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A Linear Programming Approach 
to Water-Resources Optimization 

By P. M. Jacovkis, H. Gradowczyk, A. M. Freisztav and E. G. Tabak 1 

Abstract: A linear-programming model for use in analysis and planning of multiobjective water 
resources systems is described in this paper. A typical system consists of reservoirs, hydropower 
stations, irrigated land, artificial and navigation channels, etc., over a reach of a river or a river 
basin. 

The linear programming approach is studied and compared with other approaches: mixed 
integer-linear dynamic and nonlinear. The advantages and drawbacks of its use in a real case-study 
are also described. 

1 Introduction 

The optimal planning of a multipurpose water resources system, that  is, the design of 

the "bes t"  system to be constructed and exploited during a planning horizon, is sub- ._.. 
ject to technical, economical, financial, social and polit ical  constraints. These con- 

straints include the seasonal variation of  water supply,  the geographical and geological 

condition of  the chosen sites, the existence of  capital,  loans, manpower and local 

services, the rate of  interest (and its trend), the regional development plans, etc. In 

order to employ water-resources rationally, they must  be considered in a global and 

integrated way, specially in a country like Argentina, where the necessary financing 

for the simultaneous construction of  all the system works is never available, due to a 

permanent shortage of funds and financing, and where a careful assessment of the 

feasibility of  a multiobjective project improves dramatically the possibilities of  ob- 

taining external loans. 

The mathematical  modeling of  the multipurpose water resources system is not  a 

trivial work: decisions have to be made about taking or not  into account randomness of 
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hydrological variables and uncertainties on changes of prices or costs;about phenomena 
to be modeled, through equations and/or inequalities; about linearization or not of 
equations or inequalities; about what exactly the objective function must represent; 
about mathematical tools to be used (linear programming, nonlinear programming 
(quadratic? convex?), dynamical programming, integer programming, simulation, a 
combination of some or all of them, etc.), all this under the "metaconstraints" due to 
actual boundary conditions: computers and data available, staff, schedule, access to 
software, etc. 

In this paper a very complex water resources model is formulated, described and 
explained, including its optimization by means of a linear programming approach and 
the results obtained. The reasons of this approach are detailed and other possible ap- 
proachs are mentioned. The model is included in a global simulation-optimization 
package, whose other parts will be described in later papers. 

Of course this is not the first LP model applied to water resource optimization: 
after the pioneering effort accomplished by the Harvard Water Program (see Maas et 
al. 1962) we may mention contributions by Hall and Dracup (1970), Major and 
Lenton (1979) - who, incidentally, applied water resources models to an Argentinean 
river - and many other authors elsewhere. We have extended the water resources LP 
model to very complex systems, and it's worth while to discuss it and compare it with 
other possible approachs. 

2 The  Genera l  Planning Model  

A general model shall be described which computes the optimal design of a multipur- 
pose water resources system consisting of reservoirs, hydroelectrical power stations, 
irrigation lands, urban water supply, artificial channels, projected in a river network. 
"Optimal design" means the design maximizing an economical function (more will be 

said thereabout) within the planning horizon (say, 25 years). The constraints of the 
model are induced by the operation rules, the continuity equations of the discharge, 
and the physical and socioeconomical characteristics of the system. 

The first assumption of the model is that a "mean hydrological year" is con- 
sidered. That is, the model considers that the water resource system replicates during 
the planning horizon of H years the same (mean) hydrological year, instead of consider- 
ing different years with different characteristic hydrological data. An enormous amount 
of time, variables and constraints is saved in this way, and sensitivity runs allow to 
observe the effects of perturbations in a cheaper manner. 

The second assumption is that during the planning horizon benefits will be ob- 
tained once the construction of the corresponding work has finished. Construction of 
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all works begins at the base year, or later. That is, the optimal design causes a certain 

regulation of the discharges, that has sense after all the works have been constructed. 

The mean hydrological year is divided into M annual periods (not necessarily 
equal) defined for hydrological, agronomical and/or commercial reasons. 

The duration of each period must be not so small as to have to take into account 

flood routing phenomena such as attenuation. So only continuity equations are con- 
sidered in the flood routing, and periods must be monthly or larger. Anyway, the size of 
the linear programming problem is more or less linear with the number of periods (the 
exact dependance will be shown later on) so care must be taken not to include too 
many periods. 

Mean upstream discharges for periods t, 1 -<< t < M, are data ("boundary condi- 
tions") and are routed downstream considering continuity equations at nodes, infiltra- 

tion, evaporation, and lateral inflows or outflows, according to the network topology 

and the projected works. The fluvial network is discretized in N nodes; a node is in- 
cluded in the modelling only if one (several) work(s), reservoir, hydropower station, 

irrigation intake, etc. is (are) projected there, or if a navigation constraint is required 

there, or if it is a junction point of tributaries or a diversion of natural or artificial 
reaches. A typical fluvial network is indicated in Fig. 1. Ratios of infiltration and 
evaporation, and lateral inflows and outflows, not specificaIly considered as variables, 
are also data. 

'OY 2 QAP 7 
".--.ks " ' o  

Fig. 1. Typical fluvial network 
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3 C o n t i n u i t y  C o n s t r a i n t s  

The classical continuity equation 

A V n ,  t -- Vn, t+ 1 - -  (1 - On, t) Vn, t = (QINn, t - QOUTn, t ) A t  (1) 

is valid for every node n, 1 <~ n <. N and period t, 1 ~< t ~< M, where A Vn, t is the varia- 

tion of  volume of  stored water in reservoir n from the beginning of  period t to the 

beginning of  period t + 1 (this sum is of  course taken modulo M); QINn, t is the mean 

discharge flowing into node n during period t; QOUTn, t is the mean discharge flowing 

out of the node n in period t; At is the duration of  period t; Vn, t is the volume of 

water stored in reservoir n at the beginning of  period t. On,t is the coefficient of  

evaporation and/or infiltration in reservoir n during period t, and is a known param- 

eter. If in node n no reservoir is present, equation (1) takes the simpler form 

QINn, t - QOUTn, t = 0 (1 ') 

There is a nonlinearity avoided in equation (1): losses 0 are considered proportional to 

the volume, instead of  proportional to the surface or bottom. As we may assume a 

one-to-one law between volumes V and surfaces A, a nonlinear generalization of equa- 

tion (1) would be 

A Vn. t = gn, t+l  - gn, t + On, t (A(gn , t ) )  = QlNn, t  - QOUTn, t  (1 ") 

QIN and Q O U T  are decomposed as 

QINn, t = (1 - V n -  1, n, t ) Q S A L n -  1, t + ffp, t - u  QRIEp, t - u  + QAPn, t 

+ (1 - 7k.n.  t )QSALk ,  t + (1 - 71 ,t) QEFL 1, t (2) 

QOUTn. t = QSALn,  t + QEFLn, t + QRIEn, t (3) 

where Q S A L n - I , t  is the mean discharge through reach ( n -  1, n) during period t; 
7n - l , n ,  t is the coefficient of  loss of discharge in reach (n - 1, n) in  period t; QRIEp, t - u  

is the mean discharge used for irrigation in a node p upstream to n, u periods before 

t; a p . t - u  is the coefficient of  return flow corresponding to QRIEp, t - u  �9 7 and aare  
known parameters. QAPn, t is the mean lateral inflow or outflow through reach (n - 1, n) 
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in period t. QAP is a datum, known from hydrological studies or from economical 
reasons Of, for instance, urban water supply is considered fixed, it may be represented 
in QAPn. t). QEFLn. t is the mean discharge flowing from node n into an effluent in 
period t. 

Replacing (2) and (3) into (1) the general equation (constraint) of continuity is 
obtained. There are M ( N -  1) equations of continuity in the model, independent of 
the number of tributaries or effluents. 

Remark that 

(i) The network is composed of branches. Discharge flowing into upstream nodes of 
branches are boundary data (open extreme nodes) or values QEFL originated in 
nodes from which branches are diverted. 

ii) Depending on the characteristics of the nodes several terms may (or must) dissap- 
pear from equations (2) and (3). For instance, in equation (2) QEFLt appears 
only if n is the first node of an effluent to which flow is diverted from node 1, 
QSALn_I, QSALk and QRIEp disappear from equation (2) if n is an open up- 
stream extreme node (the corresponding boundary data are given in this case by 
QAP). QRIE appears only where there is an irrigation intake to supply water to a 
certain area. 

4 Reservoi r  Const ra in ts  

A reservoir at node n will have a total capacity VOLDISn subject to the upper bound 

VOLDISn <~ VOLMAXn (4) 

where the value of VOLMAXn, a datum, depends on topographical, hydraulic, geolog- 
ical or economical characteristics of the site. Then 

Vn,t <~ VOLDISn (5) 

for all periods t, meaning that 

VOLDISn = max Vn,t < VOLMAXn 
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There are MR reservoir constraints (4), where R ~<N is the number of projected 
reservoirs. (5), of course, is not included as constraint because the model treats upper 
(and lower) bounds in the usual manner. 

5 I r r iga t ion  Const ra in ts  

An irrigation system in node n is related to the irrigation discharge QRIEn, t in period t 
through equation 

TM,t 
QRIEn,t = ~ ARIMAXn (6) 

1 - E n , t  

where En, t is the coefficient of conveyance loss at node n in period t due to infiltra- 
tion, evaporation, etc. It is a known parameter. A R I M A X n  is the area to be irrigated 

with QRIE. "t'n, t is the mean irrigation discharge needed by unit of irrigated surface in 
period t at node n to assure the optimum yield with a (known in advance) mix of 
crops. The underlying assumption is then that the irrigated area will be fixed, but the 

amount of irrigation received depends on the season, for hydrological reasons. And 

exactly in the irrigated area an optimum yield will be possible. 

Variables QRIEn, t are automatically replaced in the model by ARIMAXn.  Param- 

eters "On, t are inputs to the model. 

The irrigation area has physical or economical upper bounds; on the other hand, 

for, say, political reasons, a minimum land under irrigation has perhaps to be guaranteed, 
so that 

RIEACT n < A R I M A X n  ~ CAPRIE n (7) 

where CAPRIEn (upper bound) is the maximum area irrigable from node n and 

RIEACTn (lower bound) is the minimum area that must compulsorily be irrigated. 
Care must be taken in analysing irrigation, because benefits are difficult to quantify 

(besides benefits related to improved agriculture, about which more will be said later, 
there are indirect sociopolitical benefits related to increasing- and with better standard 

of life - populations, that may be almost nonexisting with, say, isolated hydropower 
stations). 
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6 Hydroe l ec t r i c a l  Cons t ra in t s  

For a reservoir at node n a one-to-one relationship is established between the stored 

volume of water Vn,t at the beginning of period t and the corresponding elevation of 

water Hn,t. This relationship Vn,t =fn(Hn,t) is usually nonlinear, and is modeled as a 
pair of piecewise linear functions 

k n 

V n , t  = ~ w n , t ,  i V n i  (8 )  
i=1 

k n 

bin, t = ~ wn,t, iHni (9) 
i=1 

where kn is the number of known pairs of values of table Vn/H n at points (Vnl,  Hnl), 
.... ( v,,k,,, H .k . ) .  

The weights wn,t, i are subject to the additional constraints 

k n 

Wn,t, i = 1 (10) 
i=1 

and at most two consecutive subindices (i, i + 1) may be different from zero. Of course 
care must be taken when implementing the piecewise linearization algorithm because 
the optimum found may be a local optimum if constraints and objective functions 
haven't the necessarily convexity-concavity properties, and they haven't them in this 
model. Besides, the introduction of tables with many pairs of  elements dramatically 
increases the size of the LP, so that a trade-off is necessary between using the piece- 

wise-linear algorithm and performing several computer runs with linear relationships. 

Elevations Hn, t are all measured from the same plane of reference. 
The number of equations (8), (9) and (10) is 3DM, where D is the number of 

hydropower stations. If the piecewise-linear algorithm is not used, and a linear rela- 
tionship 

V . . t  = a .  + b . H . . t  (8') 

is employed, the model replaces the volumes by the elevations through the constraints, 
and no equation of the type (8), (9) or (10) is required. 
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Hydroelectrical energy ENEHn, t generated during period t in a power station at 
node n is related to the capacity of the power station through equation 

ENEHn,t <~ Ath �9 FACUTn,t " INDISn �9 POTINS n (11) 

where POTINSn is the power plant capacity; FA CUT is the maximum daily load factor 
admissible; INDISn is the power factor (less than 1) relating the actual and apparent 
power; Ath is the number of hours of period t. FACUTn, INDISn and At n are data. 

POTINSn is bounded by the maximum possible installed power POTMAXn, due 
to physical and economical reasons. POTMAXn is a known datum: 

POTINSn <~ POTMAXn (12) 

Equations (11) and (12) represent "technical" constraints involving energy. Hydrologi- 
ical constraints are the following: 

ENEHn, t < Ath " rln Qn, t Sn, t (13) 

where r/n (a known parameter) is a hydraulic performance coefficient in node n that 
includes changes of units. The turbinated discharge Qn,t includes QSALn,t, to which 
are added QRIEn, t and/or QEFLn,t if they are diverted after they are routed through 
the power plant. Sn,t is the net head of dam n in period t. 

Upper and lower bounds of Sn,t are given by 

Sn, t >1 Smin n (14) 

Sn,t < Hn,t - HAAn,t  + HEXCn (15) 

Smin n is the minimum admissible head (for technical reasons) in node n; HAAn,t is 
the mean downstream elevation under natural conditions, and HEXCn is the depth of 
the excavation, supposing that there is an excavated channel downstream the power 
station, in order to increase the dam head. Smin n and HAAn,t  are given data, where 
HEXCn = 0 when there is no excavated channel. This condition is obtained through 
the additional constraint 

HEXCn <HEXMAXn (16) 
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reservoir level in 
period t ~Sn, t ~ ~ . - - - - ~  - _ - - -  

Hn, t HAA~ t 

I 

t 
Fig.  2 .  S c h e m e  o f  a d a m  

reservoir level 
in period t 

- z ~ - - _ -  '-5_=- - _ - ~ - - i - - - - - - - - - : ~ _ - ~ - ~  - -- 

~in;t Sn, t 

Fig .  3.  S c h e m e  o f  a d a m  w i t h  e x c a v a t e d  c h a n n e l  

with HEXMAXn, the maximum admissible excavation (for geographical or geological 
reasons), an input to the model that may have the value zero. In Figures 2 and 3 the 
different alternatives are shown. HAAn, t takes into account the supposition that the 
mean depth of water downstream the power plant has approximatedly known varia- 
tions through the different periods. A more general hypothesis would accept a rela- 
tionship between the turbinated discharge and the elevation HAA; the (nonlinear) 
constraint would then be 

s~ . ,  <<. ~ . ,  - ~ A A , ( Q . )  + ~ E x c ~  (15') 
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Fig. 4. Two chained dams 

Also, given a power plant at a node n, the following constraint must be added if at the 
next downstream node n + 1 there is a reservoir whose backwater may influence the 

net head Sn,t (see Fig. 4): 

Sn,t <~Hn,t-(Hn+l, t  +-Rn,t) (17) 

where Rn, t is the mean water surface elevation downstream node n (with reference to 
elevation 11.+ l ,t) due to the backwater at node n + 1. It is considered approximatedly 

known for each period. A generalization is obtained taking Rn, t as a function of 
Hn+ I ,t, and then the (nonlinear) constraint would be 

Sn,t <~Hn,t - (Hn+ l, t + Rn(Hn+ l,t)) (17') 

Constraint (13) is nonlinear. As in (Major and Lenton 1979) the following method has 

been applied, that converged in all our cases in at most three iterations: initial values 

Qo., t and Son, t are assumed, and constraint (13) is decomposed in 

ENEHn, t <~ Att~rln Qon,tSn,t (13')  

and 

ENEHn, t <~ A t h tin Qn. tSOn. t (13") 
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With Qono t and Son, t equal to their maximum feasible values, the model is run with 
these values; in the following iteration they are replaced by the values of the solution, 
and so forth. 

Besides, a more general formulation of constraint (13) would accept that the 
hydraulic performance coefficient r/n depend on the head Sn,t and on the turbinated 
discharge Qn, so that the (very) non linear constraint would be 

ENEHn, t ~ Athrlh(Sn,t, Qn,t)Qn.tSn.t (13") 

As firm power may be charged, and therefore offer profits, it is introduced into the 
model. Firm power POTGAR n at node n is defined as that power which could be 
guaranteed all the periods with probability X given, i.e., which corresponds in a first 
approximation to a historical discharge recorded 100X% of the time, so that 

ENEHn, t 
POTGARn <~ ~n,t At INDISnFACUTn (18) 

where 

QX, t 

[ [number~ ) } 
QX, t = min / Q//  n---~mb~r -~ ~-ecorded years >1 • 

Qa,t is the mean discharge recorded in (historical) year a, period t;  On,t is the mean 
discharge in period t recorded all the years of the record. 

This approximation is good if the regulating capacity of the system is negligible; 
if it is not, fn,t has to be defined as 

f n,t = X" Qn,t 

with Qn. t the turbinated discharge. Constraint (18) is then nonlinear 

ENEHn, t 
POTGARn <<- XQn,t At INDISnFACUT n (18') 
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and, in order to maintain linearity two or three iterations of the LP model are neces- 
sary, using in each an approximated value Qon, t that must be compared with that ob- 
tained in the solucion. 

There are (4M + 1)D constraints (11), (13'), (13"), (17)and (18). 

7 Artificial Effluents and Navigation Constraints 

Discharge diverted through artificial channels must be lesser than the design discharge, 
so that 

QEFLn, t <<. Q EXPn (19) 

which, in turn, has a physical known bound QEFLD n 

QEXP n <~ QEFLDn (20) 

Besides that, an artificial reach is treated like a natural one. 
If a minimum discharge allowing navigation has to be maintained, then 

QSALn,r >~ QMINn (21) 

where QMIN n is the minimum (known) acceptable discharge. There are MF constraints 

(19), where F is the number of artificial channels. 

8 The  Object ive  Func t i on  

We have specified two types of objective functions: 

1) Maximize, subject to constraints (1)-(21) for nodes n, 1 ~ n <~ N and periods t, 

1 ~< t ~<M, the algebraic sum of the present value of net benefits of the works 
with their selected designs. 
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2) Given a minimum amount of energy to be globally generated and firm power to 

be globally guaranteed, minimize the total cost. This alternative may be run under 
the assumption that, should it be necessary, subtitutive firm power and energy 
(supplied by, say, a thermal power station) may be used to satisfy the global 

energy and firm power requirements (and so to avoid that the LP problem be un- 
feasible). 

Let's analise the first type of objective function. It is 

N 

max z = ]~ - C*n - C3Mn - C~cn + B* + V~n (22) 
n = l  

where: 

q q 

c;* = ~ r162 Z C~.~.X,,4 (23) 
4=1 4=1 

q 

C~Mn = ~ C~AnkC~nkXnk (24) 
k = l  

q 

C A  n = ]~ 1 r Ckc,,4 X,,k (2S) 
k = l  

q 

B* = Y-. r Y.k (26) 
k = l  

Here, C*n is the discounted construction cost of works at node n ; k  is the type of 
work (reservoir, power plant, irrigation system, artificial channel, excavated channel), 
q is the number of different types of works (the model allows currently till q = 5); 
C~ is the constant term of the construction cost of work of type k at node n, Xnk is 

the variable characterizing type of work k at node n; Xnl  = VOLDISn ; Xn2 = POTINSn; 

Xn 3 = A R I M A X n  ; Xn 4 = QEFLMXn ; Xn s = HEXCn. 

r is a discount factor, given by 

~ n , k  

r ~ ~*~/(I +ik) ~ 
r = I  
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where: 
O~n.k is the number of years that must be employed in the construction of work 

of type k at node n; 3n~r is the proportion of investment in construction spent during 

the r-fit year of construction of work of type k at node n. 

~ n , k  

~nkr ~> 0 Z 3n~r=l 
r = l  

ik is the rate of discount (may vary according to type of work). All values are dis- 
counted to the base year, the year prior to the beginning of constructions. 

Of course the constant terms are included only in the output of the model. As 
may be seen, assigning to a ~nkr the value zero allows us to simulate that some works 
begin after others. 

The assumption of linear costs is perfectly sound for installed power, irrigated 
area and artificial channels (in this case, because the length of the channel is known in 

advance, and the cost depends linearly on the cross-sectional area, that may be con- 
sidered equivalent to the discharge QEFLMXn). On the other hand it is a simplifica- 
tion for construction of reservoirs, where a better approximation is obtained through 
polinomial costs. A piecewise linear cost is a LP alternative; with a more general 
optimization problem, a quadratic or cubic cost may be used. 

C~Mn is the discounted cost of operation and maintenance of works at node n; 
C1ontc I is the linear term of cost of operation and maintenance. Also in this case it is 

very reasonable to assume costs of operation and maintenance as linear. The present 

worth factor is given by 

CAnk = I(1 + ik) H-an'k -- l[ \[ ik(1 + ik)H[ 

The cost of operation and maintenance is an annuity from the year in which the work 
is constructed on. Its value (a standard financial formula) is in turn discounted to the 

base year. H is the year of the planning horizon. 
Some works may be reconstructed after a certain number of years: C~n is the cost 

of reconstruction of works at node n; C~nk is the linear term of the cost of reconstruc- 
tion. The discount factor for reconstruction is: 

~r k 

~Rnlc = 
u=l 

l / l(1 + ik)ul'Rnk+C~nkl 

where PRnk is the number of years until the following reconstruction, during the plan- 
ning horizon (~rnk = [ ( H -  ank)/PRnkJ, with ,[ ] meaning integer part). 
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The remarks related to construction works hold for the linearized reconstruction 

costs. 
.B* is the discounted income at node n; BEn, k is the annual income for unit of 

energy sold (k = 1), unit of guaranteed firm power (k = 2) and unit of cultivated area 

(k = 3). In this case, the income received is the difference between the gross income 

and the income that would be received without irrigation, 
Ynk is a variable characterizing type of item k at node n 

M 

Ynl = ~ ENEHn,tAt  
t = l  

Yn2 = POTGARn 

Yn 3 = ARIMAXn 

We assume that the annual costs of operation and maintenance do not vary through 

the planning horizon, and the same happens with the annual income due to energy 

sold and firm power guaranteed. The formula for the annual income due to cultures of 

irrigated areas is more complex, because we consider that there is a constant mix of 

different crops - each beginning its commercial production a certain number of years 

(of growing) after being planted or sown - per unit of area, and we begin to plant or 

sow for the /~nkk-th (k = irrigation) part of ARIMAX n after year r of construction of 

the irrigation system. Of course, the number of years of growing varies from crop to 

crop. 
V~n is the residual value of works at node n. It takes into account the benefits 

that could be obtained from the planning horizon H to the end of the useful life of 

works at node n. Benefits are direct and indirect, i.e., if we need a reservoir to operate 

a power plant, we include also the (indirect) benefit due to the reservoir, computing its 

residual value depreciating the cost of construction via the sinking fund formula. 

For the second type of objective function, we do not care about the benefits 

(i.e., BEn. ~ = 0 for all n, k) but we must add certain linear constraints: 

Z, POTGAR >1 PORGAD (27) 
I'l 

~, ENEHn.t >t ENEHD t (28) 
n 

where PORGAD and ENEHDt are, respectively, the minimum finn power to be guar- 

anteed and the minimum energy to be supplied in period t. These are data. Of course, 
in this case we'll get the design of minimum cost. 
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9 I m p l e m e n t a t i o n  

The model was implemented in FORTRAN, with a LP package developed by the 
authors, that used the product from of the inverse. 

In some tests with more constraints and variables then the real ones some numeri- 

cal instabilities were observed, and an LU optional subroutine of the Bartels-Golub 
type was implemented just in case it would be necessary (it wasn't). 

The usual cases studies were rivers in southern Argentine (Negro and Carrenleuf6), 
and they were typical small to medium size problemas: they had some 300 constraints 
and 300 variables besides the slack ones taking two periods for year and 15 nodes. The 
general formulae are 

Number of equations and inequalities: 

M ( N -  1 + R + I + 4D + F) + D if we are optimizingLthe net benefit 

M(N + R + I + 4D + F) + D + 1 if we are minimizing the costs 

Number of variables, excluding slack ones: 

M ( N + F + D ( K +  1) )+R + I + 4 D  + F  

where K is the sum of all pairs (V, H) in all tables (V, H) existing at nodes with power 

stations. This is the final size of the LP, which is somewhat smaller than the original 
problem, because the model automatically reduces it as much as it can. Runs were 

made in a small PDP 11-23 minicomputer, with very scarce resources: a 256 Kb core 
memory, three terminals, a printer, and two 5 Mb removable disks. For a typical run 1.5 
hrmrs were generally spent. 

In the next paragraph we give some numerical examples. But although we are 
quite satisfied with the results, and think that the model is a powerful tool assisting 
planners and decision-makers in water systems, we also think that further research and 
dr:velopment in some areas could be very intersting and useful. 

f. rom the point of view of LP, we have linear inequalities of type 

Ax>--b b ~ O  
< 
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with matrix A of an angular/dual form that could be solved using a decomposition of 
the Danzig-Wolfe type that suit the special structure of this matrix. But we have as- 

sumed that we knew that the works to be constructed would be constructed, although 
they be non profitable; as there are fixed costs, a generalization would adopt a mixed 
integer/linear programming method where (binary) variables Xnk should have the value 
1 or 0 according to the fact that the corresponding work is done or not, and introduc- 
ing fixed costs in the objective function as terms 

Cn0k " Ynk 

It is an interesting problem to try to use the special structure of matrix A with a mixed 
integer/linear program. And a further development - perhaps the optimal LP method- 
ology - would optimize the multiple design, indicating which works are constructed 
and which aren't, by means of a unique integer/linear model that uses as hydrological 
data not those corresponding to a mean historical period but the actual historical data 
of a monthly 25 years record, say, and afterwards study its sensibility using synthetic 
(randomly generated) hydrological data. This model is extremely expensive in time and 
core memory, at least for computers in Argentine market: the number of non-slack 
and non-artificial variables and the number of constraints would be increased ap- 
proximatedly H times, and the number M of periods would be 12. Thus our model 
would have some 45,000 constraints and 45,000 nonslack and non artificial variables, 
and it would require a very powerful LP software (indeed, for this size a better perfor- 
mance could perhaps be obtained through the Karmarckar instead of the simplex 
method. See, for instance Nickels et al. (1985). 

This approach was adopted by Rohde and Kalas (1975), but with a simpler 
model, that fixes minimum installed power and required energy through several 
periods (each several years long) and minimizes the total cost for an electrical system 
composed exclusively of different types of power plants (nuclear, conventional steam, 
run-of-river, storage hydroelectrical, etc.). 

On the other hand, we can try to solve the general nonlinear problem, with non- 

linear constraints (1"), (13), (15 ')and nonlinear cost of construction of reservoir. In 
this case, two approachs seem possible: 

a) A dynamic programming approach. 

This approach has been rejected due to the excessive size of necessary core memory. 
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b) A general nonlinear programming approach. 

Besides standard - and computationaUy complex - non-linear programming techniques, 
some new methods, such as decomposition/convexification technique, that uses the 
special sparse structure of the problem (see for instance Bauer, Gfrerer and Wacker 
1984) may be applied. 

Finally, returning to LP, a stochastic approach could be made, taking into account 
the randomness of hydrologic data. 

10 Numer i ca l  E x p e r i m e n t s  

Figure 5 shows a fluvial scheme formed by an Andean river (Carrenleuftl) in Southern 
Argentine, originated in a lake. Five power stations are considered, in nodes 2, 3, 4, 5 
and 6. The lake level is regulated with a regulating dam in node 1. Power station in 
node 4 is a run-of-river station, without reservoir, the others have reservoirs. Two 
periods have been considered, with a duration of 120 and 245 days, respectively. Table 

I ~ _  QAFL2 

QAFL5 

e Reservoir 

V Hydropower station 4 

6~"  Fig. 5. A fluvial scheme 
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Table 3. Physical results for node 5 

Outflow 
Period (m3/s) 

1 58.03 

2 85.07 

Total loss 
of discharge 
in reach (4,5) 
(m3/s) 

1.22 

1.79 

Elevation 
H 
(m) 

350 

350 

Downstream 
elevation HAA 

(m) 

284.10 

281.75 

Head 
(m) 

65.90 

68.25 

Generated 
energy 
(C~) 

97.15 

301.13 

Reservoir volume (Hm3) 87 

Installed power (MW) 51.77 

Firm power (MW) 20.92 

Annual energy (GWh) 398.28 

Actual annual load factor 0.878 

COST 

Table 4. Economical results for node 5 

PRESENT VALUES IN I000 A 

Construction 

14,057 

Reservoir Hydropower central 

Maintenance Total Construction Maintenance Total 

627 14,684 5,961 533 6,494 

TOTAL CROSS BENEFIT 

RESIDUAL VALUE 

Firm power Energy 

6j720 49,210 

Reservoir Hydropower central 

33022 1,282 

1 shows all data for node 5. Table 2 includes a synthesis of  data for all nodes. Physical 
results for node 5 may be seen in Tables 3 and 4. They correspond to a second itera- 
tions (13') and (13"). The planning horizon is 30 years. 
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11 Conclusions 

This model is not  a theoretical formulation. It has been used integrated with other 

models for two real cases in Argentina, and is a useful tool for evaluation and planning - 

from the technical and economical points of  view - of  multipurpose water research 

projects. 
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