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Abstract-A general kinematic wave model for flood propagation is presented in the form of 
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1. INTRODUCTION 

The one-dimensional gradually varied unsteady water flow in open channels or rivers with arbi- 

trary cross-sections and fixed bed is governed by the Saint-Venant hydrodynamic equations 

where x is the spatial longitudinal coordinate, t is the time, Q = Q(z, t) is the discharge, S = 

S(Z(x,t),x) is th e wetted cross-section, 2 = 2(x, t) is the surface level measured from a fixed 

plane of reference, g is the acceleration of gravity, and D = D(Z(x, t), x) is the conveyance, 

conveniently related to the frictional resistance to the flow (see Figures 1 and 2). 

Equations (1) and (2) represent conservation of mass and momentum, respectively. With 

suitable initial and boundary conditions, they form a mixed initial-boundary value quasilinear 

hyperbolic system of partial differential equations. A careful derivation of equations (1) and (2) 

can be found in [l], and Liggett and Cunge [2] describe several methods used for their numerical 

solution. 

From a practical point of view, the main problem that arises while modeling a reach of a 

river is the calibration of the conveyances D(Z(z, t), z), that usually cannot be measured. For 

*The author gratefully acknowledges the support of the Universidad de Buenos Aires through Grant EX107. 
t Work partially supported by the National Science Foundation through Grant DMS 9501073. 



2 P. M. JACOVKIS AND E. G. TABAK 

Figure 1. Schematic longitudinal section of a river. The variable z measures the 
length along the river, 2 is the height of the water surface from a fixed horizontal 
reference plane, i is the surface slope, and & the water flux per unit time. 

Figure 2. Schematic cross-section of a river. The variable S represents the wetted 
area, P the wetted perimeter, and B the surface width. 

rivers with very irregular cross-sections, it is difficult to represent conveyances by means of simple 
functions, so in general it is necessary to resort to tables. Then a large number of parameters 
must be calibrated, a time-consuming and complex task. Besides, many field data are necessary 
which may not be available. For these reasons, rivers are sometimes successfully modeled with 
the simplifying assumption that a one-to-one discharge/surface level function exists at each point 
of the reach. With this closure hypothesis, we use only equation (1) and, as S is a one-to-one 
function of 2, we have Q(z, t) = Q(S(s, t), cc), so (1) becomes 

dS 
dt+ 

aQ(s>s) dS aQ(s, x> = o 
as aa: + ax . (3) 

This kinematic wave equation, which has been studied in [3], can be derived from the complete 
system (l),(2) under the closure hypothesis that S and Q vary on very long spatial and temporal 
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scales, in a nondimensionalization based on the gravitational and frictional forces. Under this 
hypothesis, the first two terms in equation (2) drop out, the third term 9% is replaced by gi, 
where i is the slope at the bottom, and the conveyance D becomes a function of S. Thus, (2) pro- 
vides a relation between Q and S which, replaced in (l), yields equation (3). This quasilinear 
hyperbolic differential equation has many advantages over the complete system (l),(2), since it 
is much simpler conceptually, and the number of parameters to calibrate is relatively small. 

Of course, the results obtained have much less precision than those that could be produced 
with a complete modeling of equations (l),(2), but one often has not the field data to feed the 
complete model anyway, so equation (3), with initial condition 

and boundary condition at the upstream extreme point x0 

s (x079 = f(t) 

is sufficient for many purposes. In fact, many kinematic models have been developed and many 
have been commercially implemented in the last thirty years. Often these models are combined 
with others (for instance, with rainfall-rain off or with overbank flooding models) to obtain a 
more efficient tool. An impressive mass of bibliography exists, that may be found in engineering 
journals, reports, and proceedings of conferences; we mention, for instance, [4-61. Among the 
models used commercially, we may mention the very popular HEC models developed by the U. S. 
Army Corps of Engineers [7], which are continually completed and updated (see, for instance, [8]). 

Figure 3. An arborescent river. Conservation of mass must be enforced at each 
junction. 

Notice that, with this kinematic wave, or using engineering terminology, this hydrologic or 
flood routing model, we may model not only reaches of rivers or channels, but also basins with 
arborescent structures (see Figure 3). We only need to solve numerically each tributary reach 
separately and, at the junction points, use conservation of mass 

Qi + Qj = Q/c, 
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Figure 4. Schematic cross-section of a river with flood plains. 

f h* 

Figure 5. Schematic cross-section of a river trapped in a canyon. 

where Qi and Qj are the computed values of discharges at the end of reaches i and j, and Qk is the 
value of the discharge at the beginning of reach k, that acts as upstream boundary condition for 
that reach. External boundary conditions are needed at each open upstream extreme point, and 
depending nonlinearly on the solution, at some of the downstream extreme points. To deal with 
the arborescent case with the complete system (l),(2), a more complex procedure is required, as 
may be seen in [9]. 

If we assume that the discharge/surface level function is the same for all the points of the 
reach, namely, that Q = Q(S) (that would be the case for an approximately prismatic channel), 
we may write (3) as 

as aQ(s) =. 
dt+?%Y- ' 

which is a scalar conservation law with a generally nonlinear flux Q [lo]. 

In this paper, we discuss the qualitative features of the flux function Q(S) for rivers and 
channels with various typical cross-sections. In particular, we show that the flux functions for 
rivers with flood beds (Figure 4), and rivers trapped in canyons (Figure 5) have some very 
distinctive features, which determine a very rich and peculiar phenomenology. We remark that 
this is not a theoretical exercise: there are natural rivers with geometries very similar to those 
drawn in Figures 4 and 5; we may mention, for instance, the Paran de las Palmas River in 
Argentina and the Ottauquechee River in Vermont, respectively. Although a realistic flood 
simulation for any of these rivers would require the use of the full system (l),(2), we shall present 
evidence here that even a simple kinematic model yields surprisingly rich predictions. 

2. A KINEMATIC WAVE MODEL FOR PRISMATIC CHANNELS 

We mean by a prismatic channel, one with constant cross-section. If we assume that the bed 
material is the same for all levels of water and all longitudinal coordinates IC, we may com- 
pute a one-to-one function Q(S) by using the Chezy hypothesis that the friction resistance r is 
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proportional to the square of the mean velocity V = Q/S 

7 = fpPV2, 

where f is a friction coefficient, p the density of water, and P the wetted perimeter (see Figures 1 

and 2). 

Following Lighthill and Whitham, we balance the resistance r with the x-component F, of 

gravity which, for small reach slope i, can be written as 

F, = igpS 

Then, we have 

where M = m. Therefore, 

Q=VS=M$. (7) 

Note that in this model, we have only one parameter to calibrate, namely f, or equivalently M. 

Let us analyze now the expressions for $$ and 3. We have 

(8) 

(9) 

It follows from (9) that, if $$ < 0, then Q is a strictly nonlinear convex function of S. Conditions 

for existence and unicity of solutions in this case are discussed in [I]. 

It is worth noticing that, for “normal” cross-sections, $$ < 0 holds, and therefore, Q(S) 

is a convex function. To see this, let us consider a symmetric cross-section, and represent its 

right boundary in the plane (h,b), as shown in Figure 6, where h is the height and b(h) is the 

transversal coordinate with origin in the axis of symmetry of the cross-section, so the free-surface 

width at height h is 2b(h). F or “normal” cross-sections, the function b(h) is concave. In that case, 

if b(h) is a concave nondecreasing function, Q(S) is convex. To prove this, we need only show 

that. $$ < 0. By hypothesis, $$ 5 0 and g 2 0. Then, assuming without loss of generality 

that b(0) = 0, we have 

s h 

S(h) = 2 b(rl)drl, 
0 

P(h) = 2 + ldrl, 

dP +1 
dP dh_ 
dS=dS- b ’ 

dh 

d2P 
-= 
dS2 

2b3 

/f+ (b$- ($)‘-I) <O. 

z +l 
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b 

Figure 6. A symmetric cross-section. 

Note that the last inequality holds for a simple shape given by b(h) = khr, not only for the 
concave cases with T 5 1, but for all positive T’S, which includes a large family of nonconcave 
functions. 

Let us consider now the case of a trapezoidal cross-section, like the one represented in Figure 7. 
If Q is the angle between the lateral wall of the cross-section and the horizontal transversal axis, 
with 0 < CY < 4, and Bo is the bed width, we have 

S(h) = (B. + hcot(cy)) h, GO) 

P(h) = B. + 2hcsc(a). (11) 

Bo 
Figure 7. A trapezoidal cross-section. 

From (10) and (ll), we compute 

g(h) = 
2 csc(cY) 

BO + 2hcot(a)’ 

g(h) = - 
4 csc(cr) cot(a) 

(BO + 2h cot(cr))s ’ ‘. 

Therefore, if the cross-section is a trapezoid and the surface width is an increasing function of 
the height, Q = Q(S) g iven by (7) is a convex function. 

If the width is a decreasing function of the height, however, a straightforward calculation 
shows that the flux function is not convex. This curious fact has interesting consequences for 
underground rivers, where the width of the free surface is not monotonically increasing. However, 
we will not pursue this line of study here. 
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3. A PIECEWISE TRAPEZOIDAL CROSS-SECTION 

Let us analyze a piecewise trapezoidal cross-section, as indicated in Figure 8. The reason for 

considering such cross-sections is that they are easy to compute, and yet in some sense general, 

since any cross-section can be approximated by a piecewise trapezoidal one. For simplicity of the 

exposition, we will consider only symmetric cross-sections. 

B2 

I 

Figure 8. A piecewise trapezoidal cross-section. 

If hi is the height at which the lateral slope changes (ho being the bed height), and q, Bi, Si, Pi 

the corresponding angles, widths, cross-section wetted areas, and wetted perimeters, respectively, 

with PO = Bo, So = 0, 0 < (~i 5 4, we have, for hi 5 h < hi+l, i 2 0, 

S(h) = Si + (Bi + (h - hi) cot (ai)) (h - hi), 

P(h) = Pi + 2(h - hi) CSC(CI~, 

dP 2 csc (a$) 

dS = Bi + 2 (h - hi) cot(ai) ’ 

d2P 4 CSC(OJyi)COt((Yi) 
-=- 
dS2 (Pi + 2 (h - hi) cot (oi))3 ’ O. 

Therefore, the flux Q(S) is piecewise convex. However, it will generally have slope discontinu- 

ities at the points Si, which will in some cases make Q(S) globally nonconvex. To see this, note 

from (8) that 

dQi> d&f dP.- dP+ 
dS --&VL<l 

dS dS ’ 

where the superindices + and - refer to the slopes immediately above and below Si. On the 

other han,d, 

s= 2 CSC(Qi_1) 

dS B< ’ 

and 

dp,I’= 2 csc (ai) 

dS Bi ’ 

so that 

dP.- dP? 
L < * W CSC(&_1) < CSC(CEyi), 
dS 

that is, if and only if ai- > cq. 
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We conclude that the flux Q(S) f or a symmetric piecewise trapezoidal cross-section will be 

convex if and only if the cross-section itself is convex. If this is not the case, i.e., if at any 

point hi the lateral slope decreases with the altitude, Q(S) will be nonconvex, with a local 

behavior of the kind represented in Figure 9a. On the other hand, at those points where the 

section is convex but the lateral slopes change abruptly, Q(S) will be convex but will possess a 

sharp corner, as displayed in Figure 9b. We will see in later sections how these features of the 

flux affect the behavior of the solutions to (6). 

h’ 

I h* 

I t * 

S* S s* S 

(4 (b) 
Figure 9. Nonconvex and convex corners, with corresponding shape of the flux func- 

tions. 

4. RIVERS WITH FLOOD PLAINS AND 
RIVERS TRAPPED IN CANYONS 

With the tools developed above, we could now, in principle, analyze cross-sections of any kind, 

by approximating them by piecewise trapezoidal profiles. We must, nevertheless, be careful to 

check in each situation whether the physical assumptions of the model really apply. If they do 

not, we may want to modify the model to take the new features into account. In this section, 

we concentrate on finding the qualitative features of the flux function Q(S) for two important 

kinds of rivers: those with flood plains and those trapped in canyons. We will see that the latter 

can be well described by the piecewise trapezoidal model, while the former requires some further 

refinements. 

Large plain rivers, such as the Parana de las Palmas in Argentina, often have a regular basin, 

where the water stays most of the time, and a much wider flood plain, where water only flows 

on the occasion of exceptional rains or thaw upstream. The cross-section of such rivers has a 

profile like the one sketched in Figure 4. There is a critical height h*, below which the river flows 

within its regular basin, and above which flooding occurs. We would like to study the qualitative 

features of the transition between the two regimes, in the simple model of the kinematic wave 
approximation. If we were to use the Chezy model of Section 2, we would find that the flux Q(S) 

is discontinuous across the critical area S*. This can be seen directly from equation (7): as 

the height of water crosses h*, the area S changes continuously, but the wetted perimeter P 
jumps, by the addition of the whole flat bottom of the flood bed. Then the friction increases, 

while the driving gravity force remains basically constant, therefore, causing a finite drop in the 

discharge Q. The same result is obtained as a limiting case of the piecewise trapezoidal section, 

if we consider a bed of the flood basin with a small slope, and let this slope go to zero. Schematic 

plots of Q(S) f rom these two procedures are depicted in Figure 10. 

Is this discontinuity of Q(S) realistic? Can the friction at the flood plain suddenly slow down 

the flow of water through the main basin ? The answer to this question would be positive if water 
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(4 (b) 
Figure 10. A Chkzy model with uniform mean velocity for a river with flood plains, 
with and without bed slopes. 

-b+ i 
Figure 11. Improved model for a river with flood plains, with two mean velocities. 

were viscous to the point of looking semisolid: then the central flow would immediately perceive 

the added friction, and slow down accordingly. But this is not the case. The friction at the 

bottom of the flood bed can make the velocity of water at the flood bed itself very slow, but it 

cannot slow down the flow through the main basin. Therefore, it is the hypothesis of a uniform 

mean flow which fails. A better model should include two mean velocities, one inside the main 

basin and another at the lateral beds. 

A sketch of the improved model is plotted in Figure 11. There are two mean velocities Ur 

and Uz, two areas Sr and 5’2, two wetted perimeters PI and Pz, plus the interface between the 

two areas PO. For each area, we can write the balance between frictional and gravitational forces, 

with the velocities coupled through the frictional forces at the interface PO. For each height h, 

we can write S(h) = L&(h) + &(h) and Q(h) = Ul(h)&(h) + U2(h)Sz(h), and thus, compute 

the flux Q(S). The details are easy to work out. For the purposes of this paper, however, it is 

enough to notice the following two qualitative facts. First, the flux Q(S) is continuous at S’, 

since the flow in the main basin only perceives the slower one at the lateral plains through the 

interface PO, and this has length zero when S = S*. This contrasts sharply with the discontinuous 

flux predicted by the kinetic wave model with just one mean velocity. Second, the function Q(S) 

is convex for S < S and S > S*, but has a slope discontinuity at S* which makes it globally 

nonconvex (see Figure 12). The reason for this behavior is simple: as we cross the value S*, the 

mean velocity Ur keeps growing at about the same rate as before as a function of Sr, but not 
as a function of S = 5’1 + 5’2. On the other hand, Uz starts from zero, since for S only slightly 
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above S*, the frictional forces are much larger than gravity in the flood plains. Then, g(S) will 

initially grow at a rate about b+/b- slower than before the flooding, since this is the quotient 

between the rates of growth of S and Si. 

s 
Figure 12. Flux function for a river with flood plains. The function is nonconvex, 

with a corner at the critical flood level S*. 

For a river trapped in a canyon, such as the one plotted in Figure 5, the assumption of existence 

of an approximately uniform mean flow is well founded, so the kinetic wave model applies without 

further refinements. The piecewise trapezoidal approximation is particularly well suited for this 

case, since there is a clear discontinuity in the lateral slopes when the bed of the river reaches 

the walls of the canyon. -Therefore, we should expect a convex flux function with a sharp corner, 

such as the one plotted in Figure 13. 

Figure 13. Flux function for a river trapped in a canyon. Convex function, with a 
corner at the critical level S”, where the lateral walls meet the canyon. 

We have found the qualitative features of the shape of the flux function for rivers with flood 

plains and rivers trapped in canyons. These are not only important examples themselves, but 
also work as prototypes for rivers and channels with sharp changes in the lateral slopes. The 

former illustrates the situation in which the slope decreases sharply with altitude, giving rise to 

a nonconvex flux, and the latter exemplifies those cases with sharply increasing slopes, which 
yield convex laws with corners. Qualitatively similar behaviors should be expected when sharp 

changes occur not in the lateral slopes, but in the roughness of the material of the bed. An 

increasing roughness has a similar effect to a decreasing slope, since both contribute to a larger 

lateral friction. In the following sections, we will see what consequences these shapes of the flux 

function have on the dynamics of floods. 
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5. THE RIEMANN PROBLEM FOR NONCONVEX 
FLUX FUNCTIONS 

11 

In this and the following section, we study the Riemann problem for scalar conservation laws 

with flux functions of the types arising in rivers with flood beds and rivers trapped in canyons. 

There are many reasons for considering the Riemann problem. On the one hand, any initial value 

problem with different values at plus and minus infinity looks like a Riemann problem when looked 

at from afar. Thus, for studying the qualitative features of a flood wave, it suffices to consider a 

Riemann problem with a larger value of S upstream, while the end of a flood is well described 

by a Riemann problem with S larger downstream. On the other hand, the Riemann problem 

is the main building block of most numerical algorithms for studying systems of conservation 

laws. In particular, we will describe in Section 7, a version of Godunov’s second-order method 

particularly well suited to the study of laws with nonconvex or nonsmooth fluxes. Finally, the 

solution to a Riemann problem is very easy to describe, and sheds light on the most important 

qualitative consequences of the shape of the flux function. 

The Riemann problem for equation (6) is the following: find the solution to (6) with initial 

conditions 

S(z, 0) = 
1 

S_, forz<O, 

S+, for 2 > 0. 
(12) 

In our hydraulic context, S- larger than S+ corresponds to flooding, and S- smaller than S+ to 

a flood’s end. 

The solution to this Riemann problem is a function S(t) of c = x/t such that, whenever S(J) 

is smooth, 

$$S([)) = E, 

and at points where the solution is discontinuous, the jump condition 

Q (s (<+I - Q(S(5‘-1) = < 
s (cc+) - s (E-j 

holds. These requirements do not determine the solution uniquely; some further constraints 

characterizing which shocks are admissible are also required (see [ll]). However, if we specify 

that the solution to the Riemann problem be monotonic and stable under small perturbations 

to the initial data, a very simple recipe provides the solution to any scalar equation, with either 

convex or nonconvex flux function. This recipe works as follows (see Figure 14): if S- is smaller 

[larger] than S+, draw the convex [concave] hull of Q(S) b e t ween S_ and S_+_. Each point S where 

Q(S) d ‘t h 11 an 1 s u coincide corresponds to a point in the solution; its location is given by x/t = [, 

where E is the (possibly multivalued) slope of the hull at the point S. This slope coincides with 

Q’(S) within a smooth rarefaction, while within shocks it yields the same shock velocity as the 

RankineHugoniot jump condition. 

Before providing a justification for this procedure, let us watch it in action in a simple situation. 

Consider the case of a convex flux function, where the solution to the Riemann problem is well 

known: if the characteristic velocity upstream is larger than the one downstream, the solution 

consists of a single shock between both states with [ = (Q(S) - Q(S+))/(S- - S+); otherwise, 

a smooth rarefaction arises with [ = $$(S(J)). But this is also the solution provided by the 

construction above, where the shock corresponds to the concave hull of Q(S), and the rarefaction 

to its convex hull, which coincides with the function Q(S) itself. Why could we not allow shock 

solutions in both cases? The answer is stability. Imagine we propose that the solution to all 

Riemann problems be a single shock separating the states up and downstream, with velocity given 

by E = (Q(S-) - Q(S+))/(S- - S+). C onsider the situation in which S- is smaller than Sf . 

We may divide the initial discontinuity between S- and S+ into two discontinuities, say (S-, S) 

and (S, S+), and locate these slightly apart in the initial conditions. If we compute the velocities 
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S 
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S- ;-1--’ 
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Q 

(4 (b) 
Figure 14. Riemann problem for a scalar conservation law with nonconvex flux 
function. Graphic construction of the solution, using convex or concave hulls of Q(S). 

of these two weaker shocks, we find that the one ahead moves faster than the one behind, so 

the distance between both increases linearly with time. But this means that the solution with 

a single shock was unstable under small perturbations to the initial condition, which makes it 

invalid. 

Let us justify now the recipe given above. To this end, notice that it corresponds exactly to 

what one would require of the solution to the Riemann problem. One would seek a function S(c) 

with the following features. 

(a) S(t) is a monotonic function of e, defined between two values <- and [+, with S(c_-) = S_ 

and S(S++) = S+, where the superscripts denote limiting values from the left and right. 

(b) For each pair (<I, &) with c_ 5 51 5 & 5 t+, the following inequalities hold for all values 

of S between S(&-) and S(&+) and strictly different from both: 

Q (s (b+)) - Q(S) < 61 < ’ (s(‘2+)) - Q (’ (cl-)) < t2 < Q(S) - Q (s (rl-)> 
s(t2+) -s - 5x2+) - s(tl-) - - 

s-q&-) ’ 

Notice that, if we let <r and Js approach a common value 5, the two inner inequalities become 

just one equality, which yields the jump condition for (6) if S(c-) # S(t+) and the charac- 

teristic velocity < = Q’(S(c)) if S(t) is smooth. The two outer inequalities act as stability 

conditions, which guarantee that, if we divide the interval (S(&-), S(&+)) into two subintervals 

with (S([i-), S) and (S, S(&+)) and change th e initial conditions so that those two subinter- 

vals start at points slightly apart, their separation will not increase as time progresses. In other 

words, the solution is at least neutrally stable. The simplest way to see this is to consider a 

shock between the states S(l-) and S(e+). If we pose as initial data two shocks (S(<-), S) and 

(S, S(S+)) separated by a small distance, we would like these two shocks to eventually collide into 
a single one, or at least not to spread further apart. In addition, the shock ahead cannot move 

faster than the original compound shock, nor can the shock behind move more slowly, since either 
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case would violate conservation of S. But these are precisely the conditions in the inequalities 

above when ti = <z. The general case with <i # & follows from the particular case in which they 

coincide plus monotonicity. 

Thus, conditions (a) and (b) are necessary. As they are equivalent to the previous charac- 

terization in terms of convex or concave hulls, and these hulls are unique, sufficiency follows 

immediately. Therefore, we have a very simple procedure to solve the Riemann problem, drawing 

the concave or convex hull of Q(S) between S- and S +, depending on whether S- is larger or 

smaller than Sf. 

A 
Q 

I 

I I I I * 
Sl S* s2 s 

Figure 15. Convex and concave hulls of sections of the flux function for a river with 
tlood plains. 

6. QUALITATIVE FEATURES OF FLOODS AND FLOOD ENDS 
FOR RIVERS WITH FLOOD BEDS 

AND RIVERS TRAPPED IN CANYONS 

We have shown in Section 5 a simple recipe for solving the Riemann problem for general scalar 

conservation laws. Now we will apply this recipe to the flux functions derived in Section 4, i.e., 

those of rivers with flood beds and rivers trapped in canyons. 

The concave and convex hulls for the flux function corresponding to a river with flood plains 

are represented in Figure 15 for various values of S_ and S+, and the corresponding wave profiles 

are depicted in Figure 16. We see that strong flood waves propagate as one single shock, while 

weaker floods decompose into two shocks, of which the first makes the water level just reach the 

critical height beyond which flooding occurs, while the second raises the water all the way up 

to its highest level. The flood ends, on the other hand, propagate along a single discontinuity, 

isolated for weak floods and surrounded by smooth waves for stronger ones. In the latter case, 

the discontinuity connects two “conjugated heights,” with corresponding areas Si and Ss, which 

are independent of the actual values of S_ and S+, and can be computed from the flux function 

alone. There are other cases, of course, which the reader can easily work out, with a smooth 

rarefaction occurring at only one end of the discontinuity. 
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S- 

1 S* I_, S* ___-_________ ________________ _________ ___________ 
I I S+ 

(a) Strong flood. 

s2 ____________________-_-__----- 

SC ________________ 

(b) Weak flood. 

_____________________-_-_____- 

_;__________,5 

(c) End of a strong flood. (d) End of a weak flood. 

Figure 16. Solution to Riemann problems for a river with flood plains. 

These results contrast sharply with those for rivers without irregularities, where floods are 

carried by single shocks and their ends by smooth rarefactions. Two predictions are particularly 

striking: that floods should arrive in two separate waves, the first of them barely filling up 

the river’s main basin, and that floods should end suddenly, with a discontinuous drop in the 

level of water. Sharp discontinuities, of course, never occur in reality; a discontinuity in our 

simplified model should correspond to changes taking place on short scales relative to the river, 

which includes “shocks” a few kilometers wide! We do not know whether these phenomena have 

been observed in real floods, and would appreciate any relevant information. The only partial 

confirmation we have is that, in recent floods of the Magdalena River in Colombia, the inhabitants 

of the plains surrounding the river saw the floods come in two separate waves. 

1 Q 

S* S- 
Figure 17. Convex hull of a section of the flux function for a river trapped in a 
canyon. 
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(a) Flood. (b) Rarefaction. 

Figure 18. Solution to Remann problems for a river trapped in a canyon. 

Figure 17 shows the concave and convex hulls of the flux function associated with rivers trapped 

in canyons, and Figure 18 depicts the corresponding waves. In this case, floods take place always 

along single shocks, while the flood ends decompose into two rarefactions, separated by a region 

where the water level is exactly at the height where the bed of the river reaches the walls of the 

canyon. This latter phenomenon, though surprising, is far less striking that those predicted above 

for rivers with flood plains. Yet it would be interesting to know how accurately it corresponds to 

reality. 

7. A SECOND-ORDER GODUNOV METHOD 
FOR SCALAR CONSERVATION LAWS WITH 

NONCONVEX OR NONSMOOTH FLUX FUNCTIONS 

The characterization of the solution to a Riemann problem in terms of convex or concave hulls 

proposed in Section 5 has an interesting numerical corollary: we may build Riemann solvers for 

scalar equations based solely on drawing hulls of discretized versions of the flux function Q(S). We 

will see in this section how this fact allows us to design an algorithm for solving scalar conservation 

laws particularly well suited for flux functions which are either nonsmooth or nonconvex, and 

either have a complicated analytical structure or are known only at a discrete set of points. Such 

an algorithm is ideal for flood routing models, since the discharge/surface level relations for rivers 

are empirical functions given in form of tables, and any irregularity in the cross-section of the 

river translates into nonsmoothness and often nonconvexity of the flux function. 

Figure 19. Interpolations for first-order and second-order Godunov. 

For completeness, let us describe briefly the first-order and second-order Godunov methods for 

scalar conservation laws, and then show the way we propose to implement the Riemann solver, 
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which is a crucial building block for both. Godunov’s original method [12] is based on a very 
simple, yet extremely rich and robust idea. In the context of equation (6), the method reduces 
to ‘the following procedure. Given the initial data S(Z, 0) and a grid zi, replace S by a piecewise 
constant function, with a value on each interval (zi, ~i+l) equal to the average Si+l,z of S(X, 0) 
over the interval (Figure 19a). In order to update these average values at time At, we need to 
integrate over time the flux Q(S) at each point xi. Then 

1 

s 

At 

5’,+,,2W = %+1/2(O) + 
x2+1 - xi 0 

(Q (xi, t) - Q (G+I, 4) dt. 

But, for At small enough that information from noncontiguous cells does not interact, Q is 
constant at each point xi, with a value equal to Q(S,), where S, is the solution at < = 0 of the 
Riemann problem between states Si-112 and Si+l/z. 

In the second-order version of the algorithm (see [13]), the data with which we start each 
step are still the averages Si+l/z over the grid. However, these averages are used to build a 
piecewise linear, instead of piecewise constant, initial state (Figure 19b). The slopes at each 
cell are normally computed using central differences, with additional monotonicity constraints 
designed to avoid spurious oscillations. Equivalent reconstructions of piecewise linear functions 
can be obtained from EN0 schemes [14]. Now Q is no longer constant at each grid-point; its 
integral over time arises from the solution to a generalized linear problem between two linear 
states, which can be computed solving standard Riemann problems (see [15]). The reduction to 
a standard Riemann problem is particularly simple for scalar conservation laws. 

The generalization of these procedures to moving grids with local space and time refinements 
is relatively straightforward [15]; moving grids are useful for flood routing, since flood waves of 
the type studied in this paper move downstream. 

Let us describe the proposed Riemann solver for scalar conservation laws with irregular flux 
functions. According to the results of Section 4, in order to solve the Riemann problem between 
S_ and S+, it suffices to draw the convex or concave hulls of Q(S) between S- and S+, depending 
on whether S- is larger or smaller than S+. The idea of the numerical solver proposed here is 
to replace the flux function Q(S) between S_ and S+ by a piecewise linear function, for which 
the computation of hulls is almost trivial. We will discuss below the best way to perform this 
discretization of the flux function. In Figures 20a and 20b, we assume that the discretization 
is given, and illustrate the construction of the convex and concave hulls and the solution of the 
corresponding Riemann problems. The interval between S- and S+ has been divided into four 
subintervals (5’1, Sz), . . . , (SJ, 55)) with S1 = S_ and Ss = S+ if S_ < S+ (Figure 20a) and 
S1 = S+ and Ss = S- otherwise (Figure 20b). The flux Q(S) has been replaced by a continuous 
piecewise linear function, with the correct value of Q at each of the Si’s. Finding the convex or 
concave hull of these piecewise linear functions becomes a very simple combinatorial problem. 
For the convex [concave] hull, we start at 5’1, look at all the Si’s ahead, and choose the Si* 
that minimizes [maximizes] the speed &i = (Q(Si) - Q(S,))/(Si - S,). In the solution to the 
Riemann problem, S will have the value S1 to the left [right] of this value of E, where it will jump 
to Si*. Then we replace S1 by Si., and repeat the procedure until we reach S5. 

Therefore, for a given a discretization of Q(S), the process of solving the Riemann problem is 
extremely simple. The next question is what discretization should be chosen. The precision of 
the solution, of course, increases with the number of points in the discretization. Nevertheless, 
the Riemann solver preserves the order of accuracy of the Godunov method of which it makes 
part, even if no points are taken between S- and S+., i.e. if Q(S) is locally replaced by a linear 

function. The reason for this fact is that, in locations where the solution is smooth, the difference 
between S- and S+ is O(Ax) f or a first-order Godunov and O(Ax2) for a second-order Godunov, 
so the errors committed in approximating Q(S) by a linear function fall within the accuracy of 
the method. Notice that using a locally linear Q(S) corresponds to giving always a shock as 
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Figure 20. Construction of convex and concave hulls of a discrete version of a non- 
convex flux function, and corresponding discrete solution to Riemann problems. 

the solution to the Riemann problem. Unphysical “rarefaction shocks” do not survive though, 

since the averaging intrinsic to Godunov automatically creates intermediate values inside these 

unstable discontinuities, making them spread out. Only a “rarefaction shock” sitting on a grid 

point will avoid averaging, but such event has probability zero. 

Yet we do not advocate such an extreme solution. Our claim is that, with little more computa- 

tional effort, huge gains can be obtained. The reasons are twofold: we would like strong waves to 
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be accurately represented, and we would like distinguished values of S, as S’ in rivers with flood 

plains, to be singled out immediately in the numerical solution, as they are in the exact solution 

to the equations. Take this latter example first. We know, from the results of Section 6, that 

not too strong flood waves decompose into two shocks, separated by a growing interval where S 

equals S. If we let Godunov’s averaging do the job of picking up intermediate values between 

S_ and S+, the solution will certainly converge to the right one with two shocks, but in a far 

less sharp way than would be desirable. The values between the two shocks, for instance, will get 

closer and closer to S*, but never quite hit it exactly. On the other hand, if we single out S* by 

the harmless trick of including it as an intermediate value between S- and S+ in the Riemann 

solver described above, the solution between the two shocks will reach S = S* in finite time. 

Similarly, a strong wave will be far more accurately resolved if a few points are inserted between 

S_ and S+ for the corresponding Riemann problems. This is particularly true for flux functions 

with corners or inflection points, where the Riemann problem has a solution much richer than a 

simple shock or rarefaction. 

Therefore, the two following general principles should guide the choice of the local discretization 

of Q(S): make sure not to skip any distinguished value of S, as those corresponding to corners 

or inflection points of Q(S), and always insert a few points within a Riemann problem with a 

large initial discontinuity. Further details are problem and taste dependent. If Q(S) is provided 

in the form of a table, for instance, no further discretization is required. If Q(S) is expensive to 

compute, we may want to have a global discretization, computed only once, independent of the 

actual values of S_ and S+; for each Riemann problem, then, only Q(S_) and Q(S+) need to be 

computed. On the other hand, if Q(S) is cheap to compute, we may adopt an almost uniformly 

distributed grid for each pair (S-, S+), only slightly distorted to accommodate distinguished 

points. This is the policy we adopted for the numerical experiments in the following section. 

The discretization procedure is sketched in Figure 21. The input parameters are S-, S+, the 

approximate number n of subintervals desired (five in the figure) and a table of distinguished 

values of S. If none of these values falls within (S-, S+), the interval is simply divided uniformly 

into n subintervals (Figure 21a). If one or more distinguished values fall within the interval (they 

are marked with crosses in Figures 21b and 21c), the discretization is distorted slightly so as to 

make them fit. Sometimes (Figure 21c), the distortion becomes big enough that the tolerance 

for the width of the subintervals is reached, and one or more extra points are added. 

H-H-H H-+kt-H 
S4 S2 S3 S4 S5 S6 St S2 S3 S4 S5 S6 

(4 (b) 
I 

Sl s2 s3 S4 S5 S6 S7 

Cc) 
Figure 21. Choice of intermediate points in a discretization of the flux function 
between two values of S. The crosses mark distinguished points, which the dis- 
cretization must include. 

8. TWO NUMERICAL EXAMPLES 

The description in Section 6 of the qualitative behavior of floods and their ends for rivers with 

flood plains and rivers trapped in canyons was based on the solution to the Riemann problem. 

Yet it can be argued that Riemann problems seldom occur in real floods, except perhaps when 

dams break. In this section, we justify our assertion that Riemann problems do nonetheless 
capture the qualitative behavior of floods and flood ends, by carrying out numerical simulations 
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of the kinematic model (6) for more general initial data. These numerical experiments serve the 

additional purpose of illustrating the algorithm described in Section 7. 

We adopted as an idealized flux function Q(S) for a river with flood plains, the piecewise 

Burgers-like definition 

( S2, for S < 1, 

Q(S) = I s2 + 1, for s > 1 

2 
7 

(13) 

which agrees qualitatively with the one plotted in Figure 12, with the critical level S* beyond 

which flooding occurs normalized to one. Similarly, for a river trapped in a canyon, we took the 

function 
S2 - 

Q(S) = 

( 

2 ’ 
for S < 1, 

(14) 
S2 - 0.5, for S > 1, 

similar to the one plotted in Figure 13. In both cases, for simplicity, we adopted a periodic 

domain between zero and one, and the smooth initial condition 

S(Z, 0) = 0.8 + 0.5sin(2rx), (15) 

which has a segment over flooding level. Equation (6) was solved using the algorithm of Section 7, 

with 200 grid points, and time intervals 6t = 0.001. For each Riemann problem, four points 

were used to interpolate the flux function Q(S) 

Figures 22 and 23. 

The results of these two runs are displayed in 

t-o t=0.2 

X 

1=0.6 

Figure 22. Numerical solution to the kinematic model for a river with flood plains, 
on a periodic grid. 
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Figure 23. Numerical solution to the kinematic model for a river trapped in a canyon, 
on a periodic grid. 

Figure 22 contains four snapshots of the solution to (6) with flux function (13), corresponding 

to a river with flood plains. At time t = 0, we have the initial condition (15). At time t = 0.2, 

the flood wave has already decomposed itself into two waves, separated by a region with constant 

cross-section S*. One of these waves has already broken into a hydraulic jump; the other is about 

to break. The wave announcing the end of the flood, on the other hand, has from time t = O+ 
developed a jump which, by the time t = 0.2, has grown to an appreciable strength. At time 

t = 0.4, all waves are fully developed, the two flood jumps, the constant solution in between, 

and the jump at the end of the flood. Finally, at time t = 0.6, we start to see decay due to the 

dissipation at the hydraulic jumps. Notice that even the “rarefaction jump” dissipates energy, 

since it has the mathematical structure of a shock. 

The same snapshots for the flux function (14), corresponding to a river trapped in a canyon, 

are displayed in Figure 23. The initial condition of time t = 0 has, by the time t = 0.2, 

already developed a strong flood jump, with the rarefaction behind it decomposed into two 

waves, separated by a constant state S = S*. At time t = 0.4, the segment with S > S has 
been dissipated away almost completely at the jump, while the constant part of the solution has 

kept growing in size. By the time t = 0.6, the flooded region has totally vanished, which leaves 

us with a standard inviscid Burgers’ equation for the rest of the flow, with an unusual flat region 

in the initial data. 

9. CONCLUSIONS 

The simplest possible kinematrc model for rivers with irregular geometries yields surprising 

predictions. For rivers with flood plains, these predictions are particularly striking; they imply 

that flood waves should decompose into two hydraulic jumps, separated by a growing region 
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where the water-level is constant and has the critical flooding value. The end of a flood, on the 
other hand, should take the form not of a rarefaction wave, but of an inverted hydraulic jump. If 
verified experimentally, these predictions could have practical consequences in our ability to deal 
with catastrophic floods. 

The mathematics behind these predictions is that of scalar conservation laws with nonconvex 
flux functions. The structure of the Riemann problem for such equations was discussed, and a 
conservative numerical method was proposed to deal with more general initial data. 

A natural continuation of the work described in this article would be the study of rivers with 
irregular geometries in the more complete setting of the Saint-Venant equations (l),(2). We 
anticipate that the corrections to the simplified model just, presented will be most, significant in 
the vicinity of hydraulic jumps. However, the main features of the solutions described here should 
remain basically unchanged. 
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