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ABSTRACT

A new theoretical mechanism is developed in which large-scale equatorial Kelvin waves can modify their
speed through dispersion and interaction with other large-scale equatorial waves, such as Yanai or Rossby modes,
through topographic resonance. This resonance mechanism can prevent the breaking of a propagating nonlinear
Kelvin wave, slow down its speed, and concentrate most of its energy in large-scale zonal wavenumbers while
simultaneously generating large-scale Yanai or Rossby modes with specific zonal wavelengths. Simplified reduced
dynamic equations for this resonant interaction are developed here via suitable asymptotic expansions of the
equatorial shallow water equations with topography. Explicit exact solutions for the reduced equations and
numerical experiments are utilized to display explicitly the features of large-scale dispersion and topographic
resonance for equatorial Kelvin waves mentioned earlier. Two examples of this theory, corresponding to the
barotropic and first baroclinic modes of the equatorial troposphere, are emphasized.

1. Introduction

Large-scale eastward-propagating waves are a dis-
tinctive feature of the intraseasonal Madden–Julian os-
cillation (Madden and Julian 1972, 1994) of the equa-
torial troposphere. Current theories attempt to explain
these modes as essentially linear or nonlinear Kelvin
waves of equatorial shallow water models representing
the first baroclinic mode with suitable convective pa-
rameterization (Emanuel 1987; Neelin et al. 1987; Wang
and Xue 1992; Neelin and Yu 1994; Yano et al. 1995)
through either wave–Cisk or evaporation-wind feedback
mechanisms, which slow down the Kelvin waves. There
are also observations of large-scale westward-propa-
gating waves embedded within eastward-propagating
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super cloud clusters in the western Pacific and a cor-
responding linear theory (Goswami and Goswami 1991)
for equatorial Yanai or mixed Rossby gravity waves,
which provides a possible mechanism for this phenom-
enon. Large-scale Kelvin and Yanai waves in the tro-
posphere also have a prominent role in the forcing of
low-frequency oscillations of the equatorial stratosphere
such as the quasi-biennial oscillation (Andrews et al.
1987; Takahashi and Boville 1992).

Here we present a new theoretical mechanism in
which large-scale equatorial Kelvin waves can modify
their speed through large-scale dispersion and interac-
tion with other large-scale equatorial waves, such as
Yanai or Rossby modes, through topographic resonance.
This resonance mechanism can also generate simulta-
neously large-scale Yanai or Rossby modes with specific
wavelengths and prevent the breaking of the nonlinear
Kelvin wave while concentrating most of its energy in
large-scale zonal modes. To clearly elucidate the struc-
ture of this new mechanism in the simplest physical
context, here the equatorial shallow water equations
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with topography with an equivalent height generated by
either the barotropic or first baroclinic mode of the equa-
torial troposphere are utilized. For dynamics in the equa-
torial troposphere, this reduction from the full vertical
structure to a shallow water model is often done by
Galerkin projection onto a single vertical mode of the
full primitive equations in pressure coordinates (see,
e.g., Neelin and Zeng 1997). Recent EOF analysis of
observational data in the western Pacific (Milliff and
Madden 1996) provides evidence that the dominant two
modes in eastward-propagating equatorial waves are the
first baroclinic and barotropic modes, respectively. In
this paper the topography is regarded as crudely mod-
eling large-scale land–sea contrasts, but the authors have
no doubt that the role of topography elucidated here can
be replaced in similar models by other large-scale in-
homogeneous mechanisms, such as diabatic heating or
evaporation wind feedback with convective parameter-
ization, which accounts for different bulk fluxes for land
and sea (Neelin and Zeng 1997). We plan to develop
these more elaborate applications in the near future. The
reason why the authors believe that these other mech-
anisms will play similar roles as the topography is that
entirely similar behaviors appear in the context of gas
dynamics (Majda et al. 1988; Celentano 1995; Vaynblat
1996; Shefter 1997), where the coupling of the waves
is through variations in the gas entropy—not an external
entity such as the topography. The behaviors presented
in this paper, in fact, seem to be common to any situation
in which nonlinear nondispersive waves resonate with
other waves through variations in the media they prop-
agate in (entropy, humidity, vorticity) or variable co-
efficients (topography). A brief summary and discussion
of the content of the remainder of this paper is presented
next.

After preliminary discussion of the equatorial shallow
water equations in section 2a, the basic nonlinear res-
onance mechanism of large-scale equatorial waves
through topography is described in section 2b. Through
an asymptotic expansion procedure described in detail
in section 5, this topographic resonance mechanism
yields suitable simplified reduced equations for the am-
plitude of interacting large-scale equatorial waves. In
section 2c, these equations are presented with an equiv-
alent height corresponding to the barotropic mode. The
simplified equations in this case are given by

1
2 iu 2iuK 1 K 5 g[Y(t)e 1 Y(t)e ] and (1.1)t 1 22

u

ˆY 5 2gK(1, t), (1.2)t

where K(u, t) is the amplitude of the Kelvin wave, a
periodic function of u, and Y(t) is the amplitude of the
Yanai wave with wavenumber two while g represents
the amplitude of wavenumber three topography [the var-
iables t and u are rescaled shifted variables (see section
5)]. Thus, the nonlinear Kelvin wave and a specific

large-scale Yanai wave interact through topographic res-
onance with wavenumber three and these are the only
wavelengths with such resonance. In Eq. (1.2) the quan-
tity K̂(1, t) is the projection onto the first zonal harmonic
of the Kelvin wave amplitude. Without topographic res-
onance, that is, with g 5 0, Eq. (1.1) reduces to the
inviscid Burgers equation describing nonlinear Kelvin
waves (Boyd 1980; Ripa 1982); however, completely
different large-scale dispersive phenomena occur for g
± 0, which are developed in detail in section 3. In
section 2d, we briefly describe the reduced equations
analogous to (1.1) and (1.2), which occur for an equiv-
alent height corresponding to the first baroclinic mode;
here several large-scale Yanai and equatorial Rossby
waves can interact with the Kelvin wave through equa-
tions with a similar structure as in (1.1) and (1.2).

In section 3, some basic properties of solutions of
these reduced asymptotic equations are studied includ-
ing large-scale dispersion and phase modification of the
Kelvin waves and generation of large-scale Yanai or
Rossby waves. The effect of the mean wind on the res-
onantly interacting waves is presented in section 4,
while the asymptotic derivation of the reduced model
is presented in section 5. The asymptotic procedure uti-
lized in section 5 is based on the method of multiple
scales and follows similar asymptotic procedures to
those that two of the authors (Majda and Rosales 1984)
have applied to resonant waves in compressible flow.
For the special case of (1.1) with g 5 0, this procedure
yields a simpler asymptotic derivation of the nonlinear
propagating Kelvin wave than that via strained coor-
dinates (Boyd 1980), which is also different from Ripa’s
(1982) elegant Galerkin projection technique for deriv-
ing the propagation of nonlinear Kelvin waves. In sec-
tion 5b, results of a similar analysis with forcing through
diabatic heating are briefly discussed, showing that the
identical asymptotic equations are valid in this context.
This fact helps to motivate and justify the use in this
paper of a wave speed for baroclinic Kelvin modes of
roughly 50 m s21. This is the typical wave speed as-
sumed for convective forcing of the troposphere in sin-
gle-layer models (Gill 1982; Yano et al. 1995; Milliff
and Madden 1996).

2. The reduced model equations

a. Basic equations, nondimensionalization, and linear
waves

The nondimensionalized equations for shallow water
in the equatorial waveguide are given by

h 1 [(1 1 h 2 h)u] 1 [(1 1 h 2 h)y] 5 0, (2.1)t x y

u 1 uu 1 yu 1 h 2 yy 5 0, and (2.2)t x y x

y 1 uy 1 yy 1 h 1 yu 5 0. (2.3)t x y y

Here the total dimensional depth of the fluid is
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FIG. 1. Dispersion relation for equatorial waves with curves cor-
responding to the Kelvin, Yanai, and the first few Rossby and Poincaré
waves. Since the dispersion relation is skew-symmetric, only the
upper-half plane v $ 0 is displayed.

2c
(1 1 h 2 h),

g

where c is the characteristic speed of the linear waves,
g is the acceleration of gravity, h is the nondimensional
perturbation of the free surface, and h is the nondi-
mensional topography. The x and y velocities u and y
are nondimensionalized by the characteristic speed c,
and the spatial variables by the scale

1/2c
L 5 ,1 2b

where b is the linear variation of the Coriolis parameter
with latitude, given by

2V
b 5 .

R

Here V 5 (2p)/24hs is the angular velocity of the
earth, with R 5 6378 km the radius. The timescale T
is given by

L
T 5 .

c

The solutions to the linearization of the equations
above can be divided into two groups: a nondispersive
Kelvin wave; and an infinite set of dispersive waves,
the Rossby, Yanai, and Poincaré waves (Gill 1982). The
Kelvin wave is given by

22(y /2)h 5 K(x 2 t)e , (2.4)
22(y /2)u 5 K(x 2 t)e , and (2.5)

y 5 0, (2.6)

where K is an arbitrary function. The dispersive waves
have the general form

y v 2i(kx2vt) 2(y /2)h 5 H (y) 1 H9(y) e e , (2.7)n n2 2[ ]k 2 v v 2 k

y k 2i(kx2vt) 2(y /2)u 5 H (y) 1 H9(y) e e , (2.8)n n2 2[ ]k 2 v v 2 k

and
2i(kx2vt) 2(y /2)y 5 iH (y)e e , (2.9)n

where Hn(y) is the Hermite polynomial of order n, and
v 5 W(k) satisfies the dispersion relation

2(v 1 k)(v 2 kv 2 1)
22n 1 5 0. (2.10)

v

The solutions with positive v to this cubic equation are
displayed in Fig. 1. The case with n 5 0 has only two
solutions, corresponding to the Yanai (or mixed Rossby
gravity) wave; the third solution to the cubic (v 5 2k)
is spurious because it does not satisfy the original equa-
tions. For n $ 1, the solutions are one Rossby and two

Poincaré waves, characterized, respectively, by the in-
equalities

1 1 2n
2 1/2v # 2 [n(n 1 1)] and

2

1 1 2n
2 1/2v $ 1 [n(n 1 1)] .

2

There is a wide-scale separation between the Rossby
and the Poincaré waves.

b. Resonances between long waves through
topography

Since the dispersion relations for equatorially trapped
waves (shown in Fig. 1) are far from self-similar, the
nature of resonant interactions depends strongly on the
order of magnitude of the wavenumbers in play. The
focus here is on very long waves, with spatial periods
comparable to the circumference of the earth, P 5
40 000 km.

A Kelvin wave K(x 2 t) can be written as a Fourier
series

`

ial(x2t)ˆK(x 2 t) 5 K(l)e ,O
l51

where a 5 (2pL)/P and L 5 (c/b)1/2 is the equatorial
length scale. A wave with l 5 1, that is, with period
equal to the circumference of the earth, has a wave-
number k 5 a, and all other wavenumbers are integer
multiples of this. Similarly, each mode Dj of the dis-
persive waves in (2.7)–(2.9) has the form

D(x, t) 5 Dj ,i(ajx2v t)je
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TABLE 1. Typical speeds, and corresponding units of length, time,
and wavenumber.

c (m s21) L (km) T (h) a

50
100
300

1500
2100
3600

8
6
3

0.23
0.33
0.57

FIG. 2. Dispersion relation for equatorial waves that are concen-
trated on the barotropic mode. The grid displayed corresponds to
allowable wavenumbers, which follows from measuring the circum-
ference of the earth in the dimensional units corresponding to the
barotropic mode. The asterisk denotes the Yanai mode (k 5 22 in
units of a) that resonates with the k 5 1 mode of the Kelvin wave
through the k 5 3 mode of the topography.

where j is an integer and v j 5 W(ja). Table 1 displays
approximate values of L, T, and a for typical values of c.

As a Kelvin wave interacts with the topography, it
can generate other waves through a three-mode reso-
nance. If kK, kT, and k* denote the wavenumbers of the
Kelvin wave, the topography, and the dispersive wave,
respectively, the conditions for resonance are

k 1 k 5 k* and (2.11)K T

k 5 v* 5 W(k*), (2.12)K

where for the Kelvin wave v 5 k and the topography
is time independent. The resonant interaction conditions
in (2.11) and (2.12) are derived from the detailed as-
ymptotic derivation in section 5. Since all the wave-
numbers have to be multiples of a, the nature of the
possible interactions depends on the numerical value of
a. In the next two subsections, two typical cases cor-
responding to the barotropic and first baroclinic modes
of the tropical atmosphere are studied. The barotropic
and first baroclinic modes have wave speeds given ap-
proximately by c 5 300 m s21 and c 5 50 m s21,
respectively (Milliff and Madden 1996). Here a value
of c 5 50 m s21 is utilized to represent the typical wave
speed associated with the response to diabatic heating
from convection (Gill 1982; Yano et al. 1995; Milliff
and Madden 1996). This is partly justified by the dis-
cussion in section 5b below regarding the nonlinear re-
sponse to diabatic heating. The value of c ù 150 m s21

is actually more appropriate for the first baroclinic mode
of the dry atmosphere including both the troposphere
and stratosphere (Kasahara and Puri 1981). This ex-
ample is not discussed in this paper for brevity.

c. The barotropic mode

Since c is approximately 300 m s21, a typical value
for the barotropic mode, a, is close to 0.57. In Fig. 2,
we have redrawn the dispersion relations of Fig. 1, fo-
cusing on the longest waves and displaying the grid
corresponding to allowable wavenumbers and (Kelvin)
frequencies for this value of a. Which large-scale dis-
persive waves can resonate with a Kelvin wave via to-
pography and satisfy (2.11) and (2.12)? Since the Kelvin
wave cannot have a positive wavenumber kK smaller
than a . 0.3, from inspection of the dispersion relation
in Fig. 2, it follows that no Rossby waves can result
from the interaction of a Kelvin wave with topography,
and the only wave that can be generated by the first two
modes of a Kelvin wave is the k 5 21.14 (l 5 22)

Yanai mode, generated by the l 5 1 Kelvin wave, and
the l 5 3 mode of the topography.

From the above discussion, reduced dynamic equa-
tions for small-amplitude waves and topography should
emerge involving the Kelvin modes and the large-scale
Yanai wave. Such an asymptotic expansion is carried
out in detail in section 5. The resulting equations are

1
2 iu 2iuK 1 K 5 Y(t)e 1 Y(t)e and (2.13)t 1 22

u

ˆY 5 2K(1, t), (2.14)t

where K(u, t) and Y(t) stand for the Kelvin wave and
the l 5 22 mode of Yanai, respectively, u 5 a(x 2 t)
represents the linear phase of the Kelvin wave (nor-
malized so that it has period 2p) and t 5 et represents
the slow nonlinear time (where e K 1 is a nondimen-
sional measure of the amplitude of the topographic var-
iations). The dependent variables K and Y and the slow
time t have been further rescaled in order to normalize
to one the interaction coefficients on the right-hand side,
which depend on the projection of the (zonal) mode l
5 3 of the topography on the (longitudinal) first Hermite
polynomial [see (5.33) and (5.34) below].

Equation (2.13) for the evolution of the Kelvin wave
is an inviscid Burgers equation, forced on the right-hand
side by the interaction of the Yanai wave with the to-
pography. The Burgers equation arises because Kelvin
waves are nondispersive, so all modes resonate with
each other. Equation (2.14), on the other hand, is an
ordinary differential equation for the evolution of the
Yanai wave, forced by the interaction of the Kelvin wave
with the topography. This system of equations has very
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FIG. 3. Dispersion relation for equatorial waves with a grid cor-
responding to the first baroclinic mode. In this case, there are three
dispersive modes resonating with the Kelvin wave through the to-
pography.

distinctive properties, some of which are treated below
in section 3.

d. The first baroclinic mode (multiple wave
interaction)

The first baroclinic mode associated with convective
heating typically has a characteristic speed close to 50
m s21, with values of a around 0.25. Figure 3 shows
the corresponding blowup of the dispersion relation.
More interactions can take place in this case through
the topographic resonance mechanism in (2.11) and
(2.12) than in the barotropic situation described above:
the l 5 1 (k 5 0.25) mode of the Kelvin wave can
interact with the l 5 4 (k 5 21) mode of the first Rossby
wave through the l 5 5 mode of the topography, and
the l 5 2 and l 5 4 Kelvin modes can interact with the
l 5 6 (k 5 21.5) and l 5 0 Yanai modes, respectively,
through the l 5 8 and l 5 4 modes of the topography.
The l 5 12 mode of the first Rossby wave is also for-
mally in resonance with the l 5 1 Kelvin wave but
requires a significant amplitude of a short wavelength
(l 5 13) of the topography, which is assumed to be zero
for simplicity here.

Thus, only the three resonances mentioned above are
considered here. The asymptotic procedure for small
amplitude waves and topography from section 5 for this
case yields the following set of reduced equations:

1
2 iu 2iuK 1 K 5 g (R(t)e 1 R(t)e )t 11 22

u

2iu 22iu1 g (Y (t)e 1 Y (t)e )2 6 6

4iu 24iu1 g (Y (t)e 1 Y (t)e ),4 0 0

ˆ ˆR 5 2g K(1, t), Y 5 2g K(2, t), andt 1 6t 2

ˆY 5 2g K(4, t).0t 4 (2.15)

Here the constants gj account for the strength of the
various topographic interactions.

Clearly, this system of equations represents a mild
generalization of the one corresponding to the barotropic
mode with added richness provided by its larger number
of degrees of freedom.

3. Properties of the model dynamics

The reduced models discussed in sections 2c and 2d
for large-scale waves interacting with Kelvin waves via
topographic resonance have a number of distinctive fea-
tures. Some of these properties and their physical im-
plications are developed in this section. In section 3a,
the nature of the quantities conserved by the system are
discussed. In section 3b, an explicit family of traveling
wave solutions is constructed; which indicates that the
large-scale dispersion in (2.13), (2.14), or (2.15) can
prevent the breaking of Kelvin waves and significantly

modify (slow down) their speed. In sections 3c and 3d,
a series of numerical experiments are presented, which
show that these traveling wave solutions strongly attract
many initial data with enough energy and that there is
a larger class of attracting solutions, which are oscil-
latory with two periods in time (quasiperiodic). This
situation is similar to that arising the in context of gas
dynamics, when left- and right-going waves interact
through a variable entropy (Shefter 1997). For clarity
in presentation, the barotropic case with only two waves
is discussed first and then the extra ingredients from
multiple wave interactions. The latter is done with the
general system

m1
2 iju 2ijuK 1 K 5 g [R (t)e 1 R (t)e ] and (3.1)Ot j j j1 22 j51u

ˆR 5 2g K( j, t), (3.2)j jt

with the gj real, which includes the baroclinic equations
in (2.15) as a particular case.

a. Conserved quantities and symmetries

The equations in (2.13) and (2.14) have two main
conserved quantities, the mean of K and the total energy.
Conservation of the mean follows straightforwardly
from integrating (2.13) along a period; it takes the form

pd
K(u, t) du 5 0. (3.3)Edt

2p

In particular, this equation tells us that it is sufficient to
consider solutions with constant zero mean since a non-
zero mean can be absorbed into the unperturbed depth
of the fluid layer.
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To see the form for conservation of energy, multiply
Eq. (2.13) by K and integrate

pd 1
2 ˆ ˆK (u, t) du 5 2p[Y(t)K(21, t) 1 Y(t)K(1, t)],Edt 2

2p

ˆ ˆ5 2p(Y(t)K(1, t) 1 Y(t)K(1, t)),
25 22p(|Y | ) ,t

so the energy
2p 2K

2E 5 du 1 2p |Y | (3.4)E 20

is conserved while the solution remains smooth. How-
ever, energy may be dissipated at locations where the
Kelvin wave breaks (Majda et al. 1988). Here the de-
tailed physical dissipative and dispersive mechanisms
for breaking Kelvin waves are not developed since, as
shown below, the equations allow robust traveling wave
solutions without discontinuities.

The equations in (2.13) and (2.14) have an interesting
symmetry: they remain invariant under the transfor-
mation

K → 2K, Y → Y , and u → 2u.

This symmetry is useful for the study of the energy-
preserving waves, as discussed in the remainder of this
section.

For the more general multiwave system in (3.1), (3.2),
with (2.15) as a special case, the equation in (3.3) re-
mains unchanged, while the conserved energy becomes

2p m2K
2E 5 du 1 2p |R | . (3.5)OE j2 j510

The symmetry described above also remains valid, with
Y replaced by Rj.

b. Traveling wave solutions

The equations in (2.13) and (2.14) have a family of
exact solutions where K is a traveling wave. To see this,
an ansatz is utilized in which

K(u, t) 5 F(u 2 st), (3.6)

where s is an arbitrary constant. The quantity s repre-
sents the correction to the linear wave speed for the
Kelvin wave. The Fourier transform of K takes the form

K̂1 5 F̂1e2ist

so the equation for Y becomes

Yt 5 2F̂1e2ist ,

with the particular solution

F̂1 2istY(t) 5 e .
is

Thus Eq. (2.13) becomes the ODE.

ˆ ˆ ˆF F 2F1 1 1iz 2iz[2s 1 F(z)]F9(z) 5 e 1 e 5 sin(z), (3.7)
is is s

where for convenience the origin for the phase z 5 u
2 st has been selected in such a way that F(z) is even
and F̂1 is correspondingly real. With the variable

g(z) 5 F(z) 2 s,

the equation in (3.7) becomes

2 9 ˆg 2F15 sin(z),1 22 s

with the solution

1/2F̂1 1/2g(z) 5 62 2 [C 1 cos(z)] ,1 2s

where C $ 1 is a constant of integration. From this
calculation it follows that

1/2F̂1 1/2F(z) 5 s 6 2 2 [C 1 cos(z)] . (3.8)1 2s

Notice that if C is strictly larger than one, the solution
is smooth, but when C 5 1, it develops a corner. In the
latter case, the solution is

1/2ˆ2F1F(z) 5 s 6 2 2 |cos(z /2)|. (3.9)1 2s

In both situations, the nonlinear breaking of the Kelvin
waves has been suppressed and from (3.6) and (3.9),
the wave speed has been altered through topographic
resonance.

The value of s follows from equating the first Fourier
mode of the solution to F̂1, and imposing the require-
ment that F have zero mean. For the interesting case
with a corner, it follows that

p1
F̂ 5 F(z) cos(z) dz1 Ep 0

1/2 pˆ2 2F15 6 2 cos(z /2) cos(z) dzE1 2p s 0

1/2ˆ4 2F15 6 2 ,1 23p s

so

32
F̂ 5 2 ,1 29p s

and

16
F(z) 5 s 6 |cos(z /2)|. (3.10)

3p |s|

For F to have zero mean requires
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p 64
0 5 F(z) dz 5 2ps 6 ,E 3p |s|

2p

so that

4 2
s 5 7 ; 71.04. (3.11)!p 3

In the original equations [Eqs. (1.1) and (1.2)], this non-
linear wave speed is s ; 71.04g, where g is the to-
pographic amplitude coefficient. Thus the wave with a
downward peak moves more slowly than a linear Kelvin
wave, and the one with the upward peak moves faster
(notice that these two waves are related by the symmetry
group presented in the previous subsection). The total
energy corresponding to this exact solution is readily
computed; its value is

14p 32
E 5 2 ; 1.5.

9 3p

The case with C . 1 can be evaluated similarly in
terms of elliptic functions. For a qualitative result, how-
ever, these solutions are not needed explicitly; it follows
directly from the condition of zero mean that the so-
lutions with the ‘‘1’’ sign (which have their ‘‘peaks’’
pointing downward) will be slowed down by the non-
linear interaction through topographic resonance. It is
interesting to note that the speed s of the traveling wave
does not depend strongly on its amplitude. To this end,
consider a nearly linear solution, that is, with C k 1.
In this case, Eq. (3.8) is well approximated by

1/2F̂ cos(z)1F(z) ; s 6 2 2 ÏC 1 1 ,1 2 [ ]s 2C

so

1/2F̂1F̂ ; 21 1 24sC

or

1
F̂ ; 2 .1 4sC

The condition for zero mean of F(z) then becomes so

s ; 71.

Thus the magnitude of s ranges between 1.04 and 1,
depending on the amplitude of the traveling wave. Since
this range is very short, it is not the strength of the
waves that determines the nonlinear speed of the Kelvin
wave but only the amplitude of the topography (which
determines e, the scale of the nonlinear time). This speed
s ; 61 arises in all numerical experiments presented
in section 3c, independent of the nature of the initial
data.

The more general equations in (3.1) and (3.2) admit
similar traveling wave solutions with and without cor-
ners. The analysis is entirely similar to the one above:

with a traveling Kelvin wave K(u, t) 5 F(u 2 st), it
follows that each dispersive wave Rj(t) oscillates with
frequency js. The general form of F(z) is

s
1/2F(z) 5 6 [C 1 H(z)] ,

2

where H(z) is a real periodic function with jth Fourier
coefficient

ˆg Fj j
Ĥ 5 2j 2j s

for j positive and C $ max(2H) is an arbitrary constant.
When C 5 max(2H), the resulting traveling wave has
at least one corner; again the solutions with corners
facing downward move more slowly than a linear Kelvin
wave.

A difference between this general case and the one
with a single dispersive wave, is that the speed of the
traveling wave is not constrained to be close to 61. A
way to see this is to consider the linearized equations,

m

iju 2ijuK 5 g [R (t)e 1 R (t)e ] andOt j j j
j51

ˆR 5 2g K( j, t),j jt

and their family of solutions,
m 1

2ig tjK 5 a cos(u 7 g t) and R 5 6 a e ,O j j j j2j51

where each mode moves independently at speed 6gj.
Thus in the nonlinear traveling waves, a range of speeds
should emerge, depending on the strength of the dom-
inant topographic modes, gj.

c. Numerical experiments

One might wonder about the significance of the trav-
eling wave solutions of the previous subsection: Do gen-
eral initial data tend toward these solutions? If not, is
the behavior of more general solutions in any way sim-
ilar to that of the traveling waves? In this section, these
questions are addressed through a few selected numer-
ical experiments.

Solving numerically the Eqs. (2.13) and (2.14), or the
more general (3.1) and (3.2), is a relatively straightfor-
ward task. Here a fractional step procedure is utilized,
solving in one step the inviscid Burgers equation,

2K
K 1 5 0,t 1 22

u

and in the other the system of integro–differential equa-
tions

m

iju 2ijuK 5 g [R (t)e 1 R (t)e ] andOt j j j
j51

ˆR 5 2g K( j, t).j jt
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For the inviscid Burgers equation, a second-order Go-
dunov method is used, and the system of integro–dif-
ferential equations is integrated with a second-order
Runge–Kutta method coupled with a fast Fourier trans-
form. Finally, the two fractional steps are put together
using the second-order procedure of Strang (1968). A
Godunov scheme is utilized to treat the breaking Kelvin
wave solutions that might evolve and dissipate energy
in a conservative fashion. We do not view this dissi-
pative mechanism for breaking Kelvin waves as the
physically correct one for modeling equatorial waves;
instead, we regard it as a convenient numerical device
to reveal the robustness of the traveling waves without
discontinuities described in section 3b. We speculate
that breaking Kelvin waves could radiate energy into
families of nonresonant modes.

The reduction of complexity in going from the full
system in (2.1), (2.2), and (2.3) to the reduced model
(3.1) and (3.2) is so big that the model is programmed
in the interpreter language Matlab with a typical run
with around 100 grid points taking less than a minute
on a workstation. Calculations with far more points were
performed here to obtain greater resolution. Such cal-
culations would have been extremely costly for the full
system. Next the results of four typical experiments are
presented, three for the barotropic, and one for the first
baroclinic mode.

THE BAROTROPIC MODE

The first experiment illustrates quite dramatically the
‘‘attractive’’ nature of the traveling wave solution in
(3.9). Figure 4a shows the initial value of K, given by
an arbitrarily chosen periodic function; in this case,

K(u, 0) 5 0.5[3 cos(u) 1 sin(2u) 2 sin(4u)],

the initial value assigned to Y(0) is

Y(0) 5 0.5(1 1 i).

The total initial energy of this solution is E 5 7.5, which
is larger than the threshold value 1.5 reported above in
(3.11) for the traveling Kelvin wave with a corner (the
solution with a corner has the largest energy among
traveling waves). In Fig. 4b, we see the solution K at
t 5 0.5, with a freshly created strong breaking Kelvin
wave. By the time t 5 5, displayed in Fig. 4c, most of
the extra energy of the initial data has been dissipated
through the breaking wave, which has also eliminated
all but the longest modes of the solution. Finally, by
the time t ; 501 as in Fig. 4d, a steady state is ap-
proached. This state agrees nearly exactly with the exact
traveling wave with a corner in (3.9), which is also
displayed.

Figure 5a shows the time evolution of the real and
imaginary part of Y(t), the amplitude of the Yanai wave.
Notice that, since the speed s of the traveling Kelvin
wave is close to one, and this equals the frequency of
the Yanai wave, the period of oscillation of the latter is

close to 2p. Finally, Fig. 5b has the total energy as a
function of time, showing the fast initial dissipation due
to Kelvin wave breaking, followed by stabilization at
nearly the exact critical energy corresponding to the
wave with a sharp corner.

Something entirely similar takes place when the ini-
tial energy is already below the threshold value: rather
than converging to one of the smooth traveling wave
solutions in (3.8) with C . 1, most initial data converge,
after some initial energy dissipation through Kelvin
wave breaking, to a quasi-periodic pattern qualitatively
similar to a traveling wave. As an example, the case is
solved numerically with initial conditions K(u, 0) 5 0.1
[3 cos(u) 1 5 sin(2u) 2 sin(4u)], Y(0) 5 0.1(1 1 i),
with total energy E 5 0.675, much below the critical
E 5 1.5. From Fig. 6a, this total energy decays to a
final value close to E 5 0.123. However, as shown in
Fig. 7, this final state is not strictly a traveling wave,
but a quasi-periodic wave, with period close to 2p.
Snapshots of K for four times over a period are depicted:
even though the wave does travel to the left at a speed
close to 1, it deforms as it does so, developing along
the way a corner similar to those of the solution with
maximal energy. Figure 6b, with the evolution of the
Yanai wave, confirms that the solution is indeed quasi-
periodic and not strictly periodic, as there is a slow
periodic modulation of the oscillations of the real and
imaginary part of the wave’s amplitude.

One may wonder why a nontrivial combination of the
s 5 11 and s 5 21 waves never appears in a quasi-
steady solution. A partial answer is provided by the
following example: consider initial data such that
K(u, 0) is odd and Y(0) is purely imaginary. Such initial
data is invariant under the symmetry described in sec-
tion 3a, so any wave with speed 11 must necessarily
be accompanied by one with speed 21. Figures 8a and
8b show the evolution of the initial data K(u, 0) 5 sin(u),
Y(0) 5 0.5i. In Fig. 8a, we see that, unlike the previous
experiments, the energy decays continuously, without
stabilizing as before at some positive value—it is ap-
parent that the imposed symmetry between right- and
left-going waves excludes all energy preserving solu-
tions. The energy-dissipating breaking Kelvin waves be-
come the most prominent part of the solution as it decays
to zero. Figure 8b shows the evolution of the accom-
panying imaginary part of Y(t) (its real part is zero),
which clearly displays decay.

d. The baroclinic mode: Multiple waves

The baroclinic case, with multiple wave interactions,
is richer than the barotropic one with only one dispersive
wave. Nevertheless, its solutions are generically not
very different from those with one single resonance be-
cause the largest wavelength of the problem tends to
prevail, thus selecting one preferred dispersive wave,
with the others decaying to much smaller levels.

The experiment displayed in Figs. 9a–d illustrates this
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FIG. 4. A numerical experiment on the barotropic mode displaying convergence to a traveling wave with a corner. (a) Initial profile of
the Kelvin wave: K(u, 0) 5 0.5 [3 cos(u) 1 sin(2u) 2 sin(4u)]. (b) Profile at t 5 0.5: the Kelvin wave has steepened nonlinearly and
developed a sharp discontinuity. (c) By the time t 5 5, most of the extra energy in the initial data has dissipated at the breaking wave. (d)
The Kelvin wave at t 5 501 has all but converged to the exact traveling wave with maximal energy. Only a tiny amount of extra energy
still needs to be dissipated at an extremely small amplitude breaking wave.

phenomenon. Its setup includes the waves discussed in
section 2d: a Kelvin wave, three dispersive waves, the
k 5 4 mode of the n 5 1 Rossby wave, and the k 5 6
and k 5 0 modes of the Yanai wave, interacting with
the k 5 1, k 5 2, and k 5 4 modes of the Kelvin wave
through the k 5 5, k 5 8, and k 5 4 modes of the
topography, respectively. To prevent bias in the exper-
iment, the topographic interaction coefficients g j have
been chosen close to one, with values 1, 0.9, and 0.8,
respectively, and the initial data has the three dispersive
waves with comparable amplitudes; that is,

K(x, 0) 5 0.3[3 cos(x) 1 7 sin(2x) 2 3 sin(4x)] and

R (0) 5 Y (0) 5 Y (0) 5 0.3(1 1 i).4 6 0

Figure 9a shows that, as before, the energy decays

very rapidly to a final nonzero level where it settles
down. Figure 9b shows that only the Rossby wave with
wavenumber n 5 4, which interacts with the Kelvin
mode with largest wavelength (i.e., 2p in the normalized
variables), has a significant component in the final, qua-
si-periodic state. This is further confirmed by the snap-
shots of the Kelvin wave, displayed in Fig. 9c, with a
quasi-periodic pattern very similar to those of the baro-
tropic case, and with only small amplitude wiggles in
the larger frequencies.

4. Effects of the mean wind

The effects of an externally imposed, uniform mean
wind are easily incorporated into the model dynamics.
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FIG. 5. (a) Time evolution of the amplitude of the Yanai wave for
the numerical experiment above. It soon converges to a periodic
oscillation with a period close to 2p. (b) The total energy decays
very rapidly initially, and then very slowly, converging to the value
corresponding to the exact traveling wave.

FIG. 6. A second experiment on the barotropic mode, this one with
a smaller initial energy. The solution converges to a quasi-periodic
wave with finite amplitude. (a) Energy as a function of time, showing
fast initial decay and subsequent stabilization at a nonzero value. (b)
Evolution of the amplitude of the Yanai wave. A periodic slow mod-
ulation of the oscillations clearly appears. For clarity, only the times
between t 5 600 and t 5 800 are displayed.

Of course, the tacit hypothesis in assuming a uniform
mean wind is that this imposed velocity is both wider
and deeper than the structure of the waves being in-
vestigated. Such a requirement can be invalid in many
physical circumstances; nevertheless, this assumption is
made here to illustrate some potentially interesting ram-
ifications of the topographic resonant theory. To search
for resonances through topography, it is convenient to
leave the topography fixed, so that its dispersion relation
has v 5 0 as before, and consider instead the Doppler
effect of the mean wind on the dispersion relation for
the waves, which becomes

W(k) 5 W*(k) 1 Uk, (4.1)

where W*(k) is the dispersion relation without mean
wind and U is the velocity of the wind, measured using
the characteristic speed c as a unit. With (4.1), the con-

ditions in (2.11) and (2.12) for topographic resonance
with a mean wind U generalize to

kK 1 kT 5 k* and kK 1 VkK 5 W(k*) 1 Vk*. (4.2)

Figures 10 and 11 display the new dispersion relation
for two extreme cases, with U 5 c/2 and U 5 2c/2,
that is, for a wind moving, respectively, eastward and
westward at half the speed of a linear Kelvin wave. A
unit for the wavenumbers, a 5 0.25, is selected cor-
responding to the first baroclinic mode; notice, however,
that the unit of frequencies v is different due to the
distortion brought about by the Doppler effect. Figures
10 and 11 indicate that relatively strong mean winds
(about 25 m s21) can change the general look of the
dispersion relation quite dramatically. However, it is still
true that the Kelvin wave is the only nondispersive
wave, and the role of topography remains the same, so
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FIG. 7. Four snapshots of the Kelvin wave close to t 5 800. The
downward peak is clearly visible, as well as the quasi-periodic char-
acter of the wave, which deforms continuously as it moves but returns
periodically to the initial shape.

the basic structure of our reduced model does not
change, only the modes involved in the resonances do.
One important feature noticeable in both Figs. 10 and
11 is that Rossby waves of all longitudinal Hermite
modes are present, in what appears as a cluster of modes.
The appearance of such a spectrum of oscillatory Ross-
by waves suggests a likely midlatitude connection of
equatorial Kelvin waves through topographic resonance.
This aspect, and the effects of a latitude-dependent mean
wind in geostrophic balance with the pressure, will be
developed elsewhere in more detail in the future.

5. Derivation of the reduced model

a. The barotropic mode

In this section, the simplified model in (2.13) and
(2.14) for the interaction of the barotropic mode of long
equatorial waves through the topography is derived. The
derivation begins with the ansatz,

y2 22(y /2) 2(y /2) i(k*x2v*t) 2 1h 5 e K(x 2 t, t)e 1 Y(t) e e 1 C.C. 1 e h (x, y, t), (5.1)[ ]k* 2 v*

y2 22(y /2) 2(y /2) i(k*x2v*t) 2 1u 5 e K(x 2 t, t)e 1 Y(t) e e 1 C.C. 1 e u (x, y, t), and (5.2)[ ]k* 2 v*

22(y /2) i(k*x2v*t) 2 1y 5 e[0 1 iY(t)e e 1 C.C.] 1 e y (x, y, t), (5.3)

where v* and k* satisfy the dispersion relation for Yanai
waves:

v*(v* 2 k*) 5 1. (5.4)

The slow time variable t in (5.1), (5.2), and (5.3) is t
5 et. It is also assumed that the topography is also small
amplitude with the form

`

ijxh(x, y) 5 e ĥ (y)e 1 C.C. , (5.5)O j[ ]j5a

where the sum ranges over all multiples of a.
Inserting this ansatz into (2.1), (2.2), and (2.3) to

leading order in e, the equations are satisfied automat-
ically since the ansatz is the superposition of two linear
solutions. The equations at order e2 become

1 1 1h 1 u 1 y 5 A, (5.6)t x y

1 1 1u 1 h 2 yy 5 B, and (5.7)t x

1 1 1y 1 h 1 yu 5 C, (5.8)t y

where

22(y /2)ye2 22(y /2) 2y 2 i(k*x2v*t)A 5 2e K 2 e (K ) 2 e Yt u tk* 2 v*
22 2yiv*y e

2i(k*x2v*t) 22 e Y
k* 2 v*

22yye
2 [K Y 1 i(2v* 2 k*)KY ]uk* 2 w*

22(y /2)ye22(y /2)1 e (K h 1 Kh ) 1 (h 1 iv*h)Yu x xk* 2 v*
22(y /2)1 ie h Yy (5.9)

and B and C have similar expressions. The equations
for the evolution in t of the K(x 2 t, t) and Y(t) in the
ansatz will follow from the solvability conditions for
the system (5.6), (5.7), and (5.8).

1) EVOLUTION OF THE KELVIN WAVE

To find the solvability condition associated with the
Kelvin wave, we add Eqs. (5.6) and (5.7), multiply this
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FIG. 8. A numerical experiment on the barotropic mode showing
that upward and downward corners cannot coexist. This experiment
exploits a symmetry of the equations that makes a one-to-one cor-
respondence between downward and upward corners. When this sym-
metry is reflected in the initial data, the waves break and decay all
the way to zero. (a) Energy as a function of time showing continuous
decay. (b) Amplitude of the imaginary part of the Yanai wave (the
real part is identically zero) with decaying oscillations.

sum by the factor and integrate in y between 2`22y /2e
and `. The terms with y 1 are eliminated by this inte-
gration, and the equation

`
22(y /2)R 1 R 5 e (A 1 B) dy, (5.10)t x E

2`

is obtained where
`

22(y /2) 1 1R 5 e (u 1 h ) dy. (5.11)E
2`

The solvability condition for this equation requires that
the right-hand side of (5.10) has no component depending
on (x 2 t) since such a component—a solution to the
unforced equation for R—would make the latter grow

secularly in time. To determine which terms contribute
to this secular growth, the Kelvin wave K(x 2 t, t) and
the topography h(x, y) from (5.5) are expanded in Fourier
series

`

il(x2t)ˆK(x 2 t, t) 5 K (t)e , (5.12)O l
l5a

with the sum taken over all multiples of a. This infinite
sum, and not just the finite set of waves that resonants
through the topography, is needed for the Kelvin wave
because this wave satisfies a dispersion relation, which
makes every horizontal wavenumber resonate with all
others (linear Kelvin waves are not dispersive).

The sum A 1 B will have terms arising from different
combinations of K(x 2 t, t), Y(t)ei(k*x2v*t) , and h(x, y).
These different terms are considered separately.

R Terms linear in K. There is only one such term; that
is,

`
22y2 e K (x 2 t, t) dy.E t

2`

This term is a function of (x 2 t), so it contributes
to the resonance.

R Terms linear in Y. These terms have no component in
(x 2 t) since v* ± k* for a Yanai wave.

R Terms quadratic in K. These terms are functions of (x
2 t), so they add to the secularity. Their sum is

`3 22(3y /2) 2e (K ) (x 2 t, t) dy.E x2
2`

R Products of K and Y. These terms do not contribute
to the resonance since a typical term has the form
ei[(l1k*)x2(l1v*)t] and l 1 k* ± l 1 v*.

R Terms quadratic in Y. These do not contribute either
since 2k* ± 2v* for Yanai waves.

R Products of h and K. These terms do not contribute
to the resonance since j 1 l ± l.

R Products of h and Y. There is one term of this form,
and it has a component in (x 2 t) whenever j 1 k*
5 v*. This is precisely the resonance condition be-
tween a Kelvin and a Yanai wave through the topog-
raphy considered in (2.11) and (2.12). The term is

` iv*y22y iv*(x2t)e [ĥ (y)Y(t)]e 1 C.C. dy.E v*2k*5 61 2k* 2 v*
2`

Adding up all the contributions to resonance above
and equating their sum to zero, we obtain

c1Kt 1 c2(K 2)u 5 c3Y(t)eiv*u 1 C.C., (5.13)

where u 5 x 2 t and
` ` 32 22y 2(3y /2)c 5 2 e dy, c 5 e dy, and1 E 2 E 2

2` 2`

` iv*y22yc 5 e ĥ (y) dy.3 E v*2k*k* 2 v*
2`
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FIG. 9. An experiment on the first baroclinic mode. Even though
the presence of multiple wave interactions makes this mode much
richer than the barotropic, the actual results of a typical experiment
are qualitatively similar, with convergence to a nonzero state, and a
tendency of the modes with lowest wavenumbers to prevail. (a) En-
ergy as a function of time with an initially fast decay and convergence
to a nonzero final value. (b) Evolution of the various dispersive waves.
The k 5 4 Rossby wave, which interacts with the longest (k 5 1)
mode of the Kelvin wave, converges to a much stronger final state
than the other two modes. (c) Four snapshots of the Kelvin wave,
which deforms as it moves at a nearly constant speed.

Equation (5.13) describes the evolution of the Kelvin
wave over the slow time t . It is a Burgers equation
forced by the nonlinear interaction between the Yanai
wave and one mode of the topography. If the contri-
bution from the Yanai wave is ignored, that is, c3 5 0,
the discussion in (5.10)–(5.13) provides a simplified as-
ymptotic derivation of the nonlinear Kelvin wave.

2) EVOLUTION OF THE YANAI WAVE

Here only a sketch will be presented of the salient
features of the derivation of the equation in (1.2) for
the Yanai wave satisfying the resonant conditions in
(2.11) and (2.12). A complete detailed derivation is
available upon request to the authors.

The critical coupling term involving topography and
the Kelvin wave at order e2 is given by the source term
in the height equation for the linearized shallow water
equation in (5.6), (5.7), and (5.8) with the form

[h(x, y) K(x 2 t, t)]x.
22y /2e (5.14)

It is important to assess when this forcing term yields
a resonant response from the linearized shallow water

equations. With the expansion in parabolic cylinder
functions, Dn(y), given by

`
22(y /2)h(x, y)e 5 h̃ (x)D (Ï2y), (5.15)O n n

n50

there is the corresponding series representation for
(5.14),

22(y /2)[h(x, y)e K(x 2 t, t)]x

`

5 [h̃ (x)K(x 2 t, t)] D (Ï2y). (5.16)O n x n
n50

The response of the Yanai waves from (5.6) to (5.8)
to the forcing in (5.16) on the height equation is given
by the equations (Gill 1982, chapter 11)

] ]
1 q 2 Ï2y 5 [h̃ (x)K(x 2 t, t)] and1 0 1 x1 2]t ]x

]y 10 1 q 5 0,1]t Ï2
(5.17)

where q 5 u1 1 h1, y 5 y 1, and the subscripts 0 and
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FIG. 10. Dispersion relation corresponding to an externally imposed
uniform westerly mean wind of half the speed of a Kelvin wave. One
Yanai mode and a cluster of Rossby waves resonate (or nearly res-
onate) with the Kelvin wave. This latter cluster of highly oscillatory
Rossby waves suggests a midlatitude connection for the equatorial
Kelvin wave.

FIG. 11. Same as Fig. 10 but with an easterly wind. More Yanai
modes resonate with the Kelvin wave, and again a cluster of Rossby
waves do.

1 stand for the corresponding terms in the parabolic
cylinder expansion. In Fourier space, these equations
yield the forced linear oscillator equations,

]Yk 2iltˆ ˆ1 iv(k)Y 5 iT h̃ K e , (5.18)Ok k 1, j l]t j1l5k

with v(k) satisfying the dispersion relation for Yanai
waves,

v(k)[v(k) 2 k] 5 1. (5.19)

From (5.18), the response of the Yanai wave ampli-
tude Yk, at second order, to the interaction between to-
pography and Kelvin waves will only be secular pro-
vided that

j 1 l 5 k* and l 5 v*, (5.20)

with v* satisfying (5.19). These are precisely the res-
onant conditions in (2.10) and (2.11) for this special
case. One removes the secular terms in (5.18) by adding
a slow time correction to the leading-order Yanai wave
amplitude for the resonant mode k, as in the ansatz from
(5.1) to (5.3), as demonstrated earlier for the Kelvin
wave. Carrying out this procedure yields the following
equation for the amplitude of the Yanai wave:

d1Yt 1 d2K̂v* 5 0, (5.21)

where
` v* 1 k* 22 2yd 5 [1 2 (v* 2 k*) ]e dy and1 E v*(k* 2 v*)

2`

` k*(v* 2 k*) 22yd 5 i ĥ (y)ye dy.2 E k*2v*v*
2`

This is an ordinary differential equation for the evo-

lution of the Yanai wave, as forced by a nonlinear in-
teraction between the Kelvin wave and the topography.

Finally, it is convenient to rescale the variables in
(5.13) and (5.21) to achieve the canonical form in (2.13)
and (2.14). Notice that the independent variables u and
t and the dependent variable K can be rescaled only by
positive real numbers in order not to alter the direction
of time, while the variable Y admits arbitrary complex
rescalings. On the other hand, the coefficients c1 and c2

are real and positive, and even though c3 and d2 are
complex, the product (c3d2)/(c1d1) is real and positive.
Hence, if rescaled variables are defined by

1/2c c d c d1 3 2 1 2˜ ˜K 5 K, Y 5 Y, (5.22)1 2ac c d ac d2 1 1 2 1

1/21 c d1 1u 5 ũ, and t 5 t̃, (5.23)1 2a c d3 2

then by dropping the tildes, the canonical equations in
(2.13) and (2.14) emerge.

b. The first baroclinic mode

The analysis of this case is entirely similar to the one
developed above, with the added complexity that the
various dispersive waves could interact among them-
selves, either directly or through the topography. How-
ever, for two waves to interact through the topography,
their frequencies need to match, and this is not the case
for the three dispersive waves included in section 2d.
The derivation of the equations in (2.15) follows exactly
the same path discussed above for the barotropic waves
and the details are omitted.
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THE NONLINEAR RESPONSE TO DIABATIC HEATING

Throughout this paper, a wave speed, c 5 50 m s21,
has been used to represent the first baroclinic mode in
the shallow water model. This is the representative value
utilized typically in studies concerning the response in
the troposphere to diabatic heating from convection
(Gill 1982; Yano et al. 1995; Milliff and Madden 1996)
rather than the value of the dry Kelvin wave speed, c
. 150 m s21 of the first baroclinic mode for the entire
equatorial atmosphere (Kasahara and Puri 1981). To par-
tially justify the use of this smaller wave speed, a theory
for the nonlinear response to steady Gill forcing (Gill
1982) in the equatorial shallow water equations has been
developed recently (Majda et al. 1999). This theory as-
sumes that the heating is steady with small amplitude,
e K 1, as in (5.5) above. The nonlinear response to this
heating is a sum of two effects: the steady response,
which decouples, and the transient response, which is
advected by the steady response in the asymptotics.
Thus, the nonlinear transient response satisfies the same
simplified nonlinear equations with resonances as given
in (3.1) and (3.2), and studied throughout this paper;
the spectrum of the steady forcing generates the steady
response spectrum, which plays an analogous role to
the spectrum of the topography in (5.5) in determining
the transient exchange of energy among various large-
scale equatorial waves through resonances. The details
are too lengthy to present here and the interested reader
can consult a recent extended abstract (Majda et al.
1999).

6. Conclusions

A new theoretical mechanism involving topographic
resonance has been developed here where large-scale
equatorial Kelvin waves can modify their speed through
dispersion and interaction with other large-scale equa-
torial waves. These explicit resonance conditions have
been presented in (2.11) and (2.12) and simplified re-
duced dynamical equations for the interaction have been
derived in section 5 under the assumption of small am-
plitude waves and topography. The reduced dynamical
equations corresponding to the barotropic and first baro-
clinic mode of the equatorial troposphere have been
presented in section 2, and the detailed properties of
solutions of these equations are studied in section 3.
Explicit exact solutions in (3.6)–(3.8) as well as nu-
merical experiments with the reduced dynamics indicate
that this resonance mechanism can prevent the breaking
of a propagating nonlinear Kelvin wave, slow down its
speed, and concentrate most of its energy in large-scale
zonal wavenumbers while simultaneously generating
large-scale Yanai or Rossby modes with specific zonal
wavelengths. The effect on topographic resonance of a
strong eastward or westward mean flow with magnitude
25 m s21 for waves corresponding to the first baroclinic
mode is quite dramatic (see section 4) with the possi-

bility of midlatitude connections to Rossby waves
through this mechanism. In this paper, topography in
the equatorial shallow water equations is utilized to
crudely model large-scale land–sea contrasts, but the
authors have no doubt that the role of topographic res-
onance, elucidated here, can be replaced in similar mod-
els by other large-scale inhomogeneous mechanisms in-
volving convective parameterization (Neelin and Zeng
1997), which account for land–sea contrast in the Trop-
ics. We plan to develop these more elaborate applica-
tions for one- and two-layer models in the near future.

Regarding various technical aspects, the work pre-
sented here, in order to focus on the basic mechanism,
has intentionally ignored interesting related physical is-
sues regarding near resonances as well as the equatorial
three wave resonances (Ripa 1983a,b) and their com-
petition with the topographic resonances presented here;
this competition is especially interesting with the effect
of a nonzero mean wind, as discussed in section 4. The
authors are currently pursuing these issues and will re-
port on them elsewhere in the near future.

This work displays the potential importance of non-
linear effects interacting with large-scale dispersion for
equatorial waves in the context of the equatorial shallow
water equations. However, caution is necessary in in-
terpreting these results for the fully stratified system
since shallow water models yield an imperfect repre-
sentation of both nonlinearity and radiation. Neverthe-
less, such simplified models might capture some of the
essential features of the more complex dynamics.
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