
Feature Extraction through Rotations

Rebeca Salas-Boni and Esteban G. Tabak ∗

January 24, 2013

Abstract

A procedure is developed for obtaining the lower dimensional representation of high-
dimensional observations stemming from different classes that best distinguishes among
the classes. The method finds a low dimensional subspace such that the estimated proba-
bility of the projected data belonging to each population is as close to the true assignment
as possible. This is achieved by starting from a random subspace and applying successive
rotations in the direction of descent of the Kullback-Leibler divergence between the true
and computed assignments. The method is applied to classification, comparing its per-
formance with benchmark methods on both synthetic data and on the Wisconsin Breast
Cancer Diagnostic dataset.

Keywords: Dimensional reduction, Feature Extraction, Gradient Descent, Probabilistic
Generative Models, Classification, WBCD.

1 Introduction

Dimensional reduction aims to find an underlying low dimensional structure from high dimen-
sional data. This can be accomplished in two ways, selecting either a subset of the original
variables or a map from the high dimensional space of the data onto a lower dimensional
manifold. The former one is referred to as feature selection and the latter as feature extrac-
tion [4]. In both cases, the reduction sought represents the original data optimally according
to a specified criterion. The map of feature extraction can be either linear or non-linear, with
linear maps being more widely used. Perhaps the most popular linear dimensional reduction
technique, Principal Components Analysis, finds a lower dimensional representation of the
data that maximizes the variance of the whole set. Independent Component Analysis seeks
projections that are as statistically independent from each other as possible, albeit not neces-
sarily orthogonal as in PCA. There are generalizations of these procedures to the non-linear
realm, as well as new methodologies that are non-linear ab-initio.

The techniques above are unsupervised, with no labels taken into account. In classifica-
tion, by contrast, one has labeled data collected from various populations, from which one

∗Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA,
salasboni@cims.nyu.edu, tabak@cims.nyu.edu.

1

aims to learn how to correctly classify new, un-labeled samples. Two main approaches exist
for constructing decision boundaries between the classes: geometric methods and probabilis-
tic procedures. The latter estimate the probability of each observation belonging to every
possible class taken into account.

Probabilistic methods can be roughly divided in two general approaches: One of them
consists in estimating the distributions of the data. Afterwards, the posterior probability of
each data point belonging to the different classes is obtained via Bayes’ theorem. They suffer
from the curse of dimensionality, since the number of observations required to accurately
estimate a distribution grows exponentially with the dimension of the data. Hence the im-
portance of reducing the problem’s dimensionality. A classic example of a linear dimensional
reduction technique is Fisher discriminant analysis [1]. This assumes Gaussian distributions
for two classes, and finds the one-dimensional subspace such that, if one projects the multi-
dimensional observations from both classes onto it, the projected observations have their two
means as far as possible from each other and are tightly clustered around their correspond-
ing mean. Multilinear discriminant analysis is the generalization of this method to multiple
classes: with k classes, the dimension of the observations can be reduced to at most k− 1. In
these methodologies, the data is assumed to stem from Gaussians with different means but
the same covariance matrices. Quadratic discriminant analysis incorporates different covari-
ance matrices for each class, which yields a better description of the individual populations
but adds more parameters to estimate. In [6], this methodology is extended by modeling
observations as Mixtures of Gaussians, allowing for a more accurate characterization of the
data.
Non-linear methods to tackle discriminant analysis have also been developed. One such ex-
tension works through the introduction of kernels [3], which map the observations non-linearly
to a higher dimensional space where the boundary sought is still a hyperplane.
Another popular probabilistic method is the Naive Bayes Classifier (NBC)[2]. Under the
assumption that all features are independent from each other, the NBC estimates the prob-
ability distribution of each one dimensional feature and computes through Bayes’ theorem a
posterior probability that the observations belong to each class. Even though the indepen-
dence of features is a strong assumption, estimating one dimensional probabilities instead of
joint ones alleviates the curse of dimensionality and the computational cost.

The second approach for probabilistic methods consists in directly minimizing the differ-
ence between the posterior probability of a sample belonging to a population, and the true
known assignment. Logistic Regression is an example of such methodolgy. Logistic Regres-
sion makes no assumptions on the distribution of the data, rather, this model for classification
finds a one-dimensional subspace such that the projected data minimizes an error function.
The error function is formed by pairing the known assignments of the data with a posterior
probability of each observation belonging to each class, which is seen as the logistic sigmoid
of a linear function acting on the observation. This linear function is just the dot product
with a vector consisting of weights, which spans the one-dimensional subspace sought. The
dependence of the objective function on the vector of weights is non–linear, hence, one must
find the subspace through gradient descent [1]. Logistic Regression provides us with a linear
decision boundary dividing the classes.

2

Logistic regression performs a linear combination of the observations, and passes this re-
sult through a sigmoid function. Neural networks consist of a network of logistic regressors.
Each layer computes a linear combination of the input, and passes it thourgh a sigmoid.
When used for classification, the output of the network will be the probability of each ob-
servation belonging t each class. Once again, a weights vector is sought, this vector depends
non-linearly on the composition of functions, and it is found using gradient descent. Neural
networks provide a non-linear decision boundary, the more layers the network has, the more
complex the boundary can be. Because of the malleability of the structure of neural networks,
feature extraction and classification can be naturally unified [7].
These are just a few of the most commonly used probabilistic methods for classification.
However, one can see that dimensionality reduction is somewhat embedded in them. Un-
fortunately, estimating the distributions of the high–dimensional data will be coslty and
imprecise. Nonetheless, having these distributions shed light onto the nature of the data.

The methodology proposed in this article tries to reconcile obtaining a distribution of
the data, as well as unloading some of the burden of trying to do so in high dimensions.
Our method seeks a low dimensional subspace such that the estimated probability that the
projected data belongs to each population is as close to the true assignment as possible.
After projecting the observations onto a randomly drawn subspace, one iteratively tilts this
subspace so as to minimize the Kullback–Leibler divergence between the estimated posterior
probability distributions of the projected data, computed using Bayes’ theorem, and the
known distribution of the true assignment of the labels, typically composed of zeros and
ones. The methodology does not impose restrictions on the target dimension or on the
number of classes, other than the need to have enough observations from each class to robustly
estimate the corresponding probability density in a subspace of the reduced dimension. It
yields a highly flexible algorithm, since one can freely choose the method for estimating the
probability distribution of the data. The optimal subspace is found by applying successive
small rotations to the data in the direction of descent of the objective function; the sparsity of
the matrices involved allows one to efficiently compute and apply the corresponding rotation
matrices.

This article describes the algorithm and applies it to synthetic data as well as to the
Wisconsin Breast Cancer Diagnostic Classification problem.

2 The general problem

We are provided with N independent n-dimensional observations xi ∈ Rn, i = 1, ..., N ,
belonging to ncl populations Cj with nj elements each.

We seek a lower dimensional subspace of specified target dimension m < n, such that we
can best distinguish among the populations after having projected them onto this subspace.
The lower dimensional subspace sought can be described as the subspace spanned by the first
m rows of an orthogonal n× n matrix O.

3

For all observations xi, we introduce the following notation:

O(xi) =

[
Oz
Ow

]
(xi), Oz(xi) =: zi Ow(xi) =: wi

where Oz and Ow are m× n and (n−m)× n matrices respectively. Our lower dimensional
projection of the observations is given by the zi’s.

To measure how well this projection allows us to differentiate among the populations, we
compute, using the projected points zi, estimates for the probability densities ρj(z) in each
class Cj . Let πj be the prior probability that an observation belongs to the population Cj
(for the given samples, πj =

nj
N .) The posterior probability that an observation z belongs to

Cj is given by Bayes’ formula:

Pj(z) =
πjρj(z)∑
l πlρl(z)

.

Applied to z = zi, this gives

P ij := Pj(zi) =
πjρj(zi)∑
l πlρl(zi)

On the other hand, we know independently to which population each observation zi belongs.
We will denote this true distribution by Q, where

Qij =

{
1 if xi ∈ Cj
0 if xi /∈ Cj

We seek the projection that minimizes the distance between the posterior P and the true
assignment Q. A natural way of measuring the distance between two probability distributions
is given by the Kullback–Leibler divergence

DKL(Q||P) :=
1

N

∑
i,j

Qij log

(
Qij
P ij

)
,

which, when Q consists only of ones and zeros, agrees with the cross entropy

H(Q,P) = − 1

N

∑
i,j

Qij log(P ij).

In view of this, we introduce the objective function

M(Oz) = −DKL(Q||P) =
1

N

∑
i

∑
zj∈Ci

log(P ij),

which depends on the posterior distribution P . Since this in turn depends on the probability
density functions ρj , which are estimated using the projected data, the function M depends
only on the m-dimensional subspace onto which the data are projected, regardless of the

4

orthonormal basis chosen to represent it. We propose therefore to define the subspace Oz as
the solution to the optimization problem

max
Oz

M(Oz).

We illustrate the discussion that follows with some simple low-dimensional examples:
samples are generated from three different 2-dimensional Gaussian distributions, and we
apply our algorithm to find the 1-dimensional subspace that maximizes M (the details of
the algorithm are described in the following section.) We show two different kinds of plots.
One corresponds to the function M versus the rotation angle θ that parametrizes the two-
dimensional orthogonal matrices O,

O(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
The second plot displays the data generated and the line or lines in the direction of the first
row of O(θ∗) where M achieves its maximum.

A natural question to ask is whether the optimal subspace is unique. Figure 1 displays a
situation where uniqueness fails: three identical distributions centered at the vertices of an
equilateral triangle have three distinct solutions with the same maximal value of M , as the
number of observations grows. Such unlikely situation where two or more subspaces yield the
same maximal M does not really pose a problem: all (in this case three) subspaces are equally
suitable choices. A more difficult setting for optimization is the presence of local maxima.
An instance of this more likely event is represented in figure 2. In view of the possibility
of scenarios like this –harder to detect in a higher-dimensional setting–, a strategy needs to
be devised to perform a thorough search in the space of candidate subspaces. A procedure
to this effect that we implemented is to do various searches, each starting from a different,
randomly chosen hyperplane.

A third challenge for the optimization arises from the possibility of M being very pointy
close to a local maximum. Intuitively, this reflects a scenario where at least one of the
populations has its support concentrated in a neighborhood of a lower dimensional subspace.
In the Gaussian case, this corresponds to a covariance matrix with one or more very small
eigenvalues. Because of this degeneracy, tilting away slightly from the optimal subspace could
translate into a big change in M . We illustrate this situation in figure 3.

In the following two sections, we develop a methodology for maximizing M .

3 Two to one-dimensional case

The simplest scenario for the setting above has two-dimensional observations (x, y) that one
seeks to project onto a line:

O(θ)

(
x
y

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
=

(
z
w

)
,

5

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15
M vs !

!

M

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x

y

Figure 1: A very symmetric case, where all three Gaussian distributions have the same
covariance matrix and their means are equidistant along a circle. A larger (and similar)
number of observations drawn form each one of the populations increases the chances of M
achieving its maximum at the three different places depicted.

0 0.5 1 1.5 2 2.5 3 3.5
−0.8

−0.78

−0.76

−0.74

−0.72

−0.7

−0.68

−0.66
M vs !

!

M

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

x

y

Optimal subspaces

Figure 2: An example where the function M has two local maxima.

so the one-dimensional reduced observation z is given by

z = x cos(θ) + y sin(θ).

We will decompose the orthogonal matrix O into the product of small rotations

O = · · · Ok+1Ok+1 · · · O1O0

The algorithm that we propose works by ascent, updating at the k-th step z and w through
rotations by small angles θk:(

z
w

)
k+1

= O(θk)

(
z
w

)
k

=

(
cos(θk) sin(θk)
− sin(θk) cos(θk)

)(
z
w

)
k

.

6

0 0.5 1 1.5 2 2.5 3 3.5
−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3
M vs !

!

M

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

x

y

Figure 3: The subspaces corresponding to pointy maxima in M are colored in magenta.
Both the red and the blue population were generated with a covariance matrix with one of
its singular values close to zero. The magenta subspaces point in a direction close to that of
the singular vector corresponding to the very small singular value of one of either the red or
the blue populations.

For brevity, we shall omit the subscript k and k + 1 from here on; the context will make
clear which we are referring to. We will use subscripts instead to indicate observations and
superscripts for the classes. The small rotation Ok at each step of the algorithm will follow
the direction of ascent of the function we wish to maximize,

M =
1

N

∑
j

∑
zi∈Cj

log(P ji) =
1

N

∑
j

∑
zi∈Cj

log

(
πjρj(zi)∑
l πlρl(zi)

)
We explain how to find the angle θk. First, we select a family of probability density functions
ρj to model the population j of the form ρj(x) = ρ(z, αj), where the parameters αj are given
by the maximum likelihood estimator,

αj = argmax
∑
zi∈Cj

log ρj(zi, αj)

Differentiating M with respect to θ yields

∂M

∂θ
=

1

N

∑
j

∑
zi∈Cj

[
P jz (zi)

P j(zi)

∂zi
∂θ

+
P jα(zi)

P j(zi)

∂αj
∂θ

]

where the subscriptes z and α denote differentiation with respect to z and α.
We examine the components of this sum. The probability P depends on z and α only

through the probability density ρ(z, α), which we assume to have an explicit form that one
can differentiate with respect to z and α. Hence, we only need to compute the derivatives
of the observations and the parameters α with respect to the rotation angle θ. For the
observations, this is straightforward:

∂zi
∂θ

= −xi sin(θ) + yi cos(θ)

7

which, evaluated at θ = 0, yields
∂zi
∂θ

∣∣∣∣
θ=0

= yi

Notice how, instead of computing a new observation z, we can just extract the value y. This
alleviates the computations when proceeding to higher dimensions.
In order to find ∂α

∂θ , we recall that α is given by

αj = argmax
∑
zi∈Cj

log ρj(zi, αj),

so the optimal α satisfies ∑
zi∈Cj

ρα(zi)

ρ(zi)
= 0,

where the subscript α indicates differentiation with respect to α and we have omitted the
subscript j for clarity. Denoting F (zi) := ρα(zi)

ρ(zi)
and differentiating the identity above with

respect to θ yields ∑
zi∈Cj

[
Fz(zi)

∂zi
∂θ

+ Fα(zi)
∂α

∂θ

]
= 0,

from which it follows that
∂α

∂θ
= −

∑
zi∈Cj Fz(zi)

∂zi
∂θ∑

zi∈Cj Fα(zi)
,

an equation that allows us to express ∂α
∂θ in terms of functions known explicitly.

To conclude, since the small rotations Ok are close to the identity, we obtain the new
rotation angle θk from

θk = η
∂M

∂θ

∣∣∣∣
θ=0

where η is the learning rate. Then we form the rotation matrix and update the projections
zi of the observations xi.

3.1 An example: Gaussian distributions

To fix ideas, we develop the methodology for Gaussians estimators for the densities ρj . From
the updated zi = zi cos(θ)+wi sin(θ), we choose the maximum likelihood Gaussian univariate
density estimation

ρj(z) =
1√

2πσk
e
− 1

2

(
z−µj
σj

)2

,

where

µj =
1

nj

nj∑
i=1

zi

8

and

σ2
j =

1

nj

nj∑
i=1

(zi − µj)2 .

the sample mean and variance of the j-th class.
Since

dzi
dθ

∣∣∣∣
θ=0

= wi,

dµj
dθ

∣∣∣∣
θ=0

=
1

nj

nj∑
i=1

wji =: µwj

and
dσj
dθ

∣∣∣∣
θ=0

=
1

njσj

nj∑
i=1

(
zji − µj

)(
wji − µ

w
j

)
,

it follows that

dρj (zi)

dθ
=

[
− 1

σj2
(zi − µj)

(
wi − µwj

)
+
dσj
dθ

(
− 1

σj
+

(zi − µj)2

σj3

)]
ρj (zi) .

With this, one can compute the derivative of M with respect to θ:

dM

dθ
=

1

N

ncl∑
j=1

∑
zi∈Cj

d

dθ
log (Pj(zi))

=
1

N

ncl∑
j=1

∑
zi∈Cj

[
d

dθ
log (πjρj(zi))−

d

dθ
log

(∑
l

πlρl(zi)

)]

=
1

N

ncl∑
j=1

 ∑
zi∈Cj

(
dρj
dθ (zi)

ρj(zi)
−

(∑
l πl

dρl
dθ (zi)∑

l πlρl(zi)

))

and, in the simplest ascent procedure, take

θ = η(ε)
dM

dθ
, η(ε) =

ε√
ε2
∣∣dM
dθ

∣∣+
∣∣dM
dθ

∣∣2
where the formula for the learning rate η(ε) yields steps of size ε � 1 far from the optimal

θ∗, and of size
√∣∣dM

dθ

∣∣ near θ∗.

9

4 Multidimensional case

A more general setting has the original space of features to be n-dimensional, and the sought
subspace Z of dimension m < n. Still restricting ourselves to linear orthogonal projections,
we have (

z
w

)
k+1

= O
(

z
w

)
k

=

[
Oz
Ow

](
z
w

)
k

,

where z and w are m and (n−m)-dimensional vectors respectively, and

O =

[
Oz
Ow

]
is an orthogonal matrix, with Oz ∈ Rm×n and Ow ∈ R(n−m)×n.

For concreteness, we choose ab-initio the probability densities ρ to be multivariate Gaus-
sians,

ρ(z) =
1

(2π)
m
2 |Σ|

1
2

e−
1
2

(z−µ)>Σ−1(z−µ),

where the parameters µ and Σ are the maximum likelihood estimators

µ =
1

n

∑
i

zi Σ =
1

n

∑
i

(zi − µ)(zi − µ)>

For notational clarity, we eliminate the subscript for the observation and indicate averaging
over a population by a bar. Hence the previous equations become:

µ = z Σ = (z − µ)(z − µ)>

A general orthogonal matrix O depends on n(n− 1)/2 parameters: the independent entries
of the skew-symmetric matrix A of its Lie-algebra:

O = eA, with Aij = −Aij .

When A is small, each entry Aij defines a two-dimensional differential rotation in the plane ij.
We are not interested in rotations within the Z or W subspaces, since these would only act
as re-parameterizations of the subspaces. Then we need only consider the m(n−m) entries
where i ≤ m and j > m and their skew-symmetric counterparts. Hence, our matrix A has
the form

A = A(S) =

(
0m×m S

−S> 0(n−m)×(n−m)

)
where S is an m× (n−m) matrix.

10

4.1 Gradient ascent

We compute the gradient of M ,

Gij =
∂M

∂Sij
,

and write, by ascent,
O = eA(S), Sij = εGij ,

where ε is the learning rate.
Since the entry Sij corresponds to a rotation in the plane ij by the angle θ = Sji , which

we will refer to as Oij , we compute the derivative as follows:

Oij(x) =

1 ··· 0 ··· 0 ··· 0
...

. . .
...

...
...

0 ··· cos(θ) ··· sin(θ) ··· 0

...
...

. . .
...

...
0 ··· − sin(θ) ··· cos(θ) ··· 0

...
...

...
. . .

...
0 ··· 0 ··· 0 ··· 1

(

z
w

)
=

...

zi cos(θ)+wj sin(θ)

...
−zi sin(θ)+wj cos(θ)

...

Hence, computing the gradientG is entirely similar to the derivativeMθ of the two-dimensional
case: we will differentiate the function M with respect to θ and set θ = 0. Denoting by zk
the k-th entry of z, we have that

∂zk
∂θ

∣∣∣∣
θ=0

= δki wj ,

where wj is the j-th entry of w. Then

∂µk
∂θ

∣∣∣∣
θ=0

= δki wj ,

so µθ is a vector whose only non-zero entry is located in the i-th place, where we find the
average over all the j-th entries of the w’s. Likewise for Σ:

∂Σ

∂θ

∣∣∣∣
θ=0

= (zθ − µθ)(z − µ)> + (z − µ)(zθ − µθ)>

=

 0 · · · 0
− (wj − wj)(z − µ) −
0 · · · 0

+

 0 | 0
... (wj − wj)(z − µ)

...
0 | 0

 =: Σθ

is a sparse matrix with non-zero entries only along its i-th row and i-th column. Now we can
compute

∂ρ

∂θ

∣∣∣∣
θ=0

(z) =
ρ(z)

2
[(z − µ)>(Σ−1ΣθΣ

−1)(z − µ)

− (z − µ)>Σ−1(zθ − µθ)− (zθ − µθ)>Σ−1(z − µ)

− tr(Σ−1Σθ)]

11

and finally

∂M

∂θ
=

1

N

ncl∑
j=1

∑
zi∈Cj

∂

∂θ
log (Pj(zi))

=
1

N

ncl∑
j=1

∑
zi∈Cj

[
∂

∂θ
log (πjρj(zi))−

∂

∂θ
log

(∑
l

πlρl(zi)

)]

=
1

N

ncl∑
j=1

 ∑
zi∈Cj

(
∂ρj
∂θ (zi)

ρj(zi)
−

(∑
l πl

∂ρl
∂θ (zi)∑

l πlρl(zi)

)) .

Replacing θ by Sij , we have all the entries of the gradient of M ,

Gij =
∂M

∂Sji

The appendix describes how to use the sparsity of the matrices involved to compute ∂ρ(z)
∂θ

efficiently.
It only remains to compute O = eA(S), where Sij = εGij . It turns out that, given the

special structure of A, the matrix O can also be computed very efficiently. Let S = UΣV ′ be
the SVD decomposition of S. Then, we compute eA via the following formula:

O = eA = I +A+
A2

2!
+ · · · =

(
Ox,x Ox,y
Oy,x Oy,y

)
=(

0m 0
0 In−m

)
+

m∑
j=1

(
uj 0
0 vj

)(
cos (σj) sin (σj)
− sin (σj) (cos (σj)− 1)

)(
u′j 0

0 v′j

)
, (1)

which only uses the first m columns of V . With this representation, the matrix O is inex-
pensive to compute and to apply to the observations.

5 Numerical examples

In this section, we illustrate the performance of the algorithm presented in this paper via
several synthetic examples and one real life application.

5.1 Visualization

First, we use a few plots to illustrate graphically the output of the algorithm. We generate
synthetic data, drawing between 200 and 400 points from five multivariate distributions in
dimensions n = 20 and n = 10 . We then apply our algorithm, seeking an optimal two-
dimensional subspace. For reference, we show the projection of the data onto a random

12

two dimensional space; a second plot shows the data projected onto the plane found by the
algorithm.

In Figure 4, we choose five 20-dimensional Gaussians with means uniformly distributed
on the sphere of radius 3 and covariance matrices with singular values in intervals ranging
from [0, 1] to [0, 5]. This yields five distributions with approximately equidistant means and
varying shapes and spreads. We show a picture of these data points projected onto a random
subspace in the first subfigure, and onto the subspace found by the algorithm in the second,
where the five distributions are much more clearly separated.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4: Samples drawn from five 20-dimensional Gaussians, with means on the sphere with radius 3
and singular value ranges varying [0, 1] to [0, 5]. On the left, the dataset projected onto a random two-
dimensional subspace; on the right, the dataset projected onto the subspace found by the algorithm.
Even though some populations are very spread out in some directions, the distance between the means
between different populations is large enough to yield good results in few iterations.

In Figure 5, the points are drawn from five 10-dimensional mixtures of two Gaussians.
Each mixture has means drawn uniformly from the sphere with radius 3, covariance matrices
whose singular values are drawn uniformly from [0, 1] and [0, .7], and mixing coefficients π1

and π2 between 1/3 and 2/3. The mixed nature of each distribution, clearly noticeable
on a random plane, is much less obvious on the optimal one: a byproduct of maximally
differentiating the five distributions is to make each relatively compact.

These examples illustrate how the subspace found by the algorithm aids in the visualiza-
tion of the data. A natural application, developed in the following subsection, is to use this
subspace to build a classifier, whose performance then measures the quality and usefulness
of the subspace found.

5.2 Numerical example

In order to measure the performance of our method by evaluating its performance as a
classifier, we draw samples from two ten-dimensional Multivariate Gaussian distributions,
200 observations from the first and 100 from the second. Both distributions have mean zero.

13

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5: Between 200 and 400 points, drawn from five 10-dimensional Mixtures of two Gaussians,
each with means drawn uniformly from the sphere with radius 3, singular values of their covariance
matrices drawn uniformly from [0, 1] and [0, .7] and mixing coefficients π1 and π2 between 1/3 and
2/3. The dataset projected onto a random two-dimensional subspace is shown on the left, and onto
the subspace found by the algorithm on the right.

Let A1 and A2 equal the identity matrix, except for the two first diagonal entries, given by
A1(1, 1) = 2, A1(2, 2) = 0.3, A2(1, 1) = 0.3 and A2(2, 2) = 4 respectively. We draw a random
orthogonal matrix Q, and set the covariance matrices to be Σ1 = QA1Q

′ and Σ2 = QA2Q
′.

Hence, both populations look very similar in all but two dimensions. Figure 6 shows how the
points would appear projected onto the plane, had we not rotated the covariance matrices.
We apply our algorithm in a nested fashion: Given the training set, we first reduce from 10

−4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

data1
data2

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

data1
data2

Figure 6: Points of the two populations projected onto the plane where the covariance ma-
trices differ.

to 5 dimensions. Once the 5-dimensional subspace is found, we project the training set onto
this hyperplane, and run our algorithm again, to reduce to the final number of dimensions.

14

We vary this to be 3, 2 and 1. Once we have projected our data from 10 dimensions to 5 and
from 5 to either 3, 2 or 1, we estimate the density of both classes, and, via Bayes’, compute
for each observation the posterior probability of belonging to either class. We then assign
each observation to the class with the highest posterior probability. In our restults, we refer
to these three outputs as RFE–1, RFE–2 and RFE–3.

We present two results. First, we use the whole dataset to train the classifier, and then
apply it to the entire dataset. We evaluate its performance classifying the whole set by giving
the accuracy, that is, the percentage of samples correctly classified. Secondly, we perform a
5-fold cross validation, where we split the training set into 5 roughly equal parts, keep one
part as the test set, and use the other four to train the classifier. Afterwards, we apply the
classifier to the test set. Each observation will act as an unseen example only once, and, at
the end, we obtain the proportion of correctly classified samples. Since the accuracy given in
cross validation depends on the random partition of the data set into training and test sets,
we carry out this procedure 20 times and report the average accuracy, as well as the standard
deviation.
This analysis is also carried out with several classifiers: Linear and quadratic discriminant
analysis, Naive Bayes and Support Vector Machines, as well as some variants of these. We
use the corresponding built-in functions in MATLAB 2012a.

Method Accuracy Acc 5-fold cv (std)

LDA 55.33 51.92 (1.67)

QDA 83 76.87 (1.24)

NBGau 74.67 71.82 (1.02)

NBKer 75.67 70.67 (1.1)

SVMLin 55.67 52.3 (2.18)

SVMPoly 100 67.467 (1.77)

SVMRBF 100 69.1 (0.77)

RFE-1 80.28 (7.78) 75.37 (3.89)

RFE-2 84.92 (4.33) 81.32 (2.96)

RFE-3 86.1 (0.73) 82.73 (1.29)

From the results, we can see that when the whole set is used for training, SVMs yield the
highest accuracy, with our method and QDA far behind. However, when carrying out cross
validation, we see that our algorithm outperforms the rest of the methods in accuracy, when
the final dimension we reduce to is either 2 or 3. When it is 1, too much information is lost
and we can’t differentiate the samples as well as QDA or Naive Bayes can.

The second table displays the values for the function M . For this analysis, we compare
our method to those who output a posterior probability of each sample belonging to each
one of the two classes. These methods are LDA, QDA and the Naive Bayes classifiers. First,
we train each classifier with the whole data set, compute the posterior probability of each

15

observation belonging to each group, and compute M as

M =
1

N

∑
j

∑
xi∈Cj

log (Pj(xi))

Then we perform a 5-fold cross validation, and compute a final M as the sum of the M ’s
computed from each one of the test sets, for that chosen partition of the data set. We repeat
the procedure 20 times, and report the average of the final M ’s, as well as their standard
deviation. We also show the mean squared error (MSE) for both scenarios, where

MSE =
1

N

∑
j

∑
xi∈Cj

(1− Pj(xi))2

Method M M 5-fold CV (std) MSE MSE 5-fold CV (std)

LDA -0.68 -0.72 (0.01) 0.24 0.26 (0.004)

QDA -0.34 -0.45 (0.02) 0.11 0.15 (0.004)

NBGau -0.52 -0.59 (0.01) 0.18 0.2 (0.005)

NBKer -0.47 -0.62 (0.01) 0.15 0.21 (0.005)

RFE-1 -0.46 (0.068) -0.5 (0.03) 0.15 (0.029) 0.16 (0.011)

RFE-2 -0.35 (0.046) -0.41 (0.03) 0.11 (0.013) 0.14 (0.011)

RFE-3 -0.32 (0.019) -0.39 (0.02) 0.1 (0.005) 0.13 (0.007)

Once again we see that our method outperforms the others when we project to 3 dimensions.
Using M or MSE as measures of achievement of a classifier is more revealing than the

more widely used accuracy, since they do not just count the number of hits and misses as
does the latter, but quantify instead the degree of confidence assigned to each classification
though the posterior probability P .

For the second experiment, we produce a dataset consisting of two populations, the first
one with 300 and the second one with 200 data points. Again, our observations will be 10–
dimensional, and the difference between both populations will lie in a two dimensional plane.
Both populations will consist of mixtures of gaussians. The first one will consist of three com-
ponents and the second one of two. The means of the first mixture will be given by (−2,−2),
(0.0) and (2, 2), and the covariance matrices will be the diagonal, with Σ(1,1) = Σ(2,2) = 0.1.
The second mixture will have means (−1,−2) and (1, 2), and diagonal covariance matrices
with Σ(1,1) = Σ(2,2) = 0.5. We show the dataset projected onto the plane of interest in Figure
6. The remaining eight entries in both classes will be draws of a standard gaussian.

16

Method Accuracy Acc 5-fold cv

LDA 54.6 46.64 (1.95)

QDA 81.6 77.21 (0.89)

NBGau 64.4 60.14 (1.13)

NBKer 70.4 59.87 (0.95)

SVMLin 54.2 46.97 (1.81)

SVMRBF 99.6 70.14 (1.34)

RFE-1 72.46 (10.56) 71.03 (4.84)

RFE-2 81.95 (4.63) 77.44 (2.97)

RFE-3 83.31 (0.33) 80.25 (0.95)

Again our method yields a higher accuracy in cross validation when the final target dimension
in either 2 or 3

Method M M 5-fold CV MSE MSE 5-fold CV

LDA -0.689 -0.7144 (0.0053) 0.2476 0.2604 (0.0026)

QDA -0.3963 -4925 (0.0089) 0.1292 0.1624 (0.0027)

NBGau - 0.6383 -0.6857 (0.0088) 0.2233 0.2444 (0.0039)

NBKer -0.5798 -0.7154 (0.0108) 0.1975 0.2508 (0.0033)

RFE-1 -0.5172 (0.1026) -0.5398 (0.049) 0.1752 (0.0428) 0.1832 (0.0203)

RFE-2 -0.4093 (0.0494) -0.4777 (0.0279) 0.1322 (0.0201) 0.1569 (0.0115)

RFE-3 -0.3906 (0.0060) -0.4507 (0.0091) 0.1249 (0.0021) 0.1459 (0.0031)

6 Application

We apply our algorithm to the Wisconsin Diagnostic Breast Cancer classification problem,
available in the Machine Learning Repository of the University of California Irvine. We de-
cided to use this data set because several groups have applied different classification methods
to it. A detailed description of the data set can be found in [8]. The dataset consists of 30
features extracted from images of biopsies of the breast, such as symmetry, perimeter, etc.
There are 569 images, corresponding to 212 malignant and 357 benign cases.

6.1 Data and preprocessing

We normalize the data so that each each feature has mean zero and variance one across
all the patients. Also, we can toss out uninformative features as follows: Our algorithm
chooses hyperplanes in which, after estimating the density of each population as a Gaussian,
we can assign a posterior probability of each observation belonging to the right population
the most accurately. Hence, we can compute our function M for each feature, which is a
fast to compute, one-dimensional estimate, and then choose a small number of the features
that scored a high value of M . In our case, we kept the 20 features with the highest M , in
descending order.

17

6.2 Methodology

We apply our algorithm in a nested fashion: Given the training set, we first reduce from 20 to
10 dimensions. Once the 10-dimensional subspace is found, we project the training set onto
this hyperplane, and run our algorithm again, to reduce to 5 dimensions. Having found an
optimal 5-dimensional hyperplane, we once more project the 10 dimensional data onto the 5
dimensional hyperplane, and one last time, apply our method to reduce from 5 dimensions
to one.

Once we have projected our data from 20 dimensions to 10, from 10 to 5 and from 5 to
1, we estimate the density of both classes and, via Bayes’, compute for each observation the
posterior probability of belonging to either class. We then assign each observation to the
class with the highest posterior probability.

As with the synthetic examples of the prior section, we calculate the accuracy of the
classifier in sample and through 10 and 5-fold cross-validation.

Method Accuracy Acc 10-fold CV (std) Acc 5-fold cv (std)

LDA 96.84 96.07 (0.24) 96.05 (0.31)

QDA 97.54 95.6 (0.23) 95.55 (0.32)

NBGau 94.02 93.33 (0.29) 93.36 (0.29)

NBKer 95.08 94.37 (0.22) 94.18 (0.29)

SVMLin 98.95 97.22 (0.33) 97.12 (0.43)

SVMQuad 100 94.09 (0.69) 93.55 (0.79)

SVMPoly 100 94.17(0.44) 94.48 (0.52)

SVMRBF 100 90.41 (1.04) 88.61 (1.45)

RFE–1 97.92 (0.3167) 97.12 (0.54) 96.86 (0.96)

RFE–2 97.69 (0.5077) 96.74 (0.5) 96.74 (0.53)

RFE–3 97.72 (0.4365) 96.43 (0.52) 96.34 (0.61)

Applying our model in sample, using the whole data set first to train and then to test,
we obtained 560 correctly classified samples out of 569. The SVM models yielded a higher
accuracy. However, in the 10-fold cross validation, our method gave the highest accuracy.

Again as with the synthetic examples before, the second table displays the values for the
function M and the mean squared error MSR in and out of sample for those methods that
output a posterior probability of each sample belonging to each one of the two classes.

Method M M 10-fold CV (std) MSE MSE 10-fold CV (std)

LDA -0.0783 -0.1118 (0.0045) 0.0225 0.0291 (0.0011)

QDA -0.2548 -0.5873 (0.0500) 0.0254 0.0400 (0.0018)

NBGau -0.5369 -0.6587 (0.0691) 0.0580 0.0629 (0.0017)

NBKer -0.3821 -0.5551 (0.1235) 0.0430 0.0519 (0.0018)

RFE–1 -0.0778 (0.005) -0.1022 (0.0183) 0.019 (0.0016) 0.0262 (0.0060)

RFE–2 -0.0754 (0.0085) -0.1030 (0.0127) 0.0176 (0.0021) 0.0258 (0.0029)

RFE–3 -0.0690 (0.008) -0.1070 (0.0174) 0.0163 (0.002) 0.0266 (0.0028)

18

The methodology of this article, when projecting to 1 dimension, obtains an accuracy compa-
rable to linear SVM’s in the cross-validation scenarios. It is also the method that minimizes
both the mean squared error and that maximizes our function M .

Figure 7 displays the observations projected onto the optimal two dimensional subspace
found by our algorithm.

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

6

7

Malign
Benign

Figure 7: Projection of the data onto the optimal 2-dimensional plane. The algorithm finds
a plane where the benign cases are tightly clustered together. One can also notice that a
Gaussian model fits well both populations, and that they are far apart and different enough
that classifying using the posterior probability from Bayes theorem will yield good results.

7 Conclusions

A novel method for finding a lower dimensional representation of high dimensional obser-
vations corresponding to different classes has been developed. The methodology proceeds
through small rotations of the subspace sought. For a given subspace, the probability density
of the various classes is estimated, and used through Bayes to find a posterior probability
that each observation belongs to each class. The objective function guiding the rotations is
the Kullback-Leibler divergence between this soft assignment and the true membership of the
data.

The methodology has been tried on two synthetic examples and to the WBCD dataset. In
all cases, it outperforms several benchmark methods; for the latest example, it slightly under-
performs linear support vector machines, though the latter only provides a hard assignment,

19

with no probability associated with it.

Appendix: Computing ∂ρ(z)
∂θ efficiently

Let
∂ρicl(z)

∂θ
, θ = Sij

denote the derivative with respect to the rotation angle θ in the plane i− j, of the density ρ,
with parameters µ and Σ computed using the population (icl), evaluated at a point z. We
have three indices: two for the plane and one for the population from which ρ was computed.
Hence,

∂ρicl(z)

∂θ
=
ρicl(z)

2
[(z − µicl)>(Σ−1

icl Σθ,iclΣ
−1
icl)(z − µicl)

− (z − µicl)>Σ−1
icl (zθ − µθ,icl)− (zθ − µθ,icl)>Σ−1

icl (z − µicl)
− tr(Σ−1

icl Σθ,icl)]

In order to examine the different components of this expression, let us define

B1 = (z − µicl)>(Σ−1
icl Σθ,iclΣ

−1
icl)(z − µicl)

B2 = (z − µicl)>Σ−1
icl (zθ − µθ,icl)

B′2 = (zθ − µθ,icl)>Σ−1
icl (z − µicl)

B3 = tr(Σ−1
icl Σθ,icl),

so that
∂ρicl(z)

∂θ
=
ρicl(z)

2

(
B1 −B2 −B′2 −B3

)
.

• B1: Let v := (z−µicl)>Σ−1
icl , so B1 = vΣθ,iclv. The matrix Σθ,icl’s only non-zero entries

are at the i-th column and row, with values

u := (zθ(i)− µθ,icl(i)) (z − µicl),

where the bar denotes averaging over all observations z in the icl class. Then

B1 = 2v(i) < u, v > .

• B2 and B′2: Since the vector (zθ,jcl−µθ,icl) has its only non-zero entry at the i-th place,
with value (zθ,jcl(i) − µθ,icl(i)), in order to compute B2 we just need to compute the
following product

B2 = (zθ,jcl(i)− µθ,icl(i))
〈
(zjcl − µicl),Σ−1

icl (ith row)
〉
.

Since Σ−1 is symmetric, B′2 is equal to B2.

• B3: To compute this term, we only need to add the diagonal entries of a matrix times
a matrix whose only non-zero entries are given in one column and one row. Hence, we
have

B3 = 2
〈
u,Σ−1

icl (ith row)
〉

20

References

[1] Bishop, C. M., Pattern recognition and machine learning, Springer, 2006.

[2] I. Rish., “An empirical study of the Naive Bayes Classifier”, In Proceedings of IJCAI-01
workshop on Empirical Methods in AI, 41–46, 2001.

[3] Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K. R. (1999). Fisher dis-
criminant analysis with kernels. In Proc. IEEE Neural Networks for Signal Processing
Workshop, NNSP.

[4] Guyon, I. and Elisseeff, A., “An Introduction to Variable and Feature Selection”, Journal
of Machine Learning Research 3, 1157-1182, 2003.

[5] Kullback, S. and Leibler, R. A., “On information and sufficiency”, The Annals of Math-
ematical Statistics, 22, 79–86, 1951.

[6] Hastie, T. and Tibshirani, T., “Discriminant Analysis by Gaussian mixtures”, Journal
of the Royal Statistical Society. Series B, 58, 155–176, 1996.

[7] Jain, A. K., Duin, R. P. W. and Mao, J., “Statistical Pattern Recognition: A Review”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, No. 1, 2000.

[8] Sewak, M., Vaidya, P., Chan, C.C. and Duan Z.H.,“SVM approach to Breast Cancer
Classification”, Second International Multisymposium on Computer and Computational
Science, IEEE”, 32–37, 2007.

[9] J. Han, M. Kamber, Data Mining, Morgan Kaufmann Publishers, 2001.

21

