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Abstract

Post-synaptic neuron activity at both the sub and supra-threshold level is analyzed through the
combination of: 1) the numerical simulation of a simple leaky integrate-and-fire model forced by
both constant frequency and Poisson-distributed presynaptic spike-trains, 2) the transformation of the
model’s response into sequences describing non-summation effects in sub-threshold and the probability
of spiking within a time-window in supra-threshold dynamics, 3) for constant frequency input, the
analysis of these sequences through an autoregressive linear model, and 4) for non-uniform input, their
analysis through attributable components. It is found that the attributable component methodology
can reproduce the dynamics on testing data, effectively replacing the original dynamical model, and
that the optimal order of both the autoregressive and the attributable component model, is an indicator
of the relative strength of the underlying depression and facilitation mechanisms.

1 Introduction

Many naturally occurring dynamical processes are driven not by a continuous external forcing but
by discrete, punctuated events. The prototypical example arises in neuronal dynamics, where each
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neuron receives as input not a continuous current but spike-trains from other neurons through synaptic
connections. Analyzing such processes typically involves the development of conceptual models that
explain their behavior, but also of models that are exclusively data-driven, seeking to capture the
dynamics underlying a set of observations so as to be able to reproduce the dynamics and make
predictions accordingly. Ideally, such data-driven models can be combined with field expertise to
uncover mechanisms underlying the observed dynamics.

The purpose of this article is to explore the construction of data-driven models of spike-driven
processes via attributable component analysis, a recently developed methodology for the explanation
of variability in data [1]. This will be developed in the particular context of the post-synaptic activity
of individual neurons. It will be shown that the attributable component methodology provides an
effective non-parametric tool for reproducing both the sub and supra-threshold dynamic response
of a cell to excitatory input spikes from another cells, and that the optimal number of spikes in
the immediate past used by the model provides an indicator of the relative levels of facilitation and
depression mechanisms operating at the synaptic level.

The dynamic behavior of neuronal circuits results from the cooperative activity of the participating
neurons and the synaptic network connectivity [2–4]. These complex processes involve the intrinsic
properties of the individual neurons (ionic currents, nonlinearities, time scales), the type of neurotrans-
mitter involved (AMPA excitation, GABAA inhibition) and the so-called synaptic plasticity, which
describes the changes in the efficacy of a synaptic connection over time [5–7].

Synaptic connections are highly complex processes. Schematically, they consist of a presynaptic
neuron (the “sender”), a postsynaptic neuron (the “receiver”) and the proper synapse (the “directed
arrow” from the sender to the receiver). Each of these components possesses intrinsic dynamics with
varying degrees of complexity. A crucial step in understanding the dynamics of synaptic connections
is to determine how the spiking patterns of the presynaptic neurons (presynaptic spikes) shape the re-
sponse of the postsynaptic neurons both at the subthreshold (membrane potential) and suprathreshold
(spike) levels. Computationally, this could be pursued from different perspectives. The classical mod-
eling approach focuses on determining the properties of the post-synaptic patterns given a presynaptic
spike-train and the properties of the synaptic connection. The spike decoding approach focuses on
reconstructing the presynaptic spike train (e.g., stimulus) from the postsynaptic pattern (e.g., sensory
neuron) [8–10]. A third approach focuses on determining the properties of the synaptic dynamics given
the post-synaptic pattern and the pre-synaptic spike-train [11–15]. This has been termed synaptic
decoding. Naturally, all cases require knowledge of the intrinsic properties of the postsynaptic cell.

It is particularly important to understand how the synaptic short-term plasticity (STP) contributes
to this process. STP refers to the changes experienced by the synaptic efficacy over time that reflect
the history of the presynaptic activity [5, 6, 16, 17]. In terms of biophysical models, the synaptic
connectivity is captured by the so-called synaptic function S. In the absence of any synaptic dynamics
the magnitude Smax of S is constant over time (see Figs. 1-A1 and -A2, red). In the presence of
solely synaptic depression Smax decreases over time (Figs. 1-B1 and -B2, red), while purely synaptic
facilitation has the opposite effect. The combination of both may produce more complex patterns
(Figs. 1-C1 and -C2, red).

Several models have been used to investigate the mechanisms underlying synaptic transmission and
short term dynamics [18], ranging from detailed models [19] to phenomenological models of different
types [12, 20–24]. These models are physiologically interpretable based on the assumptions on which
they rely. On the other extreme, non-parametric models (lacking any assumption about the underlying
process) have been used to capture the input-output relationships associated to STP with minimal,

2



rather generic assumptions [14] about the memory process.
In this paper we combine attributable components analysis –described in the section on meth-

ods below– with simple dynamical systems tools to understand the dynamic structure embedded in
synaptic decoding in the presence of STP (synaptic depression, facilitation, or both). We focus on
the relatively simple architecture consisting of a passive postsynaptic neuron receiving a presynap-
tic spike-train input. Each presynaptic spike generates a prototypical membrane potential response
(Figs. 1-A1, blue) whose height is assumed to vary due to the effects of synaptic summation (Fig.
1-A2, blue), depression and facilitation (Figs. 1-B and -C, blue). The difference Aj (indexed over
the input spike times tj) between the heights of the postsynaptic responses to a given input spike in
the presence and absence of STP (once the summation effects have been removed) generates a finite
sequence [12,13]. Each point in the domain of this sequence (except for j = 1) has an associated value
for the input inter-spike interval (ISI). In order to analyze the spiking response to the presynaptic
input spikes we use a spiking probability metric adapted from [11] that assigns to each input spike a
spiking probability Pj that a spike occurs within some bin after the jth input spike.

Using simple passive post-synaptic cell and STP models we show that the evolution of {Aj}, viewed
as a discrete dynamical system evolving over the index set j, can be captured by a linear autoregressive
map with ISI-dependent parameters when the input frequency is constant. These parameters can be
estimated from the synthetic data generated by the model. For either pure depression or facilitation
the sequence {Aj} is either decreasing or increasing, and the map that generates this sequence is one-
dimensional, corresponding to a first-order model. When both depression and facilitation are present,
the sequence of {Aj} can overshoot, and the corresponding map can be two- or three-dimensional
–of second or third order– depending on the relative levels between the two processes. This higher-
dimensionality reflects the interaction between the two history-dependent processes. The differences
in dimensionality obtained by using two different parameter sets reflect differences in the relative levels
of depression and facilitation. Interestingly, this shows that in order to produce the present value of
Aj the system needs information up to three steps back depending on the STP scenario. For constant
input frequencies, the evolution of Pj shows qualitatively similar behavior to that of Aj .

We then investigate the properties of the sub-threshold and spiking responses for the more realistic
Poisson-distributed input spike-trains. Here the sequence to analyze involves not only the {Aj} or
{Pj}, but also the spiking times {tj} of the presynaptic neuron. We develop a procedure whereby,
given the input sequence {tj}, we first generate the response of the postsynaptic neuron through
the numerical solution of a current-balance equation model, and decode it in terms of {Aj} or {Pj},
depending on whether we are analyzing sub or supra-threshold responses. We use attributable com-
ponent analysis to build a non-linear autoregressive model that computes Aj (or Pj) in terms of ns
prior values of Aj and of the corresponding inter-spike intervals ∆j = tj − tj−1.

This article is structured as follows: after this introduction, section 2 (subsection 2.1) describes
the leaky integrate-and-fire model used for the postsynaptic cell, the stochastic model for the presy-
naptic spike-trains, and the short-term dynamics of synaptic depression and facilitation. Subsection
2.2 summarizes the attributable component methodology developed in [1]. Section 3 describes the re-
sults obtained for both history-dependent membrane potential response patterns and spiking response
patterns. In both cases, we first analyze the response to uniform spike-trains of constant frequency,
showing how the combined effects of facilitation and depression give rise to distinct transient patterns
and to autoregressive dynamics of different orders for the reduced variables A and P . Then we consider
stochastic spike-trains drawn from Poisson distributions, and show how the attributable component
methodology can robustly reproduce the response of the post-synaptic neuron, and how the optimal
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number of steps in the past that the model considers relates to the relative amounts of facilitation
and depression. Finally, we summarize the results in section 4, where we also discuss directions for
further development.

2 Methods

2.1 Models

2.1.1 Postsynaptic cell: leaky integrate-and-fire model

The current-balance equation for the post-synaptic cell is given by

C
dV

dt
= −gL (V − EL) + Iapp − Isyn + Inoise, (1)

where t is time (ms), V represents the voltage (mV), C the specific capacitance (µF/cm2), gL the leak
conductance (mS/cm2), Iapp the tonic (DC) current (µA/cm2)), Inoise =

√
2Dη(t) represents white

noise (delta correlated with zero mean), and Isyn is an excitatory synaptic current of the form

Isyn = Gex S (V − Eex). (2)

Here Gex is the maximal synaptic conductance (mS/cm2), Eex = 0 is the reversal potential for AMPA
excitation, and the synaptic variable s obeys a kinetic equation of the form

dS

dt
= − S

τdec
, (3)

where τdec = 3 (ms) is the decay time of excitation. Each presynaptic spike instantaneously raises S
to some value Smax which varies depending on the properties of the short-term dynamics (depression
and/or facilitation) and is given by Smax = r u defined below. We refer the reader to [2,3] for additional
details on biophysical (conductance-based) models.

2.1.2 Presynaptic spike-trains

We model the spiking activity of the presynaptic cell as a spike train by providing the presynaptic spike
times t1, t2, . . . , tN . We consider two types of input spike-trains: uniformly and Poisson distributed.
The uniform spike-trains are characterized by their interspike interval (ISI) or its reciprocal, the
spiking frequency. Poisson distributed inputs are characterized by their mean spiking frequency or
the associated exponential distribution of ISIs.

2.1.3 Short-term dynamics: synaptic depression and facilitation

We use a phenomenological model introduced in [22]. Short-term depression and facilitation are
described by two independent variables: r and u that obey kinetic equations of the form

dr

dt
=

1− r
τdep

and
du

dt
=
U − u
τfac

, (4)
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respectively, where τdep and τfac are characteristic time constants and U = 0.1. Each presynaptic
spike instantaneously decreases r by an amount equal to the current value of the product r u and
increases u by an amount equal to U (1− u). These variables enter into the current-balance equation
through Smax, which is given by the product r u. In the absence of depression, r = const (= 1), and
in the absence of facilitation, u = U = 0.1.

2.2 Attributable components

Attributable components is a recently developed methodology [1] for estimating the conditional mean
x̄(z) of a variable x dependent on covariates z = (z1, . . . , zL). Although the x and each zl can be
variables of quite general type, we will limit the description here to the particular case in which they
are all real and scalar, as this will be the situation in the application to history dependent processes
under consideration.

Given n data pairs of the form
{
xi, zi

}
, one seeks the conditional expectation x̄(z), which may be

characterized as the minimizer of the empirical variance

x̄(z) = arg min
f

n∑
i=1

∥∥∥xi − f (zi)∥∥∥2 , (5)

as in least-square regression. The challenge is how to describe the multivariate function f(z) in
a way that is at the same time general (minimally parametric), robust (not prone to overfitting),
and efficiently computable. The proposal in [1] is to perform the equivalent to a low-rank tensor
factorization

f(z) =
d∑

k=1

L∏
l=1

f(l)k (zl) (6)

for variables zl that are not necessarily discrete, as are the row and column in conventional matrix
factorization. When the zl are real variables, (6) is analogous to a truncated sum of the separated-
variable solutions used for instance in linear partial differential equations.

In order to characterize each function f(l)k (zl) in (6), we introduce a grid
{
zg

j
l

}
, not necessarily

uniform, and write each observed value zil in the form

zil =
∑
j

α(l)jizg
j
l , α(l)ji ≥ 0,

∑
j

α(l)ji = 1, (7)

where for each i only two α(l)ji are nonzero: those corresponding to the two grid points zg
j
l immediately

surrounding zil . Then we model f(l)k(zl) through piecewise linear interpolation on the given grid:

f(l)k
(
zil

)
=
∑
j

α(l)jiV (l)kj , V (l)kj = f(l)k
(
zg

j
l

)
. (8)

Thus the parameters that characterize f(z) are the L matrices V (l). Yet one should not let these
be completely free in the minimization of (5), as this could lead to overfitting, especially when the
grids zg chosen are very fine with respect to the number n of sample points available. Instead, the
algorithm proposed in [1] penalizes the non-smoothness of f(l)k(zl) through an extra term added to
the combination of (5), (6) and (8):
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min
V

∑
i

xi −∑
k

∏
l∈L

∑
j

α(l)jiV (l)kj

2

+

λ
L∑
l=1

∑
k

 ∏
b∈L,b 6=l

‖V (b)k‖2
V (l)k

′
C lV (l)k, (9)

where the matrices C l model the square norm of finite difference approximations to combinations of
derivatives of f(l)k(z), typically the first and second derivative.

3 Results

Below we analyze the history-dependent neuronal response patterns to (AMPA) excitatory presynaptic
spike-trains. We consider two cases: (i) postsynaptic membrane potential response patterns in the
absence of spikes, and (ii) postsynaptic spiking response patterns. The first case includes subthreshold
responses and more complex types of responses where spikes are either ignored or filtered, for example
when one considers the voltage envelope of bursting patterns. Because we are focusing on the history-
dependent effects of the presynaptic activity, we use the relatively simple leaky integrate-and-fire
model for the postsynaptic cell to avoid interferences with postsynaptic ionic currents (other than the
leak current).

3.1 History-dependent membrane potential response patterns

3.1.1 Uniformly distributed presynaptic spike-trains

Fig. 1 shows representative membrane potential (V ) response patterns to (AMPA) excitatory presy-
naptic spike-trains with constant frequency generated using the model described in Section 2.1. Each
presynaptic spike generates a signal represented by the synaptic function S (red), which is the input
to the current-balance equation (1) in the postsynaptic cell through the synaptic current (2). This
signal interacts with the neuronal intrinsic properties and produces a stereotypical voltage output V
(blue). In the absence of any other factors V has the prototypical shape (alpha function or difference
of exponentials) shown in (Fig. 1-A1, blue). It is qualitatively similar to S, but V increases and
decreases on a slower time scale than S. As the input frequency increases, the voltage oscillation
amplitude decreases, while the oscillation envelope may show different types of behavior depending
on the synaptic properties.

For low enough frequencies, V decreases to zero before the next spike arrives. For higher frequen-
cies, the so-called summation phenomenon amplifies the signal, in the sense that the oscillation peaks
are larger the higher the input frequency, although the oscillation amplitude decreases with increasing
input frequency. Synaptic depression causes the amplitude of the synaptic function S to decrease
with increasing number of spike times (Fig. 1-B, red). For low enough input frequencies, the voltage
response exhibits the same phenomenon (Fig. 1-B1), while for higher input frequencies the interplay
of summation and depression generates a peak in the voltage response (Fig. 1-B2). The interplay of
depression and facilitation generates a peak in the response of both S and V (Fig. 1-C). The peak
in S is the result of the interplay of depression and facilitation at the presynaptic level (the envelope
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of S remains at baseline). The peak in V depends on the interaction with the filtering properties of
the postsynaptic cell. For low enough frequencies, the voltage response roughly mimics the S pat-
tern (Fig. 1-C1), while for higher frequencies summation generates an additional amplification of the
voltage response.

Typically, the presynaptic spike times are not uniform (e.g., the ISIs are Poisson distributed) and
one has access to the voltage response V to a presynaptic spike train, but not to the synaptic functions
S that are hidden. This together with the summation effects make the synaptic decoding, particularly
the determination of the presence of STP, not straightforward. One approach that has been used
in the literature is to approximate the voltage response by kernels that themselves approximate the
stereotypical voltage responses to a single (isolated) input spike as in Fig 1-A1 (blue) [12]. Specifically,
if the presynaptic spike times are t1, t2, . . . tN , then

Vest(t) =
N∑
j=1

K(t− tj) [1 +Aj ] (10)

where the kernel K(t) can be extracted from the voltage response to a single (isolated) input spike,
or by adopting a prototypical shape for it –alpha functions or the difference of exponentials– and
estimating its parameters from the data. The components of the vector A = {Aj}Nj=1 measure the size
of the response to the input spike at time tj as compared to the baseline size (A = 0), independently
of summation, and are history-dependent.

We refer to A as a sequence and we view it as a discrete dynamical system evolving along the
tspk,in = {tj}Nj=1 domain. We illustrate this is Fig. 2. In the presence of synaptic depression only
(blue curve), A is a decreasing function of tspk,in, which eventually saturates. In the presence of both
synaptic depression and facilitation (red), A first increases, then decreases and finally saturates. In the
presence of facilitation only (not shown) A is an increasing function of tspk,in, which eventually also
saturates (qualitatively, a mirror image of the blue curve). The transition among the different types
of A patterns depends on the relative levels of depression and facilitation, which can be measured in
terms of τdep and τfac. The details are being studied in [25].

The shapes of A (see Fig. 2) suggest they can be generated by discrete low-dimensional linear
autoregressive maps of the form

Âk =
M∑
j=1

αk−j Âk−j (11)

where M < N and the coefficients αk−j (j = 1, . . . ,M) are input-frequency dependent. Because the
map requires M initial conditions, M should be small for the map to be of any use. Processes that
involve only depression or facilitation can be captured by 1D linear maps (M = 1), while processes
that involve both require up to M = 3 [25]. We refer to them as MD maps. We illustrate this in Fig.
3 where we show the error between A and the linear map approximations Â

Error =
1

N

N∑
K=1

|Ak − Âk| (12)

as a function of τfac for fixed values of τdep using M = 1 (blue), M = 2 (red) and M = 3 (green). The
parameter N represents the number of input spike times within an interval that captures the transient
behavior of A.
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Figure 1: Subthreshold (membrane potential) neuronal response to spike train inputs with synaptic exci-
tation (AMPA): representative examples for different input frequencies and short-term dynamic properties.
Black dots indicate the arrival of a presynaptic spike. The postsynaptic voltage response (V) is scaled and raised (by -52.5
mV) for comparison purposes with the synaptic function S. A. No short-term dynamics. B. Synaptic depression. C. Synap-
tic depression and facilitation. We used the following parameter values: C = 1, EL = −60, GL = 0.2, Iapp = 1.5, Gex = 0.2,
Eex = 0, τdep = 300, τfac = 400, U = 0.1.
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Figure 2: Components of the vector A = {Aj}Nj=1 in eq. (10). We used the following parameter values: C = 1,
EL = −60, GL = 0.1, Iapp = 0, Gex = 0.5, Eex = 0, τdep = 300, τfac = 400, U = 0.1.

For low enough values of τfac, a 1D map is enough to capture the evolution of A, consistently with
the fact that depression dominates. As τfac increases, the 1D map (blue) does no longer provide a
good approximation, since it cannot capture the non-monotonic behavior of A. The 2D map (red)
still provides a good approximation for a small range of intermediate values of τfac. For higher values
of τfac, only the 3D map (green) provides a good approximation. As expected, the error varies with
τdep (compare panels A and B), indicating that the relative value of the time constants between the
two process matter.

We emphasize that these map approximations are only valid for uniform distributions of input
spikes, and that they depend on the input frequency. Yet they identify the interplay of depression
and facilitation, on the basis of the order of the model, that is the number of steps back required to
capture the behavior of A. The fact that we obtained qualitatively similar results for different input
frequencies suggests that this memory effect (maximum value of M) may persist for non-uniform
distribution of presynaptic spike-trains, and that the values of M would identify the different levels
of complexity resulting from different ratios τfac/τdep.

3.1.2 Poisson distributed input spike-trains

The analysis above was restricted to uniformly timed spike-trains. In order to analyze more general
input data, we follow the following steps:

1. We draw two input sequences of spikes {tj} from a Poisson distribution with specified mean
frequency, one for training and one for testing.
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Figure 3: Approximation error (12) between the linear maps and the sequence A for representative param-
eter values. The input frequency (uniform distribution of input spikes) is 60 Hz. We used the following parameter values:
C = 1, EL = −60, GL = 0.1, Iapp = 0, Gex = 0.5, Eex = 0, U = 0.1, M = 31 (tspk ≤ 500. A. τdep = 250. B. τdep = 500
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2. We model the response V (t) to this input via the model in (1) as before, with specified values
for τfac and τdep.

3. As in the prior subsection, we post-analyze this response, transforming it into a sequence {Aj}.
4. We apply attributable-component analysis to the training sequence {tj , Aj}, seeking to determine

the functional dependence of Aj on (Aj−1, . . . , Aj−ns) and (∆j−1, . . . ,∆j−ns), where ∆j = tj −
tj−1 represents the time-interval between two consecutive input spikes, and ns represents the
number of prior input pairs that the analysis will consider. Thus we seek

Āj = F (Aj−1,∆j−1, . . . , Aj−ns ,∆j−ns) (13)

in the functional form given by (9).

5. We apply the model (13), with parameters determined using the training sequence, to the testing
sequence, attempting to reconstruct the {Aj} from the {tj} alone. Denoting our sought recon-

struction
{
Ãj

}
, we set

{
Ã1, . . . , Ãns

}
= 0 –a natural default, since we cannot determine the

first ns elements of the sequence through a model that requires the prior ns values–, and then
compute for all subsequent values of j

Ãj = F
(
Ãj−1,∆j−1, . . . , Ãj−ns ,∆j−ns

)
.

Thus we are effectively replacing the dynamical model (1) with one derived solely from data,
whose only input –additional to the training data sequence itself and the penalization parameter
λ– is ns, indicating the extent of the system’s memory.

6. We measure the accuracy of the reconstruction via the variance reduction it achieves, defined as

V R =

1
n−ns

∑n
j=ns+1

(
Aj − Ãj

)2
1
n

∑n
j=1

(
Aj − Ā

)2 , Ā =
1

n

n∑
j=1

Aj . (14)

For the reconstruction to work, it is not only necessary that the model (13) be accurate and robust,
but also that the dynamics of both the biophysical model (1) and the data-driven (13) be stable, so
that discrepancies in the initialization and in realizations of the noise and local errors do not propagate
downstream the time-series.

Figure (4) displays the reconstructed
{
Ãj

}
(in red circles) and the true {Aj} (in blue stars) as a

function of the spiking times {tj} for one instance of the parameters, for a subset of the testing set small
enough that one can distinguish visually the individual predictions. As one can see, the procedure is
accurate and robust, and one can indeed replace (1) by the data driven (13) as an effective dynamical
model.

Does the data-driven model inform us on the biophysical mechanisms underlying the data? Table
(1) displays the variance reduction V R from (14) for a range of combinations of the biophysical
parameters τdep and τfac and values of ns ranging between 1 and 4. As one can see, while for no
facilitation one or two steps back suffice for capturing the dynamics, for values of τfac comparable to
τdep three or four steps back are required to maximize out-of-sample variance reduction. Hence, just
from looking at the optimal ns, one could infer at least qualitatively the amount of facilitation present
in the process.
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Figure 4: Out of sample observations (in blue stars) and predictions (in red circles) for Aj , for an input mean frequency

of 20Hz, equal values τ = 250 for the time-scales for facilitation and depression, and ns = 3. The dynamics resulting from

the biophysical and the data-driven model are virtually indistinguishable.
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τdep τfac freq. 1 step 2 steps 3 steps 4 steps
250 10 0.0815 0.0631 0.0730 0.1409
500 10 0.0746 0.0440 0.0494 0.0689
250 20 0.0896 0.0766 0.0816 0.1334
500 20 0.0799 0.0788 0.1087 0.2575
250 30 0.0993 0.1095 0.1001 0.6897
500 30 0.1038 0.1399 0.2991 0.8321
250 5 10 0.4476 0.3812 0.4915 0.4029
250 10 10 0.6767 0.6598 0.3775 0.3826
250 100 10 0.2793 0.1918 0.1568 0.1232
250 250 10 1.1011 0.2572 0.1158 0.3712
250 5 20 0.5626 0.2560 0.2584 0.2389
250 10 20 0.7462 0.2633 0.2373 0.2590
250 100 20 1.1920 0.1394 0.0654 0.0742
250 250 20 0.1225 0.0683 0.0389 0.0521
250 5 30 0.7190 0.2496 0.2040 0.1860
250 10 30 0.8236 0.2558 0.1846 0.1712
250 100 30 1.2266 0.1205 0.0925 0.1018
250 250 30 0.0997 0.0463 0.0347 0.0372

Table 1: Variance reduction through factor removal for subthreshold dynamics. As the timescales τ for
depression and facilitation become comparable, the optimal number of prior steps to include increases from
1-2 to 3-4.

3.2 History-dependent spiking response patterns

Here we focus on the post-synaptic spiking response to presynaptic spike trains in the presence of
depression and facilitation. We use a metric analogous to the vector A discussed above, assigning to
each presynaptic spike tj the probability P (tj) of a spike being generated within some time interval
Bj = [ tj , tj + ∆t ]. In order to compute the vector P , we carry out Ntrial simulations using the same
presynaptic input with different realization of white noise, we compute the number of times that a
post-synaptic spike is produced within Bj , and we average over the Ntrial trials. We focus on the case
where the cell is silent in the absence of presynaptic input.

3.2.1 Uniformly distributed presynaptic spike-trains

Our results for a representative set of parameter values and uniform spiking input frequencies are
presented in Fig. 5. The parameter values in all panels are the same with the exception of the spiking
input frequency that increases from A to D.

The input spikes in Fig. 5-A are well separated and the resulting P -patterns capture the relative
strengths of depression and facilitation. For τfac = 10, depression dominates, while for τfac = 500,
facilitation dominates.

The P -patterns in Fig. 5-B capture the interaction between depression and facilitations much in
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the same way as the A-pattern in Fig. 2 (red). This effect is observed when τfac is not too small
relative to τdep. For τfac = 100 and above (red, green and cyan curves), P first increases and then
decreases.

For higher spiking input frequencies the effect is felt even for lower values of τfac (compare Fig.
5-B and -C), but the “bump” is more compressed in time, as expected from the higher spiking input
frequencies. The P -patterns for the different values of τfac are less well separated than in Fig. 5-C
than in the previous panels. This persists for even higher spiking input frequencies (Fig. 5-D), but
the P -patterns for the different values of τfac are almost indistinguishable.

As for the A-sequences discussed in the previous section, the P-sequences capture the interplay of
depression and facilitation on the basis of the amount of steps back needed to capture the behavior
of P . Despite the fact that this is only valid for uniform distributions of input spikes, the similarity
of the results discussed here with these of the previous section (for A) and the qualitative similarity
of the P distributions for different input frequencies, suggest that relatively low values of M would
identify the different levels of complexity resulting from different ratios τfac/τdep.

3.2.2 Poisson distributed input spike-trains

When the input spike train is not uniform but follows a Poisson process instead, we follow the same
procedure than in the subthreshold case, but with the Pj replacing the Aj , that is:

1. We draw two input sequences of spikes {tj} from a Poisson distribution with specified mean
frequency, one for training and one for testing.

2. We model the response V (t) to this input via the model in (1), but recording only the postsy-
naptic spike-times. We do this repeatedly for the same input sequences of strikes but different
realizations of white noise.

3. We post-analyze this response, transforming all realizations into a single sequence {Pj}.
4. We apply attributable-component analysis to the training sequence {tj , Pj}, seeking a relation

of the form
P̄j = F (Pj−1,∆j−1, . . . , Pj−ns ,∆j−ns) . (15)

5. We apply the model (15), with parameters determined using the training sequence, to the testing
sequence, so as to reconstruct the {Pj} from the {tj} alone.

6. As before, we measure the accuracy of the reconstruction via the variance reduction it achieves.

Figure (6) displays an example of the performance achieved by the algorithm on a testing set, and
table (2) shows the variance reduction achieved for various combinations of facilitation and depression,
though models looking back 1 to 4 steps. Even though the dynamics is clearly much more noisy than
in the subthreshold scenario, particularly for low frequencies, when the input frequencies are higher
one can still see the transition in the optimal out-of-sample fit from 2 to 4 steps back as the facilitation
and depression time-scales get closer to each other.

4 Discussion

We set out to explore the construction of data-driven models of spike-driven processes via attributable
component analysis [1] in the particular context of the post-synaptic response of individual neurons
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Figure 5: Spiking probability response to presynaptic input spikes with uniform frequency. The input frequency
(uniform distribution of input spikes) increases from panel A to D. A. Input frequency: 10 Hz. B. Input frequency: 30 Hz.
C. Input frequency: 60 Hz. D. Input frequency: 100 Hz. We used the following parameter values: C = 1, EL = −60,
GL = 0.1, Iapp = 0.8, D = 0.1, Gex = 0.2, Eex = 0, U = 0.1. A. τdep = 250. B. τdep = 500.
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Figure 6: Out of sample observations (in blue stars) and predictions (in red circles) for the spiking probability Pj , for an

input mean frequency of 30Hz, facilitation and depression time-scales τfac = 500 and τdep = 250 , and ns = 4. Even though

the dynamics at suprathreshold are much more noisy than at subthreshold, the data-driven model still mimic the biophysical

very accurately.
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τdep τfac freq. 1 step 2 steps 3 steps 4 steps
250 10 10 0.9097 0.8685 0.8033 1.3277
250 100 10 0.7812 0.6956 0.7313 0.9046
250 250 10 0.4297 0.2987 0.3267 0.5829
250 500 10 0.3751 0.2693 0.2216 0.6559
250 10 30 0.7466 0.6152 0.6013 0.8475
250 100 30 0.8822 0.6745 0.6708 0.6851
250 250 30 0.2769 0.2210 0.1947 0.1919
250 500 30 0.1703 0.1384 0.1260 0.1290
250 10 60 0.6296 0.5392 0.5303 0.6310
250 100 60 0.7138 0.4429 0.4460 0.4600
250 250 60 0.3407 0.2395 0.2393 0.2368
250 500 60 0.1701 0.1269 0.1257 0.1237

Table 2: Out of sample variance reduction through factor removal for spiking dynamics. At high frequencies
–less dominated by noise– the optimal number of prior steps to consider increases as the time-scales of
depression and facilitation become comparable.

to presynaptic spikes in the presence of STP. Using this minimal model formulation, data generated
from this model using subthreshold linear dynamics (only passive subthreshold ionic currents) in
the postsynaptic cell, and simple dynamical systems ideas, we provide a proof of concept that the
attributable component methodology provides an effective non-parametric tool for reproducing both
the sub and supra-threshold dynamic response of a cell to excitatory input spikes from another cells,
and that the optimal number of spikes in the immediate past used by the model provides an indicator
of the relative levels of facilitation and depression mechanisms operating at the synaptic level.

We followed a complementary dual strategy that allowed us to interpret the results of the non-
parametric attributable components analysis for Poisson distributed input spike trains in terms of
discrete linear dynamics applied to uniformly distributed spike trains. Specifically, for both Poisson
and uniformly distributed spiking inputs we (i) generated artificial data using the model, and (ii)
computed the two metrics capturing the subthreshold (Aj) and spiking (Pj) responses to the incoming
presynaptic spikes. For Poisson distributed spiking inputs, we additionally (iii) robustly reproduced
these responses using the attributable component methodology. For uniformly distributed inputs,
on the other hand, we (iii) described the transient patterns for both {Aj} and {Pj} for various
representative values of the input frequency, and (iv) estimated the corresponding linear autoregressive
maps.

For Poisson distributed inputs we showed that the optimal number of steps in the past the model
considers is not uniform across data sets, and relates to the relative amounts of depression and facili-
tation used to generate the data. This is consistent with the order of the linear autoregressive maps
computed for uniform distributed inputs for {Aj}. Because the order of discrete maps is an indication
of the interactions between the participating gating variables and these variables directly relate to the
two STP processes, we conclude the effective memory of the system for non-uniform input spikes is
also reflecting these interactions. We extend this conclusion to the post-synaptic spiking responses
using {Pj}. Since the discrete map approach requires the uniform distribution of input spike trains
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and cannot be straightforwardly extended to non-uniform distributions, the combination with the
attributable component approach becomes synergistic.

This article considered the simplest combination of network architecture and postsynaptic intrinsic
properties that allows us to capture the effects of presynaptic input spikes on the postsynaptic patterns
in the presence of STP. Future work should consider models that include (i) the presence of active ionic
currents, particularly currents that produce spike-frequency adaptations (e.g., slow potassium), whose
effect can be similar to synaptic depression, (ii) the effects of synaptic inhibition, particularly in the
presence of hyperpolarization-activated currents (e.g., mixed-cation sodium/potassium and T-type
calcium), (iii) the presence of multiple depression and facilitation process with different relaxation
scales, (iv) other types of ‘hidden variables” such as GABAB and plasticity in electrical gap junctions,
and (v) the adaptation of the methods presented here to these situations. Even though we have
assumed the post-synaptic cell to be silent in the absence of presynaptic spikes, we expect that, with
minimal corrections, the results will remain valid in situations where the cells spike autonomously.

The data used in this paper was generated with a biophysical (conductance-based) model, a neces-
sary step to calibrate the methods and understand their potential to explain experimental data both
in vitro and in vivo.
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