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The simplest model for geophysical flows is one layer of a constant density fluid with a 
free surface, where the fluid motions occur on a scale in which the Coriolis force 
is significant. In the linear shallow water limit, there are non-dispersive Kelvin waves, 
localized near a boundary or near the equator, and a large family of dispersive waves. 
We study weakly nonlinear and finite depth corrections to these waves, and derive a 
reduced system of equations governing the flow. For this system we find approximate 
solitary Kelvin waves, both for waves traveling along a boundary and along the equator. 
These waves induce jets perpendicular to their direction of propagation, which may have 
a role in mixing. We also derive an equivalent reduced system for the evolution of 
perturbations to a mean geostrophic flow. 

Keywords: Nonlinear waves; geophysical flows; coastal waves; equatorial waves 

1. INTRODUCTION 

In this paper we present the systematic derivation of reduced equations 
governing weakly nonlinear long free surface waves in rotating flows. 
The rotation can vary in one direction to model planetary scale effects. 
We study in detail two cases: the equatorial waveguide where the 
Coriolis parameterf is, to leading order, proportional to the distance y 

*Corresponding author. e-mail milewski@math.wisc.edu 

139 

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
8:

49
 2

6 
Se

pt
em

be
r 

20
15

 



140 P. A.  MILEWSKI AND E. G. TABAK 

to the equator (i.e., f= y ,  the equator being at y = 0),  and shorter 
scale effects away from the equator wheref is approximately constant. 

In non-rotating flows, the two-dimensional free surface evolution is 
governed by an isotropic Boussinesq equation (see Benney and Luke, 
1964) which reduces to the Korteweg-de Vries equation for straight 
wavefronts and to the Kadomtsev- Petviashvilli equation for weakly 
curved fronts (see Milewski and Keller, 1996). 

In the linear limit of rotating shallow water flows, the free surface 
evolution is composed of steady geostrophic configurations, inertial 
oscillations and various families of waves: Rossby (or planetary) waves 
if the variation offwith latitude is taken into account, PoincarC (or 
gravity) waves, Kelvin waves in the equatorial waveguide and in the 
presence of boundaries (coastal waves), and mixed Rossby-gravity (or 
Yanai) equatorial waves. Of the propagating waves, only the Kelvin 
wave is non-dispersive. Thus, it is interesting to study how finite depth 
effects (that is, the vertical structure of the flow) affect the evolution 
of this wave. Furthermore, weak dispersion from finite depth may 
balance weak nonlinearity and account for the existence of solitary 
waves. 

We derive a system of equations governing these flows, and extend 
these results to weakly nonlinear, weakly dispersive perturbations to 
a geostrophic mean flow. Even though the linear structure of this 
problem is substantially more complex than the case without a mean 
flow, the derivation of reduced equations follows essentially the same 
path. 

We find approximate solitary Kelvin wave solutions to the reduced 
equations in the case without a mean flow. These waves are governed by 
a Korteweg-de Vries equation, and the corresponding three-dimen- 
sional flow has counter rotating vortices traveling with the wave. These 
vortices may contribute to mixing between near shore and offshore 
waters for coastal waves, and between equatorial and low latitude 
regions of the atmosphere and the ocean for equatorial waves. 

This paper is structured as follows. In Section 2, we formulate the 
problem and summarize our main results. In Section 3, we derive the 
reduced equations for the flow, both with and without a mean geo- 
strophic basic flow. In Section 4 we compute approximate solitary 
wave solutions to these equations. Finally, we present some conclud- 
ing remarks and some directions for further work. 
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NONLINEAR WAVES IN ROTATING FLOWS 141 

2. FORMULATION AND SUMMARY OF RESULTS 

Surface waves propagating in a rotating environment are characterized 
by several dimensionless parameters. The ratio E of the amplitude of the 
wave to the characteristic depth of the fluid parametrizes nonlinearity. 
Finite depth effects of the vertical structure of the flow are proportional 
to the ratio p of the depth of the fluid to the typical length of the waves. 
The relative importance of rotation as compared to the gravity restoring 
force is parametrized by the ratio of the frequencies of the gravity waves 
and the rotation of the Earth. This can be expressed as the ratio of the 
Froude number Fr and the Rossby number Ro. Throughout, we 
assume Fr/Ro M 1. Lastly, the propagation of the waves depends on the 
curvature of the wavefronts. In the derivation of the reduced equations 
we make no special assumption for this parameter; that is, we do not 
assume a preferred horizontal direction. 

Given these scalings, the non-dimensional equations governing the 
free surface flow of a three-dimensional fluid domain with a flat bot- 
tom, gravity pointing in the - z direction, and Coriolis force varying 
in y are 

ut - f (  y )  v + E(UU, + vuy + wu,) = -px, (2.1) 

V f  + f ( Y )  + E(uvx + vvy + wv,) = -py, (2 .2)  

(2.3) 
2 2 

P Wt + w (uw, + vwy + wwz) = -pz, 

u, + vy + wz = 0. (2.4) 

The boundary conditions are, on the lower boundary, 

w = 0, z = -1, (2 .5 )  

and on the free surface, 
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142 P. A. MILEWSKI AND E. G. TABAK 

Here, p is the deviation from hydrostatic pressure. The dimensional 
quantities (primed below) can be recovered by the scalings 

(x’,Y’) = L ( x , Y ) ,  Z ’  = Hz, t’ = G t ,  
(u‘, v’) = E ~ ( u ,  v ) ,  W ’  = E ~ @ w ,  p ’  = EpgHp, 77’ = E H ~ ,  

where His  the undisturbed fluid depth, L is the horizontal length scale 
of motion, p = H/L, and E = A/H,  where A is the typical amplitude of 
the wave motion. The Coriolis parameter fin this non-dimensionaliza- 
tion is given by 

V m  

Fr 2101 sin(r3)L 
f =-= 

Ro r n ’  
where 101 = (2x124 hs) is the rotation frequency of the Earth and 0 is 
the latitude. 

In Section 3, we derive an asymptotic reduction of these equations. 
Denoting by N(x ,  y ,  r )  the leading order term in an expansion for 
v ( x , y ,  r ) ,  and by U(x, y ,  t )  and V ( x  , y ,  t )  the leading order terms for 
U ( X ,  y ,  0, t )  and v(x, y ,  0, t )  (that is, the velocity measured at the height 
of the unperturbed free surface), we obtain the system 

UI + Nx - f V = --E(UU, + VU,), 

v l + N , + f U =  -€(W,+Wy), 
Nl + ux + vy = - € ( ( N U ) ,  + (Nv),) 

1 
+ -P2((A 3 - f 2 ) N r  - f ’N,  + 2 f S ’ V ) .  

If, on the other hand, we choose to denote by U(x ,y ,  t )  and V ( x , y ,  t )  
the mean values in the vertical of the leading order behavior of the 
velocities u(x, y, z ,  t )  and v(x, y,z, t) ,  the system becomes 

1 
UI + N ,  - f  v = -€(UU, + VU,) + -p2(Ux 3 

V I + N , + f  u =  -E(UV,+W,)+-p2(LIx+VY)ryr 1 (2.9) 

+ V y ) t x r  

3 
Nt + UX + Vy = - € [ ( N U ) ,  + (M’),]. 

This choice for U and V has the advantage that the third equation (i.e., 
mass conservation) is exact to all orders in E and p. 
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NONLINEAR WAVES IN ROTATING FLOWS 143 

If one sets E = 0 in either set of Eqs. (2.8) and (2.9), one obtains the 
finite depth corrections to the linear shallow water equations for waves 
in a rotating environment. For the case of constantf, these finite depth 
effects modify the shallow water dispersion relation, yielding, the geo- 
strophic mode with w= 0 and the Poincark waves with 

(2.10) 

The Kelvin wave becomes a superposition of modes of the form 
exp( -fky /w) exp[ i(kx-wt)] , where 

(2.1 1) 

The depth thus introduces weak dispersion and a slight dependence 
of the decay rate on wavenumber. The solitary wave described below 
balances these effects with nonlinearity. 

The Eqs. (2.8) and (2.9) are generalizations of long wave equations, 
such as the Benney- Luke (BL) equation for water waves (see Benney 
and Luke, 1964) to waves in a rotating environment. Thus, by removing 
rotation, one can obtain as special cases the BL equation, the one- 
dimensional Korteweg-de Vries (KdV) equation and the weakly two- 
dimensional Kadomtsev- Petviashvilli (KF') equation, which also 
combine small nonlinear and dispersive effects. However, the systems 
(2.8) and (2.9) are two-dimensional and isotropic (except for the pos- 
sible spatial variation off), while the KdV equation is one-dimensional, 
and the KP equation is strongly anisotropic, applying only to weak 
deviations from one-dimensionality . These equations are included in 
(2.8) and (2.9) as particular limits. Thus, the KdV equation can be 
obtained by setting E = p2, f =  0, V = 0, and considering functions 
U(T,  0) = N(T, O), where T = E t  and 0 = x - t .  Similarly, the KP equa- 
tion follows from taking E = p2, f = 0, y + p-ly, v + pv, and U(T, 0) = 

N(T, 0) as for the KdV. 
It is not necessary however to drop the Coriolis effect altogether to 

obtain variations of these equations. For instance, we can recover the 
case of weak rotation and weak two-dimensionality, considered in 
(Grimshaw, 1985; Katsis and Akylas, 1987). Their particular scaling 
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144 P. A. MILEWSKI AND E. G .  TABAK 

can be obtained by taking the scalings for the KP above, but with 
f 4 p ,  whence one can deduce the modified KP equation 

(This equation has a constraint on locally confined solutions (see 
Grimshaw and Melville, 1989), associated to PoincarC modes that are 
not treated properly). 

A KdV equation follows naturally from the systems (2.8) and (2.9), 
even with large Coriolis parameterf, when one considers the slow 
evolution of Kelvin waves, given by 

'f ( Y t M t  u = N = d Y > 9 ( f i 1  T), d Y )  = e-J 1 

v = 0, 

where 0 and T have the same meaning as above. The corresponding 
equation for the evolution of q, derived in Section 4, is 

(2.13) 

where, 

This equation has well known solitary wave solutions, given by 

2 
2 ,  C = 1 +€-K2.  (2.14) 

2 
A = P K  3 

g = A  sech2[K(x - C t ) ] ,  

Figures l a  and 2a show these solitary Kelvin waves in the coastal and 
equatorial cases. The second order corrections to these flows have a 
nontrivial v-component. These corrections, computed in Section 4, 
consist mainly of jets perpendicular to the direction of propagation of 
the waves. These jets, shown in Figures l b  and 2b, may play a role in 
mixing. 

Seldom are geophysical flows small perturbations of a quiescent 
state. Generally the unperturbed state is one in geostrophic balance, 
with a nontrivial sheared mean flow U (  y ) .  The geostrophic balance 
implies, for the single layer model, a corresponding tilt of the free 
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NONLINEAR WAVES IN ROTATING FLOWS 

5 ,  , , , Contoury of v lor Coastal Kel? Wave , , , 

145 

X 

FIGURE 1 
duced transversal velocity v. 

Coastal Kelvin wave with K = 0.35. (a) Leading order solution. (b) In- 

surface N. The corresponding equations for a single layer of homo- 
geneous fluid are 

(at + U & ) U  + ((I’ - f ) v + E(UU, + VUY + WUZ)  = -px,  (2.15) 
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Equatonal Kelvin Wave 

Contours 01 Y lor Equatonal Kelvin Wave 

-5 ' 
X 

FIGURE 2 
duced transversal velocity I,. 

Equatorial Kelvin wave with K = 0.25. (a) Leading order solution. (b) In- 
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NONLINEAR WAVES IN ROTATING FLOWS 147 

(8, + u a x ) v  +fu + e(uv, + vvy + wv,) = -py, (2.16) 

P 2 ( a  + Udx)w + &P2(UWx + vwy + ww,) = -pz, (2.17) 

24, + vy + wz = 0, (2.18) 

with boundary conditions 

w = o ,  z=-1,  (2.19) 

and 

p = q ,  z = N + & q ,  (2.20) 

(3 + U3X)rl -f u v  + E ( q x  + vq,) = w, z = N + &q. (2.21) 

The tilt N of the free surface due to the geostrophic balance is given by 

N( y )  = - f (s) U(s)  ds. sy (2.22) 

The reduced equations for weakly nonlinear, weakly dispersive flows, 
computed in Section 3, are 

Here N(x,  y ,  t )  stands for the leading order behavior of the free surface, 
and U(x ,y ,  t )  and V ( x , y ,  t)  for the mean values in the vertical of 
u(x, Y,  z , t )  and v(x, Y ,  
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1 48 P. A. MILEWSKI AND E. G. TABAK 

3. DERIVATION OF THE ASYMPTOTIC EQUATIONS 

In the usual weakly nonlinear approximation we expand (2.6), (2.7) 
about z = 0 to obtain 

p + &pzq + 0 ( E 2 )  = q, 

qf + E(24qx + vqy)  = w + Ewzq + 0 ( & 2 ) ,  

z = 0, (3.1) 

(3.2) z = 0. 

The leading order solution, obtained by setting E = p2 = 0, has, from 
(2.6) and (2.3),p(O) = q ( O )  = N( x,y, t ) .  Therefore, if the initial data does 
not include z-dependent inertial modes, then (do), v(O)) = [ U(X, y, t) ,  
V ( x , y ,  t)] do not depend on z, and (2.4) yields 

w(O) = - ( z  + 1)(U, + V,). (3.3) 

Thus, (3.2) completes the system of equations satisfied by the leading 
order solution 

(3.4) 

These equations contain as solutions steady geostrophic modes, 
inertial oscillations, Kelvin and PoincarC waves and, i f f  depends on 
latitude, Rossby waves (and Yanai waves in the equatorial wave- 
guide). Our goal is to compute corrections to the leading order equa- 
tions to take into account the nonlinear interaction of these various 
waves and the effects of a small but finite depth of the fluid. 

We compute these corrections by expanding u, v, p ,  w, q in power 
series in E ,  p2 as follows D
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NONLINEAR WAVES IN ROTATING FLOWS 149 

The first nonlinear corrections p('?O) = #*'), d1,'), v(130) are also 
independent ofz,and thus w(l>O) = -(z + 1)(uL1'') + vFIo)). Theinhomo- 
geneous equations become 

+ 77;,o) - f i ( L O )  = -uux - VU,, 

(W)  +fi".O) = -wx - w + VY Y ,  

u f 

(3.6) 
v p o )  
~ j ' ' ~ )  + UL'~') + v;;') = - (UN) ,  - (VN)y. 

The finite depth corrections have a non-trivial z structure. Using 
(3.5) in (2.3) and (3.1), we obtain 

p(0J)  = ( ; I2  + z )  (UXf + VYf)  + ~(o ' l ) (x ,y ,  t ) .  (3.7) 

Then, Eqs. (2.1), (2.2) and (2.4) become 

Ut  (011) +pjuo'l) - f i ( O J )  = 0, 

vjoJ) +ppl) + f i ( O J )  = 0 

Uy) + v p l )  + w;o'l) = 0 
(3.8) 

with boundary condition 

z = o .  (3.9) (0,') = w(o,l)  
772 

In order to evaluate the boundary condition (3.9), we need w(O*l). It is 
obtained by integrating the incompressibility equation in z, for which 
we need to compute u$'")+v~"). To this end, we decompose do,'), v(O,') 

Then, 
into two parts: ( U ( O J ) ~  = ((1/2)z2 +.)(up (0.1) , vp (071) )+ (uk (071) , v,, ( O J )  ). 

Now, using the third equation in (3.4), u!"), v?') satisfy 
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150 P. A. MILEWSKI A N D  E. G. TABAK 

Since these equations are linear and inhomogeneous, we can write the 
divergence of its solution in the form 

where C is a linear operator and where we have used our previous 
assumption that the initial data does not contain z-dependent inertial 
waves to eliminate the homogeneous solutions to (3.1 l), (3.12). The 
operator C can be computed explicitly; it is given by 

when f is a constant, and a more convoluted expression when f is a 
nontrivial function of y. However, we will not make use of this explicit 
form, since the operator L will be shown below to factor out of the 
final equations. From (3.10), the boundary condition (3.9) becomes 

In order to factor out the operator C, we notice that, since the homo- 
geneous part of Eqs. (3.11) and (3.12) has the same form as that of the 
first two equations in (3.4), we have U, + V, = -CN, and thus, (3.14) 
becomes 

From (3.4) we obtain U,,, + V,,, = - (A - f 2 ) N f  +f'Nx - 2ff 'V and 
so 

We finally obtain the reduced system of Eqs. (2.8), equivalent to 
(2.1)-(2.4) to O(E, p2)  by adding (3.4) to E multiplied by (3.6) and p2 
multiplied by (3.16). The equations in (2.8) describe the evolution of 
(fi, V,&) = ( U ,  V , N )  + E ( u ( I . O ) ,  v ( l ~ o ) , ~ ( l , o ) )  + p 2 ( u ~ " ) , v ~ " ) , 7 ( o , 1 ) )  (drop- 
ping the hats). This is a closed system of equations for U, V and N .  In 

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
8:

49
 2

6 
Se

pt
em

be
r 

20
15

 



NONLINEAR WAVES IN ROTATING FLOWS 151 

order to complete the solution at all heights consistent to order p2, we 
need to solve these equations and then add the contribution from 
u p ” ,  v!’”, obtained by solving (3.1 l), (3.12). 

Note that if p2 = 0, (2.8) is exact, that is, the expansion in powers of E 

terminates and one may set E = 1. This is the usual shallow water limit, 
in which the waves are so long that they do not have any vertical 
structure; the ratio of depth to wavelength in this approximation is 
formally zero. The more general scaling in (2.8) corresponds to the long 
wave limit, which includes the leading order corrections to the vertical 
structure, arising from the small but finite ratio of depth to wavelength. 

In the preceding discussion, the primitive variables U and V 
appearing in (2.8) correspond to the velocities u, v evaluated at the 
undisturbed free surface (notice that up, vp are zero at z = 0). One can 
obtain a one-parameter family of models by deriving equations where 
U, V are the velocities at some other reference level zo. Then, the deri- 
vation for the dispersive corrections is modified as follows: Introdu- 
cing the reference level zo in (3.7) yields 

1 
2 

p ( o J )  = - [( Z +  - (ZO + 1)2](Uxt + V,,) + p r ’ ’ ) ( x , y , t ) .  (3.17) 

Then, from (3.1), the definition of Q ( ~ , ’ )  is changed to 

(3.18) 

is now ( U ( ~ ~ ’ ) , V ( ~ ~ ~ ) )  = (1/2) 

1 
p p ’  +$l - (20 + 1)2](uxl + VYf) = 7+oJ)(x,y, t ) .  

The appropriate decomposition of do,’), 
( ( ~ + 1 ) ~ -  (zo+l)2)(up ( O J )  ,vp ( O J )  ) + ( u : ~ ’ ) , v ~ ? ’ ) ) ,  and 

The derivation now follows as before, resulting in the replacement of 
(3.16) with 

1 

1 
[l - (zo + 1)2](Uxf + VYf), ,  (0,l) + rl;o,l) - f i ( O J )  = - 

‘h,t h 2  

[l - (zo + 1)2](Uxf + Vydy, (0,1) (0,l) +fip = - 
‘h,f + rly 2 
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152 P. A. MILEWSKI AND E. G .  TABAK 

Finally, the reduced system of Eqs. (2.8) becomes 

Ui+N.x  -f V = - & ( U U X + V U y )  

vi + Ny + f u = - &(UVx + W,) 
(3.20) 

Letting zo = 0 and using the leading order equations in the p2 correc- 
tions, one recovers (2.8). Also, letting (ZO + 1)2 = 3 eliminates the p2 
correction to the surface equation, yielding the system (2.9). It is easy 
to check that this choice of zo corresponds to the height at which u and 
v adopt values equal to their vertical means. The general system (3.20) 
with arbitrary zo is the analogue of the various Boussinesq ap- 
proximations for shallow water. The dispersion relations for Poincart 
and Kelvin waves discussed in Section 2 are independent of zo. 

Next we consider perturbations to a mean flow in geostrophic 
balance, where the primitive equations are given by (2.15)-(2.18). 
Again, we propose an expansion of the form (3.9, where the leading 
order solution satisfies 

The nonlinear corrections are still independent of z;  they satisfy: 

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
8:

49
 2

6 
Se

pt
em

be
r 

20
15

 



NONLINEAR WAVES IN ROTATING FLOWS 153 

We will proceed in a way similar to the second part of this section, 
leaving a reference depth free. We allow the reference depth zo to vary 
in y .  The finite depth corrections to the pressure are obtained from 
(2.17) 

(3.23) 

which implies, from (2.20), 

Ppl)+;[(a+l,”- (ZO+1)2](a~+Uax)(Ux+Vy) = r p q X , y J ) .  

(3.24) 

We must now satisfy 

with boundary condition 

In order to apply (3.25), we need w(O,l) or, from the incompressibility 
condition, uio’l) + v!’”. As above, we decompose do*’), do*’) into 

Then, integrating the continuity equation yields 

1 3 1  w(OJ) = - - (z + 1) - - (z + l)(zo + 1)2 (u!?) + v!;’)) 
+ ( z  + l)(zo + 1)z‘Ovp’) - (z + l ) ( u p  + v y ) .  

L 2 

There are now, in principle, two systems to be solved: one for the 
z-dependent part of the solution and one for the z-independent part. 
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The first system is 

and the system for the z-independent solution, forced by the solution 
to the z-dependent system, is 

Choosing (ZO + 1)2 = f (N + 1)’ decouples these two systems, avoiding 
the need to compute the analogue of the operator C above. This choice 
corresponds to, for each y ,  computing u and v at the height where their 
values agree with their vertical means, and yields 
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If now we add the systems (3.21), (3.22) and (3.26), we obtain the 
evolution equations in (2.23). 

4. SOLITARY WAVES 

We show now that the systems (2.8) and (2.9) admit approximate 
solitary waves for the balance E = O(p2). Specifically, we are interested 
in two particular cases: the equatorial waveguide, where f = y ,  and 
mid-latitude coastal waves, wherefis constant and the flow in y > 0 
has y = 0 as a boundary where V = 0. In the coastal wave case, soli- 
tary waves were found in Grimshaw (1985) for a model of stratified 
flows. Solitary waves arise because the Kelvin waves are, to leading 
order, nondispersive, and thus the corrections due to nonlinearity and 
to finite depth effects can balance each other. For concreteness, we 
shall work with the system (2.9). The procedure for (2.8) or for any 
other choice of zo, is identical and leads to exactly the same equations, 
with small variations in the higher order corrections since the systems 
use slightly different variables. 

The leading order solution for a Kelvin wave with E = p = 0 has 
V =  0 and 

Thus, equatorial Kelvin waves have g ( y )  = exp(-y2/2) and coastal 
Kelvin waves have g(y) = exp(-y). Anticipating that the nonlinear 
and dispersive corrections will slowly modulate these waves in time, we 
let q(8, T )  where 8 = x - t and 7 = ~t (We take E = p2 throughout this 
derivation.) Writing, 

the equations for the corrections are 
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The solvability condition is obtained by adding (4.2) to (4.4), multi- 
plying by g and integrating over y .  Defining ( U , i i )  =J(u,n)gdy, we 
obtain 

(U + H ) r  + (0 + f i ) ,  = - 3 ( / g3dy) qqe 

To prevent the solution for (U + i i )  from becoming unbounded in time, 
thereby disordering the original asymptotic expansion, we impose the 
solvability condition 

where, 

Equation (4.5) is a Korteweg-de Vries equation for the waveform 
along the direction of propagation. For coastal Kelvin waves, p = 1, 
whereas for equatorial waves ,B = J3/2. The equation has well known 
soliton and periodic cnoidal wave solutions (see Whitham, 1974). In 
particular, the soliton solutions, reverting to the x, t variables are 

2 2 
B 3 

q=Asech*[K(x-Ct)], A=-K2,  C =  I+E-K*.  (4.7) 

These solutions are shown in Figures la and 2a for the coastal and 
equatorial waves respectively. 

It is interesting to examine the O(E) induced flow resulting from 
these solutions. These flows contain nontrivial V.  After imposing the 
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solvability condition (4.5), the Eqs. (4.2)-(4.4) take the form 

We seek solutions depending only on 0 = x - t and y .  From (4.8), 
(4.10), one can calculate (n - u): 

(4.1 1) 

Next, using (4.8), we obtain for v: 

v = - [ ( n - U ) , - - l ] ,  1 
f (4.12) 

and, from (4.9), we calculate n: 

(4.13) 
1 

ny +fn = ve +f (n - u)  + jfgqee. 

For the case of a coastal Kelvin wave, these calculations yield 

(4.14) 
1 

u = 6 (Y + l)e-’qee - (Y + e-Y)e-Y(qqe)e, 

v = (e-” -e-Y)qqe, (4.15) 

(4.16) 
1 

n = gye-Yqee - (y + e-Y)e-Y(qqe)e. 

Although the leading order solution has V = 0, the correction has 
nonzero velocity in the direction normal to the wall. Figure 1 b shows 
the velocity v corresponding to the solitary wave in Figure la. The 
velocity field consists of two jets, one preceding the wave and pointing 
offshore and one following the wave pointing towards the coast. Thus, 
such coastal Kelvin waves in the atmosphere or the ocean could 
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contribute to mixing between near shore and offshore regions. We note 
that the v correction arises solely from the nonlinear terms, whereas n 
and u corrections arise from finite-depth dispersive effects. 

If one wants to complete the full z-dependent solution to this order, 
one needs to solve (3.1 l) ,  (3.12) which, with N from (4.1), give 

(4.17) 

For the equatorial Kelvin wave, v can be written down in closed 
form: 

v = &ne-J/2[Erf( y) - Erf( @ y ) ] q q ~ ,  (4.18) 

where 

2 y  
Erf( y) = -1 e-‘* dr. 

J;;o 

The expressions for n and u involve integrals of the error function, but 
their difference does not; it is given by 

The values of v and n - u are the most significant, since they constitute 
the leading order behavior of the corresponding variables. Figure 2b 
shows values of v for the solitary wave solution of Figure 2a. The field 
now consists of four jets, two pointing toward mid-latitudes preceding 
the waves and two pointing towards the Equator following the wave. 

5. CONCLUSIONS 

A system of equations was derived describing the weakly-nonlinear, 
weakly-dispersive evolution of long waves in a rotating environment. 
These equations can be used to study wave interactions and nonlinear 
corrections to leading order linear waves. In particular, corrections 
were computed to the nondispersive Kelvin waves, leading to a KdV 
equation with solitary wave solutions. The corrections include a 
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nontrivial structure for the velocity normal to the direction of 
propagation of the wave, which can contribute to mixing near shore 
and offshore waters in the case of coastal waves, and between equa- 
torial and extra-equatorial regions of the atmosphere and the ocean in 
the equatorial case. 

The system was derived for free-surface waves, and then extended to 
model perturbations to a mean geostrophic flow. Other extensions 
under development include the more realistic stratified case, which has 
the added richness of potential nonlinear interaction between the 
various internal modes. Finally, bottom topography or other inhomo- 
geneities of the medium, such as a variable stratification, can be 
included in a straightforward manner. When combined with an order 
one mean flow, these would allow for the study of wave-topographic 
resonances (Majda et al., 1997) and of the topographic generation of 
nonlinear waves by flows over topographic disturbances (Milewski 
and Tabak, 1998; Grimshaw and Yi, 1991). 
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