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Abstract. A methodology to estimate from samples the probability density of a random variable4
x conditional to the values of a set of covariates {zl} is proposed. The methodology relies on a data-5
driven formulation of the Wasserstein barycenter, posed as a minimax problem in terms of the6
conditional map carrying each sample point to the barycenter and a potential characterizing the7
inverse of this map. This minimax problem is solved through the alternation of a flow developing8
the map in time and the maximization of the potential through an alternate projection procedure.9
The dependence on the covariates {zl} is formulated in terms of convex combinations, so that it can10
be applied to variables of nearly any type, including real, categorial and distributional.11

The methodology is illustrated through numerical examples on synthetic and real data. The real-12
world example chosen is meteorological, forecasting the temperature distribution at a given location13
as a function of time, and estimating the joint distribution at a location of the highest and lowest14
daily temperatures as a function of the date.15
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1. Introduction. A very general question in data analysis is to determine how19

the values of a set of variables x depend on others z, from a set of available observations20

(xi, zi). Since typically the factors z considered do not fully determine x, the best21

answer one can hope for adopts the form of a conditional probability distribution,22

which we shall write in terms of a probability density ρ(x|z). Examples include23

the effect of a medical treatment, where x comprises measurements of the health of a24

patient after a treatment (concentration of glucose in the bloodstream, blood pressure,25

heart rate) and z covariates such as the treatment (type, dosage), the patient (age,26

weight, habits), lab test results, and others (location, season, social environment).27

We will illustrate the procedure below with a meteorological example, forecasting28

the temperature in one site in terms of covariates such as time of day, season and29

current conditions elsewhere, and estimating the date-dependent joint distribution of30

highest and lowest daily temperatures. Examples abound in any data-rich field, such31

as economics and public health.32

Among the main challenges that one encounters in conditional density estimation33

are the following:34

1. The problem is highly constrained, as ρ(x|z) needs to be non-negative and35

integrate to one for all values of z. Addressing this through a parametric36

approach where the ρ have a specific form with parameters that depend on37

z (for instance Gaussians with z-dependent mean and covariance) severely38

restricts the scope of the estimation.39

2. The data is scarce, as for each value of z there is typically either a single40
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2 E. G. TABAK, G. TRIGILA, AND W. ZHAO

observation xi or none. In order to estimate ρ(x|z) for each value of z sep-41

arately by standard methods, such as Kernel density estimation, one would42

require a sizable collection of samples for each value of z.43

3. The function sought is complex, as the probabilities are typically non Gaus-44

sian and their dependence on the covariates is nonlinear. This again excludes45

most parametric approaches. Moreover, the covariates z can be many and of46

multiple types (real, vectorial, categorical, distributions, pictures.) Thus one47

needs to represent multivariable functions in a treatable form, and do it in a48

way general enough that can handle nearly any data type.49

This article proposes a methodology to estimate conditional probabilities based50

on optimal transport or, more specifically, on a data-based version of the continuous51

extension of the Wasserstein barycenter problem. The difficulties above as addressed52

as follows:53

1. The conditional distribution ρ(x|z) is estimated by mapping it to another54

distribution µ(y) (the barycenter of the ρ(x|z)) through a z-dependent trans-55

formation y = Y (x; z), hence all the infinitely many constraints are satisfied56

automatically if this transformation is one-to-one for all values of z. We will57

in fact compute both the map and its inverse x = X(y; z), given by the58

gradient (in x) of a convex z-dependent potential ψ(x; z).59

2. Making ψ depend smoothly on z effectively links nearby values of z together.60

Thus the estimation of ρ(x|z∗) is informed by observations with zi close to61

z∗. In fact, as we will see below, this closeness needs not be defined by a62

single distance in z-space, but can be decomposed into distances for each63

factor zl. Then the estimation of the dependence of x on a particular factor64

zl is informed by all observations zi with nearby values of zl, even if the65

other factors are not close at all. This effectively mitigates the curse of66

dimensionality in z-space.67

3. We use a low-rank tensor factorization, variable separation procedure devel-68

oped in [15] to reduce multivariate functions to sums of products of functions69

of a single variable. These in turn are approximated as convex combinations70

of their values on prototypes ([4]). Since prototypal analysis applies to any71

space provided with an inner product, the procedure is nearly blind to the72

type of the various factors zl.73

Conditional probability estimation underlines any data problem where the depen-74

dence of some variables on others is sought. Least-square regression can be thought75

of as a particular instance, where one one seeks only the conditional expected value of76

the distribution ρ(x|z). This article extends the attributable component methodology77

[15], which is a form of nonlinear regression, to full conditional density estimation.78

This approach differs considerably from existing methodologies for conditional den-79

sity estimation, most of which are based on kernel estimators, starting with the work80

in [14]. This line of work was further developed in [8], [10] and [6], then [3] and81

[9] addressed the issue of finding an efficient data-driven bandwidth selection proce-82

dure, and [5] enforced the positivity constraint of the estimated conditional density83

by means of a slight modification of the Nadaraya-Watson smoother.84

By contrast, the methodology of this article estimates conditional distributions85

via conditional maps. A map-based density estimation was previously developed in86

[18] [17], with the map computed through a flow in phase-space that ascended the87

likelihood of the data. A different fluid-like flow formulation based on optimal trans-88

port was proposed in [19]. Both flow formulations were developed in the context of89

single density estimation, while the work in [1] performed clustering and classifica-90
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CONDITIONAL DENSITY ESTIMATION 3

tion by extending the flow methodology in [18] to a finite number of distributions,91

which can be thought of as a probability estimation conditioned to a categorical fac-92

tor. This article considers instead the general conditional probability problem, with93

factors that can be multiple and continuous, making use of a data-based formulation94

of the optimal transport barycenter problem.95

This article is structured as follows. After this introduction, section 2 describes96

conditional density estimation as a Wasserstein barycenter problem, and develops a97

sequence of formulations of the latter leading to a sample-based minimax formulation98

suitable to the form of the available data. Section 3 relates this formulation to the99

attributable component estimation of conditional expectation, showing how the latter100

arises from the former when the maps are restricted to rigid translations. Section 4101

then extends the attributable methodology so that it can be applied to estimate and102

simulate full conditional distributions. Section 5 exemplifies the procedure through103

its application to synthetic and meteorological data. Finally, section 6 summarizes104

the work and discusses possible extensions.105

2. Problem setting. Given samples
{
xi, zi1, . . . , z

i
L

}
of a variable of interest x

and covariates zl, we seek to estimate or simulate the conditional probability distri-
bution

ρ(x|z1, . . . , zL).

Here x ∈ Rd, and each of the factors zl can be of nearly arbitrary type, including real106

scalars or vectors, categorical variables, probability distributions and pictures.107

We pose this conditional density estimation as a Wasserstein barycenter problem108

[2], whose solution pushes the distributions ρ(x|z1, . . . , zL) to their barycenter µ(y)109

through a z-dependent map Y (x|z1, . . . , zL) with inverse X(y|z1, . . . , zL). Then an110

estimation of µ provides the desired estimation of the ρ(x|z) via the change of coordi-111

nates formula. More directly, the simulation of µ using all the yi = Y
{
xi|zi1, . . . , ziL

}
112

followed by the map X(yi|z∗) allows us to immediately simulate ρ(x|z∗) under any113

choice z∗ for the factors z. This formulation is illustrated in figure 1.114

�1

�2

�3

�

1

2

3

Fig. 1. Conditional density simulation as a Wasserstein barycenter problem. For easy visual-
ization, this example has x ∈ R2 and a single categorical covariate z with 3 possible values. On the
left, the samples xi of the conditional probabilities ρ(x|z) are mapped through a z-dependent map
Y (xi; zi) to samples yi of the z-independent barycenter µ(y). In order to produce additional samples
x̃i of ρ(x|z∗) for any specific value z∗ of z, one maps back the yi under the inverse of Y (x; z∗).
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As a simple conceptual illustration, consider estimating the dependence ρ(x|z)115

of the blood pressure x on the age z from a set of n samples (xi, zi). After finding116

the conditional map Y (x; z), one obtains samples yi = Y (xi; zi) of the barycenter117

µ(y) of the ρ(x|z). In order to simulate the distribution ρ(x|z∗) of blood pressure for118

a particular age z∗, one produces samples thereof x̃i = X(yi; z∗), where X = Y −1.119

Notice that this produces n samples of a distribution ρ(x|z∗) for which we may not120

have had any observation to start with!121

2.1. The Wasserstein barycenter problem: a sequence of formulations.122

The original optimal transport is posed in terms of distributions, a property inherited123

by the barycenter problem [2]. Yet we do not know the conditional distributions124

ρ(x|z), but only a set of samples
{
xi, zi

}
thereof. This subsection develops a sequence125

of formulations of the optimal transport barycenter problem, to obtain one that seeks126

the family of maps Y (x; z) directly from the set of data pairs
{
xi, zi

}
and a given127

cost function c(x, y).128

1. Monge formulation129

The following formulation of the barycenter problem follows the original op-
timal transport problem due to Monge [12], extended to situations with pos-
sibly infinitely many marginals [13]. Given a family of distributions ρ(x|z),
an extra distribution ν(z) underlying the factors z and a transportation cost
function c(x, y), find the distribution µ(y) and the corresponding family of
maps y = Y (x; z) pushing forward ρ(x|z) to µ(y) so that the total transporta-
tion cost

C(Y, µ) =

∫ [∫
c(x, Y (x; z))ρ(x|z)dx

]
ν(z)dz

is minimized:130

(2.1) [Y, µ] = arg minC(Y, µ), s.t. ∀z : x ∼ ρ(: |z)⇒ y = Y (x; z) ∼ µ.131

The assumption that the distributions ν(z) and ρ(x|z) derive from probability
densities was made just to give a concrete form to C(Y, µ). Nothing changes
here or in what follows if, for more general distributions, we define

C(Y, µ) = Ex,z [c (x, Y (x; z))] ,

since ν and ρ appear only in the calculation of the expected value of functions.132

2. Kantorovich formulation133

For our data problem, we do seek a family of maps Y (x; z) as above. How-
ever, as noted in [19], relaxing these to conditional couplings π(x, y|z), in an
extension of Kantorovich formulation [11] of the optimal transport problem,
leads to a dual formulation, which will allow us to replace the conditional dis-
tributions ρ(x|z) and ν(z) by samples thereof. In terms of these conditional
couplings, the cost C to minimize adopts the form

C(π, µ) =

∫ [∫
c(x, y)π(x, y|z) dx dy

]
ν(z) dz,

and the problem becomes134

[π, µ] = arg minC(π, µ), such that π, µ ≥ 0, and135

∀z :

∫
π(x, y|z) dy = ρ(x|z),

∫
π(x, y|z) dx = µ(y).(2.2)136
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CONDITIONAL DENSITY ESTIMATION 5

From the very definition of the barycenter, we should expect the random
variables y and z to be independent. The map y = Y (x; z) is designed
precisely to remove the variability in x due to the covariates in z; if there was
any dependence left between y and z, such removal would not have been fully
achieved. We can verify independence directly from the second constraint
in (2.2). If Φ(y, z) is the joint distribution of y and z, and P (y|z) is the
conditional distribution of y given z, we have that

Φ(y, z) = P (y|z) ν(z) =

[∫
π(x, y|z) dx

]
ν(z) = µ(y)ν(z),

confirming that y and z are indeed independent.137

3. Dual Kantorovich formulation138

The problem in (2.2) is an infinitely dimensional linear programming problem.139

Introducing Lagrange multipliers φ(x, z) and ψ(y, z) for the first and second140

integral constraints respectively, and the Lagrangian141

L(π, µ, φ, ψ) = C(π, µ)142

−
∫ [∫

π(x, y|z)dy − ρ(x|z)
]
φ(x, z)dx ν(z)dz143

−
∫ [∫

π(x, y|z) dx− µ(y)

]
ψ(y, z)dy ν(z)dz,144

yields the alternative formulation

min
π,µ≥0

max
φ,ψ

L(π, µ, φ, ψ).

Performing the minimization first yields the dual problem145

max
φ,ψ

∫ [∫
φ(x, z) ρ(x|z) dx

]
ν(z)dz, such that146

φ(x, z) + ψ(y, z) ≤ c(x, y), ∀y :

∫
ψ(y, z) ν(z)dz ≥ 0.(2.3)147

4. Conversion to a minimax problem through conjugate duality148

In problem (2.3), if ψ is given, it follows that149

φ(x, z) = min
y

[c(x, y)− ψ(y, z)] ,

so the problem can be cast in terms of ψ alone:150

max
ψ

∫ [∫
min
y

[c(x, y)− ψ(y, z)] ρ(x|z) dx
]
ν(z) dz,151

where ∀y :

∫
ψ(y, z) ν(z) dz = 0,152

or153

max
ψ

min
Y (x;z)

∫
[c(x, Y )− ψ(Y, z)] γ(x, z) dx dz,154

∀y :

∫
ψ(y, z) ν(z) dz = 0,(2.4)155
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where γ(x, z) = ρ(x|z)ν(z) is the joint distribution of x and z. Again, for156

distributions that cannot be described in terms of densities, we have157

max
ψ

min
Y (x,z)

Eγ [c(x, Y )− ψ(Y, z)] ,158

∀y : Eν [ψ(y, z)] = 0.(2.5)159

Notice that, in the solution to this dual problem, the random variables y =160

Y (x; z) and z are still independent. Otherwise, the dual problem would be161

unbounded, as we could find a function ψ(y, z) such that ∀y : Eν [ψ(y, z)] = 0,162

but Eγ [ψ(Y (x; z), z)] 6= 0. Multiplying this function by an arbitrary constant163

we could make the objective function arbitrarily large. But the dual problem164

can only be unbounded if the primal is unfeasible, which is not the case for165

the optimal transport barycenter problem.166

It follows from this independence that there is no duality-gap, as the optimal167

objective function over those functions y = Y (x; z) such that y and z are168

independent equals minEγ [c(x, Y )], which agrees with the solution to the169

primal problem.170

5. Sample based formulation171

The fact that the distributions γ and ν appear in problem (2.5) only in172

the calculation of the expected value of functions, allows us to switch to a173

sample-based formulation, where these expected values are replaced by the174

corresponding empirical means over the samples provided. In terms of these175

samples (xi, zi), the problem becomes176

(2.6) max
ψ

min
{yi}

∑
i

[
c(xi, yi)− ψ(yi, zi)

]
, ∀y :

∑
i

ψ(y, zi) = 0,177

where we have written yi for Y (xi; zi).178

Cost: for concreteness, we will adopt the canonical quadratic cost179

(2.7) c(x, y) =
1

2
‖x− y‖2,180

though much of what follows can be extended to more general cost functions.181

3. Conditional expectations. In this section, we solve a scaled-down prob-182

lem: instead of the conditional probability ρ(x|z), we seek its conditional expecta-183

tion x̄(z) = Eρ(x|z)[x]. We do this in order to show how the attributable component184

methodology [15] fits into the framework developed here. This will allow us to ex-185

tend the low-rank factorizations used in attributable components to capture the full186

conditional dependence of x on z.187

The minimization over yi in (2.6) yields188

(3.1) xi = yi −∇yψ(yi, zi).189

In particular, if we restrict consideration to functions ψ that are linear in y,190

(3.2) ψ(y; z) = −y · Z(z),191

we have192

(3.3) yi = xi − Z(zi),193
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CONDITIONAL DENSITY ESTIMATION 7

a z-dependent rigid translation.194

Replacing (2.7), (3.2) and (3.3) into (2.6), we obtain the following variational
problem for Z(z):

max
Z

∑
i

[
1

2
‖Z(zi)‖2 + (xi − Z(zi)) · Z(zi)

]
,
∑
i

Z(zi) = 0,

or195

(3.4) min
Z

∑
i

1

2
‖Z(zi)− xi‖2,

∑
i

Z(zi) = 0.196

Hence Z(z) is the conditional expectation of x|z, displaced so that its expected value197

over z vanishes:198

(3.5) Z(z) = x̄(z)− x̄, x̄ =
1

m

∑
i

x̄(zi).199

For convenience, we can remove the empirical mean of x from the observations ab200

initio, in which case Z(z) = x̄(z), and we do not need to take into account the201

constraint in (3.4), as it is satisfied automatically (if allowed by the family of functions202

Z(z) considered.)203

3.1. Attributable components. If we leave the function Z(z) completely un-204

restricted, the solution to (3.4) is given by the trivial Z(zi) = xi when all zi’s are205

different, and by Z(z) = mean(xi) over the xi such that zi = z, when some zi are206

repeated. This solution is fine when the factors z are categorical and the number of207

their combinations is small compared to the number of observations, but otherwise it208

may severely overfit the data and it is not informative on the value of Z(z) for values209

of z not in the dataset.210

One could propose instead a parametric ansatz, such as

Z(z) =
∑
k

βkZk(z),

with {Zk(z)} a given set of functions (the “features”), and optimize over the param-211

eters β, but this suffers from the pitfalls of all parameterizations, particularly when212

the number L of factors zl is large.213

Instead, we proposed in [15] the low-rank tensor factorization (or separated vari-214

able approximation, depending on whether one approaches it through linear algebra215

or multivariable calculus)216

(3.6) Z(z) =

r∑
k=1

L∏
l=1

Zkl (zl).217

This decomposes the multivariable function Z(z) into r components, each a product218

of single-variable functions Zkl (zl). Here by “single-variable” we mean “single zl”, as219

each variable zl can be of virtually any type, including vectorial.220

Then we modeled each of these functions as convex combinations of an array of
unknown values V :

Zkl (zil ) =
∑
j

α(l)jiV (l)kj ,
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where the α(l)ji are given, and satisfy

α(l)ji ≥ 0,
∑
j

α(l)ji = 1.

For example, if zl is a single real-variable, we can adopt a grid
{
zg
j
l

}
(not nec-

essarily uniform), and interpret the V (l)kj as Zkl

(
zg
j
l

)
: the value of the function on

the grid points, and α(l)ji as the piecewise linear functions that interpolate zil on the

grid. Notice that the α(l)ji can be computed straightforwardly for each value of zil
once a grid is chosen, and that they satisfy the convexity requirements above. More-
over, in this scenario only two of the α(l)ji are non-zero for each l and i. If the zl is

instead categorical, then the
{
zg
j
l

}
are the values that zl may adopt, and we simply

have α(l)ji = 1 when zil = zg
j
l , and zero otherwise. More generally, if the value zil

of covariate l for observation i is not known, then the corresponding α(l)ji represents

the probability that it adopt the value zg
j
l . More general types of covariates (prob-

ability distributions, photographies) can be made to fit into the same framework via
prototypal analysis ([4]): given a set of n samples zi of zl, we seek m prototypes

yj =

n∑
i=1

βijx
i, βij ≥ 0,

∑
i

βij = 1

such that the objective function

L =
∑
i

∥∥∥∥∥∥xi −
∑
j

αijy
j

∥∥∥∥∥∥
2

+ P, αij ≥ 0,
∑
j

αij = 1

is minimized. Keeping only the first sum in L corresponds to archetypal analysis221

(XXX): one seeks a set of archetypes {yj}, convex combinations of the
{
xi
}

, such222

that approximating the x by convex combinations of the y produce the smallest L2223

error. The added penalty term yields prototypes instead, where the y used via convex224

combination to approximate each x are should be close to x. This is what is required225

to approximate functions of x via local convex combination of their values on the y.226

Because the objective function L is written in terms of squared norms, the proce-227

dure to find the α can be formulated exclusively in terms of inner products, so that it228

applies to any space where inner products are defined. For probability distributions,229

for instance, one can use the inner product corresponding to the Energy norm (XXX).230

Finally, we add to (3.4) a penalty term to enforce the smoothness or control the231

variability of the functions Zkl (zl):232

min
V

{∑
i

1

2

∥∥∥∥∥∥xi −
∑
k

L∏
l=1

∑
j

α(l)jiV (l)kj

∥∥∥∥∥∥
2

+(3.7)233

L∑
l=1

λl
∑
k

 ∏
b∈L,b6=l

‖V (b)k‖2
V (l)k

t
ClV (l)k

}
.234

For instance, when zl is a real variable, the quadratic form V (l)k
t
ClV (l)k may be235

chosen to represent the square norm of a finite difference approximation to the first or236

This manuscript is for review purposes only.



CONDITIONAL DENSITY ESTIMATION 9

second derivatives of Zkl (zl), and when zl is categorical, it may be chosen to represent237

the variance of Zkl (zl). The prefactor
∏
b∈L,b6=l ‖V (b)k‖2 is included to balance the two238

terms in the objective function. Otherwise, the smoothness requirement on one Zkl (zl)239

could be bypassed by making that Zkl smaller by a constant factor while keeping Z(z)240

constant by enlarging other Zkb less constrained. The objective function in (3.7) is241

quadratic in each matrix V (l), so it can be optimized through an alternate-direction242

procedure, in which one minimizes over one V (l) at the time through the solution to243

a linear system.244

In order to estimate the conditional expectation not of x but of some function245

F (x), it suffices to replace xi by the corresponding F (xi). In particular, calculating246

first x̄(z), subtracting it from the observations and taking products among the result-247

ing zero-mean quantities, one captures the conditional second order structure of the248

data or covariance, and taking the square of their Fourier coefficients and adding the249

mode as an explanatory factor, the conditional energy spectrum.250

4. The full barycenter problem. In order to move from conditional expecta-251

tion to the full conditional density estimation, one must allow a nonlinear dependence252

of ψ on y. Then the expression in (3.1) determines yi only implicitly, so we cannot253

replace it straightforwardly in (2.6) as with (3.3).254

We solve this problem as in [16], through an alternate iterative procedure where
we update the values of y for fixed Z(z) and vice versa, linearizing each time the y
dependence of ψ at the current values of yi. Notice that this can be though of as a
primal-dual approach, where we update in one step the dual variable φ and in the
other the primal map Y (x|z). In order to perform the linearization, we expand the
factorization in (3.6) from only the z-dependence to all of ψ:

ψ(y, z) = −
r∑

k=1

Yk(y)Zk(z),

leaving temporarily aside how each of the Yk(y) and Zk(z) is defined. Then we replace255

(3.1) by the local approximation256

(4.1) yi = xi +∇yψ(y, zi)
∣∣∣
y=yin

= xi −
∑
k

Zk(zi) J ik,257

where yin represents the state of yi at step n –as opposed to the step n+1 at which yi258

is being presently computed– and J ik = ∇yYk(y)
∣∣∣
y=yin

. Consistently, we approximate259

(4.2) ψ(yi, zi) ≈ −
∑
k

(
Y ik + J ik

t

(
xi −

∑
c

Zc(zi) J ic − yin

))
Zk(zi),260

with Y ik = Yk(yin). Replacing into (2.6) yields261

max
Z

∑
i

[
1

2

∥∥∥∥∥∑
k

J ik Z
k(zi)

∥∥∥∥∥
2

262

+
∑
k

(
Y ik + J ik

t

(
xi −

∑
c

Zc(zi) J ic − yin

))
Zk(zi)

]
,263
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10 E. G. TABAK, G. TRIGILA, AND W. ZHAO

or264

(4.3) min
Z

∑
i

1

2

∥∥∥∥∥(xi − yin)−∑
k

J ik Z
k(zi)

∥∥∥∥∥
2

−
∑
k

Y ikZ
k(zi)

 .265

subject to the conditions266

(4.4) ∀y
∑
k

(
Yk(y)

∑
i

Zk(zi)

)
= 0.267

If the Yk(y) are independent functions, (4.4) is equivalent to268

(4.5) ∀k
∑
i

Zk(zi) = 0.269

We will impose this stronger requirement, easier to implement, even when the inde-270

pendence of the Yk does not hold. There is no loss of generality in this, since the271

non-independence of the Yk makes the choice of Z(k) non-unique, with degrees of272

freedom that exactly balance the extra requirements in (4.5).273

As before, we propose for Zk the factorization

Zk(z) =

L∏
l=1

Zkl (zl), Zkl (zil ) =
∑
j

α(l)jiV (l)kj ,

and add to (4.3) a penalty term of the form274

(4.6)
1

2

L∑
l=1

λl
∑
k

 ∏
b∈L,b6=l

‖V (b)k‖2
V (l)k

t
ClV (l)k.275

Yet there is one more consideration to make: for the approximations (4.1) and (4.2)276

to be valid, we need yi and yin to be close to each other, i.e. to make the optimization277

steps small. To this end, we can add a second penalty of the form278

(4.7)
1

2
νz

L∑
l=1

‖V (l)− V (l)n‖2,279

where V (l)n stands for the current value of V (l).280

The procedure above describes how the Zk(z) are updated. Regarding the Yk(y),
there are two possibilities: they can be given externally, with form and number
depending on the complexity of the maps sought, or updated as well through the
maximization in (2.6), proposing for them either a parametric representation or a
factorization similar to the one for Zk:

Yk(y) =

n∏
j=1

Y kj (yj).

A sensible parametric proposal adopts the form281

(4.8) Yk(y) =
∑
s

βskỸs(y),282
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with given functions Ỹs(y), thus extending the attributable component procedure,283

which had only the function Ỹ (y) = y. Then we add to the objective function the284

penalty term285

(4.9)
1

2
νy‖β − βn‖2,286

and denote by O the objective function resulting from the sum of (4.3), (4.6), (4.7)287

and (4.9).288

O(V, β) =
∑
i

1

2

∥∥∥∥∥(xi − yin)−∑
k

J ik Z
k(zi)

∥∥∥∥∥
2

−
∑
k

Y ikZ
k(zi)

289

+
1

2

L∑
l=1

λl
∑
k

 ∏
b∈L,b6=l

‖V (b)k‖2
V (l)k

t
ClV (l)k(4.10)290

+
1

2
νz

L∑
l=1

‖V (l)− V (l)n‖2 +
1

2
νy‖β − βn‖2,291

where292

(4.11) Zk(zi) =

L∏
l=1

∑
j

α(l)jiV (l)kj ,293

294

(4.12) Y ik =
∑
k

βskỸs(y
i
n),295

and296

(4.13) J ik =
∑
k

βsk∇yỸs(yin).297

The procedure goes as follows: given the samples
{
xi, zi1, . . . , z

i
L

}
, the grids {zgl }298

with corresponding interpolating parameters α(l)ji and penalty matrix Cl, the num-299

ber r of components sought, the proposed set of functions Ỹs(y), and the penalty300

coefficients λ, ν,301

1. Initialize yi0 = xi, βsk = 0, V (l)kj arbitrarily.302

2. Iterate to convergence the following procedure:303

(a) For each l, minimize O over V (l) subject to (4.5) and update the {yi}304

via (4.1).305

(b) Minimize O over the {βsk} and update the {yi} via (4.1).306

The minimization over each of the V (l) has the general form of a quadratic opti-
mization with linear constraints:

min
x

1

2
xtAx+Bx subject to Cx = 0.

Introducing a vector of Lagrange multipliers λ, this constrained optimization reduces
to solving the linear system(

At Ct

C 0

)(
x
λ

)
=

(
−Bt

0

)
.
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5. Examples. In order to illustrate the methodology proposed, we use one sim-307

ple synthetic example and a more complex, data-based meteorological one.308

5.1. Synthetic example. For visual clarity, we choose a synthetic example with309

a one-dimensional variable x depending on a single, one dimensional real variable310

z. However, we make both the conditional probability densities ρ(x|z) and their311

dependence on z highly nonlinear.312

To generate the data, we choose a distribution ν(z) uniform in the interval [0, 1],
and draw 4000 random samples

{
zi
}

from it. For ρ(x|z), we choose the third power
of a Gaussian:

x̃(z) ∼ N (sin(2π(z − 0.5)), 0.02), x(z) = x̃(z)3.

This distribution has the advantage of being both highly nonlinear and easily sam-313

pleable, as for each zi we can draw one x̃(z) from the corresponding Gaussian distri-314

bution and then cube it to produce xi.315

The parameters that we have used for the algorithm are the following: for the316

features Yk(y), monomials up to 5th order yn, n = 0, 1, . . . , 5, each repeated twice,317

giving a total of r = 12 components. The z-dependence of each component is deter-318

mined through a piecewise linear function over a uniform 30 point grid. Rather than319

tuning the penalization coefficient λ by cross-validation, we picked an arbitrary value320

λ = 3, as experiments showed little sensitivity of the results to values of λ within a321

range spanning two orders of magnitude.322

Figure 2 shows the xi displayed in terms of the zi, and the corresponding filtered323

yi from the barycenter. We can see the high z-variability of ρ(x|z), in mean, vari-324

ance and skewness, which is absent in the barycenter µ(y). The pdfs of the marginal325 ∫
ρ(x|z)ν(z)dz and of µ(y) show the decrease in variability of the latter, as all vari-326

ability due to z has been filtered out by the procedure.327

Next we simulate the ρ(x|z) for various values of z via X(yi; z), and compare the328

results with the true ρ(x|z) underlying the data. The left panel of figure 3 shows this329

comparison for two values of z, and the right panel the comparison of the empirical330

mean, standard deviation and skewness of the recovered data with their true values.331

Notice that there is no sample x in the data corresponding exactly to the two values332

of z chosen for the left panel, and yet the recovered histograms with 4000 points fit333

the corresponding conditional distributions very well. The empirical moments where334

computed on a 10-point grid in z and linearly interpolated in between. One can verify335

the close agreement throughout, though with an underestimated standard deviation336

near its maximum values at z = 1
4 and 3

4 . The reason for this underestimation is that337

the comparatively larger standard deviation of the corresponding true ρ(x|z) stems338

from very long tails (we can see a hint of them even at the more moderate values339

corresponding to the z’s on the left panel), which are severely under-represented in340

the finite sample of roughly 200 points in the intervals with largest variance.341
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Fig. 2. Original data x vs. filtered data y as a function of the covariate z on the left panel, and
their PDFs (marginalized over z) on the right. One sees how the z-dependence of the distribution
of x in gone in y, and how this results in a reduced total variability.
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Fig. 3. Left: true distribution (blue line) vs. histogram of recovered samples and their fitted
pdf (red line) for z = 0.40 and z = 0.92. The dotted line displays the barycenter µ(y). Right: True
and recovered mean, standard and skewness as functions of z.
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5.2. A meteorological example. Next we consider a meteorological example,342

using hourly measurements of the ground-level temperature in stations across the343

continental United States, publicly available from NOAA1. We chose stations where344

we have data available since at least since 2006. We use this data in two ways:345

to explain and forecast the hourly temperature in one station, and to study the346

time evolution in one station of the joint probability of the highest and lowest daily347

temperatures.348

5.2.1. A scalar case: hourly temperature forecast. In this example, the349

variable x to explain is the temperature itself, measured in degrees Celcius. A first350

natural set of covariates, which we denote “static” and “set 1” are the following:351

1. The local time of the day z1 ∈ [0, 24], periodic, to capture the diurnal cycle.352

The corresponding grid is uniform with 24 points, one point per hour.353

2. The day in the year to capture the seasonal cycle, z2 ∈ [0, 365.25], periodic,354

also with a uniform grid of 24 points.355

3. Time in years, z3 ∈ [2006, 2017], real, with a grid of 41 points, 4 points per356

year. This covariate describes longer term (in our case decadal) temperature357

variations, such as those caused by El Niño or global warming.358

The different time scales of the various static covariates are captured by normaliz-359

ing them to one over a day, a year and 10 years respectively, while adopting a uniform360

penalization parameter λ = 0.001. For each station, the total number of observations361

is m = 87600. The functions Ỹs(y) adopted are monomials up to the 4th degree, each362

repeated 6 times, yielding a total of r = 30 components.363

The upper-left panel of figure 5 displays the results of applying this article’s364

procedure to the hourly temperatures in Ithaca, NY, with results plotted over a365

month. The line in black shows the actual observed hourly ground temperatures,366

the line in red the recovered median and the area shaded in pink represents the 95%367

confidence interval. Since the map between y and x for each value of z is monotonic,368

the value of x corresponding to any desired percentile can be readily computed from369

the map x = X(y; z), where the y is the value yielding the same percentile for the370

barycenter (i.e. the value such that the required fraction of the yi fall below it) and371

z is the current value of the cofactors (in our case, 3 real numbers, one for each time-372

scale) for which x is sought. One can observe how the daily and seasonal signals are373

captured (a month is too short to observe any longer-term trend), while the weather374

systems, with a typical time-scale of one week, are not, since no covariate z refers to375

them.376

A common-sense attempt to capture weather systems is to include the tempera-377

ture in Ithaca itself 24 hours before as an extra covariate (using this alone corresponds378

to the simple-minded forecast procedure of repeating the weather observed the day379

before.) We chose to use as z4 not xi−24 but the corresponding normalized yi−24380

from a previous run of the algorithm using only the static covariates. The rationale381

for this is that the covariate should measure deviation from standard conditions the382

day before, rather than repeat known information about normal conditions for the383

corresponding time and day. The results from using this second set of covariates are384

displayed on the upper-right panel of figure 5. We can see a pattern that follows the385

weather systems to some degree, yielding a sharper estimate (a more quantitative386

comparison will be shown below.)387

Selecting the normalized temperature at Ithaca itself as a covariate is not well-388

1https://www1.ncdc.noaa.gov/pub/data/uscrn/products/hourly02/
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informed meteorologically however, as the weather over the US continent does not stay389

put in one location but travels instead from from west to east following the thermal390

wind. For instance, the left panel in figure 4 shows the time-lagged correlation between391

the normalized temperatures yi in Ithaca and Des Moines, Iowa, well to its west. This392

correlation peaks between 36 and 48 hours, and it beats significantly the correlation of393

Ithaca with itself for lapses larger than a day. Hence we shall use for extra covariates394

not the 1-day old record in Ithaca, but the normalized temperatures 36 hours before395

in Des Moines and two other stations (Stillwater, OK and Goodridge, MN) displayed396

on the map on the right of figure 4.397
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Fig. 4. Left: time-lagged correlation between Ithaca and Des Moines (red) and autocorrelation
of Ithaca itself (blue). Right: choice of stations (blue) with strong time-lagged correlation with Ithaca
(red).

We use as before r = 30 components with monomials up to the 4th degree for398

the Ỹs(y). For each of the new non-static covariates, we adopt a uniform grid with399

30 points. The results from this third set of covariates can be seen on the lower-left400

panel of figure 5. They are far more sharply adjusted to the observations that any of401

the other two models, even for the outlier temperature plotted in blue. The lower-left402

panel displays the pdfs fitted to the histograms of ρ(x|z) recovered for the specific403

value of z corresponding to that extreme observation. We can see that using set 3404

allows us to forecast an histogram highly consistent with this unusual observation.405

To render this comparison more quantitative, we introduce two measurements of
error: the square-root of the conventional mean squared deviation, given by

SMD2 =
1

m

m∑
i=1

(xi − µi)2,

where µi is the predicted mean, and (minus) the point-wise empirical log likelihood
under a Gaussian assumption

− 1

n

m∑
i=1

log ρi(xi) =
1

n

m∑
i=1

[(
xi − µi
σi

)2

+ log(σi)

]
+

1

2
log(2π).

These measurements of error (over the full decade of the series, not just the one406

month plotted in figure 5) using the three sets of covariates are shown in table 1.407

The table also includes the variance of the barycenter µ(y) for each set, a measure of408

the amount of variability left after explaining away the fraction attributable to the409
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covariates (XXX). As expected, the third set of covariates gives the smallest error by410

both measurements and the smallest unexplained variability.411

set 1 set 2 set 3
SMD 4.8607 4.4606 3.9205

log likelihood 2.9418 2.8567 2.7575
Var(y) 22.2498 18.7307 14.8699

Table 1
Error measurements with three sets of covariates.

Fig. 5. Estimated median (red), truth data (black) and 95% confidence interval (shaded with
pink) in one month. Upper left: prediction with set 1. Upper right: prediction with set 2. Lower
left: predicted with set 3. Lower right: recovered probability distribution function (marked with blue
star in time series), with set 1 (blue), set 2 (red), set 3 (yellow). The black dashed line represents
the truth data. As a numerical verification, the probability for the true observations to fall in this
empirical 95.0% confidence interval is 94.8%, 95.0% and 94.9% respectively for the three sets of
covariates.

Having illustrated how the procedure explain variability attributable to covariates,
we switch to the issue of interpretability. One natural question is: can we extract from
the results the way in which x depends on each of the six covariates zl, independently
of the others? We address this question through marginalization. If zl is independent
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of the other zb, we can factor the probability density ν(z) as

ν(z) = νl(zl)Nl (z1, . . . , zl−1, zl+1, . . . , zL) ,

and marginalize the potential ψ(y; z) via412

ψl(y; zl) =

∫
ψ(y; z)Nl (z1, . . . , zl−1, zl+1, . . . , zL) dz1, . . . , dzl−1, dzl+1, . . . , dzL413

≈ −
r∑

k=1

 1

m

∑
i

∏
b6=l

Zkb (zib)

Y k(y)Zkl (zl)(5.1)414

Performing the corresponding zl-dependent map Yl(y; zl) = ∇yψl(y; zl) on all the yi415

allows us to build the marginalized conditional probability ρl(x|zl).416

Figure 6 shows the marginalized median and 95% confidence interval over the417

static factors. From the marginalized mean over the year, we can see an approximately418

4-year cycle with an amplitude of around 2 degrees Celcius consistent with El Niño.419

Figure 7 shows the marginalized median and 95% confidence interval over the filtered420

temperature 36 hours before at the 3 other stations.421
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Fig. 6. Marginalized dependence (median and confidence interval estimation) over static factors.
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Fig. 7. Marginalized dependence (median and interval estimation) over filtered temperature at
Des Moines, Stillwater and Goodridge 36 hours before.

So far we have applied our procedure to analysis, not forecast, as all observations422

were included in the training set. To show that it works nearly equally well in the423

forecast mode, we now use the components and filtered data y from 2006 to 2016 at424

NY Ithaca, and run the prediction for the data in 2017, with 8760 data points. We425

assume that values of all the covariates are known, except for the one corresponding426
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18 E. G. TABAK, G. TRIGILA, AND W. ZHAO

to the year, which cannot be anticipated one year before. Since we observed a nearly427

4-year cycle in the third covariate, we will use for this factor its average value over428

the last such cycle available in the training data, 2013 − 2016. The results of the429

forecast are displayed for a month in figure 8, where we can see that they adjust quite430

accurately to the true observations.431
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Fig. 8. Time series on test set in 2017 August, NY Ithaca based on the result for the past 10
years, with the mapping of prediction generated from covariate set 3.

This manuscript is for review purposes only.



CONDITIONAL DENSITY ESTIMATION 19

5.2.2. A vector case: daily observed highest/lowest temperature. Using432

the same data set as in the prior subsection, the variable x we now analyze is the 2-433

dimensional vector containing the highest and lowest temperature of each day, i.e.434

the daily temperature range. The location chosen is again Ithaca, NY, observed from435

2006 to 2017, a total of m = 4019 days. We adopt 2 static covariates here: the day436

of the year, z1 ∈ [0, 365.25], periodic, with 24 uniformly distributed grid points, and437

the year, z2 ∈ [2006, 2018], real, with a grid of 45 points, 4 points per year. The438

penalization parameter λ that we use for each covariate is 0.1, and we use the 9439

functions Ys(y) given by all non-constant monomials in (y1, y2) up to the 3rd order.440

After filtering, the individual variances dropped from 97.7251 to 18.5887 (lowest441

temperature) and 119.5649 to 15.2777 (highest temperature). The time series of442

observed data and predicted mean are shown in figure 9. We can see that the lowest443

temperature has many more local extreme values than the highest temperature, which444

is the reason why its variance decreased less with filtering: it contains more variability445

that cannot be explained by static factors alone.446
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Fig. 9. Truth data (black) and predicted mean (red) for daily highest and lowest temperature.

The overall distribution of highest/lowest temperature for winter and summer447

have very different regimes (see figure 10 ). In winter, the highest temperature has448

negative skewness, while the lowest temperature is positively skewed, which indicates449

the underlying pdf might be non linear and non Gaussian. In summer, the variances450

are smaller, and the skewness is also weaker. However, as we only have one data point451

per day, we cannot obtain histograms focused more sharply than on a full season. Even452

less so for the 2d distribution of highest-lowest temperatures, which displays a clear453

correlation between both during winter but a much less marked one in the summer.454

Instead, our methodology allows us to recover the full PDF for the joint distri-455

bution on any specified day, since we have over 4000 filtered data points yi that can456

be mapped back to x for any choice of the covariates z. We plot four such snapshots457
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of the pdf in figure 11. We can see that during winter, not only the variance of high-458

est/lowest temperature respectively becomes larger, but also the correlation between459

them increases–the relation is almost linear! And in the transition between the coldest460

and hottest seasons in the year, for instance, on 20161202 or 20170401, the histogram461

is non-Gaussian and highly skewed. Only during summer is the joint distribution462

close to an isotropic Gaussian, i.e. the two variables become nearly independent with463

approximately the same variance.464

6. Summary and extensions. This article has developed a conditional density465

estimation and simulation procedure based on a sample-based formulation of the466

Wasserstein barycenter problem, extended to a continuum of distributions. This is467

formulated as a minimax problem where the two competing strategies correspond to468

the map y = Y (x; z) moving point x with covariate value z to the barycenter, and469

to its inverse x = X(y; z). However, the two maps are represented in very different470

ways: Y (x; z) via its values yj = Y (xj ; zj) on the available observations, and X(y; z)471

through a potential function ψ(y; z) such that x = ∇y [c(x, y)− ψ(y; z)] (This implicit472

characterization of the inverse map X(y; z) has an explicit solution for the standard473

squared-distance cost.)474

Fig. 10. Histograms for highest, lowest and joint temperatures during winter and summer. The
2D joint distribution can not have finer grids, as there are only around 1000 data for each season.
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Fig. 11. 4 regimes of full distribution in 2D space of highest/lowest temperature.

The Wasserstein barycenter problem provides a natural conceptual framework for475

conditional probability estimation, and the methodology developed here shows that it476

leads to practical algorithmic implementations. The factorization of the dependence477

on cofactors into a sum of products of single-variable functions, plus the characteri-478

zation of the latter by a finite number of parameters via prototypal analysis, makes479

the methodology useful even for problems with a large number of potential cofactors480

of different types. The meteorological examples displayed in section 5 show that the481

procedure can solve problems seemingly intractable, such as the simulation of the482

full joint probability distribution of the highest and lowest daily temperatures for a483

specific day, for which there is at most one sample available in the historical case, and484

none in forecasting scenarios.485

Even though the dependence of the potential ψ on z is made quite general through486

the use of prototypes, its dependence on y is restricted to the space of functions487

spanned by the externally provided family Ỹs(y), which in the examples of section488

5 was restricted to a set of monomials up to the fourth degree. This extends the489

attributable component methodology [15] quite significantly, as the latter uses only490

Ys = y as a feature, and hence can only capture the conditional expectation of ρ(x|z).491

By contrast, quadratic monomials capture its covariant structure, higher order mono-492

mials its kurtosis and higher moments, and additional features can be added to capture493

other, possibly more localized characteristics. Yet one may wish for a more adaptive494

approach, that will extract the relevant features from the data without any a priori495

knowledge of which could be relevant. One possibility is to extend to the barycenter496

problem the adaptive methodology recently developed for optimal transport in [7].497

Another is to replace the features Ỹs(y) by low-rank factorizations, as is already done498

for the z-dependence of ψ in the current implementation. Still another possibility is499

to let the parameterization of ψ in (2.6) evolve as the yi flow from xi to their final500

converged values.501
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Fig. 12. Dependence over time of year: marginalized mean and standard deviation of high-
est/lowest temperature (first row), marginalized difference and correlation between highest/lowest
temperature (second row).
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