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AN OPTIMIZATION APPROACH TO MODELING SEA ICE
DYNAMICS. PART 1: LAGRANGIAN FRAMEWORK∗

HELGA S. HUNTLEY† , ESTEBAN G. TABAK‡ , AND EDWARD H. SUH‡

Abstract. A new model for the dynamics of sea ice is proposed. The pressure field, instead
of being derived from a local rheology as in most existing models, is computed from a global op-
timization problem. Here the pressure is seen as emerging not from an equation of state but as a
Lagrange multiplier that enforces the ice’s resistance to compression while allowing divergence. The
resulting variational problem is solved by minimizing the pressure globally throughout the domain,
constrained by the equations of momentum and mass conservation, as well as the limits on ice con-
centration (which has to stay between 0 and 1). This formulation has an attractive mathematical
elegance while being physically motivated. Moreover, it leads to an analytic formulation that is also
easily implemented in a numerical code, which exhibits marked stability and is suited to capturing
discontinuities. In order to test the theory, the equations for a one-dimensional model are cast in
terms of Lagrangian mass coordinates. The solution to the minimization problem is compared to an
exact analytic solution derived using jump conditions in a simple test case. Another case is examined,
which is somewhat more complicated but still allows our physical intuition to verify the qualitative
results of the model. Good agreement is found. A final validation is performed by a comparison
with a particle-based model, which tracks individual ice floes and their inelastic interaction in a
one-dimensional domain.
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1. Introduction. Unlike the dynamics of the ocean waters, sea ice dynamics is
relatively little understood. Part of the problem is that ice is a somewhat peculiar
substance; it is neither hard as steel, nor elastic like rubber, nor completely fluid
like a liquid. Colliding ice floes do not behave like the familiar billiard balls with
perfectly round shapes and elastic collisions. An additional challenge for the modeler
interested in the large scales of the whole Arctic, or at least an entire strait, is the limit
of resolution. It is impossible to follow individual ice floes. Instead the behavior of a
field of floes on the order of several square kilometers must be summarized by tracking
an average velocity (mass-weighted), a thickness distribution, and the concentration
of ice in the grid box. On this scale, one can no longer rely on first physical principles
for the solid bodies making up the ice. So what are the laws of physics describing the
motion of a half empty box of solid substance that strongly resists compression up to
its breaking point but is easily pulled apart due to a multitude of fractures?

Scientists over the years have suggested various analogies, two of which have
shown enough promise to have stood the test of time: ice as a fluid, and ice as a
granular material. Most models today following the first of these approaches in some
way relate back to the sea ice rheology proposed by Hibler in [3], based on the postulate
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that ice behaves like a nonlinear viscous-plastic compressible fluid. Improvements have
been made on the original model, including an extension with an elastic component to
the constitutive law, but the essential character has been maintained (cf., for example,
[5]). Parts of the “state-of-the-art” formulation of the rheology are based on the
observations that ice resists compression up to a breaking point (plastic); the viscous
character is added to avoid multivalued functions, while the elastic terms are mostly
introduced for greater numerical stability. While the numerical results are generally
good, to some extent this is due to parameter tuning to available (though often scarce)
data.

Models based on a cavitating fluid rheology also fall into this first category. They
do not naturally incorporate shear strength (although this has been partially ad-
dressed), but are computationally somewhat simpler and less expensive, making use
of an iterative correction scheme. These models also have had some success in repro-
ducing realistic ice transport (cf., for example, [2]).

In the second category, a granular rheology has been developed by Tremblay and
Mysak [11], as well as others (e.g., the CRREL1 uses a high-resolution granular sea
ice model, based on [4]). These are better equipped to handle such tasks as tracking
leads in an ice field, although a much higher resolution is required for such problems.

Model intercomparison studies have found that the choice of rheology has a sig-
nificant impact on the model output; see, e.g., [6] and [1]. A somewhat more compre-
hensive study, SIMIP, the Sea Ice Model Intercomparison Project, was carried out in
the late 1990s. It compared viscous-plastic, cavitating fluid, compressible Newtonian
fluid, and free-drift with velocity corrections rheologies. Overall, it was found that
the viscous-plastic rheology produced the best results, while the free-drift simulation
showed large errors in ice drift, thicknesses, and export through the Fram Strait, the
compressible Newtonian model yielded excessive ice thickness build-up in the central
Arctic, and the cavitating fluid rheology resulted in errors in ice drift and the thick-
ness pattern. However, in some respects none of the models gave entirely satisfactory
results. Thus, for example, in an analysis of the summer sea ice extent anomalies,
none of the model results lies consistently within the error band of the observations
(from satellite data). The same is true for anomalies of annual mean ice thickness
in the Beaufort Sea (where the observational data was collected with upward looking
sonars). These results were reported in [7]. The present work on a new approach to
treating the internal stress term for sea ice dynamics was motivated in part by the
realization that existing models not only disagree significantly with each other but
also have remaining difficulties reproducing some observed phenomena, such as the
formation of ice arches in the Canadian Arctic Archipelago.

We have chosen to follow the first approach, an analogy to fluids, but are em-
ploying a novel global formulation of the rheology as the solution to an optimization
problem. We attempt to build a theoretical framework, with supporting numerical
experiments, to reproduce and explain the relevant observations of sea ice dynamics.
We start with the analogy that ice behaves like a fluid with some special properties.
In particular, sea ice exhibits semi-incompressibility: It allows divergence without
much resistance, due to the many cracks and leads within the ice pack, but strongly
resists convergence at high concentration. The goal is to find an expression for the
pressure enforcing this semi-incompressibility, which is mathematically elegant and
computationally efficient, allowing for clean analytic solutions in simple cases and
numerical simulations of more complicated ones. Reliance on parameterization is to

1Cold Regions Research and Engineering Laboratory of the US Army Corps of Engineers.
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be minimized. To this end, we start with the fluid equations and investigate how
they need to be modified to retain validity in the context of sea ice. The central
hypothesis is that the pressure acting within the ice field is the minimum necessary to
prevent the unrealistic situation of multiple floes occupying the same space. In other
words, the pressure term enforces the condition that the area fraction covered by ice
(the concentration) may not exceed 1. Our formulation permits the calculation of the
pressure using linear programming, benefiting from existing schemes, without tuning
to observations.

The goal of the work reported in this article is to demonstrate the feasibility of
having the pressure solve a variational problem. To this end, we concentrate on the
simplest possible scenario, one of unforced one-dimensional flows, with uniform ice
thickness and infinite yield pressure, so that no crushing occurs. A companion paper
(Part 2) discusses the effects of ice yielding. Current work, which will be reported
in later publications, involves extending the flow to two horizontal dimensions and
allowing for nontrivial ice thickness distributions. A more detailed discussion of many
of the results in this paper can be found in [9]. Here we will consider a simplified
Lagrangian system, which allows both analytic solutions to basic test cases and a
straightforward numerical implementation to be tested against a particle-based model
resolving individual ice floes. As will be shown, the minimal pressure hypothesis leads
to very encouraging results in the studied test cases, justifying further investigation
of this particular rheology.

2. Coarse grained ice dynamics as fluid dynamics. We shall use the fol-
lowing variables:

c = concentration of ice (fraction of sea surface area covered by ice),

h = average thickness of the ice,

u = (u, v) = horizontal velocities,

S = sources − sinks of ice (melting and freezing, precipitation),

F x, F y = sum of zonal, meridional forces

(Coriolis, wind, currents, sea surface tilt, pressure).

Note that in the following we are taking the density of ice ρ, which is nearly
constant, to be identically 1. This convention simplifies the notation and has no
influence on the qualitative results we are interested in. Equivalently, one can describe
this as absorbing the density into the thickness parameter, so that h is measured in
kg/m2.

Most of today’s sea ice dynamics models employ a thickness distribution function
to allow for ice of various thicknesses in any one grid cell (cf. [10]). For the simple
model we are building here to verify the minimal pressure hypothesis, we will not
include this level of complexity at this time. Similarly, we are not concerned with
tracking a velocity distribution within a grid cell, but assume the velocities u and v
to be mass-averaged velocities for the entire box.

In Eulerian coordinates, the mass conservation and momentum conservation equa-
tions can be written as

(ch)t + ∇ · (chu) = S,(1)

(chu)t + ∇ · (chuu) = F x,(2)

(chv)t + ∇ · (chvu) = F y,(3)
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where the product ch (really chρ) plays the role of a density in analogy with the
conventional fluid equations.

What differentiates the case of ice from standard fluids is that, in addition to
these two conservation laws, we also have the constraint that c can vary (unlike the
density of incompressible fluids) but may not exceed 1, which is enforced by a pressure
force. In this paper, we want to investigate the nature of this pressure force and a
new way to calculate it. To isolate this issue, we will consider the one-dimensional
case without sources or sinks (S = 0). By defining F = F x/(ch), subtracting u times
(1) from (2), and dividing by ch, the system reduces to

(ch)t + (chu)x = 0,(4)

ut + uux = F.(5)

Notice that, even if F were given (which it is not, since the pressure is one of the
variables to be determined), this system has only two equations but three unknowns.
Mass conservation alone does not provide for a way to evolve the fractional area c
and the mean thickness h separately. Extra physical assumptions are necessary to
complete the system’s description. In the absence of crushing (or sources or sinks), a
natural assumption is that the thickness h is advected with ice floes:

ht + uhx = 0.(6)

In words, when a pack of floes is pulled apart, the floes do not become thinner: It is
the space between them that increases, thus reducing the fractional area coverage c.
(The assumption of advection of h is relaxed in Part 2 of this work.)

3. The Lagrangian formulation. To gain further insight into this system and
to make analytic solutions easier to obtain, we introduce the Lagrangian mass coor-
dinates2 {

ξ =
∫ x

0
ch dx̂,

τ = t.
(7)

The resulting Lagrangian equations in these coordinates for one-dimensional ice
motion without sources or sinks are(

1

ch

)
τ

= uξ,(8)

uτ = F.(9)

(See the appendix for the derivation.)
Introducing the variable k ≡ 1

ch − 1 yields

kτ = uξ,(10)

uτ = F.(11)

While these equations have a beguilingly simple form, we have now lost sight of
the crucial variable c, which we have to constrain. We would like to translate this

2Lagrangian mass coordinates are often used in astronomical papers, as well as in studies of
hydrodynamics; cf., for just one example, [12].
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constraint into a constraint on k. In the case where h ≡ 1, this is easily done: The
constraint c ≤ 1 now becomes k ≥ 0. An extension to varying h is straightforward
(the constraint becomes k ≥ 1−h

h ), but it obscures the pressure effect. Thus, for
easier visualization, we shall focus on the particular case of constant ice thickness
h ≡ 1. (Variations in ice thickness are reintroduced in Part 2.) Note that, in addition
to excluding melting and freezing processes as well as precipitation, fixing h also
eliminates crushing from the problem. While a realistic and versatile ice model will
ultimately require us to bring these components back, the nature of the pressure force
and its role in ice dynamics can more easily be investigated in isolation. For this
purpose we make one more simplification and isolate the pressure term by setting all
other forces equal to zero.

What form this pressure term should take is not immediately obvious. Various
suggestions have been made over the years, which fall into two main categories. On
the one hand, there are the viscous-plastic or viscous-plastic-elastic models, which all
hark back to the original formulation in terms of the stress/strain yield curve in [3].
On the other hand are the cavitating fluid models, which calculate the pressure in a
series of correction steps (cf. [2]). While these are backed up by more or less realistic
model outputs, they are dependent on empirical parameter tuning and exhibit some
numerical shortcomings in the first case and follow an iterative relaxation scheme in
the latter. The goal of our approach is to minimize the reliance on empirical parameter
tuning and iterative schemes to the extent possible. Our physical intuition tells us
that the pressure does not act unless it is necessary to prevent ice concentration
from exceeding 1, i.e., to prevent two ice floes from occupying the same space. In
other words, while c is far from 1, the pressure force F = 0, and the flow follows
uτ = 0. Each parcel’s velocity does not change with time. By adding a pressure
to the system, we would like to deviate as little as possible from this route while
satisfying the constraint. This suggests a mathematical formulation as a constrained
optimization problem, where the pressure is defined as a Lagrange multiplier.

We do not expect the pressure force to push the ice apart, as any elastic rheology
would. Rather, it builds up as the ice converges, solely to prevent multiple floes
from occupying the same space. The goal then is to find a pressure that allows us to
minimize the change in u over time. Lagrange multipliers were invented for just such
constrained optimization problems. Here we have two constraints acting on u, the
equation for the evolution of k and the lower limit on k. Since k is defined at each
point ξ, this in fact amounts to infinitely many constraints, one for each k(ξ).

A note on notation: In the following (except for section 9), we will be discussing
only the Lagrangian formulation of the problem. Thus, we will simplify our notation
by replacing the Greek letters for the independent variables by their Roman cousins
again, i.e., by writing the Lagrangian mass coordinate ξ as x and the Lagrangian time
coordinate τ as t.

4. Pressure as a Lagrange multiplier. The problem is at each time t to

minimize ‖ut‖,(12)

given kt = ux,(13)

subject to the constraint k ≥ 0.(14)

Discretizing this system in time, using an implicit scheme, we can reformulate the
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problem for each n as follows:

minimize ‖un+1 − un‖,(15)

given kn+1 = kn + Δt un+1
x ∀n ≥ 0,(16)

subject to the constraint kn ≥ 0 ∀n ≥ 0.(17)

To simplify the notation, let ũ = un+1, u = un, and k = kn. Choosing to define
the norm used on ut as the 2-norm, our task is then to

minimize

∫
(ũ− u)2 dx,(18)

subject to k + Δt ũx ≥ 0.(19)

The corresponding variational principle states that there exist Lagrange multipli-
ers λ(x) ≤ 0 such that

δ

∫ {
(ũ− u)2 + λ(x)(k + Δt ũx)

}
dx = 0,(20)

from which it follows (as shown in the appendix) that

2 (ũ− u) = Δt λx =⇒ ũ− u

Δt
=

1

2
λx.

The equivalent continuous statement is

ut =
1

2
λx.(21)

We will adopt the convention of writing the pressure as p = −λ/2. Our final sys-
tem for the Lagrangian formulation of one-dimensional sea ice dynamics with constant
thickness and without external forces is thus

kt = ux,(22)

ut = −px,(23)

k ≥ 0,(24)

p ≥ 0.(25)

5. The conundrum is unresolved: Introducing the concept of minimal
pressure. We have just derived a form for the pressure term as the x-derivative of a
Lagrange multiplier. While this gives us the nice result that the pressure looks very
much like the pressure for incompressible fluids, we still have little information about
what the pressure actually is.

If we were able to resolve single floes, a constitutive law for frozen water would
provide us with a way to calculate the pressure within each ice floe (provided that we
know the external forces, including the pressure applied by other ice floes). Since we
do not have resolution at this scale, however, we have to find a different method.

The pressure, constructed as a Lagrange multiplier, serves the purpose of enforcing
the restriction that ice concentration cannot exceed 1 (or, equivalently, k cannot dip
below 0). As long as k is far from 0, one would consequently expect p to equal 0.
On the other hand, when k reaches 0, p needs to take on values to prevent it from
decreasing further. (Note that this means that always one of k and p is zero.) There
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is no reason, however, why it should push the ice apart, i.e., why the arising pressure
should exceed the minimum necessary to satisfy the constraint. It is then a reasonable
suggestion that the pressure should be calculated as the minimum necessary to enforce
the constraint.

One should note at this point that in the more complex cases where h is allowed
to vary, and in particular where crushing of the ice is permitted, this p needs to
be limited by a maximal p. This is standard in other ice models (for two different
formulations, see [3] and [8]). This extension for the minimization formulation for the
pressure as we propose here will be discussed in Part 2.

Beyond the heuristic argument presented above, the formulation for the pressure
as minimal suggested here is also mathematically appealing based on optimization
theory. The first observation above (that k · p = 0, where k and p denote the
vectors of the respective discretized quantities) is nothing but the complementary
slackness requirement of the Karush–Kuhn–Tucker conditions for constrained opti-
mization problems.3 Note also that because of (23), minimizing ‖ut‖2 is equivalent
to minimizing ‖px‖2. Since p ≥ 0 and p = 0 whenever k > 0, minimizing ‖px‖2 is in
turn equivalent to minimizing ‖p‖2 or ‖p‖1, as will be shown below in section 7. It
is thus natural to choose a formulation that aids in the calculations, and we will use
the 1-norm of p to take advantage of available robust linear optimization techniques.

6. An analytic solution to a well understood problem using jump con-
ditions. To build a better understanding of the form that the pressure takes, let us
start by considering a problem whose solution we know from physical considerations.
We take the half-infinite (one-dimensional) domain x ≤ 0, with a wall at x = 0.
Ice is initially distributed according to the given function k(0, x) = ko(x) and moves
according to u(0, x) = uo(x). We will assume that initially there are no patches of
consolidated ice; i.e., ko(x) 	= 0 ∀x. If we assume that pressure arises inside the ice
only when necessary, it follows that p(0, x) = 0 ∀x.

If anywhere in the domain ux < 0, then the ice will accumulate somewhere until
k = 0 (or, equivalently, c = 1). The wall at x = 0 requires that u(t, 0) = 0 ∀ t. Thus,
a positive initial velocity anywhere will ensure ice accumulation.

The first problem we will consider has the first ice build-up occurring at the wall.
(This can, for example, be achieved by setting uo(x) ≡ uo = constant > 0.) At the
edge of the consolidated ice, a discontinuity in both concentration and velocity arises.
We denote the location of this shock, marking the interface between the region with
k = 0 (c = 1) and that with k > 0 (c < 1), by x = xc and the time when this shock
first forms by t = tc; i.e.,

tc = min {t : k(t, x) = 0 for some x < 0},(26)

xc(t) = min {x̃ : k(t, x) = 0 ∀x ≥ x̃}.(27)

For t < tc, p(t, x) = 0 ∀x. The equations we solve for this portion are the very

3Physically, pressure is generally defined only up to a constant, since only its gradient enters into
the dynamics. Similarly, here it is easy to see that adding an arbitrary (positive) constant to a p
which solves the system (22)–(25) yields another solution. Strictly speaking, the KKT conditions do
not necessitate p ≥ 0 and k ·p = 0; they do provide for the existence of a p satisfying these conditions
and solving the system (22)–(25). Hence we will choose the arbitrary constant such that they hold
and min p = 0.
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simple set

kt = ux,(28)

ut = 0,(29)

whose solution is

k(t, x) = ko(x) + tuox(x),(30)

u(t, x) = uo(x),(31)

p(t, x) = 0.(32)

Assuming no consolidation except at the wall, this solution holds on {(t, x) : t <
tc or x < xc}. Once a region of consolidated ice starts to form along the wall, we
know that for x > xc,

k(t, x) = 0,(33)

u(t, x) = 0.(34)

Thus, for t > tc and x > xc,

u = 0 =⇒ ut = 0 =⇒ px = 0 =⇒ p(t, x) = p(t).(35)

In other words, p is constant throughout the region of consolidation at a given point
in time.

The only unknowns are p and xc. While the solutions to the left and to the right
of xc are smooth, there is a discontinuity, both in k and in u, at xc itself. Using the
corresponding jump conditions, we can calculate p and xc.

Equations (22) and (23), respectively, imply that

[[k]]ẋc = −[[u]],(36)

[[u]]ẋc = [[p]],(37)

where [[·]] denotes the jump across the shock and ẋc is the shock speed. It follows from
(36) that

ẋc = − [[u]]

[[k]]
= − uo(xc)

ko(xc) + tuox(xc)
.(38)

Together with the initial condition provided by evaluating (27) at tc, this completely
determines xc. Combining (36) and (37), we find

[[p]] = − [[u]]2

[[k]]
=⇒ p(t, x) =

[uo(xc)]
2

ko(xc) + tuox(xc)
for x > xc.(39)

One should note that this procedure of analyzing jump conditions to determine
the pressure can easily be extended to examples with the consolidated ice not against
a wall or with multiple consolidated regions. However, such an approach quickly
becomes unmanageable, as the number of coupled nonlinear equations increases with
the number of consolidated regions (two for each discontinuity, i.e., four for any region
not against a wall). Besides, the locations of the interfaces between consolidated and
nonconsolidated areas would need to be tracked, a laborious enterprise. Instead we
want to use the minimal pressure hypothesis, which simplifies the calculations by
making them global and, in the language of numerical conservation laws, is capturing
rather than tracking the boundaries of the consolidated regions.
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7. Pressure minimization and norm comparison. The toy problem we con-
sider for a first validation of the minimal pressure hypothesis follows the example
described in the previous section: Ice is moving towards a coast, where it consolidates
and pressure builds up. We discretize (22) and (23) using a staggered grid and a
backward Euler scheme as follows:

kn+1
j = knj +

Δt

Δx

(
un+1
j+ 1

2

− un+1
j− 1

2

)
,(40)

un+1
j+ 1

2

= un
j+ 1

2
− Δt

Δx

(
pn+1
j+1 − pn+1

j

)
.(41)

The constraints are

kn+1
j ≥ 0 ∀ j, n,(42)

pn+1
j ≥ 0 ∀ j, n.(43)

Note that it is necessary to use an implicit scheme for the evolution equation of k, in
order to be able to satisfy the constraint. As p does not have an evolution equation,
it is immaterial whether we use an explicit scheme or an implicit scheme for the
u-equation. We have chosen to write it implicitly for consistency.

We place the wall at j = 5. As boundary conditions, we take that pn+1
−1 = pn+1

0 = 0

(until the shock reaches this boundary) and pn+1
5 = pn+1

4 ∀n. As initial conditions,
we assume that the shock is located at j = 2.75. To the left of the shock, p = 0,
k = 1/2, and u = 1. To the right of the shock, k = 0 and u = 0. Δt is set to 0.5, and
Δx is set to 1. (This allows us to capture the shock, which travels with speed 2. Of
course, this resolution is very coarse. However, it serves to illustrate the point in this
toy example.)

After the first time step,

u1
j+ 1

2
=

{
1 − 1

2

(
pn+1
j+1 − pn+1

j

)
if j < 3,

− 1
2

(
pn+1
j+1 − pn+1

j

)
if j ≥ 3.

(44)

So the constraints (42) take the following form:

k1
0 =

1

2
− 1

4
[p1

1 − 2p1
0 + p1

−1] ≥ 0,(45)

k1
1 =

1

2
− 1

4
[p1

2 − 2p1
1 + p1

0] ≥ 0,(46)

k1
2 =

1

2
− 1

4
[p1

3 − 2p1
2 + p1

1] ≥ 0,(47)

k1
3 = 0 − 1

2
− 1

4
[p1

4 − 2p1
3 + p1

2] ≥ 0,(48)

k1
4 = −1

4
[p1

5 − 2p1
4 + p1

3] ≥ 0.(49)

Now we have a system of five inequalities constraining p1, p2, p3, and p4. (Recall
that p−1 = p0 = 0 and p5 = p4.) Minimizing the 2-norm of px while satisfying these
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constraints gives for T = Δt that

p1
0 = 0, k1

0 =
1

2
, u1

.5 = 1,

p1
1 = 0, k1

1 =
1

2
, u1

1.5 = 1,

p1
2 = 0, k1

2 = 0, u1
2.5 = 0,

p1
3 = 2, k1

3 = 0, u1
3.5 = 0,

p1
4 = 2, k1

4 = 0, u1
4.5 = 0.

From the jump conditions (cf. (39)) it follows that to the right of the shock

p = 2.(50)

The shock speed can be calculated from (36) or (37) to be

ẋc = −2.(51)

Thus the solution obtained by minimizing ‖px‖2 is exactly what the analytic
solution predicts: After time Δt = 0.5, the shock traveled one step to the left, with u
and k retaining the same values on either side of the shock, while p = 2 to the right of
the shock. Similarly satisfying results were obtained for longer runs and for different
initial conditions. In cases where the discretization does not allow for capturing the
location of the shock exactly, a certain amount of numerical smoothing around the
shock occurs, with p, k, and u taking on intermediate values.

The three norms we want to compare are
1. the 2-norm of px, i.e.,

∑
(pi − pi−1)

2,
2. the 2-norm of p, i.e.,

∑
p2
i ,

3. the 1-norm of p, i.e.,
∑

|pi|.
There are, of course, many other possible norms. These are some of the most natural
choices and can be optimized with existing tools.

Solving the same problem above, but minimizing the 1- or 2-norm of p, gives
exactly the same answer. This suggests that the norm chosen (at least from among
these three) does not impact the result. In fact, this can be shown as follows.

First, consider ‖px‖2, with the additional condition that min p = 0 (see foot-
note 3). Recall that the KKT conditions then require p = 0 when k > 0. Minimizing
one of the norms of p itself also calls for p to be 0 whenever possible, in particular
whenever k > 0.

Within regions of consolidated ice, where k = 0, we know that kt ≥ 0, and hence,
by (22), ux ≥ 0.

(i) If ux > 0, then kt > 0 and px = 0 is a solution. (Physically, this is
the situation where the consolidated ice is being pulled apart without the pressure
acting.)

(ii) If ux = 0, then uxt ≥ 0 =⇒ pxx ≤ 0 (by (23)).
The values of p at the endpoints of the consolidated region are determined by the
jump conditions, which have to be satisfied because of the constraining equations.
Minimizing ‖p‖, either as a 2-norm or as a 1-norm, with pxx ≤ 0 requires p to be
linear within the consolidated region. The same is true for ‖px‖2. (Note, however,
that minimizing the 1-norm of px leads to nonunique solutions, where the one found
using the other norms is but one possibility.)

Thus, for any of the three norms:
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(i) p = 0 outside consolidated regions.
(ii) p at the boundaries of consolidated regions is prescribed by the jump con-

ditions imposed by the constraining equations.
(iii) p is linear within consolidated regions.

It follows that the solutions are exactly the same.
As mentioned before, we have decided for our numerical work to rely on the

1-norm of p in order to facilitate the numerical optimization.

8. The numerical model and another test case. Our one-dimensional La-
grangian ice dynamics model for ice with uniform and constant thickness and without
forcing is based on the discretization (40)–(43). For the optimization step, we use
either Matlab’s built-in function linprog or a self-coded simplex method.

The problem described above (ice flowing towards a wall) can be successfully
modeled this way (also with much better resolution and different initial conditions).
We have also modeled, as another example, the case of a periodic domain, with
initially uniformly distributed ice. The initial velocity function is sinusoidal with
average velocity 0. Again, our physical intuition tells us what the solution should be:
We expect the ice to consolidate in the middle of the domain. This is indeed what
happens; see Figure 1. Given the initial conditions, we can also analytically calculate
the first consolidation time, which in this case is 1/4π ≈ 0.0796. Again, the numerical
results agree, predicting the first time for c = 1 to lie in the interval [0.07875, 0.08]
when a temporal step size of 0.00125 was chosen. The comparison of norms was again
carried out in this model, which confirmed the previous conclusion that they yield
the same answer, whereby minimizing the 1-norm of p is calculationally the least
expensive. Various other initial conditions for u, including nonsymmetric cases, were
studied, with the numerical results agreeing with the analytic solution (as far as this
was easily obtained) and/or physical intuition.

9. Another validation: Comparison with a particle-based method. Fur-
ther evidence in favor of the minimal pressure hypothesis comes from a comparison
with a particle-based model. Here the one-dimensional sea ice motion is simulated as
the interaction of individual “particles” (i.e., floes). Each of these is traced through
space and time. Collisions are required to be mass- and momentum-conserving and
inelastic (again following the observation that the pressure arising from collisions and
consolidation does not lead to divergence). This is a rather costly method of modeling
sea ice dynamics. However, for the purposes of validation, it is useful. After making
the appropriate transformations from the respective coordinate system of each model
to Eulerian coordinates, the concentration distributions resulting from the particle-
based model and the continuum model with the minimal pressure hypothesis were
compared, exhibiting remarkable agreement.

For the comparison, all external forces as well as crushing were again ignored. The
initial concentration was taken to be constant co throughout the (periodic) domain.
This is implemented in the collision model by an even spacing of identical particles.
The number of particles corresponds to the resolution; the initial concentration deter-
mines the width of each particle. Later, the concentration is calculated at a particle
point as the average area coverage between neighboring particles, i.e., at the point k

c(k) =
2w

x(k + 1) − x(k − 1)
,(52)

where w is the width of a parcel, c(k) is the concentration, and x(k) is the location
of the kth parcel. The velocities are tracked for each particle. They remain constant
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Fig. 1. The numerical results for ice consolidating in the center of the domain. Initial condi-
tions are given in the plots on the left. The evolution is exhibited in the plots on the right. Note
that the x-coordinate here is the Lagrangian position.

unless a collision occurs, in which case momentum conservation dictates the new
velocity of the consolidated region: For particles j1 through j2 involved in the collision,
each will have new velocity

unew =

∑j2
i=j1

mi ui∑j2
i=j1

mi

,(53)

where ui denotes the velocity of the ith particle and mi its mass. Here, as in the
continuum model, constant thickness is assumed. Hence the concentration c(i) is
proportional to the mass mi and can be substituted for it in the formula (53).

The initial velocity for both model runs was taken to be sinusoidal again, given
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Fig. 2. The velocity evolutions derived by the continuum model using the minimal pressure
hypothesis (top frame) and the particle-based model (bottom frame). Note that the x-coordinates
here are the Lagrangian x-coordinates of each model.

in Eulerian coordinates as uE
i (x) = sin(2πcox). (Note that this is equivalent to the

case presented in the previous section. In the Lagrangian mass coordinates used
there, the same velocity is written as uL

i (ξ) = sin(2π ξ), where we are reverting to
the Greek notation for clarification.) Two comparisons were carried out, one of the
resulting velocity fields, the other of the resulting concentration fields. The Lagrangian
coordinates of the continuum model with the minimal pressure hypothesis can be
converted to Eulerian coordinates by numerically integrating the velocity u in time;
the Eulerian positions of the particles in the collision model are recorded at each
step.

Figure 2 shows the evolution of the velocities from the two models over 125
time steps. They are clearly very similar. A more detailed comparison is given in
Figure 3. Here the Lagrangian coordinates are converted to Eulerian ones, and two
different times are chosen. Note that in both plots, the velocities agree almost exactly.
The one point of the particle model overshooting the continuum model (both in the
positive and negative directions) in each plot is simply not resolved by the continuum
model.
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Fig. 3. The velocities derived with the continuum (solid line, circles) and the particle (dashed
line, squares) models are compared at (a) an intermediate time and (b) the end of the run. The
x-coordinates here are Eulerian x-coordinates.

Figure 4 shows the evolution of the concentrations from the two models over the
125 time steps. Again, a close similarity is apparent. To compare the concentration
fields more exactly, we have chosen two points in time, one at the first collision
(marked in the continuum model as the first time with nonzero pressure), the other
at the end of the run. The results are shown in Figure 5. Up to the first collision, the
concentration fields are identical between the two models. Recall that this time can
be found analytically to be 1

4π ≈ 0.0796. With the resolution used here (Δt = 0.004,
Δξ = 0.02), the continuum model places it in the interval [0.076, 0.080], while the
particle model predicts that the first collision will occur at time 0.0796. In other
words, both models are in good agreement with the exact value. At time T = 0.5,
small differences in the concentration fields are discernible. However, once again much
of this difference can be ascribed to the fact that the two models do not resolve the
same points.

One can conclude then that the model suggested here, using a minimization tech-
nique to calculate internal pressure, which is used in turn to update the velocity field,
produces results entirely consistent with the physical description of sea ice motion as
the interaction of ice floes through inelastic collisions.

10. Conclusions. We propose here a new closure for the equations of motion for
sea ice modeled as a fluid. In addition to the momentum and the mass conservation
equations, an expression for the internal forcing due to pressure has to be found. Based
on the observation that collisions of ice floes at natural speeds tend to be inelastic, it
was hypothesized that the internal pressure should stay at the minimum required to
enforce a concentration of at most 1. This formulation is also consistent with treating
the pressure as a Lagrange multiplier in the optimization problem minimizing the
deviation from the unforced path under the constraints of the mass conservation
equation and the limits on the concentration (0 ≤ c ≤ 1).

To investigate the validity of this closure, a one-dimensional Lagrangian model
was set up. Two classes of test cases were studied, ice moving towards a wall with
initially constant velocity and ice moving in a periodic domain with initially sinusoidal
velocity. Thickness was held constant for easier identification of the effects of the
minimal pressure hypothesis, an assumption that will be relaxed in Part 2. For the
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Fig. 4. The concentration evolutions derived by the continuum model using the minimal pres-
sure hypothesis (top frame) and the particle-based model (bottom frame). Note that the x-coordinates
here are the Lagrangian x-coordinates of each model.

first case, an exact analytic solution was derived—which was reproduced to high
accuracy by the model (except for smoothing of the shock when the resolution was
too coarse). The second case produced results consistent with physical intuition.
A further validation was given by comparison with a particle-resolving model using
inelastic collisions. Within the limits of their respective resolutions, the output of
these two models was in exact agreement.

It is thus possible to conclude that the minimal pressure hypothesis leads to
correct solutions, at least in the cases studied here. This is promising, because the
work presented here forms the basis for more complex versions of the dynamics model
using the minimal pressure hypothesis. The next step—a translation to Eulerian
coordinates, allowing variable ice thickness, and implementing a finite ice strength—is
presented in Part 2. Clearly, further study is required to determine the usefulness
of this approach in large-scale simulations. Thus, for modeling real situations, an
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Fig. 5. The concentrations derived with the continuum (solid line, circles) and the particle
(dashed line, squares) models are compared at (a) the time of first collision and (b) the end of the
run. The x-coordinates here are Eulerian x-coordinates.

extension to two dimensions is necessary. Restoring the other forcing terms will be a
minor task. The good agreement of the model results so far with analytic and particle-
resolving model solutions justifies such further investigations, currently underway.

Appendix. Derivations.

A.1. Lagrangian equations. Recall that (7) defined the Lagrangian coordi-
nates as {

ξ =
∫ x

0
ch dx̂,

τ = t.

The partial derivatives relating them to the Eulerian coordinates (t, x) are as follows:

∂ξ

∂x
= ch,(54)

∂ξ

∂t
= −chu,(55)

∂τ

∂x
= 0,(56)

∂τ

∂t
= 1,(57)

where (4) was used for the partial derivative ∂ξ/∂t. Similarly,

∂x

∂ξ
=

1

ch
,(58)

∂x

∂τ
= u,(59)

∂t

∂ξ
= 0,(60)

∂t

∂τ
= 1,(61)
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Now consider u = u(t(τ, ξ), x(τ, ξ)):

∂u

∂τ
= uttτ + uxxτ

= ut + uxu

= F from (5).

This is (9).
Following the same pattern, we find

∂u

∂ξ
= uttξ + uxxξ

=
ux

ch

= − 1

(ch)2
[−(ch)ux]

= − 1

(ch)2
[(ch)t + (ch)xu] from (4)

= − 1

(ch)2
[(ch)ttτ + (ch)xxτ ]

=

(
1

ch

)
τ

.

This yields (8).

A.2. Solution to the variational problem. The variational problem posed
in section 4 is

δ

∫ {
(ũ− u)2 + λ(x)(k + Δt ũx)

}
dx = 0.

Equivalently,

∀ f ∈ C∞
o , 0 =

d

dε

∣∣∣∣
ε=0

∫ [
(ũ + εf − u)2 + λ

(
k + Δt

∂

∂x
(ũ + εf)

)]
dx

=

∫
[2ũf − 2uf + Δt λfx] dx

=

∫
f [2 (ũ− u) − Δt λx] dx,

which implies that

2 (ũ− u) = Δt λx.
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