
Principal components: a descent algorithm

Rebeca Salas–Boni and Esteban G. Tabak

⇤

February 11, 2014

Abstract

A descent procedure is proposed for the search of low-dimensional subspaces of a
high-dimensional space that satisfy an optimality criterion. Specifically, the procedure
is applied to finding the subspace spanned by the first m singular components of an n-
dimensional dataset. The procedure minimizes the associated cost function through a
series of orthogonal transformations, each represented economically as the exponential of
a skew-symmetric matrix drawn from a low-dimensional space.

Keywords: Principal component analysis.

1 Introduction

Many frequently arising problems involve finding the small-dimensional subspace X of a
larger space Z that minimizes a functional f(X). Probably the most ubiquitous among these
is the search of principal components: the m-dimensional subspace of Rn that best captures
the variability of a set z of N observations. A closely related search is that of the subspace
spanned by the eigenvectors corresponding to the m largest eigenvalues of a positive definite
matrix C: when C is the empirical covariance matrix of the observations in the set z, the
two problems are the same.

These are orthogonally constrained minimization problems: we minimize a cost function
f(Q

x

), where Q
x

is an n⇥m matrix such that Q
x

0Q
x

= I
m

. For instance, the second problem
above can be written in the form min

Q

x

f(Q
x

) = �tr(Q
x

0CQ
x

) [8]. Yet all these problems
have a critical degeneracy: two orthogonal matrices Q

x

are equivalent when they span the
same column space X. In this work, we propose a methodology that exploits this degeneracy
to yield a simple, yet very e↵ective algorithm for the search for optimal subspaces. We focus
on principal component analysis, because of its wide applicability and because its particular
structure allows for extra simplifications.

A very general and powerful geometric view of optimization with orthogonality constraints
has been proposed in [3]. Here the degeneracy mentioned above is characterized in terms of the
Grasmann manifold, the quotient space of the Stiegel manifold of orthonormal n⇥m matrices

⇤
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA,

salasboni@cims.nyu.edu, tabak@cims.nyu.edu.

1

with respect to the group of orthogonal transformations in their column space. The algorithm
of this article can be framed within this general viewpoint, and we have tried to refer to the
appropriate geometrical concepts throughout our discussion. Yet the methodology that we
propose does not really require the language and tools of di↵erential geometry, which though
elegant and powerful, may obscure the conceptual simplicity of the proposed algorithm to
the non-specialist.

The main ingredients of the new algorithm are the completion of the matrix Q
x

into an
n⇥n orthogonal matrix Q = [Q

x

Q
y

], the factorization of Q into simpler orthogonal matrices
Q

n

, and the expression of each of these as the exponential of a skew-symmetric matrix A
n

.
The degeneracy in the choice of Q results in a particularly sparse block structure for A

n

,
which renders its exponentiation and the composition of the Q

n

’s much less computationally
expensive that they would be otherwise. In addition, the particularly simple form of the
objective function for principal components results in a very inexpensive implementation of
second-order descent on the entries of A

n

.
A similar use of a matrix exponential representation for orthogonal matrices has been

applied in [9] to minimize the maximum eigenvalue of a family of symmetric matrices A(x).
Their methodology allows for second-order descent –i.e., Newton’s method– even when the
sought eigenvalue has multiplicity greater than one. In the general geometric view of [3, 2],
minimization of the cost function in the manifold of orthogonal matrices is achieved by moving
towards the optimum along geodesics, which are described by the exponential map. In order
to reduce computational costs, a truncated Taylor series expansion of the matrix exponential
has been used in [1] to perform an approximate steepest descent.

A straightforward but computationally intensive way to compute singular components is
through the singular value decomposition (SVD) of the n-by-N matrix z of observations:

z = U⌃V ⇤

where U is an n-by-n orthogonal matrix, ⌃ is a n-by-N diagonal matrix with real entries
�
1

� �
2

� · · · � �
N

� 0, and V a N -by-N orthogonal matrix. The calculation of the
SVD requires O(Nn2) flops [11]. The first m columns of U are the principal components
sought. The singular value decomposition also provides us with the optimal low-rank (m)
approximation to a general n⇥N matrix z:

z ⇡ U
m

⌃
m

V ⇤
m

where the columns of U
m

and V
m

are the first m columns of U and V respectively, and ⌃
m

is a diagonal matrix containing the m largest singular values of z. Then

kz � U
m

⌃
m

V ⇤
m

k = �
m+1

where �
m+1

is the (m+ 1)-th singular value of z, and k · k is the spectral norm.
Among the novel alternative approaches for finding low-rank approximations to matrices,

randomized algorithms [4, 10] compute, with high probability, very accurate approximations
to matrices of arbitrary size.

2

2 The problem

Let z denote the data set of observations z
j

2 Rn, j = 1, . . . , N . From this set, one seeks the
hyperplane through the origin of given dimension m < n that best captures the variability
of z. In typical applications to dimensional reduction, m is much smaller than n, seeking
either data compression for storage or transmission, or a small-dimensional manifold where
the phenomena underlying the observational set z can be more easily understood. In terms
of the operator P that projects onto the hyperplane, the cost function to minimize is

min
P

c = min
P

1

2N

NX

j=1

kz
j

� P (z
j

)k2 , (2.1)

the 2-norm of the distance between the points and their projection. The hyperplane sought
can be characterized by a set of m orthonormal vectors spanning it. Writing these vectors as
columns of a matrix Q

x

, the projection operator P acquires the matrix representation

P = Q
x

Q
x

0.

A vector x
j

2 Rm can be assigned to the projection P (z
j

) 2 Rn through

x
j

= Q
x

0z
j

, P (z
j

) = Q
x

x
j

.

Furthermore, we can introduce coordinates y
j

2 Rn�m in the orthogonal complement to x
j

,
through

✓
x
j

y
j

◆
=

Q0

x

Q0
y

�
z
j

= Q0z
j

, x
j

2 Rm, y
j

2 Rn�m, Q = [Q
x

Q
y

] orthogonal.

In terms of these, the minimization problem (2.1) adopts the form

min
Q

c = min
Q

1

2
ky

j

k2, (2.2)

where the bar stands for averaging over the N observations.
Alternatively, one can introduce the empirical covariance matrix

C 2 Rn⇥n, C =
1

N

X

j

z
j

· z0
j

where z
j

·z0
j

is the n⇥nmatrix resulting from the outer product of the vector z
j

. C transforms,
under orthogonal maps Q as above, through

C ! Q0CQ.

3

Partitioning C into four blocks, two for the covariance matrices of the x and y variables alone,
and the other two for their cross-covariance,

C =

Cx

x

Cy

x

Cy

x

0 Cy

y

�
, (2.3)

the problem becomes

min
Q

c = min
Q

1

2
tr
�
Cy

y

�
. (2.4)

Thus there are two equivalent formulations of the problem: in (2.2), one seeks the hyper-
plane spanned by the first m principal components of the matrix z; in (2.4), the hyperplane
of the first m eigenvectors of the non-negative definite matrix C. The second formulation is
more compact, since the individual observations are gone from the picture. The first, how-
ever, lends itself to useful generalizations, such as the search for time-dependent or nonlinear
principal components. Either formulation can be handled by the algorithm described below.

2.1 Retrieving the principal components of z

Our algorithm outputs in the columns of Q
x

the subspace spanned by the first m principal
components of the n-by-N matrix of observations z. However, one might be interested in ob-
taining the principal components themselves. Let z = USV 0 denote the SVD decomposition
of z, and C the n-by-n covariance matrix. After we have applied our algorithm and obtained
the matrix Q

x

, we set C̃x

x

= Q0
x

CQ
x

. Since C̃x

x

is an m-by-m positive definite matrix with
m << n, we can find unexpensively by conventional methods its SVD decomposition,

C̃x

x

= U
˜

C

S
˜

C

V 0
˜

C

,

From this decomposition, we can retrieve the first m singular components and values of the
SVD decomposition of z:

U
m

= Q
x

U
˜

C

,

the first m singular values of z through

S
m

=
p
N

⇣q
S

˜

C

⌘

and the first m columns of V through

V
m

= S�1

m

U 0
m

z

3 The algorithm

We propose an iterative algorithm that writes the desired orthogonal transformation Q as
the composition of simpler orthogonal maps Q

k

:

Q = . . . Q
3

Q
2

Q
1

Q
0

.

4

Thus, in each step, one has
zk = Q

k

zk�1, z0 = Q
0

z,

where Q
0

is a pre-conditioning orthogonal matrix to be described below, and the super-script
k denotes the number of the iteration. Equivalently, in terms of the covariance matrix C,

C
k

= Q
k

C
k�1

Q
k

0.

After a su�cient number of iterations, the first m rows in zk converge to the N observations
projected onto the subspace spanned by the firstm singular vectors of z, and C

k

approximates
the covariance matrix whose m-by-m submatrix Cx

x

represents the covariance of those m-
dimensional projections.
Orthogonal matrices Q 2 Rn⇥n depend on 1

2

n ⇥ (n � 1) parameters. The simplest way to
make this dependence explicit is to write Q

k

as the exponential of a skew-symmetric matrix
A

k

:1

Q
k

= eAk , A
k

0 = �A
k

.

In the limit of infinitesimal rotations, the (i, j) entry of A
k

represents the angle of rotation in
the plane spanned by the z

i

and z
j

coordinates. Yet any rotation in a plane spanned by two x
or two y coordinates alone would only re-parameterize the subspaces spanned by the columns
of Q

x

or Q
y

without changing them. Hence we may restrict consideration to matrices A
k

of
the block form

A
k

=

✓
0 S

k

�S
k

0 0

◆
, S

k

2 Rm⇥(n�m),

describing only rotations with one leg in the x and one in the y subspaces. In the geometric
language of [3], this corresponds to only making moves in the Stiegel manifold of orthonormal
n⇥m matrices that are, to leading order, also moves in the Grasmann manifold.

Matrices of this form are easy to exponentiate, using the compact singular value decom-
position of S

k

:

S
k

=
m

⇤X

j=1

�
j

u
j

v0
j

, u
j

2 Rm, v
j

2 Rn�m,

where m⇤ = min(m,n�m). Then

Q
k

= eAk = I +A
k

+
A

k

2

2!
+ · · · =

✓
Q

x,x

Q
x,y

Q
y,x

Q
y,y

◆
(3.1)

where

Q
x,x

= I +
1

2!
(�SS>) +

1

4!
(SS>SS>) +

1

6!
(�SS>SS>SS>) + · · · =

mX

j=1

u
j

cos (�
j

)u0
j

,

1
This applies only those orthogonal matrices Q

k

that are orientation preserving (i.e., have det(Q
k

) = 1),

but this restriction is immaterial to our application, since it is only the sub-space spanned by the first m
columns of Q

k

that matters, not the individual vectors describing it or their sign.

5

Similarly, we derive

Q
x,y

=
mX

j=1

u
j

sin (�
j

) v0
j

, Q
y,x

= �Q>
x,y

and

Q
y,y

=
nX

j=1

v
j

cos (�
j

) v0
j

= I +
mX

j=1

v
j

(cos(�
j

)� 1)v>
j

.

Combining these identities, we obtain:

Q
k

=
⇣

Q

x,x

Q

y,x

���Qx,y

Q

y,y

⌘
=

⇣
0

m

⇤ 0

0 I

n�m

⇤

⌘
+

m

⇤X

j=1

⇣
u

j

0

0 v

j

⌘⇣
cos(�

j

) sin(�

j

)

� sin(�

j

) (cos(�

j

)�1)

⌘⇣
u

0
j

0

0 v

0
j

⌘
. (3.2)

The interpretation of (3.2) is straightforward again in the limit of infinitesimal rotations,
where the m(n � m) rotations given by the entries of S

k

–one for each pair of coordinates
(x

i

, y
j

)– can be far more economically described by justm⇤ rotations, with angles given by the
principal values �

j

of S
k

, in the planes spanned by the corresponding left and right principal
components.2

3.1 Gradient descent

In order to complete the description of the algorithm, we need only specify the matrix S
k

to use in each step. This must be chosen so as to descend toward a minimal value of the
cost c in (2.2) or (2.4). Notice that, up to here, no reference has been made to this cost,
so the description so far applies to any problem where an m-dimensional subspace of an
n-dimensional space is sought. From here on, we focus on the specific cost at hand, whose
structure leads to further simplifications.

The simplest choice for S
k

is through gradient descent:

S
k

= �↵G, (3.3)

where

Gj

i

=
@c

@Sj

i

�����
S

k

=0

is the gradient of the cost function c, ↵ > 0 is a –possibly adaptive– learning rate, and Sj

i

denotes the i, j-th entry of the matrix S
k

. Since Sj

i

corresponds to the angle of rotation in
the (x

i

, y
j

)-plane, we have that

@y
k

@Sj

i

�����
S

k

=0

= ��j
k

x
i

,

2
The notation in (3.2), well-suited for computation, may not be so clear geometrically. To clarify it,

decompose the identity matrix I
n�m

⇤
into

P
m

⇤

j=1 vjvj
0
+ P , where P = I

n�m

⇤ �
P

m

⇤

j=1 vjvj
0
represents the

projection onto the subspace orthogonal to the first m⇤
principal components v

j

. This has the e↵ect of

canceling out the ones subtracted from cos(�
j

) in (3.2), and replacing the I
n�m

⇤
by the projection operator

P , thus providing the geometrical picture described in the text.

6

so

Gj

i

=
1

2

@kyk2
@Sj

i

�����
S

k

=0

= �x
i

y
j

,

or, in terms of (2.3),
G = �Cy

x

.

We adopt two di↵erent learning rates ↵ for the examples of gradient descent in section 6.
The first one is given by

↵ =
✏p|G|2 + ✏2

, (3.4)

where
|G|2 =

X

i,j

Gj

i

2

and ✏ is the desired size for rotations away from the minimal c:

|G| � ✏) |S
k

| ⇡ ✏

Close to c
min

the gradient G is small, and the steps must become correspondingly smaller,
to avoid overshooting. The choice in (3.4) then yields steps of size

|S
k

| ⇡ |G| (3.5)

An alternative learning rate ↵, denoted by ↵⇤ in the numerical examples, uses Newton’s
method in the direction of the gradient:

↵ = �
@c

@↵

@

2
c

@↵

2

,

a method that we will refer to as quadratic gradient descent.
For any fixed vector v, we have

@c (↵v)

@↵
= v ·G,

where G is the gradient of c and the dot product between two matrices A and B is defined
as hA,Bi = tr (A0B). Similarly,

@2c

@↵2

= v ·Hv,

where H is the Hessian of c. Hence, along the direction v = G of the gradient,

↵⇤ = �
@c

@↵

@

2
c

@↵

2

= � G ·G
G ·HG

= � Cy

x

· Cy

x

Cy

x

· (Cx

x

Cy

x

� Cy

x

Cy

y

)
, (3.6)

using an expression for H derived below.

7

3.2 Second order descent

In order to improve the rate of convergence of the algorithm beyond that of gradient descent,
one can introduce the Hessian

H i2j2
i1j1

=
@2c

@Sj1
i1
Sj2
i2

�����
S

k

=0

and use Newton’s method, solving for S
k

the system

X

hl

Hhl

ij

Sl

h

= �Gj

i

. (3.7)

This appears at first sight to be quite costly, since the system in (3.7) has m(n�m) equations
and unknowns. Yet the particular structure of the cost function comes to our help: the
Hessian for c from (2.2) has entries

H i2j2
i1j1

= �j2
j1
x
i1xi2 � �i2

i1
y
j1yj2 ,

which allows us to write the system (3.7) in the simple matrix form

Cx

x

S
n

� S
n

Cy

y

= Cy

x

. (3.8)

Both Cx

x

2 Rm⇥m and Cy

y

2 R(n�m)⇥(n�m) are positive definite matrices and, near con-
vergence, all eigenvalues of Cx

x

are larger than those of Cy

y

. This implies the existence of a
unique solution to (3.8), given by

S
n

= UZV 0,

where
Cx

x

= U⇤U 0, Cy

y

= V �V 0,

with U and V orthogonal and ⇤ and � diagonal matrices, and

Zj

i

=
(U 0Cy

x

V 0)j
i

⇤i

i

� �j

j

.

Using this explicit formula involves diagonalizing Cy

y

, a prohibitively expensive task. However,
the fact that the ⇤i

i

’s are larger than the �j

j

’s implies also the convergence of the following
iterative algorithm to find S

k

:

S0

k

= 0

Sh+1

k

= (Cx

x

)�1

⇣
Cy

x

+ Sh

k

Cy

y

⌘
, h = 0, 1, 2, · · · (3.9)

which involves solving systems with only m unknowns.
This ordering between ⇤i

i

’s and �j

j

’s holds near the optimum, since the cost function c is
precisely the trace of Cy

y

: if any eigenvalue of Cx

x

were smaller than one of Cy

y

, exchanging
the corresponding eigenvectors between the x and y subspaces would produce a smaller cost.

8

Yet this criterion for the convergence of (3.9) needs not hold at the onset of the algorithm.
To address this, one can resort to a simple pre-conditioning step, sorting the variables by
their individual variance. Thus Q

0

is a permutation matrix that sorts the entries on the main
diagonal of the covariance matrix C in decreasing order. To further precondition, one could
take a few steps of gradient descent. More e↵ective, however, is to use, for a small number
of steps k

p

, (3.9) with only one iteration:

S
k

= (Cx

x

)�1Cy

x

, k k
p

. (3.10)

Since Cx

x

is positive definite, the resulting S
k

lies in a direction in which the cost c decreases:
(S

k

, G) < 0. In fact, (3.10) can be used throughout in lieu of (3.9), since Cx

x

is a robust
surrogate for the full Hessian H. The rate of convergence is, of course, worse than by using
(3.9). On the other hand, the computational cost per step is much cheaper, particularly if
one is using the matrix of observations Z rather than the covariance C: there is no longer
need to compute Cy

y

in each step, the most costly component of the covariance.
A more robust approach that also handles the situation where there is no gap between the

smallest eigenvalue of Cx

x

and the largest eigenvalue of Cy

y

, is to mollify the Hessian through
the addition of a constant matrix:

H ! H + ✏,

where ✏ > 0 is a suitable mollification parameter interpolating between Newton’s method
(✏ ! 0) and gradient descent (✏ ! 1, with learning rate 1/✏). Then the iterative scheme in
(3.9) becomes

S0

k

= 0

Sh+1

k

= (Cx

x

+ ✏I)�1

⇣
Cy

x

+ Sh

k

�
Cy

y

� ✏I
�⌘

, h = 0, 1, 2, · · · (3.11)

The mollified Hessian is positive definite whenever the largest eigenvalue of Cy

y

is smaller that
the smallest eigenvalue of Cx

x

plus 2✏. Thus ✏ can be chosen adaptably, or made to decrease as
the algorithm progresses. In the numerical examples presented below, we have implemented
the simplest choice of a fixed ✏.

4 Computational complexity

There are two possible implementations of the algorithm: one in terms of the n⇥N matrix z of
observations, and the other in terms of the n⇥n covariance matrix C. If one is provided with
z and chooses to implement the algorithm in terms of C, computing C = zz0 requires O(n2N)
flops. Other than this and the cost of the preconditioning steps, negligible in comparison to
the others, we need to find the cost of each step in the iteration. We describe these steps in
Algorithm 1.

In terms of C, finding S
k

though gradient descent, (3.3), requires O(m2) flops, through
the approximate second order in (3.10), O(m3) + O(m(n �m)) flops, and, through the full
second order procedure in either (3.9) or (3.11), O

�
m(n�m)2

�
flops.

9

Algorithm 1 For k=1 until convergence

1. Find S
k

though (3.3), (3.10) or (3.9).

2. Exponentiate A
k

to form Q
k

.

3. Update C through C
k

= Q
k

C
k�1

Q
k

0, or z though z
k

= Q
k

z
k�1

.

The exponentiation of A
k

requires finding the compact singular value decomposition of S
k

,
or O

�
m(n�m)2

�
flops. Because of the structure of the resulting Q

k

from (3.2), multiplying
it on either right or left by an n-dimensional vector involves O(mn) operations, so updating
z requires O(mnN) flops, while updating C requires O

�
mn2

�
flops.

In terms of z, we need to add to these the O(m(n�m)N) flops of the computation of Cy

x

for (3.3) and (3.10), or the O(n2N) flops of computing all of C for (3.9/3.11).
As for the required number of steps, it depends on the accuracy sought and the method-

ology chosen for descent: if (3.9) is used, the rate of convergence is super-quadratic, so the
number of steps grows at worst logarithmically with the problem’s size. This still hold ap-
proximately for (3.10) if only a reasonable level of accuracy is sought. If, on the other hand,
one seeks to capture variability up to a small fraction of the di↵erence between the m-th and
m + 1-th singular values of z, then the latter alternative requires substantially more steps
than the former. Regarding the number of iterations required in (3.9/3.11), see the examples
below.

In summary, when the algorithm is implemented in terms of the covariance matrix C, the
full Hessian should be used for descent, and the resulting total work per step is O

�
mn2

�
,

with a number of steps that depends only weakly on the problem’s size. This still holds for
the procedure in terms of z when the number of observations N is comparable or smaller
than n, the total number of variables. When N > n, it may be worth trading a larger total
number of steps for the lighter work per step, O(mnN), of using (3.10) for descent.

5 Alternative procedures

The most costly component of the procedure described is the computation of the compact
singular value decomposition of S

k

: even though this involves only m ⌧ n principal com-
ponents, m can still be large. There are at least two possible approaches to reducing this
cost. The most straightforward one is to carry out the singular value decomposition only
approximately. For instance, one may seek just the first m0 ⌧ m principal components of
S
k

, using recursively the algorithm of this article.
A more radical approach is to propose, at each step, a matrix S

k

of the form

S
k

=
mX

j=1

�
j

u
j

v0
j

,

where the u
j

’s and v
j

’s are prescribed orthonormal vectors of dimension m and (n � m)

10

respectively: instead of computing the optimal S
k

among general m ⇥ (n � m) matrices
and then finding its singular value decomposition, we are limiting our search to matrices
with prescribed principal components, but free singular values �

j

. It is easy to see that the
optimal �’s satisfy the following projected version of (3.8):

�
j

⇥
u0
j

Cx

x

u
j

� v0
j

Cy

y

v
j

⇤
= u0

j

Cy

x

v
j

, (5.1)

a single scalar equation for each �
j

that requires no iteration. Moreover, the resulting S
k

has
a known singular value decomposition, thus reducing the computational cost of each step to
the calculation of O(m) products of matrices times vectors.

There are various alternatives on how to select the singular components u
j

and v
j

, each
involving a trade o↵ between the computational cost of each step and the global rate of
convergence. A thorough exploration of the possible strategies, however, lies beyond the
scope of this paper.

6 Numerical examples

In this section, we illustrate the performance of the algorithm presented in this paper via
several numerical examples, some synthetic and one using oceanographic data.

First, we apply our methodology to two classes of matrices with singular values decaying in
ways that have been deemed typical in practice [10]: exponential in one class, and exponential
followed by linear decay in the other. We also experiment with the gap between the m-th and
(m+1)-th singular values. To build the covariance matrix C

0

, we propose a diagonal matrix
⌃
0

of singular values with the desired properties, randomly draw an orthogonal matrix Q
0

,
and define C

0

= Q
0

⌃
0

Q0
0

.
We monitor the convergence to the hyperplane sought through two quantities: the cost

function c = tr(Cy

y

), which should converge to its true value given by

c
true

=
nX

k=m+1

(⌃
0

)k
k

,

and

e
Q

=
1p
m
kQ0

x

(I � (Q
0

)
x

(Q
0

)0
x

)k
F

, (6.1)

the Frobenius norm of the di↵erence between the subspace spanned by the m columns of the
matrix Q

x

computed by the algorithm and its projection over the subspace X, spanned by
the columns of the true (Q

0

)
x

.
The first class has exponentially decaying singular values given by

�
j

= �j/m

m

, j = 1 . . . n, (6.2)

while, for the second class, the singular values are chosen in such a way that the first m values
decay exponentially and the remaining ones linearly [10]:

�
j

=

(
(�

m

)(j/m) , for j m

�
m

·
⇣
m

j

⌘
, for j > m.

. (6.3)

11

In both cases, we have adopted �
m

= .01. In order to study the e↵ect of the relative gap
between the mth and (m+ 1)th singular values, we have also studied the following example:

�
j

=

(
(�

m

)(j/m) , for j m

↵�
m

·
⇣
m+1

j

⌘
, for j > m.

(6.4)

where ↵ 1.
Our first set of experiments takes data from (6.2), withm = 32 and n = 512, and compares

the performance of four candidate procedures. The first two correspond to gradient and
quadratic gradient descent, with learning rates ↵ from (3.3) and (3.6) respectively. The last
two methods are second order descent, one using a surrogate and the other the full Hessian.
The four approaches are sorted by their computational cost per step.

1. Straightforward gradient descent, with the maximal learning rate in (3.3) set to ✏ = 0.1,

2. Quadratic gradient descent (3.6),

3. Using Cx

x

as a surrogate for the full Hessian in (3.10),

4. Applying the full second order procedure in (3.9), with 100 iterations per step, after 10
preconditioning steps that use just the Cx

x

component of the Hessian as before.

The number of preconditioning steps was determined heuristically after trying values ranging
from 1 to 50 across di↵erent experiments. As we can see in the results displayed in figure 1,
all four procedures converge, but at very di↵erent rates, with the full second-order descent
converging to machine precision in just three steps after the preconditioning.

The second set of experiments takes data from (6.4) with m = 32 and n = 512, and three
values of ↵: the degenerate case with ↵ = 1, with no gap between the last resolved and first
unresolved singular values, ↵ = 0.9, with a small gap, and ↵ = 0.5, with a significant gap.
This experiment was designed to explore the behavior of our algorithm when facing slowly
decaying eigenvalues. The results, displayed in figure 2, show the e↵ect of increasing the
number of steps h in the iterative procedure (3.9) for inverting the Hessian. With a large
spectral gap, just one iteration per step does a perfect job. For the more challenging case of
↵ = 0.9, the number of iterations h a↵ect the global rate of convergence; with about h = 50
iterations we have again full convergence in just three steps. The situation is similar for the
degenerate case with ↵ = 1, where the algorithm is even more sensitive to the number of
iterations h used to approximate the Hessian. Notice though that the rate of convergence is
comparatively slow only once the error is far below the m+1 singular value (0.01), i.e. when
any further decrease of the cost function represents only a small fraction of the true cost.

Figure 3 shows how this behavior changes under the mollification in (3.11) with two values
of ✏: 0.01 and 0.001. As one can see, the smaller value has little e↵ect, while the e↵ect of the
larger mollification is, when the gap between wanted and unwanted eigenvalues is small or
null, to make the number of iterations h irrelevant, so h = 1 is enough, at the expense of a
slower convergence rate.

12

20 40 60 80 100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

iteration

c −
 c tru

e

Sk=−_ G

Sk=−_
* G

Sk = (Cx
x)−1 Cx

y

Sk
h+1 = (Cx

x)−1 (Cx
y + Sk

h Cy
y)

20 40 60 80 100

10−12

10−10

10−8

10−6

10−4

10−2

iteration
e Q

Sk=−_ G

Sk=−_
* G

Sk = (Cx
x)−1 Cx

y

Sk
h+1 = (Cx

x)−1 (Cx
y + Sk

h Cy
y)

Figure 1: Comparison of gradient descent with both learning rates ↵, the use of Cx

x

as a
surrogate Hessian, and of the full Hessian. The data has exponentially decaying singular
values, as in (6.2), with �

m

= .01. A subspace of dimension m = 32 is sought in a space of
dimension n = 512. On the left, a logarithmic plot of the cost function as a function of the
step; on the right, the measure e

Q

from (6.1) of the error in the determination of the subspace
X. Notice the very fast convergence of the fully second-order procedure, in magenta, which
takes just three steps after the preconditioning to reach machine precision. The pseudo-
second-order procedure in (3.10), in red, is a strong competitor, balancing a slower rate of
convergence with a much reduced work per step. As expected, both gradient descent methods
are considerably slower. However, the quadratic gradient descent with learning rate ↵⇤ from
(3.6), in blue, outperforms the regular gradient descent with ↵ from (3.4), in green.

The third set of experiments, displayed in figure 4, uses data from (6.3), and shows the
e↵ect that the problem’s size, through the dimensionsm and n, has on the rate of convergence.
Here again 10 preconditioning steps are followed by the inversion of the full Hessian, through
(3.9) with 100 iterations. The results indicate that the dimension n of the original space Z of
observations has nearly no e↵ect on the rate of convergence, while the e↵ect of the dimension
m of the target subspace X sought is more pronounced, though also minimal.

6.1 Application to sea surface temperatures

To assess the performance of the descent procedure on a real-life application, we chose
a database comprising extended reconstructed global sea surface temperatures based on

13

Figure 2: Dependence of the rate of convergence of the second order algorithm on h, the
number of iterations in (3.9). The data have the form in (6.4) with �

m

= .01, m = 32 and
n = 512. The plot on the left corresponds to the case with ↵ = 1, with no gap between the
m-th and (m + 1)-th singular values. In this degenerate case, the solution for the optimal
manifold X is not unique. The algorithm still converges to an optimal manifold, but more
slowly that in the other cases. On the right, the case with ↵ = 0.5, a large gap between the last
resolved and first unresolved singular value. Here a few iterations su�ce, since (Cx

x

)�1Cy

y

is small. In the middle, a more regular case, not degenerate but with no significant gap
between the resolved and unresolved part of the spectrum. In all cases, a su�cient number
h of iterations per step is enough to yield convergence in just a handful of steps after the
initial 10 for preconditioning. However, the larger the gap between the consecutive singular
values, the less sensitive the algorithm is to the number of iterations h used to approximate
the Hessian.

COADS data [6]. From these monthly averages, ranging from January 1854 to June 2005, we
isolated those corresponding to the month of December. The data is provided on a 180-by-89
grid, a resolution of 2 degrees in both latitude and longitude. After discarding those points
that lie over land, we are left with 150 records of December temperatures with 11, 074 points
each. We subtract the climatology of each point on the sea surface –that is, its average De-
cember temperature over the 150 years– and store the adjusted data in the n-by-N matrix
z, where n = 11, 074 and N = 150. We seek the first three principal components of z. To
this end, instead of working with the high-dimensional matrix C = zz0 2 Rn⇥n, we apply
our algorithm to the far more compact C⇤ = z0z 2 RN⇥N . After retrieving the principal

14

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

101
_ = 1, ¡ = .01

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

0 20 40 60 80 100
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101
_ = 0.9, ¡ = .01

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102
_ = 0.5, ¡ = .01

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102
_ = 1, ¡ = .001

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102
_ = 0.9, ¡ = .001

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102
_ = 0.5, ¡ = .001

iteration

c−
c tru

e

h = 1
h = 5
h = 10
h = 20
h = 50
h = 100

Figure 3: Dependence of the rate of convergence of the second order algorithm on h, the
number of iterations in (3.9). In these two examples, we apply the mollification in (3.11)
with two values of ✏: 0.01 and ✏: 0.001.

components of C⇤ using the procedure described in Section 2.1, we extract the principal
components of the matrix we were originally interested in, C: each eigenvector u of C can
be recovered from the corresponding eigenvector v of C⇤ with eigenvalue �2 through

u =
1

�
zv.

Figure 5 shows the convergence of the algorithm; here the true singular values and principal
components needed to evaluate the error at each step were computed independently through
a standard Matlab routine. For this real data, convergence to machine precision took place
just one step beyond preconditioning. Figure 6 displays the first three principal components
on a map: each location corresponds to one component of the singular vector, with its value

15

! "# "! $# $! %# %! &# &! !#

"#
!"!

"#
!"#

"#
!!

"#
#

'()*+(',-

.
/!
/.
(*
0
)

1/2/3

/

/

-4"$5

-4$!6

-4!"$

-4"#$&

! "# "! $# $! %# %! &# &! !#

"#
!"#

"#
!!

'()*+(',-

)
7

1/22/3

/

/

-4"$5

-4$!6

-4!"$

-4"#$&

! "# "! $# $! %# %! &# &! !#

"#
!"!

"#
!"#

"#
!!

"#
#

'()*+(',-

.
/!
/.
(*
0
)

1/222/3

/

/

84"6

84%$

846&

84"$5

! "# "! $# $! %# %! &# &! !#

"#
!"#

"#
!!

'()*+(',-
)
7

1/29/3

/

/

84"6

84%$

846&

84"$5

Figure 4: E↵ect of the problem’s size on the rate of convergence. The singular values are
computed as in (6.3) with �

m

= .01. In the top figures, the dimension of the subspace X
sought is fixed at m = 32 while the dimension n of the full space Z is varied over an order
of magnitude. In the bottom figures, the reverse is true: n is fixed at n = 1024 while m is
varied. The rate of convergence shows almost no sensitivity to n, and little to m.

represented through color grading. In atmosphere and ocean science, these are referred to
as Empirical Orthogonal Functions (EOFs) [7] and often associated with patterns of climate
variability. The variability associated with El Niño Southern Oscillation, for instance, is
easily identifiable as the second principal component.

7 Extensions

This article is mainly concerned with the computation of principal components, yet much
of the methodology developed can be extended to a variety of scenarios. In this concluding
section, we briefly sketch how some of these extensions might proceed. We discuss only those
extensions where the manifold X sought is linear; extensions to curved manifolds, such as
principal curves and surfaces, will be developed elsewhere.

The basic elements of the procedure, as described in section 3, apply to any situation
where an m-dimensional subspace of an n-dimensional space is sought: the factorization of
Q into the composition of simpler orthogonal matrices Q

k

, the expression of the latter as
exponentials of a matrix A

k

with only m ⇥ (n � m) independent entries, and the reduc-
tion of the exponentiation process to the calculation of a small-dimensional singular value

16

5 10 15 20 25 30 35 40

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

c
−
c
tr
u
e

0 5 10 15 20 25 30 35 40 45 50
10

−15

10
−10

10
−5

10
0

iteration
e
Q

Figure 5: Search for the first three spacial principal components of the December sea-surface
temperature field. On these real data, the convergence of the second order procedure to
machine precision is nearly instantaneous, requiring just one step beyond the 10 used for
preconditioning.

decomposition. Hence similar procedures apply to the following problems:

• Non-autonomous principal components: When the observations z
j

= z(t
j

) rep-
resent a time series, the subspace of principal components X sought may depend on
time: for instance, if in the oceanographic application above, we would have consid-
ered all months, not just December, we should have sought month-dependent principal
components, with a period of one year. The procedure developed in this paper adapts
easily to this scenario: one can seek a time-dependent orthogonal transformation Q(t)
by proposing, for each Q

k

(t), a transformation of the form

Q
k

(t) = eAk

(t), A
k

(t) = f
k

(t)Ã
k

,

where Ã
k

is a time-independent skew-symmetric matrix, and f
k

(t) is a prescribed func-
tion of t. The idea, pursued in [5] for principal dynamical components –see the item
below–, is that any time-dependent orthogonal transformation can be factorized into
Q

k

’s of this form. Each f
k

(t) works as a building block for more general time-dependent
functions. The f

k

’s are typically simple functions, such as smooth localized bumps, with
properties that reflect those required from Q(t), such as periodicity or a minimal re-
solved scale. The only change in the cost function is the appearance of the f

k

(t
j

)’s as
weights for the various observations z

j

.

17

• Principal dynamical components: Again for time series z
j

= z(t
j

), regular principal
components do not yield any dynamical information, since all observations are treated
as independent samples of an underlying random process. A more natural manifold X
to seek, proposed in [5] and labeled “principal dynamical components”, is the one that
minimizes not the static information loss from considering only the projection x = Q0

x

z,
but rather the dynamical loss in the predictability of future events from x alone. In
the simplest case of first-order autonomous Markov processes, the corresponding cost
function is

c =
N�1X

j=1

����zj+1

�Q

✓
AQ

x

0z
j

0

◆����
2

=
N�1X

j=1

����

✓
x
j+1

�Ax
j

y
j+1

◆����
2

, (7.1)

depending now not only on the transformation Q but also on a predictive linear model
given by the m⇥m matrix A. Minimizing c over A for Q given is a standard regression
problem in m dimensions; minimizing c over Q for A given, on the other hand, can be
handled by the algorithm of this article, with the cost function given by (7.1). Notice
that this cost adds to the variance of the y variables, also present in regular principal
components, the variance of the fraction of the x variables not accounted for by the
predictive scheme represented by the matrix A.

8 Conclusions

A descent algorithm was developed for the calculation of principal components and, more
generally, for the search of low-dimensional subspaces of a high-dimensional vector space sat-
isfying an optimality property. The algorithm minimizes the cost function through a series of
orthogonal rotations, each represented as the exponential of a skew-symmetric matrix picked
from a comparatively small-dimensional manifold. The procedure is conceptually simple, eas-
ily extendable to di↵erent scenarios, and computationally e↵ective, as demonstrated through
a series of test cases.

9 Acknowledgements

The work of Rebeca Salas-Boni is partially supported by the CONACyT and NYU’s GSAS
MacCracken Fellowship, and the work of E. G. Tabak is partially supported by the Division
of Mathematical Sciences of the National Science Foundation.

References

[1] T. Abrudan, J. Eriksson and V. Koivunen, Optimization under unitary matrix
constraint using approximate matrix exponential. Signals, Systems and Computers, 2005.
Conference Record Thirty-Ninth Asilomar Conference on Signals, Systems and Comput-
ers pp. 242–246

18

[2] P.A. Absil, R. Mahony and R. Sepulchre Optimization algorithms on matrix man-
ifolds, Princeton University Press, 2008.

[3] A. Edelman, T. A. Arias and S. T. Smith , The geometry of algorithms with
orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353.

[4] N. Halko, P. G. Martinsson and J. A. Tropp, Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
arXiv, 2009.

[5] M. D. de la Iglesia and E. G. Tabak, Principal dynamical components, to appear
in Comm. Pure Appl. Math, 2012.

[6] The International Research Institute for Climate and Society,
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/

[7] E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction, Sci.
Rep. No. 1, Statist. Forecasting Proj., Dept. Meteor., MIT, 1956.

[8] J. H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Trans.s
on Signal Process., 50 (2002), pp. 635–650.

[9] M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues
of symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 697–718.

[10] V. Rokhlin, A. Szlam and M. Tygert, A randomized algorithm for principal com-
ponent analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp .1100–1124.

[11] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM: Society for Industrial
and Applied Mathematics, 1997.

19

First principal component

Second principal component

Third principal component

Figure 6: First three principal components of the December sea-surface temperature field, dis-
playing values by color intensity on the map. These are the Empirical Orthogonal Functions
of atmosphere and ocean science. The second component may be taken as representing the
variability associated with El Niño Southern Oscillation, with its typical pronounced warming
in the Eastern Pacific, o↵shore the coast of Perú. The corresponding singular values �

1,2,3

associated with these three components are 19.75, 3.74 and 2.91 respectively.

20

