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Abstract

A game theory inspired methodology is proposed for finding a function’s
saddle points. While explicit descent methods are known to have severe
convergence issues, implicit methods are natural in an adversarial setting,
as they take the other player’s optimal strategy into account. The implicit
scheme proposed has an adaptive learning rate that makes it transition to
Newton’s method in the neighborhood of saddle points. Convergence is
shown through local analysis and through numerical examples in optimal
transport and linear programming. An ad-hoc quasi-Newton method is
developed for high dimensional problems, for which the inversion of the
Hessian of the objective function may entail a high computational cost.

Keywords: Saddle point optimization, adversarial optimization, game
theory, optimal transport.

1 Introduction

Saddle point problems occur in a wide variety of applications ranging from eco-
nomics ([1, 2]), where competing behaviours between two players are modeled
by means of zero-sum games, mechanics and computational fluid dynamics

1



Springer Nature 2021 LATEX template

2 Article Title

[3, 4], where the numerical solution of partial differential equations can be
approached studing saddle point problems, to constrained optimization [5–7],
where enforcing a constraint while optimizing a given objective function is
achieved through a min-maximization of the Lagrangian function.

More recently, saddle point problems have played a crucial role in machine
learning (ML) and statistics [8–12], particularly in the context of generative
adversarial neural networks (GANs) [13] and optimal transport [14].

The success of GANs is based on their ability to indirectly train a model
represented by a neural network through two players, a generator of data
mimicking the training set and a discriminator that seeks differences between
the data generated and the training set. This enables fundamental tasks such
as regression, density and conditional density estimation, with applications
in the natural sciences ranging from chemistry [15, 16] to genomics [17] and
neuroscience [18], as well as more established ML tasks such as imaging analysis
[19]. Optimal transport [20–23], the corresponding barycenter problem and its
connection to normalizing flows ([24–26]) provide another, emerging toolbox
for machine learning where the numerical solution of saddle point problems
plays a critical role.

The general structure of a saddle point problem is formulated in terms of
the mini-maximization of a Lagrangian function:

min
x

max
y

L(x, y) (1)

where typically x ∈ Rnx and y ∈ Rny or subsets thereof. The following is a
list of examples directly related to the discussions below:

Example 1: equality-constrained minimization

min
x
f(x) subject to g(x) = 0.

Introducing Lagrange multipliers y yields

min
x

max
y

L(x, y) = f(x)− ytg(x).

Often some components of x and y are required to be non-negative:

Example 2: inequality-constrained minimization

min
x
f(x) subject to g(x) ≥ 0,

where introducing Lagrange multipliers y yields

min
x

max
y≥0

L(x, y) = f(x)− ytg(x).

When there are both equality and inequality constraints, only the Lagrange
multipliers yj attached to the inequalities are required to be non-negative.
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Example 3: two-player zero-sum games

min
x

max
y

ytAx, with x, y ≥ 0,
∑
i

xi =
∑
j

yj = 1.

Introducing Lagrange multipliers λ and µ for the equality constraints, yields

min
x≥0,µ

max
y≥0,λ

L = yt A x− λ

(∑
i

xi − 1

)
− µ

(∑
j

yj − 1

)
.

A more recent development formulates problems of interest as nonlinear
adversarial games. Examples include generative adversarial networks [13], as
well as the following [22]:

Example 4: adaptive optimal transport

min
α

max
β

[∑
i

wxi g (∇φ (xi, α) , β)−
∑
j

wyj e
g(yj ,β)

]
,

where α parameterizes a curl-free map T = ∇φ(x) that pushes forward the
distribution underlying the samples xi to the one underlying the yj , and β
parameterizes a test function g(y) that enforces the push-forward constraints.

This article proposes a game-theory inspired methodology for the numeri-
cal solution of minimax problems, implicit twisted-gradient descent : “twisted”
because one player descends the gradient while the other ascends it, and
“implicit” because the two players simultaneously descend (in x) and ascend
(in y) the Lagrangian L in an anticipatory manner, i.e. following the gradient
of L estimated at the values of (x, y) resulting from the current step. For small
learning rates η, each step of this procedure converges to regular (twisted)
gradient descent, while for large η it converges to a Newton step.

Previous work on minimax solvers generally requires strict convexity-
concavity of the objective function [3, 27, 28]. There are analogies between the
work presented here and the proposal in [29], which implements a twisted gra-
dient descent by an ad hoc modification of the mirror descent method. This
modification is based on predictable sequences in which at each time step a
guess on the future direction of the gradient is made. In the methodology pro-
posed here, the anticipation of the next gradient uses the Hessian, making it
possible to leverage the extensive optimization literature on Newton’s method.
An example in this direction is the development of a quasi-Newton-like method
presented in Section 5. Another method exploiting the curvature of the objec-
tive function is presented in [30] where, similarly to what is done here, the
curvature is used to escape regions of undesired stability of the twisted gradi-
ent method, using only the smallest and the largest eigenvalue of the Hessian
of L. As in [30], we use a definition of local saddle points that we further refine
by introducing at the beginning of Section 3 the definition of strict local sad-
dle points, allowing us to establish the local convergence of our algorithm. The
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work in [31] also uses the Hessian of L to develop an algorithm different from
ours that can be proved to converge to a local saddle point. Since the adop-
tion of quasi Newton methods is not as straightforward as in our setting, the
authors use a two-scale algorithm to avoid inverting the Hessian. The Hessian
is also used in [32] to develop an algorithm converging to non-convex in x –but
concave in y– saddle points. The algorithm presented here appeared for the
first time in [33]. In this article we complete the algorithm with a discussion
on its local convergence and we further refine the criterion for the choice of
the learning rate η.

The plan of the article is as follows: after this introduction, section 2 intro-
duces the basic step of the procedure for a given learning rate η. Section 3
proves the procedure’s local convergence. Section 4 proposes an adaptive cri-
terion for evolving the learning rate. Section 5 develops a quasi-Newton-like
methodology that bypasses the need to evaluate the Hessian of L or to invert
any matrix. Section 6 extends the methodology to situation where some or all
variables are required to be positive. Section 7 shows examples of numerical
results. Finally, section 8 includes some concluding remarks.

2 Implicit twisted gradient descent

We consider first the case without positivity constraints:

min
x

max
y

L(x, y), x ∈ Rnx , y ∈ Rny . (2)

An explicit, twisted gradient descent step is given by

xn+1 = xn − ηLx|xn,yn
yn+1 = yn + ηLy|xn,yn , (3)

where Lx = ∇xL, Ly = ∇yL, and η > 0 is the learning rate: the players with
strategy x and y seek to decrease and increase L respectively, and do so follow-
ing the direction of their components of the gradient of L. For compactness,
we introduce the following notation:

z =

(
x
y

)
, G =

(
Lx
Ly

)
, J =

(
Ix 0
0 −Iy

)
, Ln = L(xn, yn), (4)

where Ix and Iy are identity matrices of size nx and ny respectively. Then the
descent step reads

zn+1 = zn − η J Gn. (5)

Yet such a procedure may fail to converge [34]. Consider the simple example
with L = xy, which has the unique mini-maximizer x = y = 0. Here twisted
gradient descent yields

xn+1 = xn − ηyn
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yn+1 = yn + ηxn,

or

zn+1 =

(
1 −η
η 1

)
zn,

which diverges, since the matrix eigenvalues λ± = 1 ± iη have absolute value
greater than 1. Even in the limit of infinitesimally small values of η, the solution
moves in circles around the origin, following the system of ODEs

ẋ = −y
ẏ = x.

One could argue that, from a game-theory perspective, each player would
not merely move following their own local gradient, but would try to antici-
pate how the other player will move. This suggests a form of implicit twisted
gradient descent:

zn+1 = zn − η J Gn+1. (6)

Applying (6) to the example above yields(
1 η
−η 1

)
zn+1 = zn,

with unconditional convergence to z = 0, at a convergence rate that grows
unboundedly with the learning rate η.

Yet in general (6) cannot be solved in closed form for zn+1. Instead, we
may approximate Gn+1 using

Gn+1 ≈ Gn +Hn
(
zn+1 − zn

)
, (7)

where H is the Hessian

H =

(
Lxx Lxy
Lyx Lyy

)
, (8)

(Lxx)
j
i =

∂2L

∂xi∂xj
, (Lyy)

j
i =

∂2L

∂yi∂yj
, (Lxy)

j
i =

∂2L

∂xi∂yj
, Lyx = Ltxy.

Under this approximation, the scheme in (6) yields

zn+1 = zn − η J
(
Gn +Hn

(
zn+1 − zn

))
,

which reduces to
zn+1 = zn − η (J + ηHn)

−1
Gn. (9)

This is the basic updating step of the proposed algorithm.
Notice that, as η →∞, the update in (9) converges to the Newton step

zn+1 = zn − (Hn)
−1
Gn
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while, for small values of η, it approximates the explicit twisted gradient
descent step in (5).

This proposal leaves us with some tasks:

1. Prove convergence of the algorithm,
2. develop a scheme for updating the learning rate η so as to accelerate con-

vergence to saddle points and impede convergence to non-saddle critical
points of L,

3. develop a way to avoid inverting possibly large matrices and, if possible,
avoid computing the Hessian altogether,

4. extend the procedure to situations where some or all variables have
positivity constraints, and

5. show numerical examples of the algorithm at work.

These tasks are addressed in the following sections.

3 Local convergence

We begin this section with the definition of strict local saddle point:

Definition 1 We define a point (x∗, y∗) to be a strict local mini-maximizer of L(x, y)
if, for any sufficiently small neighborhoods Ux of x∗ and Uy of y∗,

∀x ∈ Ux ∀y ∈ Uy, L
(
x∗, y

)
≤ L

(
x∗, y∗

)
≤ L

(
x, y∗

)
(10)

and
∀x ∈ Ux, x 6= x∗ ⇒ ∃y ∈ Uy / L(x, y) > L

(
x∗, y∗

)
, (11)

∀y ∈ Uy, y 6= y∗ ⇒ ∃x ∈ Ux / L(x, y) < L
(
x∗, y∗

)
. (12)

Conditions (11) and (12) exclude areas where L is flat in x or y, which
could yield a continuum of [non-strict] local minimax points.

For smooth Lagrangians L, if at a point (x∗, y∗), G = 0 and the two block
diagonal elements of the Hessian, Lxx and Lyy, are respectively positive and
definite negative, then (x∗, y∗) is a strict local mini-maximizer of L(x, y). How-
ever, we are interested in situations more general than this, for instance when
L depends linearly on some of the variables. This case is not merely of aca-
demic interest: it arises frequently when the variables are Lagrange multipliers
associated to constraints in a minimization problem and in zero-sum games.
Consider for instance the simplest nontrivial Lagrangian, L = xy, whose Hes-
sian vanishes and which nonetheless admits the unique global mini-maximizer
x = y = 0. Thus we need to consider situations where some eigenvalues of Lxx
or Lyy may vanish, so the off-block diagonal terms Lxy and Lyx in the Hessian
become key to the existence of a saddle point.

If L is smooth at a point (x∗, y∗), then locally

L(x, y)− L = Lx∆x+ Ly∆y +
1

2
∆xtLxx∆x+ ∆xtLxy∆y +

1

2
∆ytLyy∆y
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+ O
(
‖∆z‖3

)
,

where ∆z = (∆x,∆y) = (x− x∗, y − y∗), and L, Lx, Lxx, etc. stand for their
values at (x∗, y∗). It follows that the following are sufficient conditions for the
point (x∗, y∗) to be a strict local mini-maximizer.

Theorem 1 The following conditions guarantee that z∗ = (x∗, y∗) is a strict local
mini-maximizer of a smooth function L(x, y):

1. The conditions in (10) are satisfied. This implies in particular that Lx and
Ly vanish and that Lxx is positive semi-definite and Lyy is negative semi-
definite.

2. The null spaces of Lxx and Lyx are orthogonal to each other, as are the
null spaces of Lyy and Lxy.

Let Nxx, Nyx, N⊥xx and N⊥yx denote the null spaces of Lxx and Lyx and
their orthogonal complements, and similarly for the null spaces of Lyy and
Lxy. Notice that the conditions in 2 include as particular cases the following
situations (with a simple example attached to each):

• Lxx is positive definite and Lyy negative definite, as then both Nxx and Nyy
reduce to the zero vector (e.g. L = x2 − y2),

• Lxx is positive definite and Lxy is injective, making Nxx and Nxy trivial
(e.g. L = x2

1 + x2
2 + (x1 + 2x2)y),

• Lyy is negative definite and Lyx is injective (e.g. L = y2
1 + (y2 − 1)2 + (y1 −

y2)x),
• Lxy and Lyx are both injective, for which X and Y would need to have the

same dimension (e.g. L = xy).

In fact, weaker conditions are sufficient, requiring not the orthogonality
among subspaces, but only that the intersections of Nxx and Nyx and of Nyy
and Nxy consist only of the zero vectors in X and Y respectively. For clarity
though, we only write here the proof for the theorem as stated above, relegating
the proof of the stronger result to appendix A.

Proof It is clear that the conditions in (10) require Lx and Ly to vanish, and Lxx
and Lyy to be at least positive and negative semi-definite respectively. For instance,
setting ∆y = 0, we have

L(x, y∗) = L+ Lx∆x+
1

2
∆xtLxx∆x+O

(
‖∆x‖3

)
,

so unless Lx = 0 and Lxx is positive semidefinite, there will be values of x ∈ Ux with
L(x, y∗) < L(x∗, y∗), contradicting (10).

Because X and Y are finite-dimensional, there exist positive constants sxx, syx,
syy and non-negative constants Sxx, Syx, and Syy such that

a ∈ N⊥xx ⇒ ‖Lxxa‖ ≥ sxx‖a‖, b ∈ N⊥yx ⇒ ‖Lyxb‖ ≥ syx‖b‖,

c ∈ N⊥yy ⇒ ‖Lyyc‖ ≥ syy‖c‖, d ∈ N⊥xy ⇒ ‖Lxyd‖ ≥ syx‖d‖,
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‖Lyxv‖ ≤ Syx‖v‖, vtLxxv ≤ Sxx‖v‖2,
‖Lxyw‖ ≤ Syx‖w‖, −wtLyyw ≤ Syy‖w‖2,

where the s and S are the smallest (non-zero) and largest singular values of the
corresponding matrices.

Consider now a point x 6= x∗. We can write (uniquely)

∆x = x− x∗ = x1 + x2 = x3 + x4,

where
x1 ∈ Nxx, x2 ∈ N⊥xx, x3 ∈ Nyx, x4 ∈ N⊥yx.

Moreover, the fact that Nxx and Nyx are orthogonal implies that

max
(
‖x2‖2, ‖x4‖2

)
≥ 1

2
‖∆x‖2, (13)

as follows from the following argument:

‖x2‖2 ≤
1

2
‖∆x‖2 ⇒ ‖x1‖2 ≥

1

2
‖∆x‖2,

since ‖x1‖2 + ‖x2‖2 = ‖∆x‖2. But

‖x1‖2 ≥
1

2
‖∆x‖2 ⇒ ‖x4‖2 ≥

1

2
‖∆x‖2,

since Nxx ⊆ N⊥yx from the orthogonality of Nxx and Nyx, thus proving (13).
This inequality allows us to consider two scenarios:

1. If ‖x2‖2 ≥ 1
2‖∆x‖

2, we can set ∆y = 0, and obtain

L(x, y) = L(x∗, y∗) +
1

2
∆xtLxx∆x+ O

(
‖∆x‖3

)
= L(x∗, y∗) +

1

2
xt2Lxxx2 + O

(
‖∆x‖3

)
≥ L(x∗, y∗) +

sxx
8
‖∆x‖2 + O

(
‖∆x‖3

)
> L(x∗, y∗)

for small enough ‖∆x‖, as required by condition (11).
2. If ‖x2‖2 ≤ 1

2‖∆x‖
2, it follows from (13) that ‖x4‖2 ≥ 1

2‖∆x‖
2. Then

adopting
∆y = αLyx∆x = αLyxx4,

with

α = min

(
s2
yx

S2
yxSyy

, αmax

)
,

where αmax is small enough for y = y∗ + ∆y to lie within Uy, yields

L(x, y) = L (x∗, y∗) +
1

2
∆xtLxx∆x+ ∆xtLxy∆y +

1

2
∆ytLyy∆y +O

(
‖∆z‖3

)
≥ L (x∗, y∗) + ∆xtLxy∆y +

1

2
∆ytLyy∆y +O

(
‖∆z‖3

)
= L (x∗, y∗) + α‖Lxyx4‖2 +

α2

2
xt4LxyLyyLyxx4 +O

(
‖∆z‖3

)
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≥ L (x∗, y∗) +

[
αs2

yx −
α2

2
S2
xySyy

]
‖x4‖2 +O

(
‖∆z‖3

)
≥ L (x∗, y∗) +

1

2
αs2

yx‖x4‖2 +O
(
‖∆z‖3

)
> L (x∗, y∗)

for ∆x small enough, as follows from the upper bound

‖∆z‖2 = ‖∆x‖2 + ‖∆y‖2 ≤
(
2 + α2S2

yx

)
‖x4‖2.

The same argument, mutatis mutandis, proves condition (12).
�

It follows that, in a domain where the sufficient conditions on the Hessian
from Theorem 1 apply, a local mini-maximizer z∗ of L is uniquely characterized
by the first order conditions

G (z∗) = 0.

Thus if the conditions on the Hessian are satisfied in a neighborhood of the
local optimal z∗ that the algorithm does not leave, it is enough to show that,
for fixed η, ‖G‖ decreases to zero in order to guarantee convergence. This is
proven below.

Theorem 2 Suppose that a strict local mini-maximizer z∗ of (2) satisfies the suf-
ficient conditions of Theorem 1, with the conditions on the Hessian satisfied in a
neighborhood of z∗. Then there exists a learning rate η > 0 such that, for any z
sufficiently close to z∗, the dynamics in (9) converges to z∗.

Proof There exists a neighborhood of z∗ where ‖G(z)‖ > 0 for z 6= z∗, for otherwise
there would be another strict local mini-maximizer arbitrarily close to z∗, which is
a contradiction. This implies that there is a smaller neighborhood U∗ of z∗ where
‖G(z)‖ grows as z moves away from z∗, i.e. the contour lines of ‖G‖ enclose z∗ and
the corresponding values of ‖G‖ vary monotonically across them. Thus, in order to
prove convergence, it is enough to show that ‖G‖ decreases uniformly at each step,
i.e. that ‖Gn+1‖2 ≤ α‖Gn‖2 for some α < 1 and, moreover, there is a continuous
path between zn and zn+1 along which the values of ‖G(z)‖ are never larger than
‖G0‖, guaranteeing that z does not leave U∗.

Expanding Gn+1 and retaining only the terms up to linear in ∆z as in (7),

Gn+1 ≈ Gn +Hn
(
zn+1 − zn

)
+O

(
∆z2

)
, (14)

the procedure in (9) yields

Gn+1 =
(
I − ηHn (J + ηHn)−1

)
Gn +O

(
∆z2

)
= J

(
J + ηHn)−1

Gn +O
(

∆z2
)
. (15)

It follows that∥∥Gn∥∥2
=
∥∥∥Gn+1 + ηHnJGn+1

∥∥∥2
+O

(
‖Gn‖∆z2

)
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=
∥∥∥Gn+1

∥∥∥2
+ 2ηGn+1tHnJGn+1 + η2

∥∥∥HnJGn+1
∥∥∥2

+O
(
‖Gn‖∆z2

)
=
∥∥∥Gn+1

∥∥∥2
+ 2η

(
utLxxu− vtLyyv

)
+

+η2
[
‖Lxxu− Lxyv‖2 + ‖Lyyv − Lyxu‖2

]
+O

(
‖Gn‖∆z2

)
, (16)

where u = Ln+1
x and v = Ln+1

y .
Using the same notation as in Theorem 1 for the largest and smallest singular

values of the various blocks of the Hessian matrix, one can easily prove the additional
inequalities

utLxxu ≥
1

Sxx
‖Lxxu‖2 and − vtLyyv ≥

1

Syy
‖Lyyv‖2

whenever Sxx and Syy are respectively non-zero (else Lxx –resp. Lyy– vanishes).
Also as in Theorem 1, we can decompose u and v uniquely in the form

u = u1 + u2 = u3 + u4, u1 ∈ Nxx, u2 ∈ N⊥xx, u3 ∈ Nyx, u4 ∈ N⊥yx,

v = v1 + v2 = v3 + v4, v1 ∈ Nyy, v2 ∈ N⊥yy, v3 ∈ Nxy, v4 ∈ N⊥xy,
with

max
(
‖u2‖2, ‖u4‖2

)
≥ 1

2
‖u‖2, max

(
‖v2‖2, ‖v4‖2

)
≥ 1

2
‖v‖2. (17)

This allows us to rewrite (16) in the form∥∥Gn∥∥2
=
∥∥∥Gn+1

∥∥∥2
+ 2η

(
ut2Lxxu2 − vt2Lyyv2

)
+ +η2

[
‖Lxxu2 − Lxyv4‖2

+ ‖Lyyv2 − Lyxu4‖2
]

+O
(
‖Gn‖∆z2

)
(18)

and bound the various terms depending on the relative sizes of the norms of
u, v, u2,4, v2,4, using the following corollaries of (18):

‖u2‖2 ≥
1

2
‖u‖2 ⇒

∥∥Gn∥∥2 −
∥∥∥Gn+1

∥∥∥2
≥ ηsxx ‖u‖2 , (19)

‖v2‖2 ≥
1

2
‖v‖2 ⇒

∥∥Gn∥∥2 −
∥∥∥Gn+1

∥∥∥2
≥ ηsyy ‖v‖2 , (20)

‖u4‖ ≥ max

(
2Syy
syx
‖v2‖,

‖u‖2

2

)
⇒
∥∥Gn∥∥2 −

∥∥∥Gn+1
∥∥∥2
≥ 1

8
η2s2yx ‖u‖2 , (21)

‖v4‖ ≥ max

(
2Sxx
syx
‖u2‖,

‖v‖2

2

)
⇒
∥∥Gn∥∥2 −

∥∥∥Gn+1
∥∥∥2
≥ 1

8
η2s2yx ‖v‖2 , (22)

where the right-hand sides of all four inequalities are up to corrections of order

O
(
‖Gn‖∆z2

)
or, equivalently, O

(
η2‖Gn‖3

)
, since ∆z ≈ ηGn.

Since our goal is to bound ∆ = ‖Gn‖2 −
∥∥∥Gn+1

∥∥∥2
below by a constant times∥∥∥Gn+1

∥∥∥2
= ‖u‖2 + ‖v‖2, we will seek lower bounds for ∆ proportional to ‖u‖2 and

to ‖v‖2, and then combine these into a bound proportional to
∥∥∥Gn+1

∥∥∥2
. Let us

consider lower bounds proportional to ‖u‖2 first, as the ones proportional to ‖v‖2
derive from an identical argument.

If ‖u2‖2 ≥ 1
2‖u‖

2, then it follows from (19) that

∆ ≥ ηsxx‖u‖2 +O
(
η2‖Gn‖3

)
.
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Otherwise, it follows from (17) that ‖u4‖2 ≥ 1
2‖u‖

2. If in addition ‖u4‖ ≥
2Syy
syx
‖v2‖,

then it follows from (21) that

∆ ≥ 1

8
η2s2yx‖u‖2 +O

(
η2‖Gn‖3

)
.

Otherwise, i.e. if ‖u4‖ <
2Syy
syx
‖v2‖, it follows from (18) that

∆ ≥ −2ηvt2Lyyv2 ≥
2η

Syy
‖Lyyv2‖2 ≥

2s2yyη

Syy
‖v2‖2 ≥ η

(
syy
Syy

)2

‖u4‖2 ≥
η

2

(
syy
Syy

)2

‖u‖2

+O
(
η2‖Gn‖3

)
.

So, in all cases, if η is bounded below by a positive constant, we have established
a bound of the form

∆ ≥ a‖u‖2 +O
(
η2‖Gn‖3

)
, a > 0,

as required. An identical argument provides a bound

∆ ≥ b‖v‖2 +O
(
η2‖Gn‖3

)
, b > 0,

and therefore∥∥Gn∥∥2 −
∥∥∥Gn+1

∥∥∥2
≥ 1

2
min(a, b)

∥∥∥Gn+1
∥∥∥2

+O
(
η2‖Gn‖3

)
,

which guarantees convergence to G = 0 if the learning η is bounded below. Notice
that, for smaller values of η, we still have ‖Gn+1‖ ≤ ‖Gn‖. Thus the path in z-space
corresponding to learning rates between 0 and η never leaves U∗.

�

Theorem 2 establishes convergence of the algorithm in the neighborhood
of a strict local mini-maximizer of L. In addition, one would like the algorithm
to converge only to such local mini-maximizers. To see that this is not at
all guaranteed, notice that, as the learning rate η grows unboundedly, the
algorithm becomes Newton’s, which converges locally to zeros of G irrespective
of whether these correspond to saddle points, maxima or minima of L. Thus,
while near a local mini-maximizer of L one should adopt a very large value of
η in order to enjoy the fast-convergence associated to Newton, one should be
careful not to make η too large far from local mini-maximizers, as this may
result in convergence to a critical point of the wrong type.

For example, the Lagrangian

L(x, y) =
1

2

(
x2 + y2

)
has no finite mini-maximizer, yet (9) yields(

xn+1

yn+1

)
=

( 1
1+η 0

0 1
1−η

)(
xn

yn

)
, (23)

which, for η > 2, converges to (x, y) = (0, 0). We develop in section 4 a strategy
for bounding η so that such spurious convergence cannot take place.
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We close this section with a remark regarding the non-asymptotic con-
vergence of the implicit scheme in (9). Since the scheme reduces to explicit
descent/ascent for small learning rates, one should expect the algorithm to
inherit the non-asymptotic linear convergence of the explicit scheme in (3),
proved in [35, 36]. Moreover, since the constants a and b in the lower bound
on ‖Gn+1‖2 − ‖Gn‖2 established in Theorem 2 scale as η2, which increases
unboundedly near convergence, when the algorithm approaches Newton’s, we
could expect faster than linear convergence. Yet a rigorous analysis of the
algorithm’s non-asymptotic convergence is beyond the scope of this article.

4 Determination of the learning rate

In order to turn the implicit gradient descent (9) into an algorithm, one needs
a mechanism to decide at each step which learning rate η to use.

From the arguments above, once close enough to the optimum, one should
increase η as much as possible so as to accelerate convergence, with η = ∞
yielding Newton’s method. Yet Newton’s method is blind to whether one is
minimizing or maximizing the objective function. In our minimax context,
it could converge to points where G = 0 that are not minima over the x
and maxima over the y. Therefore, a mechanism to control the value of η is
required. Unlike in pure minimization scenarios, we cannot use the decrease
of the objective function as an acceptance test. However, a simple extension
applies: one can require every step to satisfy the conditions

L
(
xn+1, yn

)
≤ L

(
xn+1, yn+1

)
≤ L

(
xn, yn+1

)
. (24)

These agree with the anticipatory game idea underlying the method: given
yn+1, the player with strategy x should make sure to decrease L, and given
xn+1, the player with strategy y should make sure to increase L. Thus a step
not satisfying the conditions in (24) should be rejected.

To see the effect of these constraints on the convergence of the algorithm,
consider three simple prototypical examples where a closed expression for them
can be derived:

1. L = xy,

2. L = x2−y2
2 ,

3. L = x2+y2

2 .

The first represents a saddle point not satisfying the regular convexity condi-
tions Lxx > 0, Lyy < 0, yet having a global solution (x = y = 0), the second
does satisfy these conditions globally, and the third has no solution, so we
would like y to blow up: with no local minimax solution, the algorithm should
explore other areas of (x, y)-space.
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1. L = xy has

G =

(
y
x

)
, H =

(
0 1
1 0

)
, J =

(
1 0
0 −1

)
,

so the update rule (9) yields(
xn+1

yn+1

)
=

(
xn

yn

)
− η (J + ηH)

−1

(
yn

xn

)
=

1

1 + η2

(
xn − ηyn
yn + ηxn

)
.

Notice that here the larger η the better, as increasing η brings us closer to
the solution (0, 0). Now considering the conditions in (24), we have

L(xn+1, yn) =
(xn − ηyn)yn

1 + η2
, L(xn, yn+1) =

(yn + ηxn)xn

1 + η2
,

L(xn+1, yn+1) =
(yn + ηxn)(xn − ηyn)

(1 + η2)2
,

so
L(xn+1, yn+1)− L(xn+1, yn) =

η

(1 + η2)2
(xn − ηyn)2

and
L(xn, yn+1)− L(xn+1, yn+1) =

η

(1 + η2)2
(yn + ηxn)2,

both non-negative for all positive η, hence imposing no restrictions on the
learning rate. This is in line with the fact that, in this case, the solution of
the problem can be reached in just one step by adopting η =∞.

2. L = 1
2

(
x2 − y2

)
, G =

(
x
−y

)
, H =

(
1 0
0 −1

)
,

(
xn+1

yn+1

)
=

(
xn

yn

)
− η (J + ηH)

−1

(
xn

−yn
)

=
1

1 + η

(
xn

yn

)
.

Again, the larger η the better. On the other hand, we have

L(xn+1, yn) =
1

2

(
(xn)2

(1 + η)2
− (yn)2

)
, L(xn, yn+1) =

1

2

(
(xn)2 − (yn)2

(1 + η)2

)
,

L(xn+1, yn+1) =
1

2

1

(1 + η)2

(
(xn)2 − (yn)2

)
.

Then both

L(xn+1, yn+1)− L(xn+1, yn) =
1

2

(1 + η)2 − 1

(1 + η)2
(yn)2
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and

L(xn, yn+1)− L(xn+1, yn+1) =
1

2

(1 + η)2 − 1

(1 + η)2
(xn)2

are automatically non-negative for positive η, thus imposing no constraints.
Once again this is in line with the fact that the exact solution can be reached
in one step by adopting η =∞.

3. L = 1
2

(
x2 + y2

)
Here the update rule (9) yields (23), which, for η > 2, converges to

(x, y) = (0, 0), which is a minimum, not a min-maximizer of L. The
corresponding conditions in (24) are

L(xn+1, yn+1)− L(xn+1, yn) =
(yn)2

2

(
1

(1− η)2
− 1

)
≥ 0,

L(xn+1, yn+1)− L(xn, yn+1) =
(xn)2

2

(
1

(1 + η)2
− 1

)
≤ 0.

While the second of these imposes no constraint, the first restricts η to be
smaller than 2, thus guaranteeing divergence. This is the required output
for this problem with no minimax. In a more general setting, this divergence
would correspond to leaving regions surrounding critical point of the wrong
type, hence opening the search for true minimax solutions elsewhere.

It can be verified that this behavior is general: in a neighborhood of a
strict mini-maximizer point z∗, the learning rate η can be adopted arbitrarily
large and still satisfy the constraints in (24) (see proof in Section B in the
appendix). It can also be shown (see proof in Section B in the appendix) that,
when the gradient is different from zero, there is always a small enough η > 0
such that the saddle point conditions (24) are satisfied. This excludes spurious
convergence of the algorithm to non-critical points because no positive value
of η satisfying (24) can be found.

The example L = x2+y2

2 above illustrates the fact that, close to a critical
point of the wrong type, the constraints in (24) exclude the possibility of local
convergence, except for a set of starting points with zero measure –such as
the critical points themselves. This example is prototypical, in the sense that
near a critical point, a smooth L can typically be approximated by a quadratic
function. This behavior is further illustrated with a numerical example in two
dimension in Section 7.1 where a saddle point is surrounded by four critical
points that are local maxima or minima.

Thus the implicit twisted descent algorithm, complemented by the con-
straints in (24), converges locally to minimax points and cannot converge to
critical points of the wrong type except for a set of initial values of zero
measure. Of course these local results are not enough to guarantee global con-
vergence: similarly to gradient descent, Newton or any other local procedure
for regular minimization, the procedure can fail to detect a mini-maximizing
point if initialized far enough from it. We will see below a simple instance of
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this, with the true mini-maximizer hidden by a set of regular maxima and
minima that delimit its basin of attraction.

The constraints in (24) provide an upper bound for the learning rate η.
Therefore a natural proposal would evolve η from step to step, making it
increase –so as to approach the Newton regime– unless the constraints are not
satisfied, in which case the step should be rejected and η decreased. Rather
than updating the learning rate η directly, we propose to update a surrogate µ,
and then build η dividing µ by ‖Gn‖2. The algorithm proposed is the following:

1. Set an initial guess z0 and an initial value µ0.
2. At each step, update µ through µn+1 = min (αµn, µmax), with α > 1,
µmax � 1. Update zn to zn+1 through (9) with η = µn+1/‖Gn‖2. If the
conditions in (24) are not satisfied, reduce µn+1 (for instance halving it)
until either they are satisfied or µn+1 is smaller than a prescribed threshold.

3. Stop when either ‖Gn+1‖ is smaller than a prescribed threshold or the
number of steps reaches a prescribed maximum.

The reason for adopting η = µ/‖Gn‖2 is twofold. On the one hand, we
would like η to grow fast near the optimal point, so as to yield the fast conver-
gence associated to Newton’s method. On the other, it can be shown that this
normalization has the property of making η grow fast enough to yield conver-
gence even for very flat minimax points (such as (0, 0) in L = x3y3), where
the superlinear rate of decrease of the gradient could otherwise prevent the
numerical solution from converging to the optimal point.

5 Quasi implicit twisted gradient descent

The leading computational costs of the proposed procedure are the computa-
tion of the Hessian (which may not even be available in closed form) and the
inversion of its mollified version, i.e. the calculation of the matrix

B = (J + ηH)
−1
, (25)

which becomes costly in high dimensions.
There are at least two ways to bypass the need to calculate the Hessian

and B, one analogous to predictor-corrector schemes for differential equations
and the other to the quasi-Newton methodology for minimization.

5.1 Predictor-corrector approach

The predictor-corrector approach starts from the fully implicit scheme in (6)
and approximates it through the two-step explicit procedure

z∗ = zn − η J G (zn)

zn+1 = zn − η J G (z∗) . (26)
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For small values of η‖G‖, we can expand zn+1, obtaining

zn+1 = zn − ηJ Gn + η2HnGn +O
(
η3 ‖Gn‖2

)
= zn − η (J + ηHn)

−1
Gn +O

(
η3 ‖Hn‖ ‖Gn‖

)
,

proving consistency with the scheme in (9). Notice though that the consistency
of (26) requires the learning rate η to be small, while (9) requires small values
of η‖G‖, a much weaker constraint near critical points. Thus one could use
(26) while exploring the landscape and (9) in the final stages, where η can be
allowed to grow unboundedly.

5.2 Updating B

In the spirit of quasi-Newton methods [37], one can replace the B in (25) with
an estimation that is updated at each time-step using our knowledge of the
gradient at two consecutive times, Gn and Gn+1, since (15) reads:

JGn+1 = BnGn (27)

plus higher order corrections. Of course, at the time of updating Bn, one does
not yet know Gn+1. Instead, one can update B correcting Bn−1 into a B∗ that
would have satisfied this constraint at the prior step:

JGn = B∗Gn−1, B∗ → Bn. (28)

A significant difference with regular quasi-Newton methods though is that
B is not positive definite, unlike the Hessian near minima. Thus, even though
one could propose the equivalent to the BFGS recipe:

B∗ = W t
nB

n−1Wn +
JGn(JGn)t

(Gn−1)tJGn
, (29)

where

Wn = I − Gn−1(JGn)t

(Gn−1)tJGn
,

this could yield an uncontrollable large correction, since the denominator can
vanish even for an arbitrarily small learning rate η, for which B = J and
Gn = Gn−1.

An alternative is to perform the rank-one update

Bn = B∗ = Bn−1 +

(
JGn −Bn−1Gn−1

) (
JGn −Bn−1Gn−1

)t
(Gn−1)t (JGn −Bn−1Gn−1)

.
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Similarly to (29), this corrects B so that it satisfies (28). In order to avoid
singularities when the denominator vanishes, we may write this as

B∗ = Bn−1 + α

(
JGn −Bn−1Gn−1

) (
JGn −Bn−1Gn−1

)t
‖(JGn −Bn−1Gn−1‖2

, (30)

with

α =

∥∥(JGn −Bn−1Gn−1
∥∥2

(Gn−1)t (JGn −Bn−1Gn−1)

replaced with
α∗ = sign(α) min (|α|, γ) , γ < 1.

i.e. bounding the Frobenius norm of the rank-one update. This is not a costly
bound to impose: once near convergence, z changes little in each step –since
‖G‖ is small– so B requires only a bounded update per step. Applying a
similar solution to eliminate possible singularities to (29) would have been
problematic, as we would have had to fix not only the second term of the sum
on the right hand side of (29) but also the matrix Wn.

The reason for picking |α∗| ≤ γ < 1 is the following. Assume without loss
of generality that the optimal z = z∗ equals zero and that the true Hessian at
z∗ = 0 is H. Then, for zn close to z∗, we have that G ≈ Hz and

zn+1 = zn − η
[
Bn+1 −

(
Bn+1 −Bn

)]
Gn

= zn − ηJGn+1 + η
(
Bn+1 −Bn

)
Gn (from (28))

≈ zn − ηJHzn+1 + η
(
Bn+1 −Bn

)
Hzn,

so
zn+1 ≈ (I + ηJH)−1

[
I + η

(
Bn+1 −Bn

)
H
]
zn.

Then w = Hz ≈ G satisfies

wn+1 ≈ H(I + ηJH)−1
[
H−1 + η

(
Bn+1 −Bn

)]
wn.

But one can readily show that

H(I + ηJH)−1 = (I + ηHJ)−1H,

so
wn+1 ≈ (I + ηHJ)−1

[
I + ηH

(
Bn+1 −Bn

)]
wn,

or
wn+1 ≈ (I + ηH̃)−1

[
I + ηH̃J

(
Bn+1 −Bn

)]
wn,

with H̃ = HJ . We can bound the norm of the sum within brackets using the
singular value of the rank-one update for B:

‖wn+1‖ ≤
∥∥∥(I + ηH̃)−1

[
I + η|α∗|H̃

]
wn
∥∥∥ .
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Under the hypothesis in Theorem 1 or the less restrictive Theorem 3 in
Appendix A, H̃ is non-negative definite and invertible. It follows that

|α∗| ≤ γ < 1⇒ ‖wn+1‖ < ‖wn‖,

i.e. under the chosen bound for α∗, the gradient of L decreases at each step,
and the quasi-Newton algorithm converges.

In order to turn this argument into a proof, we would need to show that it
is indeed possible to satisfy (28) when the rank-one update in (30) is bounded
by γ. Intuitively this follows from the fact that, near convergence, the true
Hessian changes little at each step, so the required updates are necessarily
small.

One extra consideration is that, if η needs to be decreased significantly
within one step so as to satisfy the constraints in (24), the estimated B should
converge to J . This can be achieved through the correction

B → αB + (1− α)J,

with a factor α that converges to zero as η does, such as

α =
η

η0
,

where η0 is the first learning rate attempted at the current step.

6 Inequality constraints

Often some or all zi are required to be in some subset, typically to be non-
negative. We can limit consideration to this latter case with little loss of
generality, since any constraint of the form g(z) ≥ 0 can be reduced to the
positivity of the corresponding Lagrange multiplier. So we have the problem

min
x

max
y

L(x, y), x(Px) ≥ 0, y(Py) ≥ 0,

where Px and Py index the subset of variables required to be non-negative.
There are a number of ways to extend the procedure of this article to the case
with inequalities; we discuss below two alternative methodologies:

6.1 Change of variables

The simplest way to enforce positivity without altering the algorithm is to
make a change of variables that ensures positivity, for instance setting

L∗(x, y) = L(X(x), Y (y)),



Springer Nature 2021 LATEX template

Article Title 19

where

X(x) =

{
x for unrestricted variables

x2 for variables required to be non-negative
(31)

and similarly for Y (y). This yields the unconstrained minimax problem

min
x

max
y

L∗(x, y)

to which the procedure can be applied, and whose solution, once transformed
into (X,Y ), solves the original problem

min
X

max
Y

L(X,Y ), X(Px) ≥ 0, Y (Py) ≥ 0.

A word of caution is in order though: the fact that, for i ∈ Px, we have
that xi = 0 ⇒ L∗xi = 0, and similarly for yj , creates potential suboptimal
points where the procedure might stop. For instance, in constrained optimiza-
tion problems, the Lagrange multipliers corresponding to inactive constraints
are zero at the solution, but one often encounters along the way to the true
solution, domains where some constraints that will be active in the final solu-
tion are temporarily inactive. Hence these Lagrange multipliers zi may reach
machine zero values, at which point the corresponding derivatives of L∗ van-
ish. Because of this, these zi may fail to leave zero when the corresponding
constraints become active again.

This issue can be addressed through a simple procedural change: after every
step, compute the gradient of the original Lagrangian, i.e. LZ , for the variables
{Zi} that are close to zero, i.e. ‖zi‖ ≤ ε. Since zi should detach from zero
when the original gradient LZi pushes Zi = zi

2 to be positive, we compute

Ri = max(−J iiLZi , 0)

and update z via
zi → z̃i =

√
zi2 + η0Ri, (32)

where η0 is a suitably small additional learning rate, restricted so as to satisfy
the requirements in (24) between the states zi and z̃i. To do this, we start with
an arbitrary value for η0 and reduce it, for instance by halving, until (24) is
satisfied.

6.2 Evolving barriers

A more conventional approach to handling positivity constraints is to add a
logarithmic barrier:

L(x, y)→ Lt(x, y) = L(x, y) +
1

t

[∑
j

log(yj)−
∑
i

log(xi)

]
. (33)
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Here we can either solve the problem for an increasing sequence of values of
t, adopting as initial values of (x, y) for each subproblem their terminal values
from the prior one, or take this to the limit, evolving t smoothly at each step
of the algorithm.

7 Examples

We illustrate the procedure through three types of examples: some simple two-
dimensional problems designed to illustrate the effects of non-convexity on
quasi-implicit descent and the need for the constraints imposed on the learning
rate, a linear programming problem that illustrates the handling of inequal-
ity constraints when very many are simultaneously active, and an optimal
transport problem to show a nonlinear adversarial example of current interest.

7.1 Two-dimensional examples

This sub-section displays numerical examples of the implicit gradient descent
and the quasi Newton method on non-monotone saddle point problems (i.e.
one in which the objective function is not convex-concave in the variables in
which we are minimizing and maximizing respectively). The first Lagrangian
we consider is

L(x, y) = (x− 0.5)(y − 0.5) +
1

3
e(−(x−0.5)2−(y−0.75)2). (34)

This function has a saddle point near (0.5, 0.5) and a local maximum near
(0.5, 0.75). It has been observed in [29] that, in this case, first-order descent
methods result in periodic orbits. Figure 1 shows that this is indeed the case if
the look ahead time η in (9) is very small, effectively reducing (9) to an explicit
algorithm. It is also interesting to notice that, in line with the discussion in
section 3, for large values of η we reach a very fast convergence since, close to
the saddle point of f(x, y), the implicit (9) is essentially exact.

Figure 2 shows the performance of the Quasi Newton algorithm with vari-
able learning rates η of section (5). We see that the algorithm effectively
“learns” the Hessian, leading to convergence. The jumps of the value of η
correspond to violation of the constraint in (24).

Next consider an example of escape from local maxima or minima given
by the function

L(x, y) = xy e−
(x2+y2)

2 .

This function has a saddle point at (0, 0) and local maxima and minima at
the four corners of a square S, with edge length of 2, centered at the origin.
Figure 3 shows the L with the trajectory followed by our algorithm (9) with
initial point at (1 − 10−5,−0.2) and initial value of η = 0.5. The trajectory
initially climbs the local maxima in (1, 1) along a direction where the gradient
is essentially zero in the x direction, as a result the saddle point conditions (24)
are satisfied and η increases. When the trajectory approaches the local maxima
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Fig. 1 Three trajectories using the algorithm in (9) with 3 different values of fixed η to
compute the saddle point of (34). The left column shows the trajectory and the right column
the value of the norm of the gradient appearing in (9) as a function of the logarithm of the
iteration step. Each row of the plot is obtained with values of η equal to 0.05, 0.5 and 5
respectively. For a too small value of the “looking forward” time η the algorithm behaves
essentially as the analogous gradient ascent-descent resulting in a periodic orbit. As the
value of η increases the gradient decreases as described by (16).

y it becomes harder and harder to satisfy the conditions (24) until, in order
to satisfy them η has to decreases making (9) essentially an explicit scheme
that now follows the gradient (see Figure 3) pointing to the local minima in
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Fig. 2 Trajectory obtained when using the Quasi Newton algorithm with variable η as
described in section 5. It can be seen that the learning rate η get smaller in certain points
of the trajectory due to the enforcing of the conditions in (24).

(−1, 1). This behavior is repeated until the trajectory is sufficiently close to the
origin so that η can keep increasing without violating (24) and the algorithm
essentially becomes a Newton method.

This example shows the local nature of the convergence of the scheme in (9).
With initial position 1,−0.2 the gradient in x is exactly zero and the trajectory
converges to the local maxima in (1, 1). If instead the initial condition where
(1 + δ,−0.2) then the trajectory would escape the local maxima at (1, 1) by
leaving S and following a direction in which y is constant and x increased.

7.2 Linear programming

We consider the standard linear programming problem

min
X≥0

ctX, AX ≥ b, (35)

which, introducing Lagrange multipliers Y for the constraints, adopts the
Lagrangian form

min
X≥0

max
Y≥0

L∗(X,Y ) = ctX − Y t (AX − b) . (36)

To eliminate the positivity constraints, we introduce unconstrained variables
x and y through X = x2, Y = y2, both understood component-wise, which
yields the unconstrained minimax problem

min
x

max
y

L(x, y) = ctX(x)− Y (y)t (AX(x)− b) . (37)

We have

Lx = 2
(
c−AtY

)
. ∗ x, Ly = 2 (b−AX) . ∗ y, (38)
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Fig. 3 Escape from critical points of the wrong type. Upper left: Gradient field of L. Upper
right: η as a function of the iteration. Lower panel: Trajectory starting at (1 − 10−5,−0.2)
and converging to the saddle point.

and

Lxx = 2 diag
(
c−AtY

)
, Lxy = −4 diag(x)Atdiag(y)

Lyx = −4 diag(y)A diag(x) Lyy = 2 diag (b−AX) .

where the symbol ‘.∗’ denotes component-wise multiplication, and ‘diag(x)’
denotes a diagonal matrix with the vector x on its diagonal.

For the example displayed in Figure 4, we chose nx = 117, ny = 114. All
entries of the matrix A and the vectors b and c were drawn independently from
the uniform distribution in [0, 1], thus guaranteeing feasibility.

The only free parameters of the procedure are the maximum learning rate,
which we fixed at 107, the rate α = 5.1 at which µ is updated, and the
initialization of x and y, for which we picked quite arbitrarily

x0(1 : nx) =

√
0.8

nx
, y0(1 : ny) =

√
0.4

ny
.

For every realization of the problem, the procedure converges invariably to
the right answer in 200-300 steps. A characteristic of this problem is that
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Fig. 4 Linear Programming, zoom of the evolution near times (n = 206, 212) where the
active set changes considerably. Upper left panel: evolution of the 10 largest xi (in blue) and
yj (in red). Upper right panel: learning rate η. Lower panel: the three values of L appearing
in the checks in (24), with the actual future L in black and its upper and lower bounds in
red and blue respectively.

most positivity constraints are active, not only in the final solution but also
at intermediate steps. Figure 4 displays the working of the procedure at times
where the active set changes significantly. We can see a local increase of the
learning rate, corresponding to the opening of a significant gap between the
lower and upper bounds for L in (24).

7.3 Optimal Transport

An adaptive, adversarial methodology was developed in [22] for the optimal
transport problem [38, 39], between two distributions µ and ν, known only
through a finite set of independent samples. The problem consists in finding
a global map T , pushing samples generated by the source µ, so that their
final distribution matches ν, the one underlying the samples of the target. In
addition, this map should minimize a transportation cost. For quadratic cost
functions, the map T must be given by the gradient∇φ of a convex potential φ.
We generate T by composing many elementary non-linear functions uk. Each
of these uk minimizes a local optimal transport problem between two nearby
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samples (x
(k)
i )i=1,...,n and (y

(k)
j )j=1,...,m. A global iterative procedure using

displacement interpolation guarantees convergence to the unique optimizer.
In order to find these local non-linear maps u, we minimize the Kullback-

Leibler divergence between the distributions underlying u(xi) and yj . A
variational characterization of the Kullback-Leibler divergence gives rise to the
following formulation of the local problem:

min
u=∇φ

max
g

{
1

n

∑
i

g(u(xi))−
1

m

∑
j

eg(yj)

}
(39)

The above mini-maximization can be interpreted as a two player game between
the map u and the lens g: as u does its best to push the xi’s toward the yj ’s, g
will focus on the areas where the mass transport has not yet been well achieved.
This forces u to correct those areas, and g to find new locations requiring more
work.

The maps u and g are parameterized using finite dimensional vectors α
and β, and the problem is reduced to:

min
α

max
β

{
1

n

∑
i

gβ(uα(xi))−
1

m

∑
j

egβ(yj)

}
≡ min

α
max
β

L(α, β) (40)

We solve each of those local optimal problems using the methodology
described in this manuscript.

Figure 5 presents the original configuration of samples and the result of the
global procedure, applied to data {xi} drawn from a Gaussian and {yj} from
the uniform distribution on the perimeter of a circle. Figure 6 displays the

Fig. 5 Initial and final configuration of the global optimal transport algorithm. The blue
crosses represent the samples (yj), the red crosses on the left figure represent the samples
(xi), and the red crosses in the right figure represent the samples generated by T (xi) where
T is a solution of the optimal transport algorithm

objective function at each step, for the last local optimal transport problem
of the first global iteration. In addition to L(αn, βn), displayed in orange, the
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upper bound L(αn, βn+1) and the lower bound L(αn+1, βn) are displayed in
green and blue respectively.

Fig. 6 Values of the Lagrangian at L(αn, βn) ≡ Ln,n, L(αn+1, βn) ≡ Ln+ 1, n and
L(αn, βn+1) ≡ Ln,n+1 for the last local optimal transport problem of the first global
iteration.

8 Conclusions

This article presents an implicit twisted gradient descent strategy for the
numerical computation of saddle points. Explicit methods are by nature non-
anticipatory, which makes them often fail to converge, ending out in periodic
or outward spiraling orbits around a saddle point. Instead, the algorithm pro-
posed here is implicit, or anticipatory from a game theory perspective, as each
player includes their adversary’s best strategy in their own planning. This is
proved to yield local convergence, which acquires a super-quadratic rate as the
learning rate grows and the methodology converges to Newton’s. The strat-
egy proposed for updating the learning rate is consistent with the anticipatory
nature of the algorithm: the rate should grow rapidly near saddle points, but
is bounded by the requirement that, given the adversary’s choice, each player
should be improving their game. This guarantees convergence near saddle
points and local divergence near stationary points of the Lagrangian that do
not solve the minimax problem, points toward which regular Newton would
otherwise converge.

The use of an implicit algorithm requires the inversion of a matrix, which
can be quite large for high-dimensional problems. To alleviate this compu-
tational cost, the analogue of a quasi-Newton formulation of the algorithm
is developed, which updates directly the inverse B of the mollified Hessian
at the core of the algorithm. This not only serves the purpose of avoiding
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matrix inversion, but also eliminates the need to compute or estimate second
derivatives of the Lagrangian.

Numerical tests are performed on three representative problems: a small-
dimensional minimax problem that does not satisfy global convex-concavity,
linear programming with a high number of inequality constraints, and a
recently proposed adversarial methodology for optimal transport. In their
diversity, they illustrate the versatility of the proposed methodology, which
can be applied without modifications to virtually any minimax problem. It
has been the author’s experience that having such a general tool at one’s dis-
posal encourages the formulation of problems of interest in adversarial terms,
a natural characterization that one would otherwise often avoid for lack of a
straightforward methodology for their numerical solution.
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A Sufficient conditions for strict local
mini-maximizers

Theorem 3 The following conditions guarantee that z∗ = (x∗, y∗) is a strict local
mini-maximizer of a smooth function L(x, y):

1. The conditions in (10) are satisfied. This implies in particular that Lx and
Ly vanish and that Lxx is positive semi-definite and Lyy is negative semi-
definite.

2. The null spaces of Lxx and Lyx intersect only at the zero vector of X, and
the null spaces of Lyy and Lxy only at the zero vector of Y .

Proof In order to extend the proof of theorem 1 so that it applies to the newly relaxed
hypotheses, notice that two subspaces A and B of a finite-dimensional vector space
V intersect only at the zero vector of V if and only if there exists a number β < 1
such that

x ∈ A and y ∈ B ⇒ |〈x, y〉| ≤ β‖x‖‖y‖.
Here β quantifies how oblique the two subspaces are to each other, with β = 0 when
A ⊥ B and β approaching 1 when there exist vectors x ∈ A almost parallel to vectors
y ∈ B. Thus the hypotheses in 2. can be restated as the existence of a number β < 1
such that

x1 ∈ Nxx and x3 ∈ Nyx ⇒ |〈x1, x3〉| ≤ β‖x1‖‖x3‖
and

y1 ∈ Nyy and y3 ∈ Nxy ⇒ |〈y1, y3〉| ≤ β‖y1‖‖y3‖.
The fact that the conditions in (10) require Lx and Ly to vanish, and Lxx and

Lyy to be at least positive and negative semi-definite respectively follows from the
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same argument as in theorem 1. We will also use the same definitions as in theorem
1 for the constants sxx, syx, syy, Sxx, Syx, and Syy, and write

∆x = x− x∗ = x1 + x2 = x3 + x4,

where
x1 ∈ Nxx, x2 ∈ N⊥xx, x3 ∈ Nyx, x4 ∈ N⊥yx.

The fact that Nxx and Nyx are oblique implies that

max
(
‖x2‖2, ‖x4‖2

)
≥ γ‖∆x‖2, (41)

where

γ =

(
1− β

2

)2

,

as follows from the following argument:

‖x2‖2 ≤ γ‖∆x‖2 ⇒ ‖x1‖2 ≥ (1− γ)‖∆x‖2,

since ‖x1‖2 + ‖x2‖2 = ‖∆x‖2. But

‖x1‖2 ≥ (1− γ)‖∆x‖2 ⇒ ‖x4‖2 ≥ γ‖∆x‖2,

since

‖x1‖2 = 〈x1, x1 + x2〉 = 〈x1, x3 + x4〉
≤ β‖x1‖‖x3‖+ ‖x1‖‖x4‖
≤ β‖∆x‖2 + ‖x1‖‖x4‖,

from which it follows that

‖x1‖2 ≥ (1− γ)‖∆x‖2 ⇒ 1− γ − β
1− γ ≤ ‖x4‖

‖∆x‖ ,

so

‖x4‖2 ≥
(

1− γ − β
1− γ

)2

‖∆x‖2 ≥ γ‖∆x‖2,

completing the proof of (41).
This inequality allows us to consider two scenarios:

1. If ‖x2‖2 ≥ γ‖∆x‖2, we can set ∆y = 0, and obtain

L(x, y) = L(x∗, y∗) +
1

2
∆xtLxx∆x+ O

(
‖∆x‖3

)
= L(x∗, y∗) +

1

2
xt2Lxxx2 + O

(
‖∆x‖3

)
≥ L(x∗, y∗) +

γ2sxx
2
‖∆x‖2 + O

(
‖∆x‖3

)
> L(x∗, y∗)

for small enough ‖∆x‖, as required by condition (11).
2. If ‖x2‖2 ≤ γ‖∆x‖2, it follows from (41) that ‖x4‖2 ≥ γ‖∆x‖2, and the

proof follows exactly the same path as in theorem 1.

The same argument, mutatis mutandis, proves condition (12).
�
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In fact, for quadratic Lagrangians, these more general sufficient conditions
are also necessary: if the null spaces of Lxx and Lyx share a nonzero vector a,
we can adopt ∆x = x− x∗ = a, which yields

∀y L(x, y)− L (x∗, y∗) =
1

2
∆ytLyy∆y ≤ 0,

contradicting the condition in (11). The same argument applies if the null
spaces of Lyy and Lxy share a nonzero vector b.

B Existence of a compatible learning rate η

This section answers two related questions: whether one can always find a
small-enough learning rate η so that the conditions in (24) are satisfied, and
whether, in a neighborhood of a strict mini-maximizer point z∗, a learning rate
η of order one or larger could be adopted, to guarantee that theorem 2 applies.
The answer to both questions is affirmative, as the following arguments show.

Theorem 4 Given a point (x, y) such that Lx and Ly are different from zero, it is
always possible to find a small enough η > 0 such that (24) are satisfied.

Proof In the limit of small η we rewrite (9) as

zn+1 = zn − ηJ(I − ηHJ)−1G = zn + ηJ(I + ηHJ)G+O(η3)

Without loss of generality we can assume n = 0 and z0 = 0. Then the scheme above
can be rewritten as(

x1

y1

)
= −η

(
Lx
Ly

)
+ η2

(
LxxLx − LxyLy
−LyxLx + LyyLy

)
+O(η3) (42)

where, when no otherwise specified, all the first and second derivatives of L are
computed at (x = 0, y = 0). With L01 = L(x0, y1), L11 = L(x1, y1) and L10 =
L(x1, y0), (24) becomes L10 ≤ L11 ≤ L01. In the limit of small ∆x = x1 − x0 and
∆y = y1 − y0, we have

L11 = L00 + Ltx∆x+ Lty∆y +
∆xtLxx∆x

2
+

∆ytLyy∆y

2
+O(∆3) (43)

L10 = L00 + Ltx∆x+
∆xtLxx∆x

2
+O(∆3) (44)

L01 = L00 + Lty∆y +
∆ytLyy∆y

2
+O(∆3). (45)

We will consider only L10 ≤ L11, as the other side of (24) can be treated analo-
gously. With the expansions written above, L10 ≤ L11 becomes 0 ≤ L00 + Ltx∆x+

+∆xtLxx∆x
2 + ∆xtLxy∆y, which after substituting the expressions for ∆x and ∆y

from (42) becomes

η‖Ly‖2 +
3

2
η2∆xtLxx∆x+O(η3) ≥ 0,

a condition that can always be satisfied for sufficiently small η when the norm of Ly
is different from zero. �
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Theorem 5 Given a local saddle point (x, y) there exists a neighborhood (Ux, Uy)
such that ∀(x, y) ∈ (Ux, Uy) the condition (24) is satisfied for an arbitrarily large
value of η

Proof Consider one side of (24) (the other side can be deduced analogously):

0 ≤ L(xn+1, yn+1)−L(xn+1, yn) = ∆yt
[
Lny + Lnxy∆x

]
+

∆ytLnyy∆y

2
+O(∆3) (46)

where ∆y = yn+1 − yn. The term in square brackets on the right hand side of (46)
can be rewritten using the component of (9) relative to the variable y:

∆yt
[
Lny + Lnyx∆x

]
=
‖∆y‖2

η
−∆ytLnyy∆y, (47)

which, substituted in (46), leads to

‖∆y‖2

η
−

∆ytLnyy∆y

2
≥ 0,

a condition that holds for every positive η, given that Lyy must be negative semi-
definite at a maximum. �

Data Availability

The datasets generated and analysed during the current study are not publicly
available due the fact that they can be easily recreated using the informa-
tion contained in the text. If needed the corresponding author is available for
clarification on reasonable request.
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