample is provided by the saw-tooth wave,

the fact that we use, instead ofe, the caustic layer expan- o

sion and equations are the same as those in subsection Il A(®)= 7 (6—m), for 0<#<2m, extended periodically,

Thus equation¢51) and (52) apply: displayed in Fig. 5, but the argument below, sketched in Fig.

2k(S) poy+o1,=((B+1)pd)y, Viy+po,=0. (62 6. is general.
O,w 7 ) o a . o7 As the wave approaches the caustic, it is amplified by
We consider solutions of these equations that decay fofy(¢~1/6) Then, in a layer of transversal wid®(e2?), Lin-

n large. Thus their asymptotic behavior has the same form as,, caustic Theory applies, with an amplitude @fe®®).

that of the linearized equations, which is exactly right t©0gycept that the amplitude near the shocks continues to grow,
match the outer WNGO expansion solutions as they apang would end up producing a singularity if not checked:

62/3< d< 63/5,

proach the caustic. _ The logarithmic singularity of the Hilbert Transform in sub-
Introduce now the variables=u(x,y) anduv(x,y), @  section Il D. After an additional amplification @(e~ 239,
follows: the amplitude near the shocks reaches the threshold of non-
(2kv)?5 . (2kv)¥ linearity atO(e*®). Within a distanced(e*) of the caustic,
Pozm u(x,y) and Ul:m v(X,Y), following the scalings in Table I, a new layer arises. In this
_ _ thinner layer, the Nonlinear Caustic Equations of subsection
wherev is an arbitrary constant, Il A apply, implemented as explained in subsection IV A
X=(2k)25 35y and y=(2x)¥5p 25, (usinge.= €% and y= y,). It should be clear from the argu-

ments in subsection IV A that these Nonlinear Caustic Equa-
Then the caustic equations above take the normal form of ggns actually apply only in a small neighborhood of the
Nonlinear Tricomi Equation, shock front, of longitudinal widthO(e.). Note that this
L2y 4y — g v_wdth (in the direction of propa_lgan()ns only a small frac-
(Yu= 2 U toy=0, Uy +o,=0, 63 tion of the wavelength, which i©(e).
written in the appropriate conservation form to handle  The infinities of linearized theory clearly arise because,

shocks. from the point of view of an expansion that assumes leading
In conclusion: for weak shock waves, the width of the orders of amplitude®(e>), the spikes near the shocks—of
caustic layer is given by amplitude O(e*5)—are effectively infinite. This creates an
width= 6§,3: 45 64) \(Iavzsre that then propagates outside the caustic, in the reflected
(thinner than for smooth waveand the amplification of the The picture above of the process near a caustic for a high
amplitude by frequency weakly nonlinear wave combining smooth parts
amplification= 60,1,6: U5 65) with shocks appears rather frightfully complicated, with a

layer within a layer “tracking” each shock wave as it goes
(larger than for smooth wavesTable | compares the scales though the “main” (linean caustic layer—which implies
near a caustic for a smooth weakly nonlinear wave of amplithat an extra matching is also needed. There is, however, a
tude and frequency of ordet with those for a shock wave simple way to model all this with just one set of caustic
with strengthe. equations and a single caustic layer. Even with this simplifi-
These new scales allow us to resolve the contradictionsation, the approach is still more complicated than what lin-
that the use of the linear scalings lead to, with infinities in theear theory for smooth waves allows; but no more so than the
reflected wave produced by the Hilbert Transform connectheory for a simple shock wave we presented earlier in sub-
tion formula(38). It seems clear, though, that this is a mattersection IV A.
that must be investigated carefully, that, in the context of In order to see this, we first summarize the basic ansatz
(62), such infinities cannot occur. If a narrow logarithmic of Linear and Nonlinear Caustic Theory, using the subscripts
spike, such as the one shown in Fig. 5, starts to develop, tHeandnl to indicate quantities associated with the linear and
nonlinear terms should immediately generate a shock thatonlinear cases, respectively. Linear Caustic Theory uses the
will, literally, clip it to finite size. ansatz
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where we have not written the subscripto simplify the
notation. We note that, as long ag=pg here remains
bounded, the nonlinearity is not important and the equations
reduce to the linear ones. On the other hand, when the non-
__________________________ linear scalings applyby construction these equations re-
“‘Linear caustic”’ duce to the appropriate ones, namésg).

Thus, we can simply do this to take care of both pure
smooth waves and mixed waves with shocks and smooth
Nonlinear caustic components

Set up an ansatz as in the case of smooth wavesnally
€ & giving a Linear Caustic Theojynamely, equatiori50) with
y= €% and noe, introduced, unlike subsection IV A.
Do not, however, assume that the leading order terms are
--------------------------- necessarily bounded, or even fully independent.of hus,
when writing the leading order equations, collect the appro-
--------------------------- priate terms from higher orders—to take care of nonlinear

£° effects near shocks. Thus, we ué#) as the governing
. asymptotic equations, instead of the linear equations that
R would result if we proceeded as usual.

This “recipe” is somewhatad hog but it does give the
FIG. 6. Nonlinear Caustic Layer of transversal wi@e*®), placed inside ~ correct answer, as the arguments above show. A formal jus-

the Linear Caustic Layer of transversal widii{e?). This nonlinear layer tification is quite likely possible, but we will not attempt it
occurs near shock fronts and is restricted to a neighborhood of the sho ere

position of longitudinal widthO(e®%). The picture shows a typical linear . . . .
wavefront(both incident and reflected branchefaced at the location of the A final formal small point we wish to make is the fol-
shock. The actual shock front will not look quite this way, particularly lowing: In the far field of the caustic layer{<d<e*9),

inside theO(e*°x €®®) rectangle of the Nonlinear Caustic Lay@xactly both in the case of smooth waves and when shocks are
enclosing the cusp of the linear frgnsee section V. present, the caustic equations behave linearly. Thus the so-
lution can be written by separation of variablgs in sub-
section Il B. However, when shocks are present, we cannot
p=e0,+0(e7’%) and T=e"%,0(e%5), (66) conclud_e[as .in equ_ation(;18)—(19)] tha_lt only Airy functions
of the first kind, Ai, are relevant. This follows from the re-
with independent variables quirement that the solution vanish on the shadow side of the
~2/34. caustic (9— —) and can only be concluded in the case
when the linear equations are uniformly valid throughout the
On the other hand, Nonlinear Caustic Theory uses the ansagaustic layer. But the linear equations are not uniformly valid
p=e"pg +0(e5) and 7= e, +O(e8), when s.hoc.ks are present. Thus Airy. fun_ction; of the second
(67) kind, Bi, will also appear; with (;ontr|b_ut|ons t|ed. up to the
o ) presence of shocks in the solution. Since the Hilbert Trans-
with independent variables form connection formula arises precisely from the exclusive
=€ (s—t) and n,=e Yd. presence of Ai in the solution, it will no longer apply when
] ) ) shocks occur. This should correct the problem of the infini-
Thus, we have the relationships between independent valifes in the reflected wave, though what the connection for-

h=€e Ys—t) and n=¢€

ables, mulas will be in the case with shocks is an open question.
Y=€ Py and py=e . (68)

For the dependent variables it is tempting to write C. Viscous effects
pom=€¥%o  and Ty, =e V%, (69) We have concentrated so far on inviscid flows. Real

gases are viscous, of course, but their viscosity is small

But this last equation is not quite true: there are higher ordegnoygh that many flows can be successfully modeled as in-

terms involved in the dependent variables expressions anglscid. For weak high frequency waves and shocks, there is a
(even more importajtthe way the expansions are carried threshold size of the viscosity, related to the frequency and
presumes that, andv, areO(1) quantities, independent of ampiitude of the waves, for which viscous effects start to
€. play a role at the level of the Geometrical Optics approxima-
Yet, if we substitute(68) and (69) into the Nonlinear tjons. This phenomenon is somewhat analogous to the
Caustic Equation$62) (which apply for the quantities with  thresholds of nonlinearity described in section Ill. Thus a

the subscripnl), the equations take the form question similar to the thought experiment in subsection
2k(8) Mpoy+71,= €Y((B+1)p2),, i C may be posed: s_tart with an inviscid weak shock wave
0 Tin o (700 which forms a caustic, and slowly decrease the Reynolds
'51¢+p0,]=0, number R,) from R,=%. Where and when will viscous
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effects appear first, near the caustic or in the far field? Onceides no length scale as it approaches a caustic, even in the

these effects are present, at the critical threshold can we foxdscous case! This is the crux of our argument, which we

mulate a Geometrical Optics approximation to the flowmake more precise below.

which incorporates dissipation? From equation74) we conclude that, for the waves of
These questions arise naturally from our earlier discuswavelengthO(e) in subsection Il B.

sions, since viscosity provides a longitudinal length scale foif R;> e~ 1, the shock can be modeled as a discontin(fity

shocks, whose absence gives rise to the puzzling behavior dienl <e).

weak shock waves at caustics that we pointed out in subsec- If Re<e ! (so thatl > ¢€) the wave is so spread out that

tion Il C. Thus one may think that a sufficient amount of calling it a shock is meaningless. In fact, dissipation is so

viscosity may result in a different solution to the puzzle fromlarge compared with the other effects, that in the context of a

the one we developed here for inviscid shocks. We shall se€&eometrical Optics approximation, the resulting equations

however, that this is not the case: when the viscosity is largare linear and dissipative.

enough to account for shocks of significant width, yet not S0 jearly then, the interesting situation arises at the critical

large that the concept of a shock stops making sense, treshold wher, ande are of the same order, since then the
scales it yields at a caustic are exactly the ones displayed (§scous shock thickness scale is precisely equal to the one
Table | of subsection IV A earlier. In this subsection we required for a Weakly Nonlinear Geometrical Optics

develop the arguments leading to this conclusion, and dis(\NNGO) expansion. For this to occur, the Reynolds number
play the equations they yield both near the caustic and in thg4< 1o beO(e1). Thus we write

far field.
It is convenient to begin by reviewing the nondimension- ~ Re=(ve) 2, (75
alization behind equationg7). Using a prime to denote the

. . . wherev is anO(1 itiv nstant.
dimensional variables, we have erev is anO(1) positive constant

When this scaling applies, we can carry through a

p'=p*(1+p), p’'=p*(c*)?p, u'=c*u, 1) WNGO analysis, exactly as in subsection Ill B. The viscous

terms contribute for the first time at the level of the transport
equation(54), and modify it into

B+1
TP% =3 vpogs. (76)
0

v'=c*v, x'=Lx, t'=(L/c*)t,

where p* is the density of the equilibrium state} is the
corresponding sound speed, ands a typical length scale (VD) Vpo+ 5 (AD)py+
for the wavefronts and causti¢s.g., a typical radius of cur-

vature. In the simplest model to account for viscous effects

'As in subsection Il B, we can introduce ray based coordi-

the ZEros on the right hand sides of the second and thirHates in this equation. The same set of transformations lead-
equations in47) should be replaced by ing there to equatio56), yield now

-1 —-1
€Re7au and <R, “Av, T2 (B =2t . (77

Notice that, close to the caustic, @s-~0, the dissipation
vanishes. The physical dissipation is of course constant; it is
the intensity amplification, rescaled in equati@ty), which
makes the dissipative term comparatively smaller. Thus, as a
shock approaches the caustic, it becomes sharper and
sharper. Thus, in this critical threshold case, we may still
Re=e€lLc* ,,;1, (73 have to deal with the discontinuous input to the caustic layer
from the outer expansion which was the source of trouble in
whe_ree is the same small parameter as in our expansiongnearized Caustic Theorysee subsection 1l C Thus we
earlier. expect linearized Caustic Theory to be inadequate for weak

Let us now consider a viscous weak shock wave awaghocks even in the viscous case, which is the main result of
from the caustic, of strengtf(e). The width|s of such  this subsection.

shock arises from a balance between the quadratic nonlinear Nt all shocks, however, need to sharpen up into a pro-
compression and the dissipative spreading. We must balangge that, from the viewpoint of the outer expansion, is essen-
terms likeuuy or ppy on the left in equation$47)—of size  +ially a discontinuity, as they approach the caustic obeying
O(e“/lg)—with the dissipative terms above in equation (77, above. For this to happen the shock has to have had

respectively, where\ is the Laplacian in two dimensions
(2-D) and R, is the Reynolds number outside the caustic.
Generally we havér,=LU/v, , whereU is a typical flow
velocity andv, is the kinematic viscosity. In our case),

= ec*, as follows from the nondimensionalization above and
equation(53). Thus we have

(72)—of size O(€’/(Rl3)). Thus enough time to “relax” to a state where nonlinearity and
IS=O(R;1), (74 viscosity balance just right. If the shock strength is varying
too rapidly, this balance will not be maintained and a discon-

in the nondimensional units of equati®f7). tinuity will not form. Of course, this situation is not that

On the other hand, as a weak shock approaches the cautifferent from the one in the inviscid case: there too, some
tic, it amplifies at a rate 1/{7]. We can no longer consider initially smooth waves develop shocks and reach the caustic
its amplitude as being of the form “constaf¢.” Then, the  with a discontinuous profile, while others do not.
same argument leading to this last equatiof) yields that Figure 7 shows a numerical solution to equati@),
decreases at a ralsé7|. Thus, a weak incident shock pro- starting atz=—1 with a smooth profile, which soon devel-
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Solution of WNGO Viscous Transport Equation at Caustic (72). There is not much point in computing these exactly, it
T T is enough to notice that their leading order contributions are

e
Ny
o

o
IS
T

€ €

] and —— vy,
€ Re 44 €Re 44

e
o

©

respectively. Then a rather straightforward calculation shows
that the critical threshold condition on the Reynolds number
is Re=0(ee; *¥). Thus assume

Re=v lee 3, (79)

(6,0) in units of 2x/(1+p)

and takey= €% in the caustic expansia50) (replacinge by

€; in these formulas Then the resulting asymptotic govern-
ing equations are

T oz o3 04 05 05 07 o8 o ~ _ 2
0 0.1 0.2 0.3 0.4 095 06 0.7 0.8 0.9 1 2K(S) 7]p0¢+ Ul7]+ Vp0¢¢,— ((ﬂ+ 1)p0)l//,

vyt po,=0. (79

FIG. 7. Numerical solution to equatidi@?), to illustrate the development of We point out that we can anplv to these equations the same
nearly a discontinuity a=0. We have adopted=1; the value of3 can be pol u w pply S quatons S

absorbed into the definition df. The initial data, az=—1, is f(6,—1)  transformation that lead earlier {63); though noww is not
=(2m/(1+ B))sin(d). The figure displays the solution when this wave arbitrary and is determined by the viscous dissipation. Then

reaches the caustic, at=0; it has by then become essentially discontinu- ywe obtain the following normal form of a Nonlinear Viscous
ous. Notice thaf is a rescaled variable; the amplitude of the physical Wave Tricomi Equation:

is in fact growing proportionally to 1Z.
(Yy—uwustovy+u,=0, uy+v,=0. (80)
) ) ] ) The following conclusions are immediately obvious from the
ops into a viscous shock. The width of this shock gradualIy(,il,]aﬂysiS we just carried out.
decreases withz|, all the way to nearly zero by the time it ) i
reaches the caustic at=0. The pseudo-spectral algorithm * If in the caustic layer we use =€ and the Reynolds num-

utilized for this computation will be described in a separate Per i critical for the flow outsidgso that equation(75)
article, where more numerical examples will be provided. 2PPlied, then equatior(78) shows that the Reynolds num-

i —1/ :
The purpose of the example here is to illustrate the way in Per Will be too largeby O(e™*)] to have viscous effects
which equation(77) may give rise to essentially a disconti- in the caustic layer. The governing asymptotic equations in
nuity atz=0. the caustic will be inviscid.
We consider next a neighborhood of the caustic, and If the Reynolds numbgr is critical for_the flow outsifieo
conduct a “threshold” analysis for the asymptotic behavior, that equation(75) applied, then equatior(78) shows that

similar to the one above. Specifically, consider the expan- W& neede;= €* to get viscous effects in the caustic layer.
sions in subsection 11l A, when the terms (i) are present ~ But this is exactly the same as the value é&rwe arrived
in the equations of motion. Then ask the following questions: &t Py the inviscid shock arguments in subsection IV A.
(i) For which size ofR, do these viscous terms have an Thus, we arrive at the following result: Viscositiy the
effect on the behavior, comparable with geometrical focuseritical threshold casé€75)] does not affect the basic scaling
ing? (i) What are the resulting asymptotic equations in thisresults that we obtained for the inviscid case earlier. Further-
critical case? We note thé is a question at the linear level. more, we see the following.
Nonlinear effects will appear at the same level automatically
by settingy=€¥? in (50)—as this is the right choice to get
nonlinear effects comparable in strength with geometrical fo-
cusing.

Foreseeing the need to eventually have a scaling in the
caustic layer based on a different™ from the one in the

{8 For smooth incident waves, the caustic equations are
linear and inviscidthe scalings:;= e andy= €>® must

be usedl The amplification factor at the causticds*/®
and the connection formulé8) involving the Hilbert
Transform applies.

WNGO outer expansioljust as we had to do in subsection () F.or weak shogks, the caust_|c equations are nonImear,
viscous, and given by equati@ii9) above. The ampli-

IV A), let us here d|ffe_rent|ate exp_hmtly the small_ expansion fication factor ise~¥® and the scalings; = €% with
parameter to be used in the caustic layer, by callirg.itWe 203 . !
) v=¢€° must be used in the caustic.

keep the symbok to mean the small parameter in the outer .

. i . - (c) For waves having both shocks and smooth compo-
WNGO expansion. Notice that thisappears now explicitly . . .
) . X . nents, we use the same ideas in subsection IV B that
in the governing equations, through the viscous te(fi,

because we defined the Reynolds numiRgmusing the flow lead to the unlfled_ description in equati¢n0): The
. . smooth wave scalings above (a) are used, but we
parameters outside the caustic.

The situation is very much as in subsection Il A, except keep in the equations the higher order terms that be-

that now to the right hand sides of the second and third come important near shockdue to '_[he Iarger_ ampli-
o . . tudes and gradients therd he resulting equations are
equation in(49) we must add the viscous terms arising from
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2k(8) 7poy+01,+ € vpoy= e (B+1)pd) .

U1yt po,=0.

The fact that viscosity yields the same scalings as the
nonlinear inviscid analysis is a strong argument in favor of
the correctness of the theory for caustics of weak shock
waves presented in this paper. Much more can be said about
the behavior of viscous shocks near a caustic. The behavior
of the solutions td77), in particular, can be shown to display
an interesting bifurcation, with viscous shocks away from the
caustic behaving either linearly or nonlinearly at the caustic
depending on the value of a critical parameter, which in-
volves not just the orders of magnitude, but the actual sizes
of the viscosity, the front’'s amplitude, and its curvature. A
detailed discussion, however, goes beyond the scope of this 2-3
article, and will be postponed to a future publication.

(81)

FIG. 8. Three shocks meeting at a point. We prove that such a configuration
cannot hold if the three states separated by the shocks are continuous, their

V. THE PROBLEM OF TRIPLE SHOCKS limits at the triple point are disjoint, and the shock slopes have limiting
values, measured by their inverae

One of the most striking manifestation of nonlinear be-
havior in the caustics of weak shock waves is the occurrence

of triple shock intersections. In the experimental work of . . . . .
Sturtevant and Kulkarn{/,they observe the focusing shock continuous in the three subdomains 1, 2, and 3 into which the
' shocks divide the plane; i.e., we assume that limiting values

reflecting off the caustic as another shock. Incident and re=

flected waves meet at a point and then continue through as(é'l'vl).’th(.uz’UZ)H (;Jfr’lv3zhex'3t asdwe gpprc\)lsch Ithe point
single shock for a finite distance before decaying. This i rom within each of the three subdomains. YVe also assume

particularly clear in Fig. 3f of Ref. 4; see also the numericalthat these three I|r_n|t|ng states are d'.sjomt’ S0 none of the
calculation in Fig. 31 of Ref. 9. Such nonlinear behavior,ShOCkS ends up with zero strength. Finally, we assume that
which a naive extrapolation of existing theory would not the slop_es of the three sho<_:ks also approach limiting V?"“es
predict, constitutes the main motivation for the present work?a! the tnple_-shoc_k Intersection. We shall show that a triple-
We saw in the previous section how we can solve this ap-ShOCk conﬁguratlon sa}tlsfylng these hypotheses cannot be a
parent paradox, by adjusting the scale of the caustic layer dpcall:)soll;tlgn to iqur?tlontéﬁ@._ the shock th tsi
shock waves. The resulting equatigB8) for the inner layer rootf: since by nypotnesis the Shocks are the most sin-
are nonlinear, and one would expect that they yield the opgular part of a solution which is otherwise continuous, the

served triple shock structure when given boundary condi:[hree limiting states and slopes have to satisfy the jump con-

tions corresponding to matching with the incident and re-d'tIons for (63):

flected waves. This matching procedure should not only [v]=alu],

determine the structure of the caustic layer, but also the pa-

rameters of the reflected wave. where the bracket§:] stand for the jump in the enclosed
Yet a new problem arises: equatiof@3) do not admit  variable across a shock,for the arithmetic mean of the two

triple shock intersections, at least not without an additionavalues ofu across the shock, and=dx/dy for the inverse

singularity. This fact, that we prove in subsection V A, is of the shock’s slope. The second of these conditions yields,

analogous to the one at the core of the von Neumann Par#er the three shocks,

dox of oblique shock reflection. Thus we have solved a para- 5 .

dox just to discover a deeper one! In subsection VB, we @1=Y— 3 (Ut Uy),

comment briefly on the new paradox. A more complete dis-

cussion of this intriguing open problem, however, goes be-  af;=y— 3 (Uy+Us), (83

yond the scope of this work.

a’=

y—u, (82

2 1
A. A theorem on triple shocks a53=Y— 3 (Ut Us),
In this subsection, we prove that equatidf8) do not  from which we obtain
admit triple-shock intersections separating three states where P 2
the solution is continuous. This proof is entirely similar to Uy~ Up=2(az3~ aiy),
the one presented in Ref. 9 for the small disturbance un- Up— Us=2( e~ o) (84)
steady transonic flow equations, which describe the oblique 2 3 13 T2k
reflection of weak shock waves in the regime where the von Us— U1=2(C¥§2— aga)_
Neumann paradox arises.
Consider a triple-shock intersection, such as the one disNow we apply the first jump condition i(82) to (84), and
played in Fig. 8. We assume that the variableandv are  obtain
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vl—vz=2a12(a§3— ais), Canic, Colella, Gamba, Hender;on, Hunter, Keyfitz,
Morawetz, Rosales, and Tab&ee for instance Refs. 5, 6, 7,

vy v3= 2003 ahs— 0k, (85 8, and 9; often with conflicting views. The two leading pro-
2 2 posed solutions to the paradox involve, in one case, a shock
V3T v1= 2y @iy gy with zero strength at the triple point, and in the other, an
Adding up equation$85), we obtain the following relation extra singularity which makes one of the states between
between the shock slopes: shocks not continuous at the triple point. The latter scenario

2 2 2 2 2 2.\ is the one favored by the authors; however, none of the pro-

a1l a3~ g+ azd @iy~ aly) Fard ey azy) =0. gg  Posed solutions is by any means complete, and much work

(86) remains to be done on this elusive yet fascinating problem.
Now think of (86) as an equation for;,, with roots  we believe that, whichever the solution to the problem in the

a1p= a3 and ap=ay;. Since the equation is quadratic, case of oblique reflection of shocks, it will apply to the caus-

these are the only two roots. However,df,= a3, it fol-  tics as well. We hope to find such solution one day; however,

lows from the jump conditiong82) that u;=uz andv;  we will not attempt to find it here.

=v3, SO in fact we have only one shock. The same applies,

of course, ifa1,= a43, and the proof of the theorem is com- v|. CONCLUSIONS

lete. . .
P The caustics of weak shock waves have been studied

) ) . through matched asymptotic expansions. These caustics have
B. The triple-shock paradox and its relation to the been found to be thinner and correspondingly more intense
\r’é)frl‘eé\t'g:]mann paradox of ablique shock than those of smooth waves with comparable amplitudes.
This difference in scales gives rise to a nonlinear set of equa-
The theorem of the previous subsection closes the circléons in the caustic layer, thus solving a contradiction that
of this paper in a puzzling way. Let us summarize this puzzlevould have the caustics of weak shocks behave linearly,
here. We started with the caustics of smooth weakly nonlineven though linear theory predicts an infinite amplification
ear waves. Hunter and Keller showed that the behavior ofor these shocks.
such caustics is governed by linear theory. For weak shocks, The new nonlinear scales have been shown to survive
however, this result is inconsistent. Moreover, the experithe addition of a small amount of viscosity to the equations.
mental results of Sturtevant and Kulkarny display stronglyln addition, a unified framework has been introduced, which
nonlinear behavior near the caustics, with triple-shock intersimplifies the study of the caustics of shock waves immersed
sections as the most prominent nonlinear feature. In sectiowithin smooth weakly nonlinear waves.
IV, we solved this apparent paradox, showing that the behav-  Finally, an outstanding open problem has been reported,
ior of weak shock waves near the caustic is in fact governegvhich connects the nonlinear behavior near the caustics of
by nonlinear equations. However, the theorem we have jusveak shock waves with the von Neumann paradox of ob-
proved shows that these nonlinear equations do not admiigue shock reflection. Both problems have three weak
triple shocks! shocks apparently meeting at a point, even though the equa-
This later development may look a bit disappointing; it tions describing this local structure do not admit triple-shock
could suggest a failure of the asymptotic theory. Yet there isntersections without an additional singularity.
another situation, where triple shocks show up in equations
that in principle do not admit them. This is the von NeumannACKNOWLEDGMENTS
paradox of oblique shock reflection, taking place when a
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