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ABSTRACT

Weakly nonlinear interactions among equatorial waves have been explored in this paper using the

adiabatic version of the equatorial 0-plane primitive equations in isobaric coordinates. Assuming rigid lid

vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were

expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory

of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of

multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well

as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact

resonantly in a triad configuration at the 0(e) approximation. The resonant triads whose wave components

satisfy a resonance condition for their vertical structures were found to have the most significant interac-

tions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers

and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that

for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the

highest absolute frequency always acts as an energy source (or sink) for the remaining triad components,

as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric

geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a

resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that,

for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the

modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the

interaction period being dependent upon the initial mode amplitudes. Potential future applications of the

present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic

background state are also discussed.

1. Introduction

In the atmosphere, equatorially trapped wave mo-

tions constitute a prominent characteristic of the gen-

eral circulation and play an important role in the cli-

mate. The phenomenon of the equator acting as a

waveguide was theoretically discovered by Matsuno
(1966), who derived a complete set of free linear wave-

mode solutions of the shallow-water equations on the

equatorial 93 plane. Since this theoretical finding, the

linear theory of equatorial waves has been extensively

generalized with the inclusion of forcing, dissipation,
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more realistic background flows, and parameterization

of moist processes and boundary layer drag to explain

fundamental features of tropical climate. Nevertheless,
because the governing equations of the atmospheric

motions are nonlinear, one would like to understand

the effects of the nonlinearity on these equatorially

trapped disturbances.
It is well known (Bretherton 1964; Ripa 1981, 1982,

1983a,b) that in the finite amplitude limit dispersive

waves only interact effectively if they are resonant, that

is, when they form three- or four-wave interactions with

other modes of the system such that the wavenumbers

and frequencies of the modes both add to zero. In this

sense, any dispersive system having quadratic nonlin-
earities to lowest order may exhibit triad resonance

phenomena as leading-order nonlinear effects. This in-
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teresting phenomenon in nonlinear wave-wave interac-
tions was noticed by Phillips (1960) while discussing the
role of small nonlinear terms in the theory of ocean
waves; it has then been applied to a wide range of prob-
lems in physics. A rich and complete discussion on reso-
nant triad interaction among dispersive waves can be
found in Bretherton (1964) in his analysis of a simple
wave equation "forced" by a quadratic term. With re-
gard to the equatorial atmospheric waves, most of the
theoretical studies on their nonlinear dynamics are
based on the shallow-water equations with the equato-
rial P3-plane approximation. Domaracki and Loesch
(1977) first studied resonant triads of equatorial waves
using the asymptotic method of multiple scales; Loesch
and Deininger (1979) extended Domaracki and Loesch's
results for resonantly interacting waves in coupled triad
configurations. Ripa (1982, 1983a,b) formulated the non-
linear wave-wave interaction problem in the equatorial
waveguide by using Galerkin formalism with the basis
functions given by the eigensolutions of the linear prob-
lem and showed that the conservation of two particular
integrals of motion, quadratic to lowest order, leads to
interesting properties that the coupling coefficients must
satisfy to ensure the invariance of such integrals. Ripa
(1982) applied this formalism to the Kelvin mode self-
interactions and then (Ripa 1983a,b) studied the resonant
triad interaction involving the dispersive waves. Accord-
ing to these studies, in the equatorial waveguide are reso-
nant triads composed of the same as well as different
wave types. In addition, a fundamental result of these
studies is that in the resonant triads involving equatorial
waves, the wave having the maximum absolute time fre-
quency always acts as an energy source (or sink) for the
remaining triad components, as usually occurs with the
three-wave resonances in several other problems in fluid
dynamics (see chapter 5 of Craik 1985 and references
therein). Recently, Raupp and Silva Dias (2006) explored
the dynamics of two resonant triads coupled by one mode
and pointed out the importance of the highest absolute
frequency modes in the resonant triads for intertriad en-
ergy exchanges.

Because the results mentioned above are based on
the shallow-water equations, an important issue that
arises from these studies is how the vertical stratifica-
tion of the atmosphere influences the nonlinear inter-
actions among equatorial waves. Previous studies of the
linear equatorial wave theory in the fully stratified case
(Silva Dias et al. 1983; DeMaria 1985) show that in the
linear context the primitive equations with some kind
of rigid lid vertical boundary conditions can be sepa-
rable into the vertical structure equation and a series of
shallow-water equations governing the time evolution

of the horizontal structure associated with each vertical
eigenmode. Thus, in the nonlinear case of the stratified
model, equatorial waves associated with different verti-
cal eigenmodes may interact resonantly. In this context,
an important question is how the vertical structure of
the waves and the vertical boundary conditions restrict
the wave interactions in the equatorial waveguide.
Therefore, to address this issue, in this paper we extend
the previous results on the nonlinear interactions among
equatorial waves to the fully stratified case. The nonlinear
dynamical equations utilized here for this purpose are the
equatorial 3-plane primitive equations in isobaric coordi-
nates. As will be shown later, the use of pressure as the
vertical coordinate is suitable for our analysis method be-
cause of the linear character of both the continuity and
the hydrostatic equations. To simplify the mathematical
analysis, the resonant interactions will be analyzed in an
idealized setting, with the waves embedded in a motion-
less, hydrostatic, horizontally homogeneous and stably
stratified background atmosphere. Furthermore, because
the emphasis is on the wave-wave energy exchanges
caused by the nonlinear terms alone, other important
physical processes in the atmosphere, such as diabatic ef-
fects and the boundary layer drag, are all omitted here for
simplicity in exposition.

The reminder of this paper is organized as follows: In
section 2, the asymptotic method of multiple time scales
is applied to the governing equations to obtain an as-
ymptotic reduced system of equations governing the
weakly nonlinear interaction among the waves in a
resonant triad. In section 3 we derive the total energy
conservation of the leading-order solution to get some
energy constraints that the waves must satisfy. In sec-
tion 4, we analyze how the vertical structure of the
waves restricts the resonant triad interactions. In addi-
tion, section 4 shows some examples of resonant triads
that undergo the most significant interactions among
the waves. Section 5 explores the dynamics of these
interactions by solving the reduced asymptotic equa-
tions for selected resonant triads. Potential future ap-
plications of the present theory to the real atmosphere
with the inclusion of diabatic forcing, dissipation, and a
more realistic background state are discussed in section 6.

2. Model equations and solution method

In this work we consider a model governing equato-
rially trapped large-scale perturbations of dry tropo-
spheric motions embedded in a motionless, hydrostatic,
horizontally homogeneous and stably stratified back-
ground atmosphere. This model can be represented by
the following adiabatic version of the primitive equa-
tions in isobaric coordinates with the equatorial $-plane
approximation:
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In the equations above, E = Ro = UI(P3L 2
) is the

equivalent for the equatorial region of the Rossby num-

ber in midlatitudes; 3 is the equatorial Rossby param-

eter and is assumed here as a constant, F = E/Ro,

where 0 = fll(3Lpo); K = R/CP, with R and Cp the gas

constant for dry air and the thermal capacity of dry air

at constant pressure, respectively; and or = a po2/(p22L4),

where a is the static stability parameter of the back-

ground atmosphere, given by

R t RT dT\
o- = 7 W7 -p, .(2.2)

In (2.2), T = T(p') represents the background tem-

perature. The static stability parameter is positive for a

stably stratified atmosphere and will be assumed here

as a constant with its typical tropospheric value of a- =

2 x 10-6 m 4 s2 kg -2. The equations in (2.1) are nondi-

mensionalized using the following scaling rules:

(u', v') O(U)(u, v),
(x', y') - O(L)(x, y),

t' -O[1/(P3L)]t,

p' O(po)p,
w' O(fl)), and

4)' = O(3L 2U)4). (2.3)

The quantity 4) in (2.1) is the geopotential perturba-

tion, (u, v) are the velocity perturbations in the (x, y)

coordinate directions, and w = Dp/Dt is the vertical

velocity in pressure coordinates. Periodic solutions in

the x direction and bounded solutions as lyl tends to

infinity represent the horizontal boundary conditions

for our model. As vertical boundary conditions for sys-
tem (2.1) we have assumed rigid lid boundary condi-
tions such that the actual vertical velocity w = (1/g)D4)/
Dt vanishes at z = 0 (the earth's surface) and at a finite
top z = Zr of the troposphere. This is a simplified
model for the dynamical behavior of equatorially
trapped large-scale motions in the troposphere in which
both the coupling with the boundary layer and the cou-
pling with the stratosphere are ignored. However, re-

cently Haertel and Kiladis (2004) analyzed the dynam-
ics of 2-day equatorial waves and demonstrated that, in
this context, the rigid lid approximation with the top
boundary located around 150 hPa is an excellent one
for capturing the dynamical behavior of the waves in
the troposphere, except in the regions close to the top
(above 200 hPa) and to the surface (below 900 hPa).
For this reason, complete fidelity of the model devel-
oped below is only expected outside of these regions.
Nevertheless, a difficulty emerges when adopting these
vertical boundary conditions in pressure coordinates
because in an arbitrary perturbed state of model (2.1)
the isobaric surfaces no longer coincide with z surfaces.
The z surfaces are parallel to isobaric surfaces only at
the unperturbed state, that is, when u' = v' = co' =

4)' = 0 and the total state of the atmosphere coincides
with the background. However, because this work fo-
cuses on small-amplitude waves, the surface and the
hypothetical top of the troposphere are close to the
isobaric surfaces represented by Po and PT, respectively,
so the geopotential and pressure at the surface and at
the top can be related to each other by the following
Taylor expansions:

0  )(Z = 0) = 0 - 4(Po) + 4)'(x', y',p0 , t') + d I [p'(z = 0) - pj + TSO,

4)t0 (Z = ZT) = O(PT) + 4)'(x', y',pr, t') + P PTPT P'(Z = Zr)] + TSO,

where TSO represents terms of secondary order,

0. = 4 + 4)', p'(z = 0) = p'(x', y', z = 0, t'), and
p'(z = Zr) = p'(x', y', z = zr, t') correspond to the
pressures at the surface and the top, respectively, and

(2.1a)

(2.1b)

(2.1c)

(2.1 d)

(2.4a)

(2.4b)
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Po and PT represent the isobaric surfaces close to them.
Disregarding the terms of secondary order (TSO) in
(2.4), the vertical boundary conditions can be expressed
as follows:

w[x',y',po + p0o4'(x',y',po, t'),t']= 0 and

(2.5a)

w[x', Y', P r - 4)'(x', Y', PT, 0), t'] = 0, (2.5b)

equation above assumes that the basic state satisfies
both the hydrostatic equilibrium and the law of the
ideal gas, that is, d4)Pdp' = -p-1. Performing a Taylor
expansion on Eqs. (2.5a) and (2.5b) around p' = Po and
p' pT, respectively, substituting the expression

1 DO)' 1 (aOq' a+a' u,O' , 4' f +d
w - Dt'- g- + -t' x v' + &' + cc'

g t g a t' +a~Ox y' ap' dp'

where PF = p(P0) and VT = p(pT) are the background into the resulting equations and scaling the final expres-
densities at the surface and at the top, respectively. The sion according to (2.3), we get

04) ao 04) 0o ao Fw 084 /ao 04 ao)\Fw]
-+ U-+v-+Fw ) -- -+e YLo+=x,y,l,t)p +Fw - =0,atp=l, and
at a Y ao

(2.6a)

a0 R ao + v + F -p ao ao a tpP]-+8U -+u-+w -'+ F,o')(a4T3W, Y, 15T), t) +E U +V -+Fw- 0,atp= PT,at Ox Oy Op PT ap O[ Lat Ox a a

(2.6b)

where 15T = PTIPo and p = p-32 L 4 lp,. The Taylor ex-
pansion adopted here to solve the vertical boundary
condition problem in isobaric coordinates is similar to
that used in the theory of surface-gravity waves in deep

water (Milewski and Keller 1996) and gravity-capillary
waves (Case and Chiu 1977; McGoldrick 1965). Equa-
tions (2.1c) and (2.1d) can be combined to give

atOap a rp/

0[U 00aa v+ V Fo+ F Fot2 0 FW 0o
P -x P + -- +---7 + (1-K) -

- aoy ap &Op2 oUp I-

Ou av
- + -=0.(ax O

The nonlinear problem posed by (2.1a), (2.1b), (2.6),
and (2.7) may be expanded in terms of the dimension-
less parameter 6, which is a measure of the magnitude
of the nonlinear products. Considering the typical mag-
nitudes of large-scale perturbations in the atmo-
sphere-U - 5 m s-', L - 1500 kin, and 3 - 2.3 X
10-1' m-1 s- 1-it follows that a - 0.09 and, as a con-
sequence, a weakly nonlinear asymptotic analysis
seems suitable for (2.1), (2.6), and (2.7). Therefore, as-
suming that (i) 0 < a << 1 and (ii) F = 0(1),' the
procedure to be used here is the method of multiple
time scales. It assumes a separation of a short time scale
t and a long time scale represented by T = at. Formally,
we allow all the dependent variables in (2.1), (2.6), and

1 In reality, assumption (ii) is not necessary for an asymptotic

perturbation theory, but is needed to allow all the possible waves
to represent the leading-order solution. This assumption is also
based upon the uniformly occurrence of O(E) nonlinear terms in
(2.1), (2.6), and (2.7) and the desire to mach anticipated nonlinear
forcings with long time scale in the same power of s.

(2.7) to be functions of both time scales, and the sepa-
ration is incorporated into these equations by the time-
derivative transformation

0 0 0•- --* •- + 6 -• (2.8)

The dependent variables in (2.1) are also assumed to
have uniformly valid asymptotic expansions of the
forms

u = u( 0)(x, y, p, t, et) + Eu(1)(x, y, p, t, at) + 0(_2),

v = v()(x, y, p, t, et) + Ev(1)(x, y, p, t, at) + O(82),

4) 0 4(0)(x, y, p, t, at) + 80(l)(x, y, p, t, et) + 0(82), and

&j W=(°)(x, y, p, t, et) + Ewo(1)(x, y, p, t, et) + 0(_2).

(2.9)

Substituting the asymptotic expansions (2.8) and
(2.9) into the governing equations (2.1a), (2.1b), (2.6),
and (2.7), it follows that the leading-order solution is
written according to

(2.7)
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E u(0 )(x, y, p, t, T) 1
v(0 )x, y,p, t, 7) I = E A.(T)ý(Y)e G,(p) + c.c.,

_OP(°lX, y, p, t, T)_I

(2.10)

where c.c. denotes the complex conjugate of the previ-
ous term. In (2.10), the subscript a = (m, k, n, r) refers
to a particular expansion mode characterized by a ver-
tical mode m, a zonal wavenumber k, a meridional
mode n distinguishing the meridional structure of the

eigenfunctions a(y), and the wave type r: r = 1 for
Rossby waves (RWs), r = 2 for westward-propagating
inertio-gravity waves (WGWs), and r = 3 for eastward-
propagating inertio-gravity waves (EGWs). The mixed
Rossby-gravity waves (MRGWs) are associated with

the n = 0 mode and are included in the r = 1 (for k >
2`1/2) and r = 2 (for k < 2- 1/2) categories. The Kelvin
waves are represented by n = - 1 and r = 3. In the
leading-order solution represented by (2.10) are also
degenerate eigenmodes associated with the eigenfre-
quency w = 0. These modes have a k = 0 zonal struc-
ture and are characterized by a perfect geostrophic bal-
ance and the absence of a meridional circulation (v = 0)
(Silva Dias and Schubert 1979). The k = 0 Kelvin
modes are also included in this category. In (2.10),
Ga(p) represents the vertical structure functions that
distinguish the vertical structure of the linear eigen-
modes. These vertical structure functions are the eigen-
functions of the following Sturm-Liouville problem:

d (-•d-G +-1G 0 and
dp 0-dp / cl

(2.11a)

dG -
-d + iipG=0atp =1 and atp-.!T, (2.11b)

where c is the separation constant. If we further assume
that the static stability parameter a is constant with

A2 sin[(1 - PA)I] - A o-( Po - PT) cos[(1

Figure 1 shows the basic state temperature and den-
sity profiles adopted in this work obtained by setting
S = 2 x 10-6 m 4 s2 kg 2. The eigenvalues of the vertical
structure equation obtained from the same value of the
static stability parameter and for L = 1.5 X 106 m, Po =

1000 hPa, and PT = 150 hPa by using an iterative

method are shown in Table 1. Table 1 also shows the
separation constants Cm obtained from these eigenval-
ues. The eigenfunctions Gm(p) associated with the
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FIG. 1. (a) Background temperature T(p') and (b) density 5(p')
profiles used in this work for - = 2 X 10' m4 s2 kg-2.

pressure, the eigenfunctions Gm(p) are given by a com-

bination of sines and cosines and the eigenvalues Am =

N/-•/c. are determined by the following transcenden-
tal equation:

PT)A] + a.2 PTP0 sin[(1 - [T)A] = 0. (2.12)

eigenvalues A,m shown in Table 1 are illustrated in Fig.
2. Because the eigenvalue A = 0 is not physical, the
m = 0 mode is associated with the first A 4= 0 root of
(2.12) and corresponds to the barotropic mode because
its eigenfunction has no phase inversion and is almost
constant throughout the troposphere. The m > 0 modes
are usually referred to as internal or baroclinic modes
and correspond to the oscillations associated with the
rigid lid boundary conditions.
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TABLE 1. Eigenvalues k_m of the vertical structure Eq. (2.11), c_,
and c,,,P3L2 (with 3 = 2.3 X 10-l' m-1 s-' and L = 1500 km) for
the first five vertical eigenmodes, m = 0, 1, 2, 3, and 4, for Po =

1000 hPa, PT = 150 hPa, a = 2 x 10-6 m
4 S2 kg-2, and the profile

p(p) shown in Fig. 1.

Xm
m (dimensionless)

0 0.442
1 3.754
2 7.421
3 11.108
4 14.799

Cm

(dimensionless)

6.228
0.733
0.371
0.248
0.186

319.96
37.67
19.05
12.73

9.56

The meridional structure functions a(Y) = [ua(y),
v.(y), 40(y)]T are given by a combination of Hermite
functions and form an orthogonal and complete set at
(-o0, +00) (Matsuno 1966). The finite-amplitude cor-
rection of the leading-order solution (2.10) is obtained
from the 0(e) problem, which is governed by the linear
and inhomogeneous system

(2.13)

with the vertical boundary conditions expressed accord-
ing to

a0(1' Fw(1 ) [ao(0) o_)OO __~_ _o(> -a ( a( 0 )

t po aT ) op-0x + (° ) y (° ) + ao) x ap Op at
- atp = 1,

a uP(O ) O (P( O) a°00-4(O)--- + y+ p+ PT O (o(o) a_ at F} )Iat p = 15T-

In (2.13), 6(1) = [u(),
erator given by

0

Y

0
Ox

VM
1

, 00(1)]T, is the 1

Ox

a a
at Oy

a 0 0 10
a ata a~p)

linear op- and the vector N(0) contains the leading-order contri-
bution of the nonlinear terms in the governing Eqs.
(2.1a, b) and (2.7) and the long-time evolution of u(°),
40°, and 4(0). The inhomogeneous terms in (2.13) and
(2.14) can potentially act as resonant forcings generat-
ing secular terms in e1). As a consequence, to ensure

(2.15) that solution (2.10) represents the leading-order behav-
ior formally, these secular solutions are required to
vanish. This is achieved by the following solvability
condition:

lim ---=- f;fL1 f; 3(- (y)e -ik"•x-iW•G(p)) dp dx dtxý-- 2XLx o-Lx p, (P)d xd

1 X`ix f (N2xLx + (y)e-i•k,"x-iwG.(p)) dp dx dt,
J2xL o (N10) PT

with the inner product ( • ) being defined by

(f g) = f [ 1A +f 2 92*+f 3 93Tdy, (2.17)

where f and g are arbitrary vector functions satisfying
the meridional boundary conditions of our problem,
the subscripts 1, 2, and 3 refer to their scalar compo-
nents, and the superscript * indicates the complex con-
jugate. In (2.16), L, represents the dimensionless zonal

period defined by Lx = 2 IraTIL, with aT representing
the earth's radius; ga+(y)e -ik-i '•"Ga(p) represents an
arbitrary null vector of the adjoint operator of 3, where
the meridional structure function g(y) can be written
in terms of the meridional structure functions of the
original 0(1) problem according to

[ U.(Y) 1
L Va( Y)_

(2.18)

at
PT

and

(2.14a)

(2.14b)

(2.16)
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-15 -1 -05 0
G,(P)

0.5 t 1.5

-15 -1 -05 0
G,(P)

0.5 1 1.5

FIG. 2. Vertical eigenfunctions G_,(p) associated with
the eigenvalues ),m shown in Table 1 for: (a) m = 0, (b)
m = 1, (c) m = 2, (d) m = 3, and (e) m = 4. The
baroclinic modes correspond to the oscillations associ-
ated with the rigid lid boundary conditions.

Integrating by parts the left-hand side of (2.16), using

(2.11b) and the horizontal boundary conditions, and
recalling that C+(y)e- ikx-i-"'G,(p) satisfies the ad-

joint 0(1) problem, it follows that the solvability con-
dition (2.16) can be expressed by

1 - 1f f0+ fye -e`EtG, a a U- - ) dtdydxli m -- O,T (y )e ik "xe -i •" tG a(P ) -p +Ot

-lim ff fT N(N0  (y)e -ik,,x i_a0tG(p)ý dp dx d
x-On the h n, t

On the other hand, the thermodynamics equation for 0(8) is written as

a aq( 1) a 4 (0) a a(() a0 a + 0 a 4)(0) a224)(0) Fto(°)
S+ u() - + -(0) - -- + Fw(o) -2 + - (1

at ap aT ap ax ap ay ap ap P
K) - + F orw) = 0.

ap
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Thus, combining (2.20) and (2.14) and using both the continuity equation and the vertical boundary conditions of
the leading-order solutions, it is possible to rewrite (2.19) as

1 0.L I+•f• 4) (y)e )- 1 a'p0 4a(0) A 40 ) /ad0 o) + a°•) 1
l im I__ -) - f a-- + F4 dt dy dx--- 2XL•J-L._ 0t• ap2 at ax -'ay )113T•

1f fL 1 C(y)e-ikc C -"'k tGa(P)) dp dxdt,]imx - I I a-- YTX-- 2XL.J J-Jx6T (2.21)

where F = ((1 - K)/p) 2 + do 3(1 + A)
and A is defined according to

f= 1, if p= l

_ 1, if P =Pr.

- Aý(doldp) In (2.21), the vector N(0 ) is expressed as

N(°)=[N 1 , N2 , N3 ]T,

(2.22)

(2.23a)

with the scalar components defined according to

au(0 ) (0) au (0 au()
N -- - u(O v()-aT a7 x ay

a 
yo )

ay

- ap-- -4(P °) a• u(0)- -+ f• I -• + --- )au(°) av(°)• au(°),PT a(o

a 00) °) fI fP( 0° 0 0av(0  a°
PT-- -t- + -y )dp , and

a a {1 40 )) a [u(°) a a40)(°)+ a ao(°)aT - =- ap a---x ap - 1 y apj

- a(0 ) p 1 a a20 (0) 1 a a2 0
( fp aul(Ou) aSO°) (1 K) a4o() (au(0) av(°)

P+ a T ax + ydp+
atV a ~ ap aýP J /5 ax+ ay ap ax ay/

= ao _(1) - K) a 0(°) (1 - K) ao(°f (au(0) av(°)\at-- PT P 2 p - 2 ap _T -ayx +

(1 - K) a20(0) a~' u(o) av(O)
+ �2yl+- dp.

-• -a JPTI ax ay p

In (2.21)-(2.23), the mode amplitudes are held con-
stant during the integration in t. The effect of this ap-
proach is to make Aj(Et) to vary in such a way as to
eliminate the secular terms. In this way, the nonlinear
products in (2.21)-(2.23) contain sums and differences
of the time frequencies as arguments of the complex
exponentials that define their time dependence. When
the arguments are nonzero, the integrals will tend to
zero, due to the fast fluctuations in t. On the other hand,
when the arguments are zero (or nearly so, i.e., when
W0a - Wb + J) the integrals will tend to 1. Therefore,
from (2.21)-(2.23) it follows straightforwardly that if
one expresses do), 40), and 4(0) in terms of (2.10) trun-
cated in such a way as to consider only a triad of modes

4a)P(0)p (1 - K) a24,(°0
dP -T--PT- 2a t 1 P"3 P 1a 2

(2.23d)

a, b, and c satisfying the resonance conditions Wa

Ub + mc, ka = kb + k,, and na + nb + n, = odd, Eq.
(2.21) can be written as

2 dAa bcca dT = AbAcTla

2 dAb *TlaCb - = AaA,•bc, and

2 dAc = AaA*1ab.
dT x c

(2.24a)

(2.24b)

(2.24c)

The nonlinear coupling coefficients -abC b, and TIb
in (2.24) are given by

N2  
av- ) -u( 0 ) av (0)

aT a

(2.23b)

(2.23c)

1 a24P)(°) au(0)_ avlo3)

+ ap 2 a•x ay
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b f +_ P dvc-G ,(p)G b(P)G,+CP dy,
Tla - (B - 4.(y)ý O (a(Y)FI(Ob iWA4(C(+ + F' A pOPb( ikcu, + dy)+ CP] IG,()bPGjP 12 1ý dy,

Jfe L LVYb /y lG, 2  J l
(2.25a)

with the inner product (.) defined according to (2.17). The vector B in (2.25a) is defined by

B =

-duvc bc +b dvbN b
\b(ubkU + Vb-• a% + ib4iJbUe4•c- (ibu +- 1-0y±}c CP

ubikcvc + vb -dy a + t, bVcI( C - ikbUb + v,)O5c + CP

(ub ikc4, + -b d Ka -O

(i dAb + .b.cikz,,ub + -dy }qkc;a + CP

wh ere 4bc, bc, c, c bc bwhere aa , ab' , c , j,bCa , and ; represent the in-
teraction coefficients among the vertical eigenfunctions
of modes a, b, and c and are expressed by

bc - 1 fl

b- f IIGa12 JP Gb(p)G,(p)G,(p) dp,

be 1 ' dG•
Aa IGI[2 PT,Gb(fiT) = G.(p) dp,

P

G Gc 1 rr G dGb dGca 1 lG, 1IF PTLUb% C , 2 dp dp I a(Pi) dP

qabc - fl [1c dGp -pK.K dp -p- PcTGh(T)G,(p)dp, and
II-a I = JPGjr 1TLCC 

2 dp Cc2

bc 1 C'F[G 1 dGcf-a IlGaII2 
6T Cc2 Gb + C-,2 dp Gb dp

Ga(P) dP.

The terms CP in (2.25) indicate cyclical permutations
between the superscripts b and c and II Ga II corresponds
to the norm of the vertical eigenfunctions. The condi-
tion na + nb + nc = odd ensures that the resonant
forcing has even symmetry about the equator. In case of
an odd symmetry about the equator, the resonant com-
ponent generated in the domain y Ž- 0 would be exactly

(1- K) dGc , (1- K) dG•, G P + (1 -K) Ge, Gb dpSdpGb Gb dp Gbdp

(2.25c)

cancelled by the resonant component generated in the
domain y -< 0.

3. Energy relations

The total energy conservation principle for model
equations (2.1)-(2.6) can be expressed as

(3.1)

Thus, by inserting (2.10) into (3.1), integrating by
parts the second term in (3.1) over p, and making use
of (2.11a, b) and the orthogonality of the eigenmodes,
we obtain Parseval's identity for the leading-order en-
ergy:

E(0) c,A,A- C CA1.
a a

(3.2)

Therefore, from the asymptotic reduced triad Eqs.
(2.24), it follows that

(2.25b)

2 fL f• f U(0)2-l+0) 2  
1 (/A(0) 2] p+ 0)

2  
1 d

2 15T i 2_2 -or dy dx+O(2)=0.U L r + a--i' + 2 PTJ
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TABLE 2. Vertical interaction coefficients ap evaluated from (2.25c) for m = 0, m = 1, and m - 2.

rn=0

j. 0 1 2 3 4

0 1.056 072 563 3.615 X 10-2 -5.571 X 10-3 3.815 X 10-3 -1.376 x 10-3

1 3.615 × 10-2 1.047 619 589 2.907 X 10-2 -5.421 X 10-3 3.846 x 10-3

2 -5.571 X 10-3 2.907 X 10-2 1.051 895 409 2.711 X 10-2 -4.836 X 10-3

3 3.815 X 10-3 -5.421 X 10-3 2.711 X 10-2 1.052 738 106 2.655 X 10-2

4 -1.376 x 10-3 3.846 x 10-3 -4.836 X 10-3 2.655 x 10-2 1.053 037 056

m=1

j' 0 1 2 3 4

0 3.615 X 10-2 1.047 619 589 2.907 x 10-2 -5.421 X 10-3 3.846 x 10-3

1 1.047 619 589 -7.179 x 10-2 0.744 051 375 1.883 x 10-2 -5.045 X 10-3

2 2.907 x 10-2 0.744 051 375 -4.389 X 10-2 0.744 540 491 1.541 X 10-2

3 -5.421 X 10-3 1.883 X 10-2 0.744 540 491 -3.973 x 10-2 0.744 663 554
4 3.846 X 10-3 -5.045 X 10-3 1.541 X 10-2 0.744 663 554 -3.833 X 10-2

m=2

j' 0 1 2 3 4

0 -5.571 X 10-3 2.907 x 10-2 1.051 895 409 2.711 X 10-2 -4.836 X 10-3

1 2.907 x 10-2 0.744 051 375 -4.389 X 10-2 0.744 540 491 1.541 X 10-2

2 1.051 895 409 -4.389 X 10-2 1.336 x 10-2 -2.027 x 10-2 0.744 976 395
3 2.711 X 10-2 0.744 540 491 -2.027 X 10-2 9.227 x 10-3 -1.619 X 10-2

4 -4.836 X 10-3 1.541 X 10-2 0.744 976 395 -1.619 X 10-2 8.057 X 10-3

dE,, b
dT 2ii Im(AM AbAc), (3.3a)d.r

dEb
= 2i•r•' Im(AaA*Ac*), and (3.3b)

dEc •b ,.dEc . 2i-q" Im(AaA*A*), (3.3c)

where E, = cýIA- 12 for j = a, b, and c represents the
energy of the triad components. Thus, for the leading-
order energy to be conserved in a resonant triad, the
coupling coefficients must satisfy the relation

_,,bc + ,la, + lab = 0. (3.4)

Equations (3.3) and (3.4) show that the wave having
the coupling coefficient with the highest absolute value
always gains energy from (or supplies energy to) the
remaining triad components.

4. Determination of possible resonant triads

The goal of this section is to find triads of waves
satisfying the kinematic resonance conditions wa =
Wb + W,, ka = kb + k,, and na +nb + n, = odd. How-
ever, before seeking solutions of this algebraic system,
it is important to know how the vertical structure of the
waves restricts the interaction among them. According
to (2.25), the coupling among the waves of a resonant

triad through their vertical structures is measured by
be, bc bc bc bc bcthe coefficients aa a , a , a , a , and %, as well as

by the coupling terms at the boundaries given by the
second term in the right-hand side of (2.25a). Table 2
displays the values of the interaction coefficient aj for
the vertical eigenmodes m = 0, 1, and 2 and 0 -< j >- 4
and 0 -• 1 -> 4. This coefficient was evaluated from
(2.25c) by using the trapezoidal rule. The calculations
illustrated in Table 2 were performed for & = 2 x 10-6

m4 s2 kg-2, L = 1.5 X 106 m,f3 = 2.3 X 10" m-1 s-1,
Po = 1000 hPa, and PT = 150 hPa. These values are
fixed in all the calculations displayed hereafter in thisbc
paper. The interaction coefficient a c measures the
coupling among the vertical structures of modes a, b,
and c of a resonant triad through the horizontal advec-
tion of momentum. From Table 2 one notices that, in
general, the trios whose vertical eigenmodes satisfy the
relation m = --- t 1 or similarly Am - "Akj -± Al have the
most significant interactions through the momentum
horizontal advection. The other vertical interaction co-
efficients also demonstrate that these modes satisfying
the relation A,m -A ±kj ± Al for their vertical eigenvalues
have in general the most significant coupling among
their vertical structure eigenfunctions (tables not
shown). Conversely, this resonance condition imposed
by the vertical structure of the waves is no longer ex-
cluding, unlike the conditions imposed by the zonal
wavenumbers and meridional modes. This selective
rather than excluding nature of the resonance condition

3407NOVEMBER 2008 RAUPP ET AL.



JOURNAL OF THE ATMOSPHERIC SCIENCES

imposed by the vertical structure of the waves can be
clearly noted in Table 2, which shows that the interac-
tion coefficient a abc associated with trios whose vertical
modes do not satisfy this condition is small but not zero.

The relation Am - :t_j t A, is an approximation of
the familiar wavenumber summation rule that occurs
when trigonometric functions describe the dependence.
In this context, the reason for the small but not zero
values of the interaction coefficient ab' for trios whose
vertical eigenvalues do not satisfy this condition is that,
unlike the zonal wavenumbers, the vertical eigenvalues
given by (2.12) are not exactly multiples of each other.
Thus, this selective rather than excluding nature of the
resonance condition imposed by the vertical structure
of the waves is a consequence of the nature of the par-
tial differential equations (2.1) and the boundary con-
ditions (2.6), which determine the vertical eigenvalues
Am and the vertical functional dependence of the linear
eigenmodes. The effect of this nonexcluding nature of
the resonance condition imposed by the vertical struc-
ture of the waves is to enable a larger number of triads
to exist. This implies that the vertical stratification of
the atmosphere spreads the possibility of triad interac-
tions.

Nonetheless, in spite of the nonexcluding nature of
the vertical resonance condition Am, ±Aj -± A,, the
wave triads whose vertical eigenvalues satisfy this rela-
tion have the most significant coupling among their ver-
tical structure eigenfunctions and, consequently, un-
dergo the most significant interactions. Therefore, we
shall focus our analysis here on such resonant triads.

Regarding possible resonant triads among equatorial
waves, it is important to mention that because of the
nondispersive nature and the symmetric about the
equator structure of the Kelvin waves, any triad of
Kelvin wave components associated with the same ver-
tical eigenmode does satisfy the resonance conditions

a•r "b+mc,ka =kb +kc,andna+nb+n,= odd
and, therefore, all the components of a Kelvin wave
pack associated with the same vertical eigenmode are
resonant with each other. In this sense, the barotropic
Kelvin wave self-interactions are believed to be the
most significant ones because they do satisfy the reso-
nance condition in the vertical direction. On the other
hand, the resonances involving the dispersive equato-
rial waves are sparse and, in general, nonlocal in the
wavenumber space. Furthermore, due to the discrete
spectrum of zonal wavenumbers that results from the
periodic boundary condition in the x direction, the
resonance condition for the time frequencies is not eas-
ily satisfied for dispersive waves, making its occurrence
the exception instead of the rule. The resonant triads

involving dispersive equatorial waves have been deter-
mined graphically by overlapping two dispersion curve
plots in such a way that the origin of one plot is sym-
metrically displaced to a point on another dispersion
curve. The produced intersection establishes a set of
three normal modes satisfying the conditions w,,

Wb + w, and ka = kh + k,, provided that conditions
na +nb + nc = odd andAa . A- bk ±- ,. are met. An
exact resonance occurs when the two dispersion curve
plots intersect exactly in one of the quantized zonal
wavenumbers, which are indicated by the symbols
marked along the dispersion curves of Fig. 3. Although
this exact resonance is very difficult to be satisfied in
practice, near resonances satisfy the relation w. - wl, -
w, = 0(s), which is the actual condition for a signifi-
cant interaction involving three quantized wavenum-
bers to take place at O(e) (Bretherton 1964).

Thus, examples of nearly resonant triads found by
this graphical method involving dispersive equatorial
waves are illustrated in Fig. 3 for triads composed of
one barotropic Rossby wave and two first baroclinic
equatorial waves. An interesting resonance is shown in
Fig. 3a involving barotropic Rossby waves and first
baroclinic mixed Rossby-gravity waves. Figure 3a
shows a set of nearly resonant triads involving barotro-
pic Rossby waves having the n = 2 meridional mode
and mixed Rossby-gravity waves with the first baro-
clinic mode vertical structure, both having the same
wavenumber k > 2- 12, coupled through a zonally sym-
metric geostrophic mode with the first baroclinic mode
vertical structure and odd-meridional mode. It is inter-
esting to note that all the Rossby and mixed Rossby-
gravity waves with k > 2 1/2 are nearly resonant with
each other through any zonally symmetric geostrophic
mode having an odd meridional mode. The most exact
resonances refer to wavenumber 5 (k - 1.175) and the
shortest waves (wavenumbers higher than 13 or k > 3).
The triads associated with wavenumbers 4 (k - 0.94)
and 5 are displayed in Table 3, which illustrates that the
more equatorially trapped the geostrophic mode, the
more expressive the interaction. Examples of the en-
ergy exchanges associated with these interactions will
be shown in the next section.

Figure 3b shows a resonant triad composed of a zonal
wavenumber-2 (k - -0.47) Kelvin wave, a k = 0 mixed
Rossby-gravity mode, both with the m = I mode ver-
tical structure, and a barotropic zonal wavenumber-2
(k -- 0.47) Rossby wave with the second gravest merid-

ional mode (n = 2). Figure 3c illustrates two nearly
resonant triads composed of two first baroclinic mode
westward inertio-gravity waves and a barotropic
Rossby mode. In one of these triads, the inertio-gravity
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FIG. 3. Dispersion curves of the barotropic Rossby waves (BRWs) and the following first baroclinic mode equatorial waves: MRGWs,
RWs, Kelvin waves (KWs), WGWs, and EGWs. Fig. 3a highlights the resonance involving BRWs and MRGWs through the zonally
symmetric geostrophic mode with meridional mode n = -1 (Kelvin mode) and the m = 1 baroclinic mode vertical structure. Fig. 3b
highlights the resonance involving a zonal wavenumber-2 KW, a k = 0 mixed Rossby-gravity mode and a zonal wavenumber-2 BRW
with the second gravest meridional mode (n = 2). Fig. 3c highlights two resonances: one involving a WGW with zonal wavenumber 3
and meridional mode n = 2, a WGW with zonal wavenumber 1 and meridional mode n = 1, and a BRW with zonal wavenumber 2 and
meridional mode n = 2; and the other involving a zonal wavenumber-5 WGW with meridional mode n = 2, a zonal wavenumber-1
WGW with meridional mode n = 1, and a zonal wavenumber-4 BRW with meridional mode n = 2. Fig. 3d indicates the resonance
involving a zonal wavenumber-9 WGW, a zonal wavenumber-3 EGW, and a zonal wavenumber-12 BRW, all of them with meridional
mode n = 1. The curve plots have been constructed by setting a = 2 x 10-6 m4 

S2 kg-2, L = 1.5 X 106 m, Po = 1000 hPa, and PT =
150 hPa. The symbols marked along the curves of the first baroclinic equatorial waves indicate the points where the zonal wavenumbers
are defined.

TABLE 3. Numerical values of the resonant triads shown in Fig. 3. The table shows, from left to right, the triad components and their
respective eigenfrequencies and coupling coefficients. The modes are characterized, from left to right, by the vertical eigenmode, the
zonal wavenumber, the meridional mode, and the wave type: Rossby (R), Kelvin (K), mixed Rossby-gravity (M), westward inertio-
gravity (WG), and eastward inertio-gravity (EG) waves. The calculations have been performed by setting Po = 1000 hPa, PT 150 hPa,
a = 2 x 10-6 m

4 
s

2 
kg -

2
, L = 1500 km, and 3 = 2.3 X 10-11 m-1 s-1.

a b c ,a Mb Wc iTbc ac .atb
a~ b i7

1 lb.
1 0, 4, 2, R 1, 4, 0, M 1, 0, -1, K 0.56 0.58 0 0.228 0.324 0.00
2 0, 4, 2, R 1, 4, 0, M 1, 0, 1, R 0.56 0.58 0 0.061 0.106 0.00
3 0, 5, 2, R 1, 5, 0, M 1, 0, -1, K 0.54 0.527 0 0.425 0.524 0.00
4 0, 5, 2, R 1, 5, 0, M 1, 0, 1, R 0.54 0.527 0 0.242 0.287 0.00
5 1, 0, 0, M 0, 2, 2, R 1, -2, -1, K 0.856 0.462 0.345 0.2 0.119 0.045
6 1, 3, 2, WG 1, 1, 1, WG 0, 2, 2, R 1.93 1.46 0.46 0.095 0.07 0.0186
7 1, 5, 2, WG 1, 1, 1, WG 0, 4, 2, R 2.02 1.46 0.56 0.296 0.215 0.064
8 1, 9, 1, WG 1, 3, 1, EG 0, 12, 1, R 2.01 1.64 0.33 0.727 0.623 0.0814
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waves have zonal wavenumbers 1 (k - 0.235) and 3
(k - 0.705) and meridional modes n = 1 and n = 2,
respectively, whereas the Rossby mode is characterized
by a zonal wavenumber 2 (k - 0.47) and meridional
mode n = 2; on the other triad, the inertio-gravity
waves have zonal wavenumbers 1 and 5 and meridional
modes n = 1 and n = 2, respectively, whereas the baro-
tropic Rossby wave is characterized by a zonal wave-
number 4 and meridional mode n = 2. A resonant triad
composed of a zonal wavenumber-3 eastward inertio-
gravity wave, a zonal wavenumber-9 westward inertio-
gravity wave (both with the n = 1 meridional mode and
the first baroclinic mode vertical structure), and a baro-
tropic Rossby wave with zonal wavenumber 12 and me-
ridional mode n = 1 is shown in Fig. 3d. The other
resonance found in Fig. 3d involving an n = 2 westward
inertio-gravity wave does not satisfy the condition na +
nb + n = odd.

The resonant triads displayed in Fig. 3 are summa-
rized in Table 3. Table 3 displays the triad components
and their respective eigenfrequencies and coupling co-
efficients. The coupling coefficients bC, 1", and Iab
were evaluated from (2.25a) by using the Gauss-
Hermite quadrature formula. Table 3 shows that, in
general, the coupling coefficients are proportional to
the individual eigenfrequencies in the resonant triads.
Consequently, in the atmospheric model adopted here
the highest absolute frequency mode in a resonant triad
is in general the most energetically active member of
the triad, that is, the triad component whose energy
always grows (or decays) at the expense of the remain-
ing triad components. This is a consequence of the con-
servation of the leading-order energy in the resonant
interactions, as shown in section 3. This energetic prop-
erty of the resonant triads has also been found in the
shallow-water equations (as discussed in section 1) as
well as in several other problems in fluid mechanics,
such as in the theory of surface-gravity waves in deep
water and capillary-gravity waves. A complete review
of the phenomenon of the three-wave resonance in
fluid mechanics can be found in chapter 5 of Craik
(1985). Another interesting consequence of this ener-
getic property of the resonant triads is that the coupling
coefficients of the zonally symmetric geostrophic
modes are always zero in a resonant triad interaction
involving two propagating modes, as illustrated in
Table 3. As a consequence, these modes always work as
catalyst components in a resonant interaction involving
two propagating waves, allowing the waves with the
same zonal wavenumber and nearly equal or opposite
time frequencies to exchange energy without being af-
fected by the propagating waves, as will be shown in the
next section.

5. Dynamics of the resonant interactions

In this section, examples of the solution of the as-
ymptotic reduced Eqs. (2.24) are shown for selected
resonant triads to illustrate some aspects of the dynam-
ics of the resonant interactions among equatorial waves
in the present model. Because the nonlinear coupling
coefficients "b, and abre purely imaginary, ana-

7a , are pure q
lytical solutions for system (2.24) are obtainable. Con-
sidering the mode having the coupling coefficient with
the highest absolute value as mode a and the mode
having the smallest absolute coupling coefficient as
mode c, it follows that-subject to the initial condition
lAa(t = 0)1 = 0, 1Ab(t = 0)1 = R°, and IAc(t = 0)1 =

RC-the solution of (2.24) is expressed in terms of the
modes' energy as (see McGoldrick 1965 and Domar-
acki and Loesch 1977)

( c 2 /Ea(t)= C2(R0)2 --qa b)s 2()
a(fica C n2sn

( 1bc Ca

Eb(t) W WJR cn2(_) and

E c(t) = c c(R c dn2

(5.1a)

(5.1b)

(S.Ic)

where sn, cn, and dn are the Jacobian elliptic functions
(Abramowitz and Stegun 1964, chapter 16), having the
argument

/,b o (1/2)

and parameter

C b b

nac C2 (R)2"b c (Rco

Because the frequency of the energy (amplitude)
modulation is proportional to R' and the parameter rh
is dependent in part upon the ratio Ro IRO, the period of
the energy exchanges can be arbitrarily long or short
depending on the initial wave amplitudes. If th = 0
( -1b = 0), the solution (5.1) becomes

2c 
2

-qO2I~a Cb)
L at)- Cab) ac 2,1sn

T1bc Ca

Eb(t) - c2(R°)2 cos2 , and

Ec(t) - E,(t = 0) = constant.

(5.2a)

(5.2b)

(5.2c)

In this case, the energy of mode c remains constant.
Its role is to act as a catalyst for the energy exchange
between modes a and b, in the sense that it enables the
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FIG. 4. Time evolution of the mode energies for the triad com-
posed of a barotropic Rossby wave with zonal wavenumber 4 (k
0.94) and meridional mode n = 2 (mode a), a mixed Rossby-
gravity wave with zonal wavenumber 4 (k - 0.94) and vertical
mode m = 1 (mode b), and a zonally symmetric Kelvin mode
(n = -1) having the vertical mode m = 1 (mode c). The initial
amplitudes are set as (a) R'b 1 and R0 = 2 and (b) R'b
R° = 1.

resonance conditions to be satisfied and controls the
interaction period via its initial amplitude R°. This is
exactly the case of the triads involving first baroclinic
mixed Rossby-gravity and barotropic Rossby waves
with the same wavenumber and the zonally symmetric
geostrophic modes with odd meridional mode found in
section 4. Figure 4 illustrates the energy exchanges for
triad 1 of Table 3, which is composed of a barotropic
Rossby wave with zonal wavenumber 4 (k - 0.94) and
meridional mode n = 2 (mode a), a mixed Rossby-
gravity wave with zonal wavenumber 4 and the first
baroclinic mode vertical structure (mode b) and a zon-
ally symmetric (k = 0) Kelvin mode (n = -1) with the
same vertical structure as the mixed Rossby-gravity
wave (mode c). Figure 4a shows the time evolution of
the mode energies for the initial amplitudes given by

R° = 1 and R° = 2, whereas Fig. 4b shows the same
time evolution but for the initial amplitudes Ro = 1 and
Ro = 1. In Fig. 4 and all other integrations shown in this
section, we have set U = 5 m s-', L = 1500 km, and
3 = 2.3 X 10-11 m-' s-', implying e = 0.097. The role
of the geostrophic mode in controlling the period of the
energy exchange between the internal mixed Rossby-
gravity mode and the barotropic Rossby wave is clearly
noticeable by comparing Figs. 4a and 4b. As observed
in Fig. 4, the mixed Rossby-gravity and Rossby modes
exchange energy periodically, whereas the total energy
is almost conserved. The small-amplitude oscillations in
total energy observed in Fig. 4 are believed to be due to
the small frequency mismatch among the triad modes
because the coupling coefficients only satisfy the rela-
tion (3.4) for exact resonances. Thus, the leading-order
energy given by (3.2) is only conserved for the resonant
triads; that is, for the off-resonant triads, the higher-
order terms of O(83) in (3.1) must be taken into ac-
count.

To analyze the implications of the energy exchanges
observed in Fig. 4 for the solution in physical space,
Figs. 5-7 illustrate some aspects of the physical space
solution referred to the interaction shown in Fig. 4a.
The quantities displayed in Figs. 5-7 are obtained by
(2.10) truncated in such a way as to consider only the
triad components of Fig. 4. Figure 5 displays the y-p
cross section of the meridional wind (v) along the lon-
gitude of 22.5'W at (a) t = 0, (b) t = 26, (c) t = 47, and
(d) t = 67 days. Because the meridional wind is zero for
the zonally symmetric geostrophic modes (and also for
the Kelvin modes), it is a useful quantity to observe the
physical space manifestation of the energy exchanges
between the Rossby and mixed Rossby-gravity waves
shown in Fig. 4. At t = 0 the Rossby wave energy is zero
and the meridional wind pattern observed in Fig. 5a is
due to the internal mixed Rossby-gravity wave (mode
b) activity. At this stage, the flow is essentially trapped
in the equatorial region. At t = 26 days, the Rossby and
mixed Rossby-gravity modes have the same energy
level (Fig. 4a). As a result, the meridional wind pattern
shown in Fig. 5b is due to both Rossby and mixed Ross-
by-gravity wave activity. The Rossby wave activity is
clear in Fig. 5b from the centers of action near the
latitudes of ±60' with an essentially barotropic struc-
ture. In tropical latitudes, the superposition of the first
baroclinic mixed Rossby-gravity wave and the barotro-
pic Rossby wave yields a meridional wind pattern
trapped in the upper troposphere. Conversely, at t = 67
days (Fig. 5d), the superposition of these modes leads
to a tropical pattern essentially trapped in the lower
troposphere. At t = 47 days, the meridional wind pat-
tern shown in Fig. 5c is entirely due to the barotropic
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FIG. 5. Latitude vs pressure (hPa) cross section of the meridional wind along longitude of 22.5°W referred to the

solution of Fig. 4a at (a) t = 0, (b) t = 26; (c) t = 47, and (d) t = 67 days. The meridional wind displayed in this

figure has been obtained from expansion (2.10) truncated to consider only the modes of triad 1 of Table 3. The v

field is shown in m s-1 using the scales in (2.3) for U = 5 m s-l.

Rossby wave. It is noticeable that this mode is much
less equatorially trapped than the first baroclinic mixed
Rossby-gravity wave, having large amplitude in middle
and high latitudes.

In fact, the meridional structure functions oa(Y) as-
sociated with the barotropic mode are much less equa-
torially trapped than those associated with the baro-
clinic modes because the separation constant ca appears
as an e-folding length in the exponentially decaying part
of the eigenfunction ja(y). As a consequence, the

smaller the value of ca, the more equatorially trapped
the y structure of the eigenmode. In fact, the equatorial
(3 plane is well known to be a good approximation for
the internal modes of small equivalent depth (Lindzen
1967). For the barotropic mode, the equatorial 3-plane
approximation is not valid except for low meridional
mode n; therefore a more accurate geometry and Co-
riolis term in (2.1) are necessary. Strictly speaking, the
equatorial (3-plane approximation is a valid one when
the turning latitude Yr of the mode, which represents
the distance from the equator where its y-structure
function ýL(y) changes from an oscillatory to an expo-

nentially decaying behavior, is such that IYrT < 1Yp,
(Lindzen 1967; Silva Dias and Schubert 1979), where yp
refers to latitude of the pole. Using the values of cm of

Table 1, it follows that the turning latitude YT for the
barotropic mode corresponds to 58' and 750 for the

meridional modes n = 1 and n = 2, respectively. Thus,
all the barotropic Rossby waves of the resonant triads
displayed in Table 3 are within the limit of validity of
the equatorial 3-plane approximation. For the first
baroclinic mode, the validity condition is satisfied up to
n = 25. The high amplitude of the barotropic Rossby
modes in middle and high latitudes suggests that reso-
nant interactions involving a barotropic Rossby mode
and two internal equatorial waves might play an impor-
tant role in tropics-midlatitude connection. The poten-
tial future extension of the wave interaction theory de-
veloped here for the real atmosphere will be discussed
in section 6.

Figure 6 displays the horizontal distribution of the
horizontal wind and geopotential fields at p = 1000 hPa
associated with the solution of Fig. 4a at t = 0 (Fig. 6a)
and at t = 47 days (Fig. 6b). The spatial structure of the
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FIG. 6. Horizontal wind (vector) and geopotential (contour) fields at p = 1000 hPa associ-

ated with the same solution of Figs. 4a and 5 at (a) t = 0 and (b) t = 47 days. The horizontal
wind and geopotential fields are shown in m s-1 and m2 s-2, respectively, using the scales in
(2.3) for U = 5 m s- 1, 3 = 2.3 × 10"1 m-1 s- 1, and L = 1.5 X 106m.

k = 0 Kelvin mode (mode c) can be clearly observed in
Figs. 6a and 6b by the noticeable zonally symmetric
easterly wind component and the zonally symmetric
trough along the equatorial region. The small pertur-
bations in this zonally homogeneous structure along the
equator observed in Figs. 6a and 6b are due to the

activity of the mixed Rossby-gravity wave and the
barotropic Rossby mode, respectively. Figure 7 shows
the time evolution of the 200-hPa horizontal divergence
at 12.5'S, 22.5°W (Fig. 7a) and the 550-hPa meridional
wind at 60'S, 22.5°W (Fig. 7b). Because the horizontal
divergence is zero for the zonally symmetric geo-
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FIG. 7. Time evolution of the (a) 200-hPa horizontal divergence

at 12.5°S, 22.5°W and (b) 550-hPa meridional wind at 60'S,
22.5°W associated with the solution of Figs. 4a, 5, and 6. The wind

and the divergence are displayed in this figure in m s-' and 106
s-', respectively, using the scales in (2.3) for U = 5 m s', 3
2.3 X 10 11 m-t s, andL = 1.5 X 106 m.

strophic modes and small for the barotropic Rossby
waves, it essentially represents the baroclinic mixed

Rossby-gravity wave activity in Fig. 7a. Similarly, once

the waves associated with the internal modes have ne-

glectable amplitude at ±60' and the eigenfunction

G,(p) is almost zero at p = 550 hPa (Fig. 2b), the time

evolution of the 550-hPa meridional wind shown in Fig.

7b illustrates the activity of the barotropic Rossby wave

of triad 1 of Table 3. The time evolution of the 200-hPa

divergence and the 550-hPa meridional wind exhibits

local oscillations with a period of the order of 4 days.

These local oscillations are due to the phase propaga-

tion of the waves because both the Rossby and the

mixed Rossby-gravity modes of triad 1 of Table 3 have

a period of approximately 4 days. Apart from these

high-frequency local oscillations, a longer time scale
modulation in the amplitude of these local oscillations

is also observed. Comparing Fig. 7 and Fig. 4a reveals

that this longer time scale modulation is due to the

energy exchanges between the Rossby and mixed Ross-

by-gravity waves displayed in Fig. 4a. In fact, the times

when the magnitude of the divergence is maximal cor-

respond exactly to the times when the energy of the

baroclinic mixed Rossby-gravity wave peaks. On the

other hand, when the energy of the barotropic Rossby

wave is maximal (and the energy of the mixed Rossby-

gravity wave is minimal), the amplitude of the diver-

gence oscillations is minimal and the amplitude of the

550-hPa meridional wind is maximal.

Thus, Figs. 4-7 demonstrate that the periodic ex-

changes of energy among waves constituting a resonant

triad imply periodic changes of regime in the physical

space solution. Such changes of regime, in turn, occur in

a longer time scale than the period of the local oscilla-

tions resulting from the phase propagation of the

waves. This periodic change of regime in the solution in

physical space due to the internal dynamics of the

model is known as vacillation (Lorenz 1963). As ob-

served in Figs. 5-7, the initial amplitudes set in Fig. 4

are realistic in the sense that they reproduce the typical

magnitude of weather and climate anomalies. Conse-

quently, with the initial amplitudes characterizing typi-

cal magnitudes of atmospheric flow perturbations, Fig.

4 shows that the mixed Rossby-gravity and Rossby

modes of triad 1 of Table 3 exchange energy on in-

traseasonal or semiannual time scales, with the period

of the energy exchange depending on the initial ampli-

tude of the geostrophic mode.

The energy exchanges between the first baroclinic

mixed Rossby-gravity wave and the barotropic Rossby

wave with zonal wavenumber 5 (k - 1.175), composing

triad 3 of Table 3, are illustrated in Fig. 8 for R' = 1 and

R" = 2. Because the interaction in triad 3 is stronger

than in triad 1, for the same initial energy distribution

as in Fig. 4a, the interaction period for the internal

mixed Rossby-gravity and barotropic Rossby waves

with wavenumber 5 is of the order of 50 days. Another
example of energy exchanges due to resonant triad in-

teraction in the present model is illustrated in Fig. 9,

which shows the time evolution of the mode energies

associated with triad 5 of Table 3. This triad is com-

posed of a k = 0 mixed Rossby-gravity mode (mode a),

a zonal wavenumber-2 Kelvin wave (mode c) (both

with the m = 1 mode vertical structure), and a zonal

wavenumber-2 barotropic Rossby wave with n = 2 me-

ridional mode (mode b). The initial amplitudes are set

as R° = 0.1 and Ro = 2.0 (Fig. 9a), R,, = 0.15 and Ro -

1.2 (Fig. 9b), and R) = 0.192 and Ro = 1.0 (Fig. 9c). As
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FIG. 8. As in Fig. 4a, but for the triad composed of a barotropic Rossby wave with zonal
wavenumber 5 (k - 1.175) and meridional mode n = 2 (mode a), a mixed Rossby-gravity
wave with zonal wavenumber 5 (k - 1.175) and vertical mode m = 1 (mode b), and a zonally
symmetric Kelvin mode (n = -1) having the vertical mode m = 1 (mode c).

expected from the values of the coupling coefficients
(Table 3), Fig. 9 shows that, in this resonant interaction,
the mixed Rossby-gravity mode is the most energeti-
cally active member of the triad; that is, its energy al-
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ways grows (or decays) at the expense of the Kelvin and
Rossby modes. The Kelvin wave in this interaction is
the less energetically active member.

The energy modulations of these modes can exhibit
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FIG. 9. Time evolution of the mode energies for the triad com-
posed of a k = 0 mixed Rossby-gravity mode (mode a), a Kelvin
wave with zonal wavenumber 2 (k - -0.47) (mode c), both with
the first baroclinic mode vertical structure, and a barotropic zonal
wavenumber-2 (k - 0.47) Rossby wave with meridional mode
n 2 (mode b). The initial amplitudes are set as (a) Ro = 0.1 and
Ro = 2.0, (b) Ro = 0.15 and R' = 1.2, and (c) Ro = 0.192 and
RnO = 1.0.
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different behaviors depending on the initial amplitudes
of modes b and c because these initial amplitudes ap-
pear in the expression of the argument E and the pa-
rameter rh of the Jacobian elliptic functions in the so-
lution (5.1). Figure 9a shows a representative example
of energy exchanges due to triad interaction when the
parameter rih of the Jacobian elliptic functions is within
the range 0 < rh << 1. In this case, the Kelvin mode of
triad 5 of Table 3 essentially exhibits a similar behavior
to the zonally symmetric geostrophic mode of the triads
displayed in Figs. 4 and 8, acting as a catalyst for the
energy exchanges between the barotropic Rossby and
first baroclinic mixed Rossby-gravity modes. A quali-
tatively representative example of triad modulations
when 0 < rth < 1 is shown in Fig. 9b. In this case, all the
three modes undergo significant energy modulations.
Figure 9c illustrates an interesting example of energy
modulations in a resonant triad that occurs when 0 <<
th < 1. The remarkable feature of the solution (5.1) in
this situation is the extended time interval through
which the energy of the k = 0 first baroclinic mixed
Rossby-gravity mode is large and nearly constant. The
other interesting feature of the energy solution dis-
played in Fig. 9c is the relatively rapid growth and de-
cay phases of the energy of the modes. As can be ob-
served in Fig. 9c, these rapid growth and decay stages of
the modes' energy occupy only a small fraction of the
total interaction period. As in Figs. 4 and 8, the small-
amplitude modulation of total energy observed in Fig. 9
is due to the small frequency mismatch among the
modes of triad 5 of Table 3.

Another important point to be highlighted here is
that, as in Figs. 4-7, the initial amplitudes set in the
simulations shown in Fig. 9 reproduce typical magni-
tudes of atmospheric flow disturbances (figures not
shown). Thus, for the initial amplitudes characterizing
realistic magnitudes of the wind and geopotential fields,
the energy exchanges associated with this triad interac-
tion can be arbitrarily long or short; that is, they can
occur from semiannual to interannual time scales, de-
pending on the initial wave amplitudes.

6. Remarks

A new attempt to describe the weakly nonlinear in-
teraction of equatorial waves has been presented in this
paper by using the adiabatic version of the equatorial
3-plane primitive equations in isobaric coordinates. As-

suming rigid lid vertical boundary conditions, the con-
ditions imposed at the surface and at the top of the
troposphere were expanded in a Taylor series around
two isobaric surfaces in an approach similar to that used
in the theory of surface-gravity waves in deep water

and capillary-gravity waves. By adopting the asymp-
totic method of multiple time scales, the equatorial
Rossby, mixed Rossby-gravity, inertio-gravity and
Kelvin waves, as well as their vertical structures, were
obtained as leading-order solutions. These waves were
shown to be capable of resonant interactions at the
0(s) approximation, enabling energy to be efficiently
exchanged within a triad. The resonant triads whose
wave components satisfy the relation A,, • ±.j ± A, for
their vertical eigenvalues were found to have the most
significant interactions, although this condition is not
excluding, unlike the resonance conditions for the zonal
wavenumbers and meridional modes. The effect of this
nonexcluding nature of the resonance condition im-
posed by the vertical structure of the waves is to enable
a larger number of triads to exist, implying that the
vertical stratification of the atmosphere spreads the
possibility of triad interactions. The results show that
for these resonant triads satisfying the resonance con-
dition in the vertical direction, the wave having the
highest absolute frequency acts in general as an energy
source (or sink) for the remaining triad components, as
usually occurs in several other physical problems in
fluid dynamics. In addition, the zonally symmetric geo-
strophic modes act as catalyst modes for the energy
exchanges between two dispersive waves in a resonant
triad. The integration of the reduced asymptotic equa-
tions for selected resonant triads shows that, for the
initial mode amplitudes characterizing realistic magni-
tudes of atmospheric flow perturbations, the modes in
general exchange energy on low-frequency (intrasea-
sonal and/or even longer) time scales, with the interac-
tion period being dependent upon the initial mode am-
plitudes.

Nevertheless, although these selected resonant triads

undergo the most significant interactions, an important
question that cannot be addressed in the context of our
reduced dynamics of a single wave triad concerns the

stability and/or robustness of these triad interactions. In
fact, the periodic variations due to the triad interactions
explored in this paper may be unstable with perturba-
tions that have been excluded in our analysis. Nonlin-
ear time integrations with the full system from the cor-
responding initial conditions are necessary to check the
stability and the robustness of these resonances. In par-
ticular, the energy exchanges due to the triad interac-
tion shown in Fig. 9 (triad 5 of Table 3) may be unstable
with regard to the Kelvin mode self-interactions, even
though these resonant harmonics are associated with
the same internal vertical mode. Because of the nonex-
cluding nature of the resonance condition imposed by
the vertical structure of the waves, all the components
of the first baroclinic Kelvin mode are resonant with
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each other. Consequently, the initial energy of the
zonal wavenumber-2 Kelvin mode of triad 5 of Table 3
can leak to its harmonics and therefore weaken the
energy exchanges observed in Fig. 9. We intend to ad-
dress this issue regarding the robustness of the reso-
nances studied here in a future paper.

Because of the high amplitude of the barotropic
Rossby modes in middle and high latitudes, if we apply
the wave interaction theory developed here to the real
atmosphere, resonant triads like those shown in Table 3
composed of two first baroclinic equatorial waves and
one barotropic Rossby mode might play an important
role in the tropics-extratropics interaction on low-
frequency time scales. In fact, the first baroclinic mode
corresponds to the vertical mode most excited by the
typical tropical heating associated with deep convection
and dominates the energetics of the large-scale motions
in the tropics (Silva Dias and Bonatti 1985). On the
other hand, a significant portion of the energy of the
atmospheric circulation is in equivalent barotropic
modes, which are responsible for the propagation of
energy from tropics to middle and high latitudes (Hos-
kins and Karoly 1981; Kasahara and Silva Dias 1986).
Thus, energy exchanges due to resonant triad interac-
tions involving equatorially trapped first baroclinic
equatorial waves and barotropic Rossby modes with
significant midlatitude projection can be potentially im-
portant for the global teleconnection patterns from
tropics to midlatitudes as well as for the midlatitude
influence on the tropical wave dynamics.

However, the application of the present theory to the
real atmosphere requires the inclusion in the present
model of some important physical processes in the at-
mosphere that have not been considered in the present
analysis. These physical mechanisms include diabatic
effects, boundary layer drag, and a more realistic 0(1)
background flow in the governing equations (2.1)-(2.6).
In fact, only seldom are the large-scale atmospheric
disturbances perturbations from motionless basic
states. Thus, the inclusion of a geostrophic basic state
with both vertical and meridional shear and the analysis
of its influence on the resonant triads obtained in this
work should be studied, as well as the analysis of the
influence of diabatic heating on these resonances.
Moreover, diabatic heating can also resonantly couple
the equatorial waves obtained here as leading-order so-
lutions. Because the diabatic heating associated with
deep convection in the tropics mostly projects onto the
first baroclinic mode, it may play a similar role to the
zonally symmetric geostrophic modes on coupling first
baroclinic structure equatorial waves and barotropic
Rossby waves. The coupling with boundary layer can
also have some effects on the resonances explored in

this paper, due to the change in the bottom boundary
condition. The authors also intend to investigate these
issues in the future.

Other requirements for the application of the present
theory to the real atmosphere are the inclusion of the
dynamical effects of the spherical geometry and the
extension of the vertical domain adopted here to allow
the coupling with the stratosphere because the equato-
rial waves typically observed in the atmosphere have a
significant stratospheric extension (Wheeler et al.
2000). The stratospheric extension of the vertical do-
main adopted in this paper requires the use of a more
realistic vertical stratification of the background atmo-
sphere. Silva Dias and Bonatti (1986) have computed
the vertical eigenmodes of a primitive equation atmo-
spheric model by using a temperature vertical profile
obtained from observational data of the First Global
Atmosphere Research Program (GARP) Global Ex-
periment (FGGE) level III-b to analyze the sensitivity
of the vertical mode expansion to the vertical resolution
of the model. Besides the vertical eigenmodes obtained
in this work (Table 1), Silva Dias and Bonatti obtained
other modes characterized by gravity wave speeds of
178.3, 91.4, 62.0, 28.3, and 15.75 m s-'. Thus, consider-
ing a more realistic stratification of the background at-
mosphere, more vertical eigenmodes are allowed. This
suggests that resonant triad interactions in the real at-
mosphere might be even more favored than indicated
in this theoretical study.
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