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Abstract

The problem of optimal transport between two distributions ρ(x) and
µ(y) is extended to situations where the distributions are only known
through a finite number of samples {xi} and {yj}. A weak formulation
is proposed, based on the dual of Kantorovitch’s, with two main modifi-
cations: replacing the expected values in the objective function by their
empirical means over the {xi} and {yj}, and restricting the dual vari-
ables u(x) and v(y) to a suitable set of test functions adapted to the
local availability of sample points. A procedure is proposed and tested
for the numerical solution of this problem, based on a fluid-like flow in
phase space, where the sample points play the role of active Lagrangian
markers.

1 Introduction

This article is concerned with finding a map y(x) that transports a prob-
ability density ρ(x) into another one µ(y) while minimizing the integral of a
transportation cost c(x, y). This problem was first formulated by Monge in
1781 [22], extended by Kantorovich in 1942 [18] and studied in various settings
since (see [27] and more specific references provided below.) We focus here on
the frequently occurring scenario where in lieu of the distributions ρ(x) and µ(y),
one is provided with independent samples {xi, i ∈ [1,m]} and {yj , j ∈ [1, n]}
from each. Examples of applications are:

• Aggregation of data gathered in various laboratories into a single
database: Since some methodological elements necessarily vary among
laboratories, each dataset has a different underlying distribution ρj . To
homogenize the data, one can normalize the features mapping each ρj into
a single target µ, chosen for instance as the distribution corresponding to
the lab with the most data.

• Effect of a medical treatment: Clinical variables have been measured
in two populations, where one has received the treatment and the other
a placebo. The effect of the treatment on those clinical variables can be
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conceptualized as a map that transforms the distribution underlying one
dataset into the other.

• Flow inference from tracers: In order to determine fluid flows, such
as ocean currents, atmospheric winds and blood flow through the cardio-
vascular system, artificial or natural tracers are located at two different
times. The flow then maps one underlying density into the other.

Broader applications that involve generalizations of this data-driven transport
problem include:

• Density estimation: Here the goal is to determine ρ(x) from the sam-
ples {xi}. The target µ(y) is a known density proposed by the modeler,
typically an isotropic Gaussian. Once the map y(x) is determined, ρ(x) is
estimated through

ρ(x) = Jy(x)µ(y(x)),

where Jy(x) is the Jacobian determinant of the map.

• Regression: A function y(x) relating the features x and labels y is sought
–the dimensions of x and y here are typically different– from samples
drawn independently from the underlying distributions ρ(x) and µ(y),
and fewer or none jointly drawn samples (x, y). The cost function c(x, y)
must be chosen to favor those maps that have desired properties, such as
mapping the known pairs (x, y) correctly or being closest to a conjectured
prior.

• Importance Sampling: In order to estimate integrals of the form

I =

∫
Ω

f(y) γ(y) dy,

importance sampling rewrites it as

I =

∫
Ω

f(y) γ(y)

µ(y)
µ(y) dy.

Here µ(x) is a probability distribution comparatively easy to sample and

evaluate and such that f(x) γ(x)
µ(x) has small variance, so that the Monte

Carlo estimate

I ≈ 1

m

m∑
i=1

f(yi) γ(yi)

µ(yi)

is accurate, where the {yi} are independent samples drawn from µ. If an
ideal target distribution µ is known but hard to sample, one can produce
samples from a known nearby distribution by sampling another distribu-
tion ρ(x) –easy to sample and evaluate– and mapping it onto µ(y) (this
idea was first developed in [23] using maximum likelihood instead of opti-
mal transport.)
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This article proposes both a formulation of the data-driven transport prob-
lem and a methodology to solve it, based on a fluid-like flow in phase space. We
study here the case in which the data consists only of samples and the number
of components of x and y are the same, leaving the extensions necessary for the
broader applications mentioned above to further work.

Fist we summarize briefly the formulations of Monge and Kantorovich when
the distributions ρ(x) and µ(y) are known.

1.1 Monge formulation

The optimal transport problem posed by Monge is to find a plan to transport
material from one location to another that minimizes the total transportation
cost. By normalizing the total amount of material to transport to one, the
initial and final distributions can be modeled as two probability densities, thus
stating the transport problem in the following terms:

Given two probability densities ρ(x) and µ(y) with x, y ∈ Rn, find the map
y = y(x) : Rn → Rn transporting the density ρ(x) to µ(y) that minimizes the
cost functional

M(y) =

∫
Rn
c(x, y(x))ρ(x)dx. (1)

In order to transport ρ(x) to µ(y) the map is required to satisfy the relation∫
y−1(Ω)

ρ(x)dx =

∫
Ω

µ(y)dy (2)

for all measurable sets Ω. If y(x) is smooth and one to one, this is equivalent
to the point-wise relation

ρ(x) = Jy(x)µ(y(x)), (3)

where Jy(x) is the Jacobian of the map: Jy(x) = det(∇y(x)). A function y(x)
satisfying (3) and minimizing M(y) is called an optimal map.

1.2 Kantorovich formulation

Monge’s formulation of the transport problem requires a one-to-one map
between the points at the origin and destination. Kantorovich proposed a re-
laxation where the mass reaching each point y may come from various points x
and, conversely, the mass from each point x may be split into various destina-
tions y. In this formulation, the way in which ρ must be rearranged to obtain
µ is described by a joint probability density π(x, y) > 0 satisfying

ρ(x) =

∫
π(x, y)dy, µ(y) =

∫
π(x, y)dx (4)

and the problem reduces to minimizing the functional

K(π) =

∫
c(x, y)π(x, y)dxdy. (5)
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A minimizer of (5) subject to (4) is called an optimal plan. It can be shown
that under relatively mild hypotheses, such as ρ(x) and µ(y) having finite second
moments and c(x, y) being a strictly convex function of y−x ([20]), the relaxed
problem and the original Monge problem have the same unique solution, in the
sense that

minM(y) = minK(π) (6)

and the minimizers satisfy

π(S) = ρ({x : (x, y(x)) ∈ S}). (7)

Notice that unlike Monge’s formulation, in which the cost function and the
constraints are nonlinear in the unknown y(x), in Kantorovich’s both are linear
in π(x, y), yielding a continuous version of the assignment problem, a category
of linear programming problems with wide applications in economics. Then it
has a dual formulation, which adopts the form:

D(u, v) = max
u,v

∫
u(x)ρ(x)dx+

∫
v(y)µ(y)dy (8)

over all integrable functions u and v satisfying

u(x) + v(y) ≤ c(x, y). (9)

To illustrate the relation between the primal and dual variables, consider
the classical case in which the cost function adopts the particular form

c(x, y) =
‖y − x‖2

2
. (10)

Redefining u(x)→ ‖x‖2
2 − u(x) and v(y)→ ‖y‖2

2 − v(y) turns the dual problem
into:

D(u, v) = min
u,v

∫
u(x)ρ(x)dx+

∫
v(y)µ(y)dy (11)

where u and v are continuous functions satisfying

u(x) + v(y) ≥ x · y, (12)

and the following proposition applies [3]:

The functional D(u, v) admits a unique minimizer (ū, v̄); ū and v̄ are convex
conjugates: 

ū(x) = max
y

(x · y − v̄(y)) ≡ v∗(x)

v̄(y) = max
x

(x · y − ū(x)) ≡ u∗(y)

and the optimal plan for Monge’s problem is given by

y(x) = ∇ū(x).
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The function u∗(y) ≡ maxx(x · y − ū(x)) is the Legendre transform of ū. Since
ū is obtained as the envelope of its supporting planes, it is a convex function.
It follows from (3) that the optimal map between ρ(x) and µ(y) is given by
the gradient ∇u of a convex function u : Rn → R satisfying the Monge-Ampere
equation ([26], [1], [8],[27]):

ρ(x) = µ(∇u(x))det(D2u)(x). (13)

1.3 A data-based formulation

Optimal transport has a broad range of applications in mathematics and
beyond, in fields as diverse as image processing and economics. As mentioned
above, many more applications arise if one extends the problem to situations
in which the two densities ρ(x) and µ(y) are not known pointwise but through
samples: m points {xi} drawn from ρ(x) and n points {yj} drawn from µ(y).

In order to develop a formulation of the optimal transport problem suited to
such data-driven generalization, we notice that in Kantorovich dual formulation
(8) the probability densities ρ(x) and µ(y) appear only in the objective function
D, and in a form that can be interpreted in terms of expected values:

D(u, v) = E[u(x)]ρ(x) + E[v(y)]µ(y). (14)

Thus, if ρ(x) and µ(y) are known only through samples, it is natural to pose
the problem in terms of sample averages:

Maximize

D(u, v) =
1

m

m∑
i=1

u(xi) +
1

n

n∑
j=1

v(yj)

over functions u and v satisfying

u(x) + v(y) ≤ c(x, y).

In order to complete the statement of this problem, one needs to specify the
space of functions to which u and v belong. As we shall see below, various
possibilities arise. Moreover, since this data-based formulation is presented
in terms of the dual variables u and v, the meaning of its solution and its
relation to the original transport problem must be described. These two kinds
of considerations are closely interlinked; we address them in section 2.

1.4 Grid-based versus mesh-free computations

Even when addressing the classical transport problem in which the distri-
butions ρ(x) and µ(y) are known, it may be convenient to base its numerical
solution on samples rather than on the distributions themselves: to resolve dis-
tributions, one needs to resort to grids, which become prohibitively expensive
in high dimensions (To our knowledge, none of the numerical methodologies
proposed to date have been tried in dimensions higher than three, and most
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have been restricted to dimensions two or even one. By contrast, a procedure
based on samples scales well with dimensionality; for instance we report below
the results of computations in up to ten dimensions.)

Thus the methodology proposed in this article has two main goals: to pose
and solve the data-driven optimal transport problem, and to solve numerically
through a Monte Carlo, sample-based approach the classical, continuous prob-
lem of Monge and Kantorovich. The numerical procedure is based on a gradient
flow in feature-space, whereby the points x “move” toward their targets y(x)
continuously in a fictitious time. In the language of fluid dynamics, the sample-
points play the role of active Lagrange multipliers: markers moving with the
flow while guiding its evolution. The corresponding “forces” result from the
sample’s appearance in the “potential” given by the objective function D(u, v),
whose maximization drives the flow.

1.5 Prior work

Prior work on optimal transport, both analytical and numerical, has con-
sidered only the situation where the distributions ρ(x) and µ(y), continuous or
discrete, are known. Solving the discrete version then becomes a standard linear
programming problem. Much effort has been devoted to describing when the
optimal solution of Kantorovich’s relaxation yields in fact a solution to Monge’s
problem, i.e. a map ([1] [24], [15], [14] [16] [4]). By contrast, a numerical proce-
dure for the discrete case is developed in [6] that seeks the opposite of a map:
a joint distribution with large entropy.

While there exists a substantial body of literature on optimal transport from
the viewpoint of mathematical analysis, the numerical aspects of the problem
have been much less studied. Almost all the algorithms available are based on
methods requiring spatial discretization, as in [1], [10], [24], [15], [14] and [4].
In particular, Benamou and Brenier ([1]) develop a fluid-flow based formulation
of the optimal transport problem. It assumes that ρ(x) and µ(y) are known
pointwise, and the corresponding flow is resolved on a grid in phase space.
Instead our flow is particle-based and hence mesh-free, with the sample-points
playing the role of particles or active Lagrangian markers.

The literature on mesh-free methods is limited to our knowledge to the algo-
rithm described in [16], where optimal transport is implemented along straight
lines enforcing mass conservation of the discretized starting and target densities.

1.6 Plan of the paper

After this introduction, section 2 introduces a data-driven formulation of
the optimal transport problem, relaxing Kantorovich’s dual formulation in two
complementary ways: replacing the expected values in the objective function by
empirical means over the available samples and restricting the dual variables to
a space of test functions designed not to over-resolve the probability densities
underlying the samples. Section 3 develops a fluid-like methodology to solve
this problem, introducing a gradient flow in feature-space. Section 4 describes a
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mesh-free implementation of this gradient flow and an additional step designed
to enforce the optimality of the map. Section 5 extends the methodology to
convex costs other than the squared distance. Section 6 illustrates the algorithm
with a number of numerical tests. Finally section 7 summarizes the article and
discusses future work.

2 Discrete and continuous data-based formula-
tions of optimal transport

Motivated by the discussion above, we consider the problem of maximizing

D(u, v) =
1

m

m∑
i=1

u(xi) +
1

n

n∑
j=1

v(yj) (15)

over functions u and v satisfying

u(x) + v(y) ≤ c(x, y). (16)

The objective function involves u and v evaluated only at the sample points,
but the constraints apply at all values of x and y. One could consider instead
the simpler, purely discrete problem:

Maximize

D(u, v) =
1

m

m∑
i=1

ui +
1

n

n∑
j=1

vj (17)

over vectors u and v satisfying

ui + vj ≤ cij . (18)

This is dual to the uncapacitated transportation problem:

Minimize
C(π) =

∑
i,j

cijπij (19)

subject to ∑
j

πij = n (20)

∑
i

πij = m. (21)

However, this is not the problem we are interested in: instead of seeking a map
y(x) for all values of x, it seeks an assignment πij between the two discrete sets
of points xi and yj .
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Therefore we return to the fully constrained formulation in (16). Since this
is a Monte Carlo relaxation of the dual to the problem of interest, we first find
its own dual. In terms of the Lagrangian

L(π, u, v) =
1

m

m∑
i=1

u(xi) +
1

n

n∑
j=1

v(yj)−
∫
π(x, y) [u(x) + v(y)− c(x, y)] dxdy,

the problem in (15, 16) can be formulated as

d : max
u(x),v(y)

min
π(x,y)>0

L(π, u, v), (22)

and its dual as
p : min

π(x,y)>0
max

u(x),v(y)
L(π, u, v). (23)

(We adopt the reverse notation d and p for primal and dual since these relate
to the dual and primal of the original transportation problem). To study p, it
is convenient to rewrite the Lagrangian in the more revealing form:

L(π, u, v) =

∫
c(x, y) π(x, y) dxdy (24)

−
∫ [∫

π(x, y)dy − 1

m

m∑
i=1

δ(x− xi)

]
u(x)dx (25)

−
∫ ∫ π(x, y)dx− 1

n

n∑
j=1

δ(y − yj)

 v(y)dy. (26)

Then, if the functions u(x) and v(y) are only constrained to be integrable, the
problem p becomes

p : min
π(x,y)>0

∫
c(x, y) π(x, y) dxdy (27)

subject to∫
π(x, y)dy =

1

m

m∑
i=1

δ(x− xi),
∫
π(x, y)dx =

1

n

n∑
j=1

δ(y − yj), (28)

namely the Kantorovich formulation of the (primal) optimal transport problem
with discrete densities ρ(x) and µ(y) as in (28). This is not a surprising result,
since the problem d is precisely the dual to this problem. Yet this result poses
a dilemma: our motivation was not to consider a discrete transport problem
that assigns points from yj to xi, but one where the xi and yj are samples from
hidden, presumably smooth distributions ρ(x) and µ(y). How can one formulate
a problem with this flavor?

A natural answer involves restricting the space of functions F from where
u and v can be selected. If the space F is invariant under multiplication by
scalars:

u ∈ F, λ ∈ R→ λu ∈ F,
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then the problem p becomes

p : min
π(x,y)>0

∫
c(x, y) π(x, y) dxdy (29)

subject to ∫ [∫
π(x, y)dy − 1

m

m∑
i=1

δ(x− xi)

]
u(x)dx = 0, (30)

∫ ∫ π(x, y)dx− 1

n

n∑
j=1

δ(y − yj)

 v(y)dy = 0 (31)

for all u(x), v(y) ∈ F . This weak formulation of the strong constraints in (28) is
quite natural: we constrain the marginals ρ(x) and µ(y) of π(x, y) so that the
corresponding expected values of all functions in F agree with their averages
over the samples xi and yj respectively.

As a simple example that is exactly solvable, adopt F as the set of quadratic
functions and c(x, y) as the squared distance c = 1

2‖x− y‖
2. Redefining u and

v as above, u(x)→ ‖x‖2
2 − u(x) and v(y)→ ‖y‖2

2 − v(y), problem d becomes

min
A,b

1

m

m∑
i=1

u(xi) +
1

n

n∑
j=1

v(yj), (32)

u(x) =
1

2
xTAx+ bTx, v(y) = u∗(y) =

1

2
yTA−1y − bTA−1y +

1

2
bTA−1b,

where b is a vector and A a symmetric matrix (here we have set in the objective
function the explicit form of the Legendre transform v(y) = u∗(y) for quadratic
functions.)

The corresponding optimal map is given by

y(x) = ∇u = Ax+ b.

A straightforward calculation shows that the A and b minimizing (32) are pre-
cisely the ones that make y(x) transform the empirical mean and covariance of
x into those of y.

This example is, of course, just a proof of concept. As the calculation above
verifies, restricting F to quadratic functions is equivalent to just considering the
empirical mean and covariance of the data, so it misses any other information
that the data may convey, such as higher moments and detailed structure. More
generally, one may propose for F the space of polynomials of degree q or any
suitable finite-dimensional linear space. An alternative to the direct specification
of F is to leave it unrestricted, adding instead to the objective function a term
that penalizes the non-smoothness of u and v.

The choices above appear sensible yet none is completely natural, since the
specification of F or the qualification of smoothness that one seeks should de-
pend on the samples {xi}, {yj} themselves: one can allow a richer set of func-
tions in areas where there are enough sample points to fully determine them
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than in those where the samples are sparse. In other words, one must restrict
F , in order not to over-resolve the densities ρ(x) and µ(y), to smooth functions
with scales long compared to the distance between neighboring sample points,
a concept analogous to the bandwidth of kernel density estimation [17]. Again,
this can be done either through a careful choice of a basis for F or through an
appropriate penalization term that considers the underlying densities. In either
case, the choice of F must be adaptive (i.e. data dependent.)

Exploring these possibilities systematically opens a wide avenue of research
that will be pursued elsewhere. This article presents instead an effective al-
gorithm for finding an optimal plan consistent with such adaptive weak for-
mulation: the algorithm enforces a local bandwidth for F consistent with the
underlying densities by building u through the composition of many local maps,
where each has an appropriately chosen length scale.

3 A flow-based, primal-dual approach

We propose a methodology that, rather than solving the primal or dual
problems in isolation, combines them through a flow in feature-space (see [1]
for a different fluid-based formulation of the optimal transport problem.) Even
though our methodology applies to a broad class of cost functions c(x, y), we
restrict our attention here for concreteness to the classical cost c = 1

2‖x− y‖
2,

and redefine u and v accordingly as above (The extension to a broader class
of convex cost functions is discussed briefly in section 5). In this case the map
y(x) that solves Monge’s problem can be written in terms of the solution to the
dual Kantorovich formulation as

y(x) = ∇u(x).

We shall consider this map y(x) as the endpoint of a time-dependent flow z(x, t),
such that

z(x, 0) = x, z(x,∞) = y(x).

Then, rather than minimizing the objective function directly, we compute the
map from ρ to µ by means of the following gradient flow:

ż = −∇z

[
δD̃t

δu

]
u= 1

2‖x‖2

z(x, 0) = x

(33)

where

D̃t =

∫
u(z)ρt(z)dz +

∫
u∗(y)µ(y)dy (34)

and ρt is the evolving probability distribution underlying the points z(x, t) that
are obtained through the flow in (33); in particular, ρ0(z) = ρ(z) (After consid-
ering here the regular transportation problem where ρ(x) and µ(y) are known,
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we shall translate these ideas to our case of interest, where only samples from
both are given.)

The variational derivative of D̃t adopts the form

δD̃t

δu
= ρt − µ(∇u∗∗)det(D2u∗∗). (35)

An argument justifying (35) goes as follows (see for instance [4] for a complete
proof). One can write

u∗(y) = max
x

[x · y − u(x)] = X(y) · (y)− u(X(y)),

where
X(y) = arg max [x · y − u(x)] .

Under a small perturbation of u(x),

u(x) + εη(x),

one has
X(y)→ X(y) + εf(y)

for some f(y), and hence to leading order in ε,

u∗(y) → X(y) · (y)− u(X(y)) + ε
{
f(y) ·

[
y −∇u|X(y)

]
− η(X(y))

}
= u∗(y)− εη(X(y)),

since the expression within brackets vanishes due to the definition of X(y). Then
(34) yields

D̃t → D̃t + ε

[∫
η(x)ρt(x)dx−

∫
η(x)µ(Y (x))JY (x)dx

]
where Y (x) is the inverse of X(y). This is given by Y (x) = ∇u(x) if u(x) is
convex and more generally by Y (x) = ∇u∗∗(x), thus justifying (35).

Applying (35) at u = 1
2‖x‖

2 (the potential corresponding to the identity
map) yields the simpler expression

δD̃t

δu
(z) = ρt(z)− µ(z),

since
(

1
2‖x‖

2
)∗∗

= 1
2‖x‖

2 by convexity.
Then (33) becomes {

ż = −∇z [ρt(z)− µ(z)]

z(x, 0) = x.
(36)

The probability density ρt satisfies the continuity equation

∂ρt(z)

∂t
+∇z · [ρt(z)ż] = 0, (37)
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which in view of (36) becomes a closed evolution equation for ρt:

∂ρt(z)

∂t
−∇z · [ρt(z)∇z(ρt(z)− µ(z))] = 0, (38)

with initial condition ρ0(x) = ρ(x).
Introducing the L2 norm

‖ρt − µ‖2 =

∫
(ρt(z)− µ(z))2dz, (39)

we have that

d

dt

‖ρt − µ‖2

2
=

∫
∂

∂t

(ρt − µ)2

2
dz = −

∫
ρt‖∇(ρt − µ)‖2dz ≤ 0.

Since ‖∇(ρt − µ)‖ ≡ 0 only when ρt = µ, this proves that ρt
t→∞−−−→ µ in the L2

norm, so the function y(x) = z(x,∞) maps ρ(x) into µ(y).
One may wonder whether this map is the optimal one, for which it would

have to be the gradient of a convex potential. Even though y(x) is built as an
infinite composition of gradients, the composition of gradients is not in general
a gradient. We show below through a simple numerical experiment that indeed
y(x) is not necessarily curl free.

A numerical experiment on a grid

We solve equation (38) numerically in a periodic domain, pseudo-spectrally
with a second order Adams-Bashforth time-stepping scheme. The initial distri-
bution (plotted in the upper left panel of figure 1 ) is given by

ρ(x1, x2) =
cos(0.5x1)2 + sin(0.5x2)2

4π2
, (40)

while the target distribution (lower right panel of figure (1)) µ(x1, x2) is ob-
tained from ρ through a translation by a distance π along the x2 coordinate.
Even though the starting and the target distributions are related by a simple
translation, this is not necessarily the optimal map from ρ to µ: periodic bound-
ary conditions often have the effect of splitting the initial mass into two or more
domains separated by branch-like cuts, which reach the target through distinct
paths, favoring rearrangements less costly than a rigid translation.

Figure 1 displays the time evolution of the density ρt satisfying equation
(38). Some observations are in order:

• As expected, the starting density ρ is mapped into the target µ.

• The map is not a rigid translation, in agreement with analogous numerical
experiments (see for instance [1] and [15]) investigating optimal transport
in periodic domains between probability distributions that are displace-
ments of one another.
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Figure 1: Time evolution of the probability density ρt from the ρ(x1, x2) defined
in (40) (upper left panel) into the target distribution µ obtained from ρ through
a translation by π/2 of the x2 coordinate (lower right panel).

If the map obtained were optimal, its curl should be zero, except possibly
at the location of the branching cuts, where it is undefined. Hence we compute
the curl and the divergence of the displacement field, to investigate whether the
former is negligible compared to the latter, which provides a natural reference
point. Because the displacement field is updated continuously in z-space, par-
ticular care has to be taken to compute the curl of the displacement field in the
original x-space. This amounts to evaluating a function on an unstructured grid
from its Fourier modes. We use for this the fast interpolating method developed
by Greengard and Lee in [13].

The average value of the divergence and the curl of the displacement field
of the map are documented in figure 2. Even though the L2 norm of the curl
is about two orders of magnitude smaller than that of the divergence, the map
is not curl-free (see upper right panel). Other experiments indicate that this
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behavior is general: the flow in (33) produces a map transporting ρ to µ with
cost low but not strictly optimal. In the sections that follow, we first describe
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Figure 2: Given the displacement field M(x) = z(x)−x of the map, we compute
the average divergence

∫
ρ(x)‖∇ ·M(x)‖2dx and the average curl

∫
ρ(x)‖∇ ×

M(x)‖2dx as the iterations progress (lower left and right panels, respectively).
The upper panels report the point-wise absolute value of ∇·M(x) and ∇×M(x)
on the periodic domain of the final displacement field.

a data-based, mesh-free version of the flow described above, and then propose
a methodology to make the map strictly optimal.

4 Mesh-free implementation

In this section, we adapt the flow above to applications where the densities
ρ(x) and µ(y) are known only through samples xi, i ∈ [1 . . .m] and yj , j ∈
[1 . . . n] respectively. The following notation will be used:

• zk(x) is the map at the k-th iteration step, with z0(x) = x and zki = zk(xi).
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• ρk(z) is the density obtained by mapping ρ(x) via the map zk(x), and

D̂k ≡ 1

m

m∑
i=1

u(zki ) +
1

n

n∑
j=1

u∗(yj) (41)

is the Monte Carlo estimate of the functional

D̃k(u) =

∫
K1

u(x)ρk(z)dz +

∫
K2

u∗(y)µ(y)dy. (42)

In the mesh-free version of the algorithm, rather than following the gradient

of δD̃t
δu , we restrict the maps at each step to a family of perturbations to the

identity: zk+1
i = ∇ukβ(zki ), where ukβ(z) = z2

2 +
∑
l βlF

k
l (z), with F kl (z) a given

set of functions and β a vector of free parameters. At each step k, we perform
the following operations:

1. Compute a β̄ that reduces the value of

D̂k(β) =
1

m

m∑
i=1

ukβ(zki ) +
1

n

n∑
j=1

(
ukβ
)∗

(yj), (43)

either through gradient descent:

β̄l ∝ −
∂D̂k(β)

∂βl

∣∣∣∣∣
β=0

, (44)

or through Newton’s method, as described in section (4.1).

2. Update the sample points,

zk+1
i = ∇ukβ̄(zki ) (45)

as well as any other points zks where the map is sought. If the density
ρ0(x) is known or estimated, as is the case in some applications and in
synthetic examples, ρk+1(z) can also be updated using

ρk(z) = J∇u
k
β̄ (z)ρk+1(∇ukβ̄(z)), (46)

where J∇u
k
β̄ (z) is the Jacobian of the map ∇uk

β̄
.

The algorithm converges when D̂k reaches a minimum, and so β → 0. Since
the derivative of D̂k with respect to βl is

∂D̂k

∂βl

∣∣∣∣∣
β=0

=
1

m

m∑
i=1

F kl
(
zki
)
− 1

n

n∑
j=1

F kl (yj) , (47)
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then at convergence we have that

1

m

m∑
i=1

F∞l (z∞i ) =
1

n

n∑
j=1

F∞l (yj) : (48)

the mapped sample points z∞i are such that they provide the same Monte Carlo
estimates as the samples yj from µ(y) for the expected values of all candidate
functions F∞l . This is our sample-driven, weak formulation of the transport
condition ρ∞(y) = µ(y). Its level of resolution depends on the richness of the
family F from where the F kl are chosen, with too rich or too small a family yield-
ing over and under resolution respectively. Candidate families F are discussed
below.

Notice that this approach does not approximate directly the densities ρ and
µ through a linear combination of radial basis functions, as done for instance in
[16]: the composition of a finite set of nonlinear functions spans a much richer
manifold than their linear combination. Hence approximating the flow through
map-composition rather than the densities though linear combinations permits
a more accurate characterization of the optimal map. We refer to [25], where
a numerical experiment is performed to compare the two approaches in the
context of density estimation. A flow similar to (36) is discretized to build up a
map from a density ρ -only known through samples- to a normal distribution.
The resulting estimation of ρ is then compared with the one obtained through
kernel density estimation [28] with radial basis functions. Function composition
leads to an estimated density closer -in terms of the KL divergence- to the true
one underlying the samples.

4.1 Computing β

Because of the simplicity of each elementary map, one can choose β at each
time step so as to minimize the local quadratic approximation to D̂

D̂ ≈ D̂0 +Gβ +
1

2
βTHβ (49)

where

D̂0 = D̂|β=0, Gi =
∂D̂

∂βi

∣∣∣∣
β=0

, Hij =
∂2D̂

∂βi∂βj

∣∣∣∣
β=0

. (50)

Minimizing (49) with respect to β yields

β = −H−1G, (51)

which one may want to cap by a learning rate ε to avoid big jumps based only
on local information:

β → αβ, with α = min(1,
ε

‖β‖
).
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The gradient G of D̂(β) has already been computed in (47). Since the
Hessian of the first sum in (43) is zero, we only need to compute the Hessian of
the second sum, involving the Legendre transform of F . Introducing

z̄(y, β) = arg max
z

[
z · y − ‖z‖

2

2
−
∑
l

βlFl(z)

]
= y −

∑
l

βl∇Fl(z̄), (52)

we have that(
‖z‖2

2
+
∑
l

βlFl(z)

)∗
(y) = max

z

[
z · y − ‖z‖

2

2
−
∑
l

βlFl(z)

]
(53)

= z̄ · y − ‖z̄‖
2

2
−
∑
l

βlFl(z̄) =

=
‖y‖2

2
−
∑
l

βlFl(y) +
1

2

∑
i,j

βiβj∇Fi(y) · ∇Fj(y) +O
(
‖β‖3

)
,

so

Gl =
1

m

m∑
i=1

Fl(zi)−
1

n

n∑
j=1

Fl(yj) (54)

and

Hls =
1

n

n∑
j=1

∇Fl(yj) · ∇Fs(yj). (55)

4.2 The family of potentials F

In order to complete the description of the procedure above, we need to
specify the form and number of the functions Fl(z) to use at each time-step.
The following considerations apply:

1. In order neither to over-resolve nor to under-resolve the probability den-
sities ρk(z) and µ(y) underlying the samples {zki } and {yj}, the functions
Fl must have length scales consistent with these densities.

2. The function Fl should be tailored so as to work well in high-dimensional
settings.

An example of elementary potential satisfying the characteristic stated above
is the radially symmetric

Fl(z) = r erf
( r
α

)
+

α√
π
e−( rα )

2

, (56)

where r = |z − z̃l|, and α is a bandwidth dependent on the center z̃l:

α ∝
(

np
n+m

(
1

ρ̃(z̃l)
+

1

µ̃(z̃l)

)) 1
d

.
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Here np is the desired number of points to be “captured” by Fl, and ρ̃ and µ̃
are rough approximations to ρk and µ. The elementary map associated with
this proposal is given by

zk+1 = zk +
∑
l

βlfl(r)(z
k − z̃l) (57)

where

f(r) =
1

r

dF

dr
=

erf(r/α)

r
. (58)

The number of functions Fl(z) to use per time-step is a matter of conve-
nience. One function per step suffices for the algorithm described so far, while
two functions is the minimum in the variation below that enforces the map’s
optimality. Yet more free parameters per step might be desired to accelerate
the algorithm’s convergence. As for the centers zl, the simplest choice is to
pick them at random from among the {zki } and {yj}, just making sure that any
two centers are not too close to each other. An alternative is to sample more
frequently points in areas with low probability density, so as to better resolve
the tails of the two distributions.

The rough estimates ρ̃ and µ̃ used to determine the band-width are com-
puted at time zero, for instance through a simple kernel density estimator. The
corresponding ρ̃k(z) is then updated multiplying by the Jacobian of the map at
each time-step.

4.2.1 A note on the effective supports of ρ and µ

It would be virtually impossible for the functions Fl(z) to resolve simulta-
neously the {zi} and {yj} if the two densities ρk(z) and µ(y) did not overlap,
i.e. if there were regions where one density was significant while the other was
negligible or zero. At convergence, ρk ≈ µ, but there is no reason why the initial
ρ(x) could not have an effective support distinct from that of µ(y).

In order to address this issue, one can pre-process the data-points {xi} so
that they lie closer to the {yj}, deforming them through an isotropic stretching
and rigid translation, without compromising the computation of the optimal
map of the original problem. The reason is that the composition of these trans-
formations with optimal maps yields optimal maps. To see this, observe that the
composition h(x) = g ◦ s(x) of the gradient g(x) = ∇xφ(x) of a convex function
φ and the linear map s(x) = ax+ b can be rewritten as h(x) = ∇x 1

aφ(ax+ b),
where 1

aφ(ax+ b) is still a convex function.
More general pre-processing maps not necessarily isotropic, linear or curl-

free can be performed, if one then implements the steps described below to
enforce the optimality of the final map. A natural choice is to use a first map
of the form y = Ax + b, with the symmetric matrix A and the vector b chosen
so as to transform the empirical mean and covariance of the {xi} into those of
the {yj}.

We have not implemented any pre-conditioning in the numerical examples of
section 6 though, so as to let the core of the procedure speak for itself (the first
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example, for instance, would otherwise be fully solved by the pre-conditioning
step alone!)

4.3 Enforcing the optimality of the final map

As shown in section 3, even though the flow given by (33) maps ρ to µ,
it is generally not curl-free, and therefore not optimal. This is accentuated if
one pre-conditions the computation with an arbitrary smooth map that brings
the {xi} and {yj} closer to each other. Moreover, the numerics are only an
approximation to the smooth flow in (33), so even if this should converge to
the optimal map, the mesh-free algorithm may not be so precise (not so for the
convergence of ρt to µ, since this is enforced via the moving samples themselves.
The optimality of the map on the other hand depends on their original position,
that the algorithm forgets.) In this section, we modify the discrete version of
the flow from section 4 so that the resulting map converges to the optimal one.

One possibility, developed in [15] within a grid-based methodology, is based
on the results discussed in [2] and [11] stating that any map w(x) from ρ to µ
admits a unique decomposition of the form

w(x) = ∇φ ◦ s(x), (59)

where φ is a scalar convex function and s maps ρ into itself. Therefore, given
w(x) one can seek a rearrangement map s−1 satisfying w ◦ s−1 = ∇φ. In our
context, one would attempt to rearrange the points {w(xi)} in order to minimize
the cost

1

m

m∑
i=1

|w(xi)− xi|2 (60)

while keeping the underlying distribution of {w(xi)} fixed to µ.
Rather than implementing such constrained minimization algorithm to the

final map resulting from the flow in (33), we choose to perform the rearrange-
ment gradually along the flow. This results in a much smoother procedure: it
takes small changes to alter the flow to make each point move toward its correct
target, while fixing the map after the fact involves displacements of order one.

The strategy proposed here, similar to the one developed for constrained
density estimation in [19], alternates between two kinds of steps: one that follows
the direction of descent of D̂ as before, and one that finds a direction along which
the original cost decreases while the value of D̂ does not deteriorate. Thus, for
this second kind of steps, we consider the two objective functions

D̂k(β) =
1

m

m∑
i=1

ukβ(zki ) +
1

n

n∑
j=1

(
ukβ
)∗

(yj) (61)

and

Ck(β) =
1

m

m∑
i

∣∣∇ukβ(zki )− xi
∣∣2 , (62)
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the Monte Carlo estimates of the functional D̃ and the L2 cost respectively,
with

ukβ(z) =
z2

2
+
∑
l

βlF
k
l (z)

as above, but with vectors β of dimension at least two (one is the minimal
number of parameters for the first kind of steps.)

The cost-reducing step is described by the following algorithm, illustrated
in figure 3:

1. Compute the gradients βD = −∇βD̂k(β)|β=0 and βC = −∇βCk(β)|β=0

2. Find a direction β̄ such that both βD · β̄ and βC · β̄ are positive. One
option is to pick β̄ = βC when βD ·βC > 0, and otherwise the β̄ in the line
spanned by βD and βC such that βL · β̄ = βC · β̄ as illustrated in figure
(3). An alternative is described below when discussing convergence in the
continuous setting.

3. Perform a descent move along the direction β̄: zk+1 = zk+ε∇z
∑
l β̄lF

k
l (z).

Here ε > 0 can be a pre-established learning rate, or follow from Newton’s
method applied to the cost C, capped so that D̄ does not increase.

Then, as the density ρ̃(z) underlying the evolving Lagrangian markers moves
toward µ(z), the z(x, t) are continuously re-arranged so the the cost is minimal.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.1

−0.05
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Red−Cost, Blue−L, Green−betaStep

β
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β
2

Figure 3: Direction of descent for the cost-decreasing step. The red and blue
arrows represent βC and βD respectively; the thinner segments delimited by
∗’s are normal to these. The green arrow in the chosen direction of descent β̄
has positive projection onto both βC and βD. This plot depicts the minimal
situation with two free parameters βl, but the general situation is entirely similar
when looked at in the plane in β-space spanned by βC and βD.

In order to build a continuum flow version of this discrete algorithm, let
us consider the problem first in general terms: given two smooth convex cost
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functions C1(x), C2(x), one defines the set

Ω = arg minC1(x),

presumably a manifold with more than one point, and seeks

x∗ = arg min
x∈Ω

C2(x).

Our procedure is a variation of gradient descent: we introduce a flow

ẋ = −∇xC1 − P (∇xC2) , (63)

where P is the projection onto the cone {z : z · ∇xC1 > 0}, defined as follows:

P (w) =


w if w · ∇xC1 > 0 and x 6∈ Ω

w − w·∇xC1

‖∇xC1‖2∇xC1 if w · ∇xC1 < 0

projΩw if x ∈ Ω

Then we have that

d

dt
C1(x(t)) = ẋ · ∇xC1 6 0,

with equality only when ∇xC1 = 0 (i.e. once x has reached the set Ω), and
ẋ = 0 only once ∇xC1 = 0 and ∇xC2 · ∇xC1 = 0, the differential conditions
characterizing x∗.

In our case, C1 = D̃t and C2 = C, with the additional ingredient that we
combine the variational derivative of C with respect to z,

δCt
δz

= 2ρ(x)(z − x) (64)

with the z-gradient of the variational derivative of D̃t with respect to u:

∇z
(
δDt

δu

)
= ∇z [ρt(z)− µ(z)] .

Thus the continuous time formulation yields the following flow:

ż = −∇z [ρt(z)− µ(z)]− P [2ρ(x)(z − x)] , (65)

where for convenience in the proof below we define the projection P as above
using as inner product

u · v =

∫
ρt u(z) · v(z) dz.

To see that this flow has ρ∞ = µ, we resort again to the Liouville equation

∂ρt(z)

∂t
+∇z · [ρt(z)ż] = 0,
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with ż from (65). In terms of the L2 norm

‖ρt − µ‖2 =

∫
(ρt(z)− µ(z))2dz, (66)

we have that

d

dt

‖ρt − µ‖2

2
= −

∫
ρt∇(ρt − µ) · {∇z [ρt(z)− µ(z)] + P [2ρ(x)(z − x)]}dz ≤ 0,

since both summands have positive integral: the first because the integrand is
positive, and the second because of the definition of the projection P . Moreover,
equality can only hold when ρ = µ, thus proving that the flow transports ρ into
µ. To see that the final map is also optimal, we notice that, once ρt = µ, we
have

ż = −projΩ∇C,

so the cost C will decrease until projΩ∇C = 0, the condition for constrained
optimality.

In the discrete version proposed, one alternates between two time steps,
modeling the two terms on the right-hand side of (63). In the first time step,
one simply descends C1 through one step of Newton’s method, i.e.

xn+ 1
2 = xn −H−1

1 ∇C1,

capped so as not to take steps that are too big. Here the Hessian H1 and
gradient of C1 are evaluated at x = xn. In the second step, one performs a
simplified line search, also through one step of Netwon’s method:

xn+1 = xn+ 1
2 − γ d,

where

γ =
dT∇C2

dTH2d

It is convenient for this step not to adopt for d simply the line defined by the
projection P in the second term on the right hand-side of (63), but rather to
combine it with a fraction of the first term:

d = − [P (∇xC2) + α∇xC1] ,

with the extra requirement that

α 6
‖∇C2‖2

|∇C1 · ∇C2|
− |∇C1 · ∇C2|

‖∇C1‖2

so as to guaranty that C2 decreases along this line. The rationale for adding
this term is to have C1 also decrease to leading order rather than being merely
stationary, which could lead to an increase for any finite step-size.
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5 General cost functions

For strictly convex costs of the form c(x, y) = c(x−y) and sufficiently regular
densities ρ and µ, one can show (see for instance [3]) that the solution to the
dual Kantorovich problem is uniquely given by the pair

ū(x) = min
y

(c(y − x)− v̄(y)) ≡ v∗(x)

v̄(y) = min
x

(c(y − x)− ū(x)) ≡ u∗(y),
(67)

with the corresponding unique solution to the Monge problem given by

y(x) = x− (∇c)−1[∇ū(x)]. (68)

From the algorithmic viewpoint, the use of a different costs entails a different
map associated with the potential optimizing D̃t. As in the L2 case, once one
has found the value of the parameters β optimizing D̃t, one moves the sampled
points according to the map associated with the corresponding potential (as
does (45) for the L2 case.) This can be implemented easily if ∇c is a one to
one function and its inverse has a known closed form. A family of convex cost

functions with this property are the Lp costs c(x − y) = ‖x−y‖p
p with p > 1:

when c(x) = ‖x‖p
p , the inverse of ∇c is given by ∇h, where h(x) = ‖x‖q

q and p

and q are related by 1
p + 1

q = 1.
The computation of the optimal map associated with the potential u also

provides the basis for solving (52) and obtaining an expansion of u∗ in powers
of β as in (53). In particular, the generalization of (52) to the Lp case is

z̄ = arg min
z

(
‖z − y‖p

p
− βF (z)

)
(69)

(where for clarity we have adopted a scalar β), so

‖z̄ − y‖p−2(z̄ − y)− β∇F (z̄) = 0. (70)

Using the inverse of ∇c described above we obtain from (70)

z̄ = y − ‖β∇F (z̄)‖q−2(β∇F (z̄)), (71)

which substituted in the definition of u∗ yields

min
z

(
‖z − y‖p

p
− β∇F (z)

)
= −β∇F (z) +

‖β∇F (y)‖q

q
+O

(
|β|2q−1

)
, (72)

showing that the leading order in β for u∗ is the same for any Lp cost function
with p > 1, while higher order corrections depend on p.

The corresponding continuous flow reads{
ż = ∇z (ρt(z)− µ(z)) ‖∇z (ρt(z)− µ(z)) ‖q−2

z(x, 0) = x
(73)
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a flow defined to ascend rather than descend D̃t, since the change of variable

u→ x2

2 − u specific to the L2 cost is not used here.
The argument for convergence in the L2 case can be applied for any p > 1:

the continuity equation implies that

d

dt

∫
|ρt − µ|2 = −

∫
ρt {ż · ∇(ρt − µ)} =

∫
ρt‖∇(ρt − µ)‖q ≤ 0

proving convergence of ρt to µ.
Summarizing, the implementation of the algorithm when using a general Lp

cost does not differ conceptually from the L2 case. The only differences are in the
computation of the Hessian (see (55) for the L2 case) used for Newton’s method
and in the expression in (64) characterizing the cost-step, whose generalization
to the Lp case is straightforward.

In applications to economics, one frequently encounters costs that are non-
convex, including strictly concave costs such as the Coulomb cost c(x, y) =

1
‖x−y‖ , which has been recently introduced in the context of density functional

theory [5]. In contrast to convex costs, a strictly concave cost favors solutions
where, rather than moving two masses a distance l each, only one is moved a
distance 2l, an economy of scale typical in microeconomics. The mathematical
theory of optimal transport has been extended to strictly concave costs in [12].
The resulting optimal maps are much less smooth than in the convex case, and
their global nature makes an approach based on local moves far less natural.
Hence even though the formulation for sample-based transport proposed in this
paper applies to general costs, the flow-based algorithm is restricted to costs
that are strictly convex.

6 Numerical results

We now illustrate the procedure proposed in this article with some numerical
experiments. In all cases, we have used synthetic data, in the form of samples
drawn from two known distributions ρ(x) and µ(y). In most experiments, the
optimal map y = T̄ (x) between the two is also known in closed form. This
allows us to check the accuracy of the numerical results in a number of ways:

1. Computing the average error e on the sample points between zk and the
optimal map T̄ : e = 1

m

∑m
i=1 |zk(xi)− T̄ (xi)|2

2. Computing the empirical Kullback-Leibler divergence

1

m

∑
j

log

(
ρ(xj)

ρk(xj)

)

between the estimated density ρk(x) = Jk(x)µ(zk(x)) and the exact initial
density ρ(x).
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3. Introducing a grid xg, whose points are treated as passive Lagrangian
markers that move with the flow zk(x) without affecting it, unlike the
sample points xj that guide the flow through the objective function D̃.
Then we can compute and plot the discrepancy between the numerical
optimal map T and T̄ on the grid points xg.

4. Estimating the density ρ on the grid xg though

ρk(xg) = Jzk(xg)µ(zk(xg)) (74)

and comparing to the exact density ρ(x).

5. Estimating the target density µ through

µest(z
k(xg)) =

ρ(xg)

Jzk(xg)
(75)

and comparing with the exact µ.

6. Same as 1. and 2., but replacing the empirical KL and cost by their
calculation on the grid xg:

KL =

∫
log

(
ρ(x)

ρk(x)

)
ρ(x)dx ≈

∑
log

(
ρ(xg)

ρk(xg)

)
ρ(xg)∆xg

C =

∫
|zk(x)− x|2ρ(x)dx ≈

∑
|zk(xg)− xg|2ρ(xg)∆xg,

where ∆xg is the volume of each cell in the grid.

Non isotropic Gaussian to non isotropic Gaussian

Figures (4) and (5) display the results of applying the procedure to the
optimal transport between two non-isotropic Gaussian distributions ρ and µ, an
experiment run frequently in the literature (see for instance [9] and [21]). The
optimal map between two Gaussians with zero mean and covariance matrices
Σ1 and Σ2 is given by [7]

y = T̄ x, with T̄ = Σ
1/2
2 Σ−1

0 Σ
1/2
2 , (76)

where

Σ0 =
(

Σ
1/2
2 Σ1Σ

1/2
2

)1/2

. (77)

The upper left and right panels of figure (4) display the initial ρ and the
target distribution µ, with covariance matrices

Σ1 =

(
2 0
0 1

)
and Σ2 =

(
0.5 0.25
0.25 0.25

)
(78)

respectively, while the lower panels display their estimates through (74) and
(75).
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Figure 4: Upper panels: exact starting distribution ρ (left) and exact target
distribution µ (right). Lower panels: estimated starting distribution (left) and
estimated target distribution (right). The algorithm uses 103 points sampled
independently from each ρ and µ. The two estimated distributions are computed
using the fact that one knows the exact form for the other distribution, the map
that the algorithm found and its Jacobian.

The fact that the KL divergence converges to zero (see figure (5)) and that
the cost of the map zk approaches the cost of the the exact map T̄ (both
evaluated using the grid points xg and reported in the panel in the middle
row of the second column of figure (5)) shows that zk converges to T̄ . This
is confirmed by the two lower panels reporting the average error (left) and the
pointwise absolute value of the difference between the numerical map and the
exact one.

26



−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4
Starting(blu)−−Target(red)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Starting(blu)−−Target(red)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

KL

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Cost on grid

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average L2 Error over sampled points

−6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

5  

Absolute Error−Exact solution

 

0.2

0.4

0.6

0.8

1

1.2

Figure 5: First row, left panel: sampled points independently drawn from ρ
(blue) and µ (red); right panel: the blue points have now been mapped by the
algorithm and underly the same distribution as the red ones. Second row, left:
Leibler-Kullback divergence between ρk(x) and ρ(x); right: cost of the map zk

at iteration k in blue and cost of the optimal map T̄ in red. Third row: average
error (left) and absolute value of the difference between zk and T̄ (right).

27



Mass splitting in two dimensions

This subsection illustrates mass splitting. The exact optimal map between
a normal ρ(x1, x2) and a target distribution

µ(y1, y2) =
9y1y2

2π
e−

y6
1+y6

2
2 (79)

is given by

y = T̄ (x) =
1

3

(
x1

1/3

x2
1/3

)
. (80)

The numerical computation of this map is comparatively intensive due to the
unbounded gradient of the map along the Cartesian axes: since the support of
the initial density ρ is connected while that one of µ is not, the mass initially
supported in the domain of ρ needs to be split into the different components of
the domain of µ. The results are displayed in figures 6 and 7.

We close this subsection with a note regarding the optimality of the map.
Figure 8 reports results for the same data above but computed without using the
cost-reducing step of section (4.3). In particular, we compare the values of the
cost and the KL obtained using the cost-reducing step (figure 7) with the values
obtained without using it (figure 8). Even though the cost of the map is lower
when using the cost-reducing step, the map obtained without it is still a very
good approximation to the optimal one. This is quite surprising considering
that the flow described in (33) has no memory of the initial distribution of the
sampled points {xi}.

Compact support

One advantage of computing the optimal map using only sample points
from the starting and the target distributions is to avoid dealing with boundary
conditions when the distributions have compact support. By contrast, using a
PDE-based method involves equipping the Monge-Ampere equation with a set
of non trivial boundary conditions (see for instance [9]). Since the elementary
map in (57) is also defined outside the support of the distributions, the fact
that these have compact support is hidden in the Monte-Carlo estimates of the
functional (43).

Figure 9 reports the results of mapping a uniform distribution supported
on a square centered at the origin with side L = 3 to another uniform square
distribution centered at the origin but with side L = 2. The points sampled from
the starting distribution (in blue in the upper left panel of figure 9) are mapped
into points whose distribution overlaps quite accurately with the support of
the target distribution spanned by the red points (upper right panel), showing
that the boundary of the starting distribution is accurately mapped onto the
boundary of the target distribution.
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Figure 6: Results from mapping an isotropic normal to the distribution defined
by (79). The upper left panel depicts the exact (left) and estimated (right) target
distributions. The lower panels depict the data sampled from the starting (blue)
and the target (red) distributions on the left and the same starting samples
mapped through the numerical optimal map and again the target on the right.
The algorithm uses 104 points sampled from each ρ and µ.

Higher dimensional tests

An example of optimal transport in dimension higher than three is given in
figures 10 and 11,where we map a non isotropic Gaussian with covariance matrix
Σ given by a 7×7 diagonal matrix with diagonal entries Σii = 1, 1.5, 2, 2.5, · · · , 4
to a standard isotropic normal distribution. Figure 10 shows the projection
along three different planes of the estimated starting density ρest (panels on the
left column). The projections of ρest should be compared with the values of
the exact starting density ρ projected on the same planes (panels on the right
column) . Each plane is specified by the two coordinates labeling the axis of each
panel in figure 10 and by setting all the entries relative to the other coordinates
to zero. The first row, for instance, displays the contour lines of the projection
of ρest (left panel) and ρ (right panel) on the (x4, x5) plane.

Since Σ11 = 1 and Σ77 = 4, the biggest deformation needed in order to

29



0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

KL

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cost on grid

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Average L2 Error over sampled points

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4  

Absolute Error−Exact solution

 

0.2

0.4

0.6

0.8

1

1.2

Figure 7: Same quantities described in figure (5) but relative to the splitting
map.
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Figure 8: Same as the upper row panels of figure (7) but computed without
alternating the cost-reducing step described in (4.3).

map ρ into µ occurs along the (x1, x7) plane. Looking at the projection of ρest
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Figure 9: Mapping between two uniform distributions with compact support
on two squares of different sizes, using 104 points sampled from each ρ and µ.
Upper panels: sample points from both distributions before and after the map.
Lower panels: estimated target density and pointwise difference between the
exact and numerical maps.

on this plane one can indeed notice that the projection is not as accurate in
reproducing ρ as those on the (x4, x5) and (x2, x6) planes.

Figure 12 reports the value of the execution time per iteration, obtained
using 104 points sampled from each ρ and µ, and dimensions ranging from 2 to
10. The time is computed running the algorithm for a fixed amount of iterations
–104– and then taking the average over all their execution times. Since the
computational cost of the algorithm is essentially the one needed to compute β
in equation (44), the time per iteration should scales linearly with the dimension
of the space, as confirmed in figure 12. Of course this does not mean that the
execution time for the algorithm to converge to an acceptable solution need also
to scale linearly with the dimension, since the number of iterations may also
depend on the dimension, as well as on the specific form of the starting and
target distributions. Yet the linear dependence of the computational cost per
iteration on the number of dimensions makes the algorithm a good candidate
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Figure 10: Results from a seven dimensional example, showing the estimated
and exact densities along three planes.The algorithm uses 104 points sampled
from each ρ and µ.

to solve high-dimensional problems. By contrast, an algorithm based on a grid
would demand a time per iteration growing exponentially with the dimension
of the space.

7 Conclusions and extensions

This paper proposes and explores a new data-driven formulation of the L2

Monge-Kantorovich optimal transport problem and a mesh-free algorithm for
finding its numerical solution. The formulation is based on discrete sample
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Figure 11: Convergence of the Kullback-Leibler divergence and of the average
error, both computed on the sample points.

points from the starting and the target distribution, but under the assumption
that these are drawn from continuous probability distributions. This contrasts
with the purely combinatorial problem of finding the correspondence between
two discrete data sets minimizing a given cost function, and the continuous
approach in which the two distributions ρ(x) and µ(y) are known pointwise.
The former reduces to a standard linear programming problem, while the latter
has been addressed in most numerical approaches through the introduction of
a grid where a partial differential equation is approximately solved. The Monte
Carlo-like, particle-based approach proposed here scales much better in high
dimensions. More fundamentally, in many applications the two distributions to
map onto each other are not known other than through samples.

This new formulation may be extended in various directions. In particular, it
is left to further work the discussion of which weak formulation of Kantorovich’s
dual problem is the most appropriate to data-driven optimal transport. This
article instead discusses some general principles, and then proceeds to charac-
terize an appropriate formulation algorithmically. A fully analytical treatment
of the kind of adaptive weak solutions proposed here may be out of reach, but
even partial steps in this direction could prove very rewarding.

As discussed in the introduction, other extensions left to further work are the
mixed scenario where one distribution is known in closed form and the other
only through samples, necessary for density estimation, and a generalization
of Kantorovich’s formulation of the transport problem to situations where the
original and target space have different dimensions, as required for regression.
Still other extensions down the line include the situation with more than two
distributions and the inclusion of constraints additional to the marginals of π,
such as the Martingale condition in describing some stochastic processes. Last
but not least, the procedure developed here can be extended to costs different
from the classical L2. This is relatively straightforward for convex cost func-
tions, no so for non-convex costs, which might require a substantially different

33



2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

12

13
x 10

−3

Number of dimensions

E
x
e

c
u

ti
o

n
 t

im
e

Execution time per iteration

Figure 12: Dependence of the average time per iteration (in seconds) on the
dimension of the space, in a computation using 104 sample points per distribu-
tion.

approach.
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