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The caustics of weak shock waves are studied through matched asymptotic expansions. It is shown
that these caustics are thinner and more intense than those of smooth waves with a comparable
amplitude. This difference in scalings solves a paradox that would have the caustics of weak shock
waves behave linearly, even though linear theory for discontinuous fronts predicts infinite
amplitudes near the caustic and in the reflected wave. With the new scalings, the behavior of shocks
both near the caustic and in the far field is described by nonlinear equations. The new scales are
robust, in the sense that they survive the addition of a small amount of viscosity to the equations.
As a viscous shock approaches the caustic, its intensity amplifies and its width decreases in such a
way that the new scalings are actually reinforced. A new paradox arises, however: The nonlinear
Tricomi equation which describes the behavior of the fronts near caustics does not appear to admit
the triple shock intersections which have been observed experimentally. This new open problem is
closely related to the von Neumann paradox of oblique shock reflection. ©1998 American
Institute of Physics.@S1070-6631~97!03912-3#
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I. INTRODUCTION

High frequency waves can be described in the langu
of geometrical optics, with fronts propagating along on
dimensional rays and energy being conserved along
tubes. However, this description fails in the neighborhood
caustics, the envelopes of the rays, where the effects of
variations along fronts and along rays become compara
Thus a two-dimensional theory is required near caustic
situation similar to the one taking place near the singu
rays of diffraction theory. A good description of the caust
is particularly important, since there the wave intensity a
plifies significantly, due to the collapse of infinitesimal ra
tubes into points. Thus the caustics are layers with str
energy concentration, often requiring careful control.

The caustics of linear waves have been well underst
for some time, since the pioneering work of Buchal a
Keller1 and Ludwig.2 Their analysis involves a loca
multiple-scale expansion near the caustics, where not o
the fast scale transversal to the fronts, but also an interm
ate scale along the fronts contribute to the leading order
havior of the waves. This analysis has been extended
Hunter and Keller to the caustics of smooth weakly nonlin
waves.3 Their surprising result is that even waves stro
enough to require a weakly nonlinear treatment away fr
the caustics behave linearly at the caustics. The reaso
that, even though the waves amplify near the caustics,
spend too little time there for nonlinear effects to accum
late.

This result leads to contradiction, however, if naive
applied to the caustics of weak shock waves. On the
hand, these caustics have been observed by Sturtevan
Kulkarny to behave nonlinearly even for waves of very sm
amplitude.4 The main manifestations of this nonlinearity a
the occurrence of triple shock intersections and the displa
206 Phys. Fluids 10 (1), January 1998 1070-6631/98/1
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ment of the locus of the caustic from its linear position. O
the other hand, the linear theory of caustics involves a H
bert transform which, if applied to a discontinuous incide
profile, yields a logarithmic singularity across the reflect
wavefront. Such singularities concentrated along lines
incompatible with the hypothesis behind linear theory.

In this paper, we develop a way out of this contradicto
situation. We find that the caustics of weak shock waves
thinner and more intense than those of smooth waves
comparable amplitude, and they behave nonlinearly. Th
results may have important practical implications for t
growing number of devises which utilize the amplification
focusing sound waves for medical and engineering purpo

The plan of the paper is the following. In section II, w
review the linear theory of caustics. We introduce a num
of coordinate systems useful for the description of wav
near a caustic, develop the caustic expansion for linear is
tropic gas dynamics, and match it with the outer expans
of linear geometrical optics. Out of this matching, a Hilbe
transform appears which relates the waves before focusin
those past the caustic, denoted from now on as incident
reflected waves, respectively. Then we apply this theory
discontinuous incident fronts, and show that it predicts
flected waves with infinite amplitude. These asymptotic
sults are verified with the exact solution corresponding t
circular caustic.

In section III, we describe the weakly nonlinear theo
of waves away from focus and near caustics. The resul
equations in the caustic layer are equivalent to a nonlin
Tricomi equation. We then consider matching the inner a
outer expansions, and describe the Hunter and Keller’s a
ment, which shows that the caustics of smooth weakly n
linear waves should behave linearly. This result, however
inconsistent for weak shock waves.

In section IV, we solve this apparent contradiction. W
0(1)/206/17/$10.00 © 1998 American Institute of Physics
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find that the caustics of weak shock waves are thinner
more intense than those of smooth waves, and behave
linearly. A clue to this realization is the fact that shock wav
do not have a natural length scale, so matching the inner
outer layers should be based on amplitude and not on w
length, as is normally done for smooth waves. We study
more general scenario of a shock within a smooth wave,
describe a setting that allows us to combine the two differ
scalings in a single framework. Then we consider the foc
ing of viscous shocks. One would naively expect that visc
ity would restore the scaling for smooth waves, since it d
provide a typical width for the shocks. We show, howev
that this is not the case: As a shock wave amplifies ne
caustic, its width decreases in such a way that it allows
nonlinear scale of inviscid shocks to take over.

In section V, we briefly discuss an open problem: T
nonlinear equations for the caustic layer do not allow tri
shock intersections, one of the most prominent nonlinear
tures of the caustics of weak shock waves. We commen
the relation between this problem and the von Neum
paradox of oblique shock reflection. The elucidation of t
paradox is the subject of much present work~see for instance
Refs. 5, 6, 7, 8, and 9!, and is not pursued any further her
Finally, we put forward some concluding remarks.

II. CAUSTICS OF LINEAR WAVES

In this section, we review the Linear Theory of Causti
as it applies to high frequency waves. Many of the argume
in the following sections derive from particular features
this theory, so it is important to summarize it here in a u
fied way. Although we shall attempt to make this section
self-contained and clear as possible, many details will
omitted for the sake of brevity. We refer the interested rea
to the original papers where the theory of caustics was
tablished in the framework of Linear Geometrical Optic
particularly Refs. 1, 2, and the review article,10 which has an
extensive list of references.

The plan of this section is the following. After som
general remarks, we introduce in subsection II A three co
dinate systems useful for the description of waves near c
tics: Two Caustic Polar Coordinate Systems, associated
the incident and reflected waves, and a Normal Caustic
ordinate System which serves as a unifying framework
both. In this latter system, we propose a coordinate stretc
which magnifies the vicinity of the caustic. In subsecti
II B, we develop the caustic expansion for the equations
linear isentropic gas dynamics, which we proceed to ma
with the outer Linear Geometrical Optics expansion in s
section II C. In subsection II D, we discuss the singular
havior of discontinuous fronts near caustics predicted by
ear theory, a behavior which is confirmed in subsection I
by the exact solution to the linear equations correspondin
a circular caustic.

Consider a Linear Geometrical Optics~LGO! expansion
in two space dimensions in an homogeneous isotropic
dium. Assume a nondimensionalization such that the so
speedc is one and the radius of curvature of the wave fro
is generically O(1). Since we consider high frequenc
Phys. Fluids, Vol. 10, No. 1, January 1998
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waves, we let the wavelength~and period! of the waves be
2pe/k, with 0,e!1 and k5O(1) The wave fronts are
described by thephase,

u5
F~x,y!2t

e
, ~1!

where the action variable F(x,y) satisfies theEikonal
equation,

~“F!251. ~2!

This is equivalent to the statement that the wave frontsu
5const) move normal to themselves at speed 1, al
straight lines denotedrays.

A typical focusing wave front is shown on the left in Fig
1. As it moves normal to itself along the rays, it develo
folds. The envelopes of rays where this folding occurs
the caustics. Typically, caustics begin at anarête, corre-
sponding to the point with maximal curvature on the origin
front ~whose neighborhood is the first to focus and fold!. The
location of the caustics, as well as the detailed behavio
the state variables close to them, are particularly import
since at the caustics the wave intensity amplifies enormou
This occurs because, away from the caustics, the wave
ergy is conserved along ray tubes. Thus formally, in t
LGO outer expansion, the energy density becomes infini
when the ray tubes collapse into points at a caustic. In or
to determine the behavior near caustics more precisely
inner expansionbecomes necessary; we describe such an
pansion below. In this work, we shall concentrate on
behavior at caustics far from the areˆte; the more complicated
structure near an areˆte requires additional care.

A. Caustic coordinate systems

Next we shall develop various systems of coordina
valid near a caustic, which are useful in describing the lo
behavior of the waves. To this end, consider a smooth c
vex causticG given parametrically by

FIG. 1. Typical focusing wave front propagating to the right. The fro
propagates normal to itself along the rays, at unit speed. The rays sta
near the point of maximum curvature cross first, at the areˆte. Other rays
cross later, forming the caustic~envelope of the rays!. As the front propa-
gates, it folds on itself along the caustic. The front is shown at three dif
ent times: before any focusing occurs, precisely when the first focu
occurs ~at the areˆte!, and at a later time, with a fold along each caus
branch. Also displayed is a ray tube collapsing at the caustic.
207R. R. Rosales and E. G. Tabak
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x5X~s! and y5Y~s!.

Heres is the caustic arclength, which can be identified w
the value of the action variableF along it:

F~X~s!,Y~s!!5s.

@Note that the wavefronts—as given by~1! and~2!—are nor-
mal to the caustic, where they fold defining anincidentfront
and areflectedfront. The contact point then moves along t
caustic at unit speed.# Of course,F is defined—and two
valued—only on one side ofG. Let nowk5k(s) denote the
curvature ofG, which we shall assume positive without lo
of generality. We denote by

t̂~s!5~Ẋ~s!,Ẏ~s!! t and n̂~s!5~2Ẏ~s!,Ẋ~s!! t,

the unit vectors respectively tangent and normal to the ca
tic G at s, where the dot indicates a derivative with respec
s. We have chosen them so that the tangent vector poin
the direction of propagation and the normal vector poi
towards the region without waves.

We can now describe the incident wave frontF i[S by
the timet i it will take each point along the front to reach th
caustic, i.e. the distance to the caustic along the normal to
front ~see Fig. 2!. A similar construction applies to the re
flected wave frontF r[S. Let R¢ 5R¢ (s)5(X(s),Y(s)) t de-
note a point on the caustic, andr¢5(x,y) t a generic point in
space. Then we have, for the incident frontF i[S, the para-
metric representation

r¢i5R¢ ~S1t i !2t i t̂~S1t i !. ~3!

Similarly, for the reflected frontF r[S,

r¢r5R¢ ~S2t r !1t r t̂~S2t r !. ~4!

~Note that we are taking botht i and t r positive.! This
amounts to introducing twoCaustic Polar Coordinate Sys-
tems „CPCS…, both valid on the side of the caustic whereF
is defined~see Fig. 3!: an advanced CPCS(si ,t i) and a
retarded CPCS (sr ,t r). These systems are the natur

FIG. 2. Parametric description of the incident~before folding! and reflected
~after folding! fronts near the caustic. For the incident front,t i is the dis-
tance along the ray to the caustic, whileS1t i is the value of the arclength
parameters on the caustic at the tangency point of the ray. A similar d
scription holds for the reflected front. The figure is for a circular caustic
208 Phys. Fluids, Vol. 10, No. 1, January 1998
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choice for describing the incident and reflected fronts,
spectively. Clearly, the following simple formulas apply:

F i5si2t i and F r5sr1t r . ~5!

However, they are not good for describing a neighborhood
the caustic, since there they become singular and fold
each other. Therefore, we introduce a third coordinate s
tem, the Normal Caustic Coordinate System „NCCS…,
shown in Fig. 4. The coordinates in NCCS are the arclen
along the caustics and the signed distance to the causticd.
Thus

r¢~s,d!5~x,y! t5R¢ ~s!2dn¢~s!. ~6!

This system does not degenerate at the caustic. The w
front region isd.0 while d,0 corresponds to the region i
the shade. The incident and reflected wavefrontsF i[S and
F r[S do not have a closed form in this new coordina
system, but they can be expanded in powers ofd1/2 near the
caustic, as follows from the exact expressions in~3!–~5!
upon expansion of the coordinate change from the CPCS
NCCS. The incident front in NCCS is given by

s5S1 2
3 A2k~S!d3/21O~d2!, ~7!

and the reflected front by

-

FIG. 3. Advanced and Retarded Caustic Polar Coordinate Systems~CPCS!,
with coordinates (si ,t i) and (sr ,t r), respectively, defined on the wavefron
side of the caustic. Botht i andt r are non-negative. The systems are sing
lar at the caustict i5t r50, where they fold into each other with a squa
root type of singularity.

FIG. 4. Normal Caustic Coordinate System~NCCS!. The coordinates ares,
the distance along the caustic, andd, the signed distance to the caustic, wi
d.0 on the wavefront side of the caustic. This system is nonsingular
neighborhood of the caustic.
R. R. Rosales and E. G. Tabak
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s5S2 2
3 A2k~S!d3/21O~d2!. ~8!

In view of these expansions, it appears natural to introd
two fast variables near the caustic, where Geometrical Op
fails: An imperfect phasec, to take care of the fast depen
dence normal to the fronts,

c5
s2t

e
, ~9!

and a transversal intermediate variableh, to incorporate the
fast variation along the fronts near the caustic, where th
curvature becomes infinite:

h5
d

e2/3. ~10!

Then the phaseu5(F2t)/e has the expansion, near th
caustic,

u5c7 2
3 A2k~s!h3/21O~e1/3h2!, ~11!

where the upper~lower! sign corresponds to the incident~re-
flected! phase. This expansion for the phase applies whe
<h!e22/3 (0<d!1). The higher order terms are un
formly small provided that 0<h!e21/6 (0<d!Ae). On
the other hand, it can be shown that the LGO expansio
valid near the caustic ford@e2/3 ~that is, h@1!. Thus we
can use the two term expansion for the phase above as
as 1!h!e21/6.

B. Example of an expansion near the caustic

The equations we shall consider are

r t1ux1vy50, ut1rx50, v t1ry50, ~12!

corresponding toLinear Isentropic Gas Dynamics, nondi-
mensionalized so that the unperturbed densityr0 and the
sound speedc are both equal to 1. Transforming these equ
tions into the NCCS introduced above, we obtain

~11k~s!d!r t1ũs2~~11k~s!d!ṽ !d50,

~11k~s!d!ũt1rs50, ~13!

ṽ t2rd50,

where ũ and ṽ are the components of the velocity respe
tively parallel and normal to the caustic.@Namely, if w
5w(s) is the caustic angle:Ẋ5cosw, Ẏ5sinw, so thatk
5ẇ; then ũ5u cosw1v sinw and ṽ52u sinw1v cosw.#

We expand in terms of the variablesc andh introduced
above, with expansion parametere1/3:

r;r0~c,h,s!1e1/3r1~c,h,s!1••• ,

ũ;ũ0~c,h,s!1e1/3ũ1~c,h,s!1••• , ~14!

ṽ; ṽ0~c,h,s!1e1/3ṽ1~c,h,s!1••• ,

and obtain at the leading orders that~i! ṽ0 does not depend
on the fast variablesc andh, ~ii ! ũ0 andr0 have the same
dependence onc @that is, (]/]c)(ũ02r0)50#, and ~iii ! r0

and ṽ1 satisfy the following system of partial differentia
equations~equivalent to the Tricomi equation!:

2k~s!hr0c1 ṽ1h50, ~15!
Phys. Fluids, Vol. 10, No. 1, January 1998
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It can be shown that this expansion is valid forudu!Ae, or
uhu!e21/6.

Since the problem is linear, we can separate variables
particular, since the coefficients of the equations are indep
dent of c, the dependence onc must be exponential. Thu
we can write

r j5 r̂ j~h,s!eikc, ~17!

with similar expressions for the other variables—wherek is
an O(1) nonzero real constant. Then we obtain thatũ0

5r0 , and ṽ050. ~Note thatṽ0 vanishing is consistent with
the fact that the wave motion near the caustic is mainly p
allel to the caustic.! The equations~15!–~16! reduce to an
Airy equation that we can solve as

r05 f ~s!Ai ~2ah!eikc, ~18!

ṽ15
1

ik
a f ~s!Ai 8~2ah!eikc, ~19!

wherea5(2k(s)k2)1/3.0 and Ai5Ai( z) is the Airy func-
tion which decays asz→`.

In the wavefront region outside the caustic layer, whe
the expansion is valid, i.e. 1!h!e21/6, we can use the
asymptotic behavior of the Airy function for large values
the argument, to obtain

ũ05r0;2e1/6d21/4F~s!cosS 2

3
A2k~s!ukuh3/22

p

4 Deikc,

~20!

whereF(s)5(1/2Ap) f (s)(2k(s)k2)21/12. In these formulas
f (s) is an arbitrary function that must be determined
matching with the incoming LGO wave into the caustic r
gion, as explained next.

C. Linear geometrical optics and matching

In this subsection, we match the inner solution~20! with
the outer solution provided by Linear Geometrical Opt
~LGO!. This matching provides the connection between
incident and reflected waves at the caustic. The main resu
that these two waves are connected by a Hilbert Transform
critical fact for the analysis of shock waves in later sectio

The LGO expansion for a single mode solution to~12!
has the form

r;@a0~x,y!1ea1~x,y!1•••#eiku,

u;@u0~x,y!1eu1~x,y!1•••#eiku, ~21!

v;@v0~x,y!1ev1~x,y!1•••#eiku,

where u5@F(x,y)2t#/e, u05Fxa0 , and v05Fya0 . The
action variableF satisfies the Eikonal equation~2! and the
leading order amplitudea0 satisfies the transport equation

2~¹F!•“a01~DF!a050. ~22!

In order to solve~22!, it is best to work with the char-
acteristics for the Eikonal equation~2!—which corresponds
209R. R. Rosales and E. G. Tabak

P license or copyright, see http://pof.aip.org/pof/copyright.jsp



e

-

g
s

e
f

d
in
i-

v

y
o

,

.

ith
to
se
ove
es

-

by

the
ar-

es,
ar
ill
n-
to writing the equations in the advanced and retard
CPCS’s. Letk15Fx and k25Fy . Then the rays are given
by

dx

dt
5k1 and

dy

dt
5k2 . ~23!

Along them the Eikonal equation takes the form

dk1

dt
5

dk2

dt
50 and

dF

dt
51. ~24!

Clearly, since from the Eikonal equationk1
21k2

251, the pa-
rametert is the arclength along rays~increasing in the direc-
tion of propagation!. For each ray, we sett50 at the caustic,
so that the incident wave corresponds tot,0 and the re-
flected wave tot.0. Then we obtain the following repre
sentation for the rays and the action variableF:

k15X8~s!, k25Y8~s!, F5s1t,
~25!

x5X~s!1k1t, and y5Y~s!1k2t.

It is also easy to see thatDF51/t. It follows that the char-
acteristic form of the transport equation~22! is

2
da0

dt
1

1

t
a050. ~26!

Thus

a05
1

A2t
Î ~s! for the incident wave and

a05
1

At
R̂~s! for the reflected wave, ~27!

where the functionÎ (s) is determined by the wave focusin
at the caustic~as produced by initial or boundary condition!
andR̂(s) must be determined fromÎ by matching across the
caustic layer.

Thus, along any ray tangent to the caustic,

r;
1

Autu
F Î

R̂GexpS ik

e
~s1t2t ! D , ~28!

with u;k1r andv;k2r.
The actual solutionr we are after is the sum of th

incident and the reflected waves. These were computed
ease in characteristic coordinates, i.e. the advanced an
tarded CPCS described above. However, to do the match
it is convenient to have all solutions written down in a un
fied framework, specifically the NCCS@with coordinates
(s,d)#. In these coordinates, the incident and reflected wa
take the form

r i;S 2d

k~s! D
21/4

Î ~s!expF ikS c2
2

3
A2k~s!h3/2D G , ~29!

r r;S 2d

k~s! D
21/4

R̂~s!expF ikS c1
2

3
A2k~s!h3/2D G . ~30!

The full solution, valid for 1!h!e21/6, is the sum of these
two waves. The functionÎ (s) is determined by the data awa
from the caustic; the functionR̂(s), on the other hand, has t
210 Phys. Fluids, Vol. 10, No. 1, January 1998
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be connected toÎ (s) through matching with the inner layer
i.e. with ~20!. Notice that both~29!, ~30! and~20! are valid in
the same range 1!h!e21/6 and matching is possible
Clearly we must have

S 2

k~s! D
21/4

R̂~s!5e1/6F~s!expS 2 i
p

4
sign~k! D , ~31!

S 2

k~s! D
21/4

Î ~s!5e1/6F~s!expS i
p

4
sign~k! D . ~32!

Thus the desired connection formula is

R̂~s,k!52 i sign~k! Î ~s,k!. ~33!

Notice the amplification factore21/6 between the outer LGO
solution and the inner caustic expansion.

So far, we have considered a single mode solution, w
frequencyk/e. Clearly, the whole procedure generalizes
waves which do not have a sinusoidal profile. In fact, the
waves can be obtained from the single mode solution ab
through Fourier Analysis. The incident and reflected wav
are now given, in the outer expansion, by

r i;
1

Autu
I ~s,u! and r r;

1

Autu
R~s,u!. ~34!

The functionsI andR admit the Fourier representations,

I ~s,u!5
1

A2p
E

2`

`

Î ~s,k!eikudk, ~35!

R~s,u!5
1

A2p
E

2`

`

R̂~s,k!eikudk, ~36!

whereÎ andR̂ satisfy the connection formula~33!. It follows
then that the function

h5I 1 iR5
2

A2p
E

0

`

Î ~s,k!eikudk, ~37!

is analytic in the upper half-plane Im(u).0 and decays as
Im(u)→`. Thus I and R are related by the Hilbert Trans
form:

R~s,u!52
1

p
P.V.E

2`

` I ~s,z!

z2u
dz5H~ I !, ~38!

with I 52H(R).
In summary, we have shown the following:~a! The am-

plification factor for the amplitude near a caustic is given
e21/6; ~b! The width of the caustic layer ise2/3; and~c! The
incident and reflected wave profiles are connected by
Hilbert Transform. These facts play a crucial role in the
guments of the following sections.

D. Linear theory for discontinuous fronts

Although we have concentrated so far on linear wav
our purpose in this work is to study caustics for nonline
waves. Given enough time, nonlinear hyperbolic waves w
generally break into shocks; therefore it is important to u
R. R. Rosales and E. G. Tabak
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derstand how a shock wave behaves at a caustic. As a
step in this direction, we study now the linear caustics
discontinuous fronts.

From the results of the previous subsection, we kn
that the incoming and reflected waves are related by the
bert Transform. But the Hilbert Transform. But the Hilbe
Transform of a function with a discontinuity has a logarit
mic singularity. Therefore, if the incoming wave is disco
tinuous, the amplitude of the reflected wave will be u
bounded. This shows that there is a fundamental difficu
with the theory when the waves are discontinuous. No ma
how small the wave amplitude, linear theory in this ca
appears to eventually ‘‘self-destruct,’’ since the linearizi
assumption must fail sufficiently close to the caustic fo
discontinuous wave. But the way nonlinearity plays a role
resolving this difficulty involves a rather subtle effect: a ‘‘n
ive’’ approach to the problem quickly leads to
contradiction—as shown below in Section III.

There are many similar situations, where linear the
fails for discontinuous wavefronts across some layer or
terface due to a Hilbert Transform type of connection f
mula. In most cases an appropriate nonlinear theory is
known. The first example of such a situation~as far as we
know! was pointed out by Lighthill11 in 1950.

As a prototypical example of the singularity predicted
the connection formula~38!, consider an incoming wave
consisting of a periodic saw-tooth~in this case we must us
Fourier Series instead of Transforms!,

I ~u!5 1
2 ~u2p!, for 0,u,2p, extended periodically.

This is the real part of the analytic functionh52 i log(1
2eiu), which decays as Im(u) approaches1`. Thus the re-
flected wave is given by the imaginary part of this functio
i.e.

R~u!52 logU2 sinS u

2D U.
These incoming and reflected wave profiles are represe
in Fig. 5. We see that, at the points whereI (u) is discontinu-
ous,R(u) develops a logarithmic singularity. This behavio
shown here in an example, is completely general. In fact,
easy to show that ifI 5I (u) is piecewise smooth and has
simple discontinuity at someu5u0 , with jump m5I (u0

10)2I (u020), then nearu0 ,

R~u!5
m

p
loguu2u0u1O~1!. ~39!

It is not surprising that a focusing front with a discon
nuity should produce an infinity at the caustic. After all, t
linear amplification factor at the caustic goes like (k/e)1/6.
Since discontinuities are dominated by the energy in
large k’s, an infinite amplification at the caustic is to b
expected. What is surprising though, is the fact that the
finity occurs not only within the caustic layer, but propaga
outside this layer with the reflected wave! To confirm th
this result is not an artifact of the asymptotics, we carry
in the next subsection an example where we can solve
equations exactly: the case where the caustic is a circle.
Phys. Fluids, Vol. 10, No. 1, January 1998
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E. A simple example: Circular caustics

When the caustic is a circle, a number of simplificatio
occur: The incoming and reflected fronts, which can be c
structed using the approach in subsection II A, become
rals with rather simple formulas. In fact both the advanc
and the retarded Caustic Polar Coordinate Systems~CPCS!
admit explicit and rather simple representations in terms
the Standard Polar Coordinate System~SPCS!. Furthermore,
the Normal Caustic Coordinate System~NCCS! is in this
case essentially the SPCS, in which the solutions of the w
equation can be written explicitly by the separation of va
ables.

To see this, consider a circular caustic of radius o
which we parametrize byx5X(s)5cos(s) and y5Y(s)
5sin(s)-as in subsection II A. Then, if (r ,q) is the SPCS, it
is easy to see that

r 2511t i
2 and tan~si2q!5t i ~with 0,si2q, 1

2 p!,

r 2511t r
2 and tan~q2sr !5t r ~with 0,q2sr,

1
2 p!,

r 5d11 and q5s. ~40!

So, if we write r 5secb ~with 0,b,1/2p!, for r .1 we
obtain the simple relations

t i5tan b and si5q1b,
~41!

t r5tan b and sr5q2b.

Thus a circular caustic provides an ideal scenario to ch
the validity of the various conclusions of the asympto
analysis.

Consider now the wave equation~in SPCS!

C tt5
1

r
~rC r !r1

1

r 2 Cqq . ~42!

Now we can write the following special exact solutions o
tained by separation of variables:

FIG. 5. Logarithmic singularity produced by the Hilbert Transform in t
connection formula~38! when the incident wave has a discontinuous profi
The example here is for a saw-tooth incident waveI , but the effect is very
general. The spike inR is exponentially narrow, but it reaches̀.
211R. R. Rosales and E. G. Tabak
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C5 (
n51

`

anJn~nr !ein~q2t !1c.c., ~43!

where theJn’s are the Bessel Functions of the first kind12

the an’s are arbitrary complex constants, and c.c. stands
complex conjugate.

There is noe in equation~43!, as we have not yet intro
duced any high frequency assumption. Thus, consider
the limit in which the only contributions that matter forC in
~43! arise from n@1. Then, outside the caustic@for r
5secb.1, as in~41!# we can use the asymptotic formula,12

Jn~nr !;A 2

np tan b
cos~n tan b2nb2 1

4 p!, ~44!

valid for n@1. This and~41! yield

C;
1

At i

I ~F i2t !1
1

At r

R~F r2t !, ~45!

where F i and F r are as in~5!, Q i5F i2t is the incident
phase,Q r5F r2t is the reflected phase, and the functionI
andR are given by

I ~u!5e1 i
1
4p (

n51

`
1

A2pn
aneinu1c.c.,

~46!

R~u!5e2 i
1
4p (

n51

`
1

A2pn
aneinu1c.c.

Clearly, bothI (u) andR(u) are 2p-periodic and their Fou-
rier Series coefficients are related by equation~33!, so thatR
is the Hilbert Transform ofI—exactly as in subsection II C
Thus, if thean’s are chosen so thatI (u) has a discontinuity,
R(u) will have a logarithmic singularity.

We note that the calculation above shows that, in g
eral, the convergence properties of~43! outside the caustic
(r .1) are characterized by the series with general te
(an /An)einz cos(nj).

On the other hand, inside the caustic we can writer
5secha, with a.0. Then, for n@1, we have12 Jn(nr)
;(2np tanha)21/2 exp@2n(a2tanha)#, where a.tanha.
Thus, the convergence properties of~43! are exponentially
accelerated and the solution inside the caustic will gener
be very smooth.

Finally, the convergence near the caustic can be obta
from the asymptotic behavior ofJn(nr) for n@1 andr near
1, which involves anO(1/An) behavior times an Airy func-
tion of r . This also can be used to obtain the expansion
subsection II B for this case.

One can also consider equation~43! for r @1, without
the explicit high frequency assumption that lead us to
formula ~44!. In this case we must use the asympto
formula12

Jn~z!;A 2

pz
cos~z2 1

2 np2 1
4 p!,

valid for z@1. We then obtain exactly the same result
~45!. The small parameter here arises from the quotien
the wavelength of the incoming and reflected waves
212 Phys. Fluids, Vol. 10, No. 1, January 1998
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Archimedian spirals centered at the origin of step 2p—far
away from the caustic~which is 2p! and their radius of cur-
vaturer @1.

III. WEAKLY NONLINEAR ASYMPTOTICS

In this section, we develop inner and outer expansio
near a caustic similar to those in section II, but includi
nonlinear effects. Nonlinearity brings in two new importa
ingredients: the existence of critical amplitudes required
the nonlinear corrections to appear at the same order as
linear terms; and the lack of exact solutions for t
asymptotic equations, which makes matching the inner
outer expansions less straightforward than for the linear c
The section that follows after this is devoted to solving the
difficulties, bypassing the need for exact solutions and int
ducing a new scale, totally absent in the linear case.

A. Caustic expansion

The material in this subsection follows very closely th
in subsection II B, but for a weakly nonlinear examp
Again, we consider, for the equations of two-dimension
Isentropic Gas Dynamics, a small perturbation from an
equilibrium state. We assume that the equations have b
nondimensionalized so that the equilibrium state has den
and sound speed equal to one and flow velocity equa
zero. We further assume that the length scales are such
typical curvatures for the wavefronts and caustics are or
one.

Writing the density as 11r and the flow velocity as
(u,v) t, so thatr, u, andv are small, the equations are

r t1ux1vy1~ru!x1~rv !y50,

ut1qx1uux1vuy50, ~47!

v t1qy1uvx1vvy50,

where q5q(r) is defined in terms of the pressureP
5P(r) ~or c5AdP/dr, the sound speed! by

dq

dr
5

1

11r

dP

dr
5

c2

11r
.

The variablesq andc have expansions in powers ofr of the
form

q~r!5r1~b20.5!r21••• ,
~48!

c~r!511br1••• ,

whereb is a positive constant. Thus these equations red
to those in~12! whenr, u, andv are infinitesimal,

Next we consider a neighborhood of a caustic like t
one in subsection II A, and rewrite the equations above in
NCCS. As in subsection II B we letũ and ṽ be the compo-
nents of the flow velocity respectively parallel and normal
the caustic. Then we obtain the following extension of~13!:

~11kd!r t1~~11r!ũ!s2~~11r!~11kd!ṽ !d50,

~11kd!ũt1~q1 1
2 ũ 2!s2 ṽ~~11kd!ũ!d50, ~49!

~11kd!ṽ t1ũṽs2~11kd!~q1 1
2 ṽ 2!d52kũ 2,
R. R. Rosales and E. G. Tabak
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wherek5k(s).0 is the caustic’s curvature.
We introduce again the small parameter 0,e!1, the

variablesc and h from ~9!–~10!, and expand in one-third
powers ofe. However, since the equations are now nonl
ear, the overall size ofr, u, and v is important. We cannot
start, as in~14!, with O(1) leading order terms and onl
later, when it becomes necessary for matching, multiply
whole expansion by some convenient parameter, such a
e21/6 needed in subsection II C. Now the prefactor is sign
cant from the very beginning. Thus we propose the ansa

r;g~r0~c,h,s!1e1/3r1~c,h,s!1••• !,

ũ;g~ ũ0~c,h,s!1e1/3ũ1~c,h,s!1••• !, ~50!

ṽ;g~ ṽ0~c,h,s!1e1/3ṽ1~c,h,s!1••• !,

whereg.0 is the prefactor.
The size of the parameterg will determine whether the

dominant behavior is linear and the analysis in section
applies or not. In particular, we want to determine the criti
size orthreshold valuegc of g ~as a function ofe! for which
nonlinearity first appears at leading order. Forg!gc the
behavior will be dominated by the linear terms; forg@gc ,
on the other hand, nonlinearity will dominate and the sc
ings we used at the caustic may not even make sense~since
they correspond to the folding of wavefronts in a linear s
tem!. A straightforward calculation shows that the thresho
value is

gc5e2/3.

When we takeg5gc in ~50!, the resulting asymptotic equa
tions are the following extension of~15!–~16! ~a nonlinear
Tricomi equation!:

2k~s!hr0c1 ṽ1h5~~b11!r0
2!c , ~51!

ṽ1c1r0h50, ~52!

where we have takenũ05r0 and ṽ050 @as we eventually
had to do in~17!–~19!, for the linear case#.

B. Weakly Nonlinear Geometrical Optics „expansion
away from the caustic …

An analysis similar to that in subsection II C appli
away from the caustic~see for instance Refs. 13–15!, with
appropriate corrections for the presence of nonlinearity. H
the critical size for the variablesr, u, andv ~required to have
nonlinear terms appearing at leading order in the asympt
equations! is simply e, with corresponding expansions

r;er01e2r11••• , u;eu01e2u11••• ,

and

v;ev01e2v11••• , ~53!

where the variables are functions ofu, x, andy, with u as in
~1!. ThenF satisfies the same Eikonal equation~2! that ap-
plies in the linear case and it is still true thatu05Fxr0 and
v05Fyr0 , very much as in~21!. But the transport equation
~22! is modified by nonlinear terms into
Phys. Fluids, Vol. 10, No. 1, January 1998
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~“F!•“r01
1

2
~DF!r01S b11

2
r0

2D
u

50. ~54!

Notice that, in the linearized case, we can separate thu
dependence aseiku @as in~21!#. Then this expansion reduce
to the one in subsection II C.

It can be shown that equation~54! has the appropriate
conservation form to deal with shocks, even though~47! is
not in conservation form@The simplest way is to check tha
~54! does give the correct jump conditions.# The same result
applies to the caustic equations~51!–~52!.

We could include an explicit dependence on the tim
variable t in the expansion~53!—to consider ‘‘nonsteady’’
wavetrains. The only change this introduces in the equati
above is an additional termr0t in the transport equation~54!.
To be consistent, we should then also include at dependence
in the caustic expansion~50!. This, however, introduces no
changes in equations~51!–~52!; that is to say, the depen
dence ont at the level of the caustic equations is mere
parametric. We will not do any of this in this paper, since o
main concern is the study of the behavior of shocks a
caustic, so that nonsteadiness is of secondary interest.

As before, we introduce the ray~characteristic! coordi-
nates for the Eikonal equation@see ~23!–~25!#. Then ~54!
reads, along each ray, as

d

dt
~Autur0!1S b11

2
Autur0

2D
u

50. ~55!

Use now the ray variables (s,t) to replace (x,y), where~as
in subsection II C!, s indicates the value of the arclengt
along the caustic where the ray is tangent to it andt vanishes
there@in particular~25! applies#. Then the transformation,

r0~s,u,t!5
1

Autu
f ~s,u,z!

@where z5sign(t)Autu# reduces the equation above to th
well known constant coefficient Hopf equation,

f z1~~b11! f 2!u50, ~56!

wherez,0 corresponds to the incident wave andz.0 to the
reflected wave. Note that this equation is not to be app
acrossz50, where matching with the caustic layer must
used instead.

It is clear that the limit near the caustic of this out
Weakly Nonlinear Geometrical Optics~WNGO! expansion,
has exactly the same form as that provided by the lin
theory ~LGO!: Namely, equation~34! applies, where

I ~s,u!5 f ~s,u,02! and R~s,u!5 f ~s,u,01!, ~57!

for the incident and reflected waves, respectively. Here2

and 01 stand for the limitsz→0 with z,0 andz.0, respec-
tively. One important difference with LGO is that, in th
linear case, the wave shape does not evolve as propag
along the rays occurs, while in WNGO the wave shape d
change, following equation~56!. In fact, even if a wave starts
with a smooth profile, shocks may form by the time the wa
reaches the caustic, giving a discontinuous incident wav
213R. R. Rosales and E. G. Tabak
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A second important point is that now we must be care
when constructing the full solution outside the caustic la
as the sum of the incident and reflected waves, as was d
in the linear case. Because of the nonlinear interactions
tween these two waves, this cannot be done without so
care. However, if the following circumstances apply, then~to
leading order at least! adding the two waves is correct.

~1! If the incident wave is a single wavefront~as in the case
of a single weak shock focusing!, then outside the caus
tic layer the incident and reflected fronts do not occu
the same region of space and thus do not interact.

~2! In the case of Gas Dynamics, in the absence of lead
order entropy or vorticity variations@as in the example
provided by ~47! and the expansion~53!#, acoustic
waves do not interact~resonate! at leading order.

Generally, however, for oscillatory wavetrains, o
needs to worry about the incident and reflected waves b
in resonance in the sense of Ref. 16.~There is also a coher
ence condition one has to consider.! These conditions are
rather complicated and not easily satisfied by the waves
sociated with a caustic. Thus it seems fair to assume tha
most cases, simply adding the incident and reflected wav
the correct approach.

C. Problems with matching: Linear rates of growth
and thresholds of nonlinearity

The next step is matching the outer and inner exp
sions. As in the linear case, this matching should prov
enough information to determine the shape and amplitud
the reflected wave from knowledge of the incoming wave.
addition, it should provide the amplification factor of th
wave amplitude in a neighborhood of the caustic, a m
important prediction for practical purposes.

The first difficulty that arises is that we do not know
priori which are the expansions that we need to match. In
linear case, we could carry out both expansions beforeh
and later multiply the inner expansion by the amplificati
factor necessary for matching. For the full equations, ho
ever, this amplification factor will determine whether the i
ner equations are linear or nonlinear; it is thus not someth
that can be left as a small detail to be taken care of at the

To resolve this difficulty, we can attempt the followin
thought experiment: starting with a linear regime, where
results are known, gradually increase the amplitude of
incoming wave, until nonlinearity shows up, either in t
outer, in the inner expansion, or in both. At this point,
least one of the expansions has to be replaced by its we
nonlinear analog, as developed in the previous two sub
tions III A and III B.

Hunter and Keller carried out this procedure in Ref. 3
smooth waves. They found that the threshold of nonlinea
is reached first in the outer domain, when the waves i
neighborhood of the caustic are still behaving linearly. Th
concluded that the caustics of smooth Weakly Nonlin
Geometrical Optics waves can be described by linear the
as the following argument shows.

The Hunter and Keller’s argument for smooth WNG
waves. If a typical wavelength for the incoming wave ise,
214 Phys. Fluids, Vol. 10, No. 1, January 1998

Downloaded 17 May 2004 to 128.122.81.127. Redistribution subject to AI
l
r
ne
e-
e

y

g

g

s-
in
is

-
e
of
n

st

e
d,

-

g
d.

e
e

t
kly
c-

r
y
a
y
r
y,

and the amplitude is small enough that linear theory appl
the amplification factor at the caustic ise21/6, as shown in
subsection II C. The threshold amplitude of the incomi
wave for nonlinearity to show up in the outer expansion
O(e), as described in subsection III B. Linear theory ne
the caustic will then apply, since this predicts an amplitu
near the caustic of ordere5/65e* e21/6 ~which is smaller than
the threshold valuee2/3 for nonlinear caustic behavior de
scribed in subsection III A!. Thus the first onset of nonlin
earity occurs away from the caustic, when the amplitude
the incoming wave has an amplitude comparable to its wa
length, with the caustic layer still behaving linearly.

Hunter and Keller extend this argument formally, to d
termine for which amplitude of the incoming wave will th
caustic layer behave nonlinearly. The validity of this form
extension, however, is doubtful. Once the outer domain
strongly nonlinear, there is no reason to think that the geo
etry of the caustic layer will scale similarly to that of a line
wave. Thus the very ansatz of the inner expansion may
make sense. For that matter, even the notion of caustic
have to be revised.

At first sight the result above, with the waves behavi
linearly near the caustic~even though they behave nonlin
early outside! may seem puzzling. It is, however, as Hunt
and Heller point out, not so surprising. Nonlinear behavior
small amplitude waves arises not just from amplitude c
siderations, but also from how long the nonlinearity acts. F
a quadratic nonlinearity, it is the product of these two fact
that counts. The caustic layer is fairly thin—O(e2/3), as
shown earlier. The waves spend only a short time in
O(e1/3), instead of theO(1) time they spend outside. Thu
an amplitude larger by this exact amount is needed for
nonlinearity to affect the caustic layer.

In this work, we study caustics of shock waves. T
arguments above, if naively applied to shock waves, yi
the result that the caustics of weak shock waves should
have linearly. There are two reasons why we cannot acc
this answer.
The first reason is experimental: Sturtevant and Kulka
studied the focusing of weak shock waves in Ref. 4. Th
found that the behavior at a caustic of a weak shock wav
always nonlinear, no matter how small the amplitude of
incoming wave. The caustic always has an internal wa
structure including a triple shock intersection, a very nonl
ear and puzzling configuration~see section V! Numerical
calculations of focusing weak shocks yield the same resu9

The second reason is purely analytical: If the caustic o
weak shock wave were to be properly described by lin
theory, then the connection between the incoming and
flected wave profiles should be given by the Hilbert Tran
form ~38!. As described in subsection II D, this implies th
the reflected wave has a logarithmic singularity, with u
bounded amplitude. But how can we justify making a line
or even a weakly nonlinear approximation, based on sm
amplitudes, when the amplitude takes infinite value
Clearly, such asymptotic approximation would be questio
able. An unbounded reflected wave, surprising yet consis
for linear waves, becomes rather unacceptable for the
nonlinear equations.
R. R. Rosales and E. G. Tabak
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Thus the hypothesis of linear behavior at the caustics
weak shock waves does not agree with experiments an
internally inconsistent. It has to be discarded and replace
a globally nonlinear theory, developed in the following se
tion.

IV. CAUSTICS OF WEAK SHOCK WAVES: A NEW
NATURAL SCALE

In this section we introduce a new scaling, induced
the nonlinear effects near the caustics of weak shock wa
Caustic layers for weak shock waves are thinner than th
of smooth weakly nonlinear waves, and the amplificat
factor for the amplitude is correspondingly larger.

A. The width of the caustic layer

First we shall rewrite the arguments concluding the p
vious section more formally. Consider a weak shock wa
which ~away from focusing! hasO(1) curvature andO(e)
amplitude. The propagation of this wave can be descri
using Weakly Nonlinear Geometrical Optics„WNGO…, as in
subsection III B. If a caustic forms, WNGO is valid for th
description of the propagating front away from the caus
for d@e2/3, and near the front, foruF2tu!1, whereF sat-
isfies the Eikonal equation~2! andF5t is the approximate
location of the front.

As the front approaches the caustic, WNGO predicts a
plitudes of order,

ac5ed21/4, ~58!

whered is the NCCS coordinate. The behavior of the Eik
nal fronts near the caustic, on the other hand, suggests
inner variables

C5
s2t

e
and h5

d

e2/3, ~59!

wheres5F is the arclength along caustics, the other NC
coordinate. As discussed in subsection III A, an expansio
terms of these variables yields the result that nonlinea
only plays a role if the amplitude at the caustic is at le
O(e2/3). But, from ~58!,

e7/8!ac!e5/6,

in the domain where both WNGO and the caustic expans
are valid, i.e., for 1!h!e21/6. Since this amplitude doe
not reach the critical valuee2/3, we conclude that the behav
ior at the caustic should be well described by linear theo
This is essentially the argument that Hunter and Keller
plied to smooth waves.

Yet a problem arises when the incident front is a sho
wave. We saw in subsection II D that, when the caustics
linear, the connection between the incident and reflec
waves is given by a Hilbert Transform which, for a disco
tinuous incident front~such as a shock! yields a reflected
wave with unbounded amplitude. Such waves clearly can
be handled by either linear or weakly nonlinear theories,
we reach an impasse. Since after assuming the inner sca
~59!, everything else follows by deduction, we conclude th
the scales in~59! must fail for shocks.
Phys. Fluids, Vol. 10, No. 1, January 1998
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Let us reexamine these scalings for the example o
single incident shock. Clearly, an inviscid shockdoes not
provide any transversal short wave scale, since the shock
no thickness. For pure shock solutions~such as the one we
are now considering! the e21 scale introduced by WNGO
through the variableu5(F2t)/e, serves only as an order
ing parameter. The expansion is really an expansion in p
ers of the distance to the shock, and valid only near the sh
front. Now, in equation~58!, e clearly has an interpretation
as an amplitude, but in~59! the inner variablesc and h
follow from an interpretation ofe as a wavelength. Thus
since the incoming wave has no length scale, assuming
scales in~59! is really arbitrary: We pull out a length scal
out of nowhere, and then are puzzled when the nonlinea
does not conform with this length scale leading us to pa
doxical results!

The proper approach is to accept that we do not hava
priori a transversal length scale at the caustic, i.e. the pro
‘‘ e’’ for length scaling is an unknown to be determined, th
we shall denoteec . We shall still assume that the relatio
between transversal and longitudinal scalings at the caust
the same as in the linear case, so—as in~59!—we introduce
the variables

c5
s2t

ec
and h5

d

ec
2/3. ~60!

Then we will let the nonlinearity ‘‘choose’’ec . That is, we
will let ec have exactly the right size so that nonlinear effe
occur in the caustic layer~these should eliminate the infini
ties that linearized theory predicts!. The ultimate verification
of this assumption will be provided by the consistency of t
resulting matched expansions.

Under this scaling, using~58!, it follows that the ampli-
fication factor at the caustic is given by

d21/45ec
21/6h21/4.

On the other hand, we know that the behavior at the cau
layer has to involve nonlinear effects, since otherwise a H
bert Transform appears~giving rise to a logarithmic singu-
larity!. So ec is determined by the condition that the amp
tude at the caustic reach the nonlinear threshold discusse
subsection III A. That is,

ec
2/35eec

21/6,

where the term on the right follows from theouter amplitude
times the amplification factor at the caustic and the term
the left is the critical threshold amplitude for a nonline
caustic. Thus we have

ec5e6/5. ~61!

With this new scale, the resulting caustic expansion w
be valid for

udu!Aec5e3/5,

while the outer WNGO expansion is valid for

d@e2/3.

Since 2/3.3/5, the two regions overlap in the range
215R. R. Rosales and E. G. Tabak
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e2/3!d!e3/5,

and matching of the two expansions is possible. Except
the fact that we useec instead ofe, the caustic layer expan
sion and equations are the same as those in subsection
Thus equations~51! and ~52! apply:

2k~s!hr0c1 ṽ1h5~~b11!r0
2!c , ṽ1c1r0h50. ~62!

We consider solutions of these equations that decay
h large. Thus their asymptotic behavior has the same form
that of the linearized equations, which is exactly right
match the outer WNGO expansion solutions as they
proach the caustic.

Introduce now the variablesu5u(x,y) and v(x,y), as
follows:

r05
~2kn!2/5

2~b11!
u~x,y! and ṽ15

~2kn!3/5

2~b11!
v~x,y!,

wheren is an arbitrary constant,

x5~2k!2/5n23/5c and y5~2k!3/5n22/5h.

Then the caustic equations above take the normal form
Nonlinear Tricomi Equation,

~yu2 1
2 u2!x1vy50, uy1vx50, ~63!

written in the appropriate conservation form to hand
shocks.

In conclusion: for weak shock waves, the width of t
caustic layer is given by

width5ec
2/35e4/5 ~64!

~thinner than for smooth waves! and the amplification of the
amplitude by

amplification5ec
21/65e21/5 ~65!

~larger than for smooth waves!. Table I compares the scale
near a caustic for a smooth weakly nonlinear wave of am
tude and frequency of ordere, with those for a shock wave
with strengthe.

These new scales allow us to resolve the contradicti
that the use of the linear scalings lead to, with infinities in
reflected wave produced by the Hilbert Transform conn
tion formula~38!. It seems clear, though, that this is a mat
that must be investigated carefully, that, in the context
~62!, such infinities cannot occur. If a narrow logarithm
spike, such as the one shown in Fig. 5, starts to develop
nonlinear terms should immediately generate a shock
will, literally, clip it to finite size.

TABLE I. Scales near caustics of smooth and discontinuous waves.

Smooth waves withO(e)
amplitude and frequency

Weak shock waves
with O(e) strength

Caustic basic
length scales:

Longitudinal e ec5e6/5

Transversal e2/3 ec
2/35e4/5

Amplitude at caustic e5/6 ec
2/35e4/5

Amplification e21/6 ec
21/65e21/5
216 Phys. Fluids, Vol. 10, No. 1, January 1998
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As a counterpart, now we have to solve a more comp
~nonlinear! problem in the caustic layer—one that cannot
solved exactly using separation of variables, as it is the c
with the Linear Caustic Equations. Furthermore, as sho
below in section V, this nonlinear problem leads to som
interesting ‘‘paradoxes’’ of its own.

B. Shocks within smooth waves

In order to better understand the way in which the n
nonlinear scales resolve the questions posed in subse
III C, consider a situation in which both the old and the ne
scales are present: a periodic incident wave, with period
amplitude ofO(e), including at least one shock. A simpl
example is provided by the saw-tooth wave,

I ~u!5 1
2 ~u2p!, for 0,u,2p, extended periodically,

displayed in Fig. 5, but the argument below, sketched in F
6, is general.

As the wave approaches the caustic, it is amplified
O(e21/6). Then, in a layer of transversal widthO(e2/3), Lin-
ear Caustic Theory applies, with an amplitude ofO(e5/6).
Except that the amplitude near the shocks continues to gr
and would end up producing a singularity if not checke
The logarithmic singularity of the Hilbert Transform in sub
section II D. After an additional amplification ofO(e21/30),
the amplitude near the shocks reaches the threshold of
linearity atO(e4/5). Within a distanceO(e4/5) of the caustic,
following the scalings in Table I, a new layer arises. In th
thinner layer, the Nonlinear Caustic Equations of subsec
III A apply, implemented as explained in subsection IV
~usingec5e6/5 andg5gc!. It should be clear from the argu
ments in subsection IV A that these Nonlinear Caustic Eq
tions actually apply only in a small neighborhood of th
shock front, of longitudinal widthO(ec). Note that this
width ~in the direction of propagation! is only a small frac-
tion of the wavelength, which isO(e).

The infinities of linearized theory clearly arise becau
from the point of view of an expansion that assumes lead
orders of amplitudeO(e5/6), the spikes near the shocks—o
amplitudeO(e4/5)—are effectively infinite. This creates a
error that then propagates outside the caustic, in the refle
wave.

The picture above of the process near a caustic for a h
frequency weakly nonlinear wave combining smooth pa
with shocks appears rather frightfully complicated, with
layer within a layer ‘‘tracking’’ each shock wave as it goe
though the ‘‘main’’ ~linear! caustic layer—which implies
that an extra matching is also needed. There is, howeve
simple way to model all this with just one set of caus
equations and a single caustic layer. Even with this simp
cation, the approach is still more complicated than what
ear theory for smooth waves allows; but no more so than
theory for a simple shock wave we presented earlier in s
section IV A.

In order to see this, we first summarize the basic ans
of Linear and Nonlinear Caustic Theory, using the subscr
l andnl to indicate quantities associated with the linear a
nonlinear cases, respectively. Linear Caustic Theory uses
ansatz
R. R. Rosales and E. G. Tabak
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r5e5/6r0l1O~e7/6! and ṽ5e7/6ṽ1lO~e9/6!, ~66!

with independent variables

c l5e21~s2t ! and h l5e22/3d.

On the other hand, Nonlinear Caustic Theory uses the an

r5e4/5r0nl1O~e6/5! and ṽ5e6/5ṽ1nl1O~e8/5!,
~67!

with independent variables

cnl5e26/5~s2t ! and hnl5e24/5d.

Thus, we have the relationships between independent v
ables,

cnl5e21/5c l and hnl5e22/15h l . ~68!

For the dependent variables it is tempting to write

r0nl5e1/30r0l and ṽ1nl5e21/30ṽ1l . ~69!

But this last equation is not quite true: there are higher or
terms involved in the dependent variables expressions
~even more important! the way the expansions are carrie
presumes thatr0 andṽ1 areO(1) quantities, independent o
e.

Yet, if we substitute~68! and ~69! into the Nonlinear
Caustic Equations~62! ~which apply for the quantities with
the subscriptnl!, the equations take the form

2k~s!hr0c1 ṽ1h5e1/6~~b11!r0
2!c ,

~70!
ṽ1c1r0h50,

FIG. 6. Nonlinear Caustic Layer of transversal widthO(e4/5), placed inside
the Linear Caustic Layer of transversal widthO(e2/3). This nonlinear layer
occurs near shock fronts and is restricted to a neighborhood of the s
position of longitudinal widthO(e6/5). The picture shows a typical linea
wavefront~both incident and reflected branches! placed at the location of the
shock. The actual shock front will not look quite this way, particula
inside theO(e4/53e6/5) rectangle of the Nonlinear Caustic Layer~exactly
enclosing the cusp of the linear front!: see section V.
Phys. Fluids, Vol. 10, No. 1, January 1998
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where we have not written the subscriptl to simplify the
notation. We note that, as long asr05r0l here remains
bounded, the nonlinearity is not important and the equati
reduce to the linear ones. On the other hand, when the n
linear scalings apply~by construction! these equations re
duce to the appropriate ones, namely~62!.

Thus, we can simply do this to take care of both pu
smooth waves and mixed waves with shocks and smo
components
Set up an ansatz as in the case of smooth waves~normally
giving a Linear Caustic Theory!, namely, equation~50! with
g5e5/6 and noec introduced, unlike subsection IV A.

Do not, however, assume that the leading order terms
necessarily bounded, or even fully independent ofe. Thus,
when writing the leading order equations, collect the app
priate terms from higher orders—to take care of nonlin
effects near shocks. Thus, we use~70! as the governing
asymptotic equations, instead of the linear equations
would result if we proceeded as usual.

This ‘‘recipe’’ is somewhatad hoc, but it does give the
correct answer, as the arguments above show. A formal
tification is quite likely possible, but we will not attempt
here.

A final formal small point we wish to make is the fo
lowing: In the far field of the caustic layer (e2/3!d!e3/5),
both in the case of smooth waves and when shocks
present, the caustic equations behave linearly. Thus the
lution can be written by separation of variables~as in sub-
section II B!. However, when shocks are present, we can
conclude@as in equations~18!–~19!# that only Airy functions
of the first kind, Ai, are relevant. This follows from the re
quirement that the solution vanish on the shadow side of
caustic (h→2`) and can only be concluded in the ca
when the linear equations are uniformly valid throughout
caustic layer. But the linear equations are not uniformly va
when shocks are present. Thus Airy functions of the sec
kind, Bi, will also appear; with contributions tied up to th
presence of shocks in the solution. Since the Hilbert Tra
form connection formula arises precisely from the exclus
presence of Ai in the solution, it will no longer apply whe
shocks occur. This should correct the problem of the infi
ties in the reflected wave, though what the connection f
mulas will be in the case with shocks is an open questio

C. Viscous effects

We have concentrated so far on inviscid flows. Re
gases are viscous, of course, but their viscosity is sm
enough that many flows can be successfully modeled as
viscid. For weak high frequency waves and shocks, there
threshold size of the viscosity, related to the frequency a
amplitude of the waves, for which viscous effects start
play a role at the level of the Geometrical Optics approxim
tions. This phenomenon is somewhat analogous to
thresholds of nonlinearity described in section III. Thus
question similar to the thought experiment in subsect
III C may be posed: start with an inviscid weak shock wa
which forms a caustic, and slowly decrease the Reyno
number (Re) from Re5`. Where and when will viscous

ck
217R. R. Rosales and E. G. Tabak
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effects appear first, near the caustic or in the far field? O
these effects are present, at the critical threshold can we
mulate a Geometrical Optics approximation to the flo
which incorporates dissipation?

These questions arise naturally from our earlier disc
sions, since viscosity provides a longitudinal length scale
shocks, whose absence gives rise to the puzzling behavi
weak shock waves at caustics that we pointed out in sub
tion III C. Thus one may think that a sufficient amount
viscosity may result in a different solution to the puzzle fro
the one we developed here for inviscid shocks. We shall
however, that this is not the case: when the viscosity is la
enough to account for shocks of significant width, yet not
large that the concept of a shock stops making sense,
scales it yields at a caustic are exactly the ones displaye
Table I of subsection IV A earlier. In this subsection w
develop the arguments leading to this conclusion, and
play the equations they yield both near the caustic and in
far field.

It is convenient to begin by reviewing the nondimensio
alization behind equations~47!. Using a prime to denote th
dimensional variables, we have

r85r* ~11r!, p85r* ~c* !2p, u85c* u,
~71!

v85c* v, x85Lx, t85~L/c* !t,

wherer* is the density of the equilibrium state,c* is the
corresponding sound speed, andL is a typical length scale
for the wavefronts and caustics~e.g., a typical radius of cur
vature!. In the simplest model to account for viscous effec
the zeros on the right hand sides of the second and t
equations in~47! should be replaced by

eRe
21Du and eRe

21Dv, ~72!

respectively, whereD is the Laplacian in two dimension
~2-D! and Re is the Reynolds number outside the caus
Generally we haveRe5LU/n* , whereU is a typical flow
velocity andn* is the kinematic viscosity. In our case,U
5ec* , as follows from the nondimensionalization above a
equation~53!. Thus we have

Re5eLc* n
*
21, ~73!

where e is the same small parameter as in our expansi
earlier.

Let us now consider a viscous weak shock wave aw
from the caustic, of strengthO(e). The width l s of such
shock arises from a balance between the quadratic nonli
compression and the dissipative spreading. We must bal
terms likeuux or rrx on the left in equations~47!—of size
O(e2/ l s)—with the dissipative terms above in equatio
~72!—of sizeO(e2/(Rel s

2)). Thus

l s5O~Re
21!, ~74!

in the nondimensional units of equation~47!.
On the other hand, as a weak shock approaches the c

tic, it amplifies at a rate 1/Autu. We can no longer conside
its amplitude as being of the form ‘‘constant3e. ’’ Then, the
same argument leading to this last equation~74! yields thatl s

decreases at a rateAutu. Thus, a weak incident shock pro
218 Phys. Fluids, Vol. 10, No. 1, January 1998
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vides no length scale as it approaches a caustic, even in
viscous case! This is the crux of our argument, which
make more precise below.

From equation~74! we conclude that, for the waves o
wavelengthO(e) in subsection III B.
If Re@e21, the shock can be modeled as a discontinuity~for
then l s!e!.

If Re!e21 ~so thatl s@e! the wave is so spread out tha
calling it a shock is meaningless. In fact, dissipation is
large compared with the other effects, that in the context o
Geometrical Optics approximation, the resulting equatio
are linear and dissipative.

Clearly then, the interesting situation arises at the criti
threshold whenl s ande are of the same order, since then t
viscous shock thickness scale is precisely equal to the
required for a Weakly Nonlinear Geometrical Opti
~WNGO! expansion. For this to occur, the Reynolds numb
has to beO(e21). Thus we write

Re5~ne!21, ~75!

wheren is anO(1) positive constant.
When this scaling applies, we can carry through

WNGO analysis, exactly as in subsection III B. The visco
terms contribute for the first time at the level of the transp
equation~54!, and modify it into

~“F!•“r01 1
2 ~DF!r01S b11

2
r0

2D
u

5 1
2 nr0uu . ~76!

As in subsection III B, we can introduce ray based coor
nates in this equation. The same set of transformations le
ing there to equation~56!, yield now

f z1~~b11! f 2!u5uzun f uu . ~77!

Notice that, close to the caustic, asz→0, the dissipation
vanishes. The physical dissipation is of course constant;
the intensity amplification, rescaled in equation~77!, which
makes the dissipative term comparatively smaller. Thus,
shock approaches the caustic, it becomes sharper
sharper. Thus, in this critical threshold case, we may s
have to deal with the discontinuous input to the caustic la
from the outer expansion which was the source of trouble
linearized Caustic Theory~see subsection III C!. Thus we
expect linearized Caustic Theory to be inadequate for w
shocks even in the viscous case, which is the main resu
this subsection.

Not all shocks, however, need to sharpen up into a p
file that, from the viewpoint of the outer expansion, is ess
tially a discontinuity, as they approach the caustic obey
~77! above. For this to happen the shock has to have
enough time to ‘‘relax’’ to a state where nonlinearity an
viscosity balance just right. If the shock strength is varyi
too rapidly, this balance will not be maintained and a disco
tinuity will not form. Of course, this situation is not tha
different from the one in the inviscid case: there too, so
initially smooth waves develop shocks and reach the cau
with a discontinuous profile, while others do not.

Figure 7 shows a numerical solution to equation~77!,
starting atz521 with a smooth profile, which soon deve
R. R. Rosales and E. G. Tabak
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ops into a viscous shock. The width of this shock gradual
decreases withuzu, all the way to nearly zero by the time it
reaches the caustic atz50. The pseudo-spectral algorithm
utilized for this computation will be described in a separa
article, where more numerical examples will be provide
The purpose of the example here is to illustrate the way
which equation~77! may give rise to essentially a disconti-
nuity at z50.

We consider next a neighborhood of the caustic, an
conduct a ‘‘threshold’’ analysis for the asymptotic behavio
similar to the one above. Specifically, consider the expa
sions in subsection III A, when the terms in~72! are present
in the equations of motion. Then ask the following question
~i! For which size ofRe do these viscous terms have a
effect on the behavior, comparable with geometrical focu
ing? ~ii ! What are the resulting asymptotic equations in th
critical case? We note that~i! is a question at the linear level.
Nonlinear effects will appear at the same level automatical
by settingg5e3/2 in ~50!—as this is the right choice to get
nonlinear effects comparable in strength with geometrical f
cusing.

Foreseeing the need to eventually have a scaling in t
caustic layer based on a different ‘‘e’’ from the one in the
WNGO outer expansion~just as we had to do in subsection
IV A !, let us here differentiate explicitly the small expansio
parameter to be used in the caustic layer, by calling ite i . We
keep the symbole to mean the small parameter in the oute
WNGO expansion. Notice that thise appears now explicitly
in the governing equations, through the viscous terms~72!,
because we defined the Reynolds numberRe using the flow
parameters outside the caustic.

The situation is very much as in subsection III A, excep
that now to the right hand sides of the second and thi
equation in~49! we must add the viscous terms arising from

FIG. 7. Numerical solution to equation~77!, to illustrate the development of
nearly a discontinuity atz50. We have adoptedn51; the value ofb can be
absorbed into the definition off . The initial data, atz521, is f (u,21)
5(2p/(11b))sin(u). The figure displays the solution when this wave
reaches the caustic, atz50; it has by then become essentially discontinu
ous. Notice thatf is a rescaled variable; the amplitude of the physical wav
is in fact growing proportionally to 1/uzu.
Phys. Fluids, Vol. 10, No. 1, January 1998

Downloaded 17 May 2004 to 128.122.81.127. Redistribution subject to AI
y

e
.
n

d
,
-

:

-
s

,

-

e

r

t
d

~72!. There is not much point in computing these exactly
is enough to notice that their leading order contributions

e

e i
2Re

ũcc and
e

e i
2Re

ṽcc ,

respectively. Then a rather straightforward calculation sho
that the critical threshold condition on the Reynolds num
is Re5O(ee i

25/3). Thus assume

Re5n21ee i
25/3, ~78!

and takeg5e i
2/3 in the caustic expansion~50! ~replacinge by

e i in these formulas!. Then the resulting asymptotic govern
ing equations are

2k~s!hr0c1 ṽ1h1nr0cc5~~b11!r0
2!c ,

ṽ1c1r0h50. ~79!

We point out that we can apply to these equations the s
transformation that lead earlier to~63!; though nown is not
arbitrary and is determined by the viscous dissipation. Th
we obtain the following normal form of a Nonlinear Viscou
Tricomi Equation:

~y2u!ux1vy1uxx50, uy1vx50. ~80!

The following conclusions are immediately obvious from t
analysis we just carried out.

• If in the caustic layer we usee i5e and the Reynolds num
ber is critical for the flow outside@so that equation~75!
applies#, then equation~78! shows that the Reynolds num
ber will be too large@by O(e21/3)# to have viscous effects
in the caustic layer. The governing asymptotic equations
the caustic will be inviscid.

• If the Reynolds number is critical for the flow outside@so
that equation~75! applies#, then equation~78! shows that
we neede i5e6/5 to get viscous effects in the caustic laye
But this is exactly the same as the value forec we arrived
at by the inviscid shock arguments in subsection IV A.

Thus, we arrive at the following result: Viscosity@in the
critical threshold case~75!# does not affect the basic scalin
results that we obtained for the inviscid case earlier. Furth
more, we see the following.

~a! For smooth incident waves, the caustic equations
linear and inviscid~the scalingse i5e andg5e5/6 must
be used!. The amplification factor at the caustic ise21/6

and the connection formula~38! involving the Hilbert
Transform applies.

~b! For weak shocks, the caustic equations are nonlin
viscous, and given by equation~79! above. The ampli-
fication factor ise21/5 and the scalingse i5e6/5 with
g5e i

2/3 must be used in the caustic.
~c! For waves having both shocks and smooth com

nents, we use the same ideas in subsection IV B
lead to the unified description in equation~70!: The
smooth wave scalings above in~a! are used, but we
keep in the equations the higher order terms that
come important near shocks~due to the larger ampli-
tudes and gradients there!. The resulting equations ar
219R. R. Rosales and E. G. Tabak
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2k~s!hr0c1 ṽ1h1e1/3nr0cc5e1/6~~b11!r0
2!c ,

~81!
ṽ1c1r0h50.

The fact that viscosity yields the same scalings as
nonlinear inviscid analysis is a strong argument in favor
the correctness of the theory for caustics of weak sh
waves presented in this paper. Much more can be said a
the behavior of viscous shocks near a caustic. The beha
of the solutions to~77!, in particular, can be shown to displa
an interesting bifurcation, with viscous shocks away from
caustic behaving either linearly or nonlinearly at the cau
depending on the value of a critical parameter, which
volves not just the orders of magnitude, but the actual s
of the viscosity, the front’s amplitude, and its curvature.
detailed discussion, however, goes beyond the scope of
article, and will be postponed to a future publication.

V. THE PROBLEM OF TRIPLE SHOCKS

One of the most striking manifestation of nonlinear b
havior in the caustics of weak shock waves is the occurre
of triple shock intersections. In the experimental work
Sturtevant and Kulkarny,4 they observe the focusing shoc
reflecting off the caustic as another shock. Incident and
flected waves meet at a point and then continue through
single shock for a finite distance before decaying. This
particularly clear in Fig. 3f of Ref. 4; see also the numeri
calculation in Fig. 31 of Ref. 9. Such nonlinear behavi
which a naive extrapolation of existing theory would n
predict, constitutes the main motivation for the present wo
We saw in the previous section how we can solve this
parent paradox, by adjusting the scale of the caustic laye
shock waves. The resulting equations~63! for the inner layer
are nonlinear, and one would expect that they yield the
served triple shock structure when given boundary con
tions corresponding to matching with the incident and
flected waves. This matching procedure should not o
determine the structure of the caustic layer, but also the
rameters of the reflected wave.

Yet a new problem arises: equations~63! do not admit
triple shock intersections, at least not without an additio
singularity. This fact, that we prove in subsection V A,
analogous to the one at the core of the von Neumann P
dox of oblique shock reflection. Thus we have solved a pa
dox just to discover a deeper one! In subsection V B,
comment briefly on the new paradox. A more complete d
cussion of this intriguing open problem, however, goes
yond the scope of this work.

A. A theorem on triple shocks

In this subsection, we prove that equations~63! do not
admit triple-shock intersections separating three states w
the solution is continuous. This proof is entirely similar
the one presented in Ref. 9 for the small disturbance
steady transonic flow equations, which describe the obli
reflection of weak shock waves in the regime where the
Neumann paradox arises.

Consider a triple-shock intersection, such as the one
played in Fig. 8. We assume that the variablesu andv are
220 Phys. Fluids, Vol. 10, No. 1, January 1998
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continuous in the three subdomains 1, 2, and 3 into which
shocks divide the plane; i.e., we assume that limiting val
(u1 ,v1), (u2 ,v2), (u3 ,v3) exist as we approach the poin
from within each of the three subdomains. We also assu
that these three limiting states are disjoint, so none of
shocks ends up with zero strength. Finally, we assume
the slopes of the three shocks also approach limiting va
at the triple-shock intersection. We shall show that a trip
shock configuration satisfying these hypotheses cannot
local solution to equations~63!.

Proof: Since by hypothesis the shocks are the most s
gular part of a solution which is otherwise continuous, t
three limiting states and slopes have to satisfy the jump c
ditions for ~63!:

@v#5a@u#, a25y2ū, ~82!

where the brackets@:# stand for the jump in the enclose
variable across a shock,ū for the arithmetic mean of the two
values ofu across the shock, anda5dx/dy for the inverse
of the shock’s slope. The second of these conditions yie
for the three shocks,

a12
2 5y2 1

2 ~u11u2!,

a13
2 5y2 1

2 ~u11u3!, ~83!

a23
2 5y2 1

2 ~u21u3!,

from which we obtain

u12u252~a23
2 2a13

2 !,

u22u352~a13
2 2a12

2 !, ~84!

u32u152~a12
2 2a23

2 !.

Now we apply the first jump condition in~82! to ~84!, and
obtain

FIG. 8. Three shocks meeting at a point. We prove that such a configura
cannot hold if the three states separated by the shocks are continuous
limits at the triple point are disjoint, and the shock slopes have limit
values, measured by their inversea.
R. R. Rosales and E. G. Tabak
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v12v252a12~a23
2 2a13

2 !,

v22v352a23~a13
2 2a12

2 !, ~85!

v32v152a13~a12
2 2a23

2 !.

Adding up equations~85!, we obtain the following relation
between the shock slopes:

a12~a23
2 2a13

2 !1a23~a13
2 2a12

2 !1a13~a12
2 2a23

2 !50.
~86!

Now think of ~86! as an equation fora12, with roots
a125a13 and a125a23. Since the equation is quadrati
these are the only two roots. However, ifa125a23, it fol-
lows from the jump conditions~82! that u15u3 and v1

5v3 , so in fact we have only one shock. The same appl
of course, ifa125a13, and the proof of the theorem is com
plete.

B. The triple-shock paradox and its relation to the
von Neumann paradox of oblique shock
reflection

The theorem of the previous subsection closes the ci
of this paper in a puzzling way. Let us summarize this puz
here. We started with the caustics of smooth weakly non
ear waves. Hunter and Keller showed that the behavio
such caustics is governed by linear theory. For weak sho
however, this result is inconsistent. Moreover, the exp
mental results of Sturtevant and Kulkarny display stron
nonlinear behavior near the caustics, with triple-shock in
sections as the most prominent nonlinear feature. In sec
IV, we solved this apparent paradox, showing that the beh
ior of weak shock waves near the caustic is in fact gover
by nonlinear equations. However, the theorem we have
proved shows that these nonlinear equations do not a
triple shocks!

This later development may look a bit disappointing;
could suggest a failure of the asymptotic theory. Yet ther
another situation, where triple shocks show up in equati
that in principle do not admit them. This is the von Neuma
paradox of oblique shock reflection, taking place when
weak shock wave hits a wedge at nearly glancing inciden
For a quite broad range of parameters, triple shocks are
served that the equations of gas dynamics do not appe
support. Moreover, the asymptotic equations describing
phenomenon are very similar to~63!; and a proof similar to
the one above9 shows that they cannot hold triple shoc
either! Yet numerical experiments with these asympto
equations match very closely the real scenario; in particu
they do display a local structure with three shocks appare
meeting at a point.

There is more to this analogy. The asymptotic equati
describing oblique shock reflection also model the beha
of weak shock waves near areˆtes.9 In this context, they have
been solved numerically. These solutions include not o
the arête, but also a piece of the caustic nearby. And th
caustics have triple shocks at their core, even though
equations being solved do not appear to allow them!

These paradoxical triple shocks are the subject of pre
study by various groups of researchers, including B
Phys. Fluids, Vol. 10, No. 1, January 1998
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Canic, Colella, Gamba, Henderson, Hunter, Keyfi
Morawetz, Rosales, and Tabak~see for instance Refs. 5, 6, 7
8, and 9!; often with conflicting views. The two leading pro
posed solutions to the paradox involve, in one case, a sh
with zero strength at the triple point, and in the other,
extra singularity which makes one of the states betw
shocks not continuous at the triple point. The latter scena
is the one favored by the authors; however, none of the p
posed solutions is by any means complete, and much w
remains to be done on this elusive yet fascinating proble
We believe that, whichever the solution to the problem in
case of oblique reflection of shocks, it will apply to the cau
tics as well. We hope to find such solution one day; howev
we will not attempt to find it here.

VI. CONCLUSIONS

The caustics of weak shock waves have been stud
through matched asymptotic expansions. These caustics
been found to be thinner and correspondingly more inte
than those of smooth waves with comparable amplitud
This difference in scales gives rise to a nonlinear set of eq
tions in the caustic layer, thus solving a contradiction th
would have the caustics of weak shocks behave linea
even though linear theory predicts an infinite amplificati
for these shocks.

The new nonlinear scales have been shown to surv
the addition of a small amount of viscosity to the equatio
In addition, a unified framework has been introduced, wh
simplifies the study of the caustics of shock waves immer
within smooth weakly nonlinear waves.

Finally, an outstanding open problem has been repor
which connects the nonlinear behavior near the caustic
weak shock waves with the von Neumann paradox of
lique shock reflection. Both problems have three we
shocks apparently meeting at a point, even though the e
tions describing this local structure do not admit triple-sho
intersections without an additional singularity.
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