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Abstract.

Two and three-layer models of stratified flows in hydrostatic balance are studied. For the former,
nonlinear transformations are found that map [baroclinic] two-layer flows with either rigid top and
bottom lids or vertical periodicity, into [barotropic] single-layer, shallow water free-surface flows. We
have previously shown that two-layer flows with Richardson number greater than one are non-linearly
stable, in the following sense: when the system is well-posed at a given time, it remains well-posed
through the nonlinear evolution. Here, we give a general necessary condition for the nonlinear
stability of systems of mixed type. For three-layer flows with vertical periodicity, the domains of
local stability are determined and the system is shown not to satisfy the necessary condition for
nonlinear stability. This means that there are wave-motions that evolve into into shear unstable
flows.
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1. Introduction. The relevance of multilayer models for stratified flows arises
from two main sources: On the one hand, some natural flows are very well approx-
imated by a set of layers. Examples include the layer of fresh water overlying salty
waters when sea-ice melts or near a river outflow into the sea, the oceanic and atmo-
spheric mixed layers, and even the full troposphere, thought of as a relatively uniform
layer (in terms of potential temperature) underlying the stratosphere. On the other
hand, multilayer settings can work as conceptual models for continuously stratified
flows. Examples ubiquitous in the literature include the modeling of the first baro-
clinic mode of both atmosphere and ocean as a two-layer flow. Flows with more
layers are used in isopycnal general circulation models as a natural discretization of
continuously stratified flows [2].

From a more theoretical perspective, the consideration of a continuously stratified
profile as a limiting case of a multilayer one allows one to extend to continuosly
stratified flows some powerful tools arising in discrete systems of conservation laws.
This has been pursued in [3] to study fully nonlinear, breaking simple waves, and to
establish a criterion for local stability (more precisely, well-posedness) based of the
system’s type: hyperbolic when stable, elliptic otherwise.

Stratified flows are succeptible to shear-instabilities, leading to local mixing and
homogenization. Classical results for the instability to shear of continuously stratified
flows can be found in [11, 4]. The extension of these results to characterize the well-
posedness of unsteady, non-planar flows, has been studied in [3]; the possibility of
nonlinear instability of unsteady flows has been shown in [9, 10].

The characterization of stabilty in terms of the system’s type can be used to
inquire on the nonlinear stabilty of a flow. We use the words “nonlinear stability”
to mean that a flow whose dynamics is initially well posed remains so throughout
its smooth evolution (generically, waves will eventually break and further evolution
requires a closure). It was shown in [12] that two-layer flows with Richardson number
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bigger than one are nonlinearly stable (the proof presented in the present article is an
alternative one, based on the mapping between two-layers and standard free-surface
shallow waters.) We establish a more general necessary condition for nonlinear stabilty
of systems of mixed type. Two-layer flows satisfy this condition, but three-layer flows
do not.

Section 2 concentrates on two-layer flows, discussing their nonlinear stability,
and showing the surprizing map between two-layer flows with either rigid top and
bottom lids or two-layer vertical periodicity, and single-layer, free-surface shallow-
water flows. This map is a fully nonlinear extension of the well-known similarity
at the linear level between baroclinic and barotropic modes. Two-layer flows with
either rigid lids or vertical periodicity are the simplest (and most commonly used)
instances of baroclinic modes: when one layer expands, the other shrinks, and the
corresponding fluid velocities point in opposite directions. Single-layer, free surface
flows, on the other hand, are the propotype representatives of barotropic modes, with
a depth-independent velocity field.

Section 3 proves a general result on nonlinear stability of systems of mixed type.
Our result relates nonlinear stability to the invariance of the tangent plane to the
sonic surface under the action of the matrix specifying the system’s dynamics.

Two-layer flows are special in more than one way. In particular, they give rise
to systems of only two conservation laws, and so have Riemann invariants that make
them essentially integrable up to wave breaking. Section 4 studies three-layer flows,
the simplest among the multilayered flows of a more “general” structure. We char-
acterize their stable domain numerically, and propose some analytical formulas that
seem to describe this domain well. We also show that a strong theorem on nonlinear
stability similar to that for two-layer flows does not apply to the three-layer case.

2. Two-layer shallow water flows.

2.1. Flows bounded by rigid lids. The simplest scenario for internal waves in
a stratified flow has two layers of incompressible fluid with slightly different densities,
between two horizontal rigid lids. This is the case studied in [12, 8, 1, 13]. The
non-dimensionalized equations describing the flow are

ht + u hx + h ux = 0(2.1)

ut +
1 − 3 h

1 − h
u ux +

(

(1 − h) −
1

(1 − h)2
u2

)

hx = 0 .(2.2)

Here the velocity of the lower layer is given by u1 =
√

g′H u, where g′ = g ∆ρ

ρ1

is
the reduced gravity constant, and H is the distance between the two rigid lids. The
height of the lower layer is h1 = H h. The variables u2 and h2 for the upper layer
follow from the constancy of the total height H = h1 + h2 and the volume flow
Q = h1u1 + h2u2, which is set to be zero by the choice of an appropriate frame of
reference. The equations (2.1, 2.2) form a system of mixed type, with characteristics

dx

dt
=

1 − 2h

1 − h
u ±

√

h
(1 − h)2 − u2

1 − h
,

that are real when

(1 − h)2

u2
> 1(2.3)
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and complex otherwise. Our characterization of stability in [3] identifies real eigenval-
ues (i.e., the system’s hyperbolicity) with local stability. In the adopted frame where
Q = 0, the quantity

Ri =

g
ρ1

(

ρ1−ρ2

H

)

(

u1−u2

H

)2
=

(1 − h)2

u2
(2.4)

is the Richardson number for two–layer flows. The system is hyperbolic when Ri > 1.
It was proved in [12] that the elliptic domain Ri < 1, unstable to shear, is unreachable
from hyperbolic initial data. Here we show the same result from a different perspec-
tive, building a map between two-layer flows and their single-layer counterpart, for
which nonlinear stability is well-known.

We reformulate the problem in terms of the Riemann invariants. First, in terms
of the variables

v = 1 − 2 h, r =
1√
Ri

=
u

1 − h
,

the equations adopt the symmetric form

vt +

(

1

2
r(v2 − 1)

)

x

= 0(2.5)

rt +

(

1

2
v(r2 − 1)

)

x

= 0 ,(2.6)

with characteristics

λ± = v r ±
1

2

√

(1 − v2) (1 − r2) .(2.7)

To compute the Riemann invariants, one multiplies the system on the left by the
corresponding left eigenvectors

(

1√
1 − v2

,∓
1√

1 − r2

)

,

yielding

R±
t + λ±R±

x = 0 ,

where dR± =
(

dv√
1−v2

,∓ dr√
1−r2

)

, so

R± = arcsin(v) ∓ arcsin(r) .(2.8)

The characteristic speeds can be written in terms of the Riemann invariants:

λ+ =
3

4
cos(R+) −

1

4
cos(R−)(2.9)

λ− =
1

4
cos(R+) −

3

4
cos(R−)(2.10)

This suggest replacing the Riemann invariants by their cosines,

R = cos(R+) and L = cos(R−) ,
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in terms of which the system can be written in the simple form

Rt +

(

3

4
R −

1

4
L

)

Rx = 0(2.11)

Lt −
(

3

4
L −

1

4
R

)

Lx = 0 .(2.12)

Here we can apply the theorem proved in [12], valid for general systems of two
conservation laws, that hyperbolic initial data will remain hyperbolic for all times
(up to breaking), provided that the characteristic speeds are smooth functions of the
Riemann invariants. Yet the following observation provides an alternative proof.

2.2. Transformation to one-layer flows. Surprizingly, the characteristic form
(2.11, 2.12) is precisely the same one as for the single–layer shallow water equations

ht + (hu)x = 0(2.13)

(hu)t +

(

hu2 +
1

2
h2

)

x

= 0 .(2.14)

For these, the Riemann invariants R and L are given by

R = 2
√

h + u , L = 2
√

h − u ,

with inverse

h =

(

R + L

4

)2

, u =
R − L

2
.

Substituting these into the characteristic speeds

λ± = u ±
√

h,

yields precisely the same form as in the previous case (2.11, 2.12).
This coincidence supplies an explicit one–to–one correspondence between smooth

solutions to the single layer shallow water equations and two layer flows: a solution
in either of the two settings can be written in terms of the Riemann invariants, and
then re–interpreted in the other setting, by writing the Riemann invariants in terms
of the corresponding set of physical variables.

Instability of the shallow-water equations corresponds to the height h becoming
negative. Since it is well-known that this cannot happen from smooth data with
positive h, the nonlinear-stability of two-layer flows is established. Notice, however,
that the map is between smooth solutions. Therefore, stability can only be established
up to the time of wave breaking.

The implication of this map between single and two-layer flows goes beyond the
proof of stability of the latter. Two-layer flows are often used as surrogates for the
first baroclinic mode of both ocean and atmosphere. It is well-known that, at the
linear level, the barotropic and first baroclinic modes (and, in fact, all others as well)
behave in exactly the same way, once their times are scaled appropriately. Here we
show that this analogy extends to fully nonlinear solutions, up to their breaking time.

Moreover, as we show below, multilayer flows with two-layer periodicity are also
nonlinearly equivalent to shallow waters.
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2.3. Vertically periodic layers. The equations describing N-layer Boussinesq
flows can be written in the form [3]

Sj
t −

((

1 − Sj
)

uj
)

x
= 0,

uj
t + ujuj

x + M j
x = 0 ,(2.15)

∆2M
j = Sj,

where j = 1, . . .N , with constraints

N
∑

j=1

Sj = 0(2.16)

N
∑

j=1

uj(−1 + Sj) = 0.(2.17)

The nondimensionalized thickness of each layer is hj = 1−Sj, uj is the corresponding
mean velocity, the density differences between layers have been normalized to 1, and
M j is the discrete Montgomery potential, given by

M j =
1

2
(pj+ 1

2 + pj− 1

2 ) + g ρj 1

2
(zj+ 1

2 + zj− 1

2 ) .(2.18)

The variable pj+ 1

2 represents the pressure at the interface between layers, zj+ 1

2 its
height, and ∆2M

j stands for the discrete second difference M j+1−2M j +M j−1. The
mean layer thickness (one in this non-dimensionalization) and its effect on the Mont-
gomery potential have been removed from the dynamical variables S and M . Hence,
one may consider flows that are a vertically periodic perturbation of a background
stratification; i.e., such that

Sj+N = Sj uj+N = uj M j+N = M j .(2.19)

In physical terms this correponds to infinitely many homogeneous layers where the
density jump amongst layers has been adopted constant for simplicity [3], and where
the thickness has period N in the vertical. This is a appropriate description of all
baroclinic modes.

In particular, for flows with two-layer periodicity (N = 2), we have S1 = −S2 ≡ S,

S = 2
(

M2 − M1
)

,

and

S
(

u2 − u1
)

= −
(

u1 + u2
)

.

Introducing w = u1 − u2, the strength of the vortex sheet at the interface between
layers,

u1 =
S + 1

2
w, u2 =

S − 1

2
w,

the system of equations reduces to

St +

(

1

2
(S2 − 1)w

)

x

= 0(2.20)

wt +

(

1

2
(w2 − 1)S

)

x

= 0 .(2.21)

This system is the same as the rigid lid system (2.5,2.6) with the equivalence S ↔ v
and w ↔ r, hence providing a map between solutions of the two systems.
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2.4. A numerical example. To illustrate the explicit nonlinear mapping among
solutions of the three systems (two-layer flows with rigid lids, multilayer flows with
two-layer periodicity and single-layer shallow water) we shall consider a simple wave
with L = 0, and R satisfying the Hopf equation

Rt +
3

4
R Rx = 0 .

A solution for R(x, t), with initial data R(x, 0) = 2

3

(

3

4
+ 1

2
sin(x)

)

is provided in figure
1, together with its translation in figure 2 into the three physical settings.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R

Fig. 2.1. Simple wave with L = 0 and R initially sinusoidal, up to the breaking time

This solution breaks at time t = 4, a generic behavior for shallow water waves.
After breaking, the Riemann invariant formulation is no longer valid and the three
physical scenarios need not have an explicit correspondence: physically relevant jump
conditions would differ in the three cases [5]. In the appendix we provide a method
of identifying all possible conserved quantities of the systems, from which one could
choose physically relevant shock conditions.

3. A criterion for nonlinear stability. The criterion for stabilty of a system
of conservation laws based on its type is local in time: if, at time t, the system is
hyperbolic at every point x, the evolution is locally well posed, and we denote it stable.
A global in time criterion, if available, would state under which conditions a system
that is everywhere hyperbolic at a given time will remain hyperbolic at least for a
finite time interval. We would then qualify the system as nonlinearly stable, since the
nonlinear evolution of the system does not bring about instabilities. This issue may
be further complicated by the possible breaking of waves, which is an “overturning
instability” fundamentally different from the one due to shear. A breaking wave
remains hyperbolic even past the breaking point, while shear instability arises as the
system turns elliptic.

In [12], we proved that two–layer systems are nonlinearly stable up to breaking,
and showed a sufficient criterion for nonlinear stability of general 2x2 autonomous
systems of conservation laws. Here we derive a necessary criterion for systems of
conservation laws of any size to be nonlinearly stable.

A necessary condition for a system of mixed type

ut + A(u)ux = 0,
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Fig. 2.2. Simple wave with L = 0 and R initially sinusoidal, up to the breaking time, mapped
into three different flows: a single shallow water layer, two layers with top and bottom rigid lids,
and two vertically periodic layers.

to be nonlinearly stable is that at every point u on the sonic surface
S(u) = 0 (the surface in phase space where the system changes type)
with a degenerate eigenvalue, the plane T tangent to the sonic surface
must include the eigenvector of A corresponding to that eigenvalue.

On the sonic surface, at least one eigenvalue of A will be repeated (have algebraic
multiplicity greater than one). A degenerate eigenvalue λ has algebraic multiplicity
2 and geometric multiplicity 1 (only one eigenvector). This is the generic case along
the sonic surface.

The proof of this criterion involves two steps. First, we show that for the system
to be nonlineary stable, T needs to be invariant under the action of A. This follows
from considering the solution in phase-space at the time when it touches the sonic
surface. At this time, generically, the solution is sonic at one point. In phase space,
it is represented by a curve u(x) tangent to the sonic surface at that point, where x
plays the role of a parameter along the curve. At the point of intersection, ux ∈ T .
If T were not invariant under A, the curve u(x) could be chosen so that its tangent
at the contact point is transformed by A into a vector not in T . Then, ut will be
transversal to S(u) = 0, leading u into the elliptic domain.

In the second step, we show that for an hyperplane T of codimension 1 to be
invariant under the action of a matrix A with a degenerate eigenvalue λ, it needs to
include the eigenvector r corresponding to λ. This follows from considering the plane
R spanned by r and the generalized eigenvector s defined by

(A − λI)s = r, A r = λ r .(3.1)
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By assumption AT ⊂ T , and, clearly AR ⊂ R. Hence

A(T ∩ R) ⊂ (T ∩ R).(3.2)

Since T has codimension 1 and R is two-dimensional, T ∩ R is either one- or two-
dimensional. If it is two-dimensional then T ∩ R is R itself, whereas if it is one
dimensional, then (3.2) implies that it is spanned by the eigenvector of A, which is r.
In either case, r is included in T , which concludes the proof.

To illustrate this criterion we apply it to the two layer case which we know to
be nonlinearly stable. Consider (2.1,2.2) on the sonic curve u = 1 − h. There, the
degenerate eigenvalue λ is 1− 2h and the right eigenvector r = (1,−1)T is tangent to
the sonic curve, as required.

4. Three-layer flows. The case with two layers is somewhat special: it leads
to a system of two equations in two unknowns, which has therefore Riemann invari-
ants. Moreover, the discrete Laplacian ∆2 behaves like a first order difference for
two layers, which makes the equations structurally different from those with more
layers. It appears natural, therefore, to study next a three-layer system, which is the
simplest among the “general” multilayer flows. Here Riemann invariants are not to
be expected, and hence it is not clear a priori whether a nonlinear stability result will
hold.

4.1. Formulation. In order to reduce the system (2.15) with N = 3 of six
equations to a 4 × 4 system using the restrictions (2.16,2.17), we define the new
variables

w12 = u2 − u1, w23 = u3 − u2, w31 = u1 − u3,(4.1)

which can be inverted using (2.17), to yield

u1 =
1

3

[(

S2 − 1
)

w12 −
(

S3 − 1
)

w31
]

u2 =
1

3

[(

S3 − 1
)

w23 −
(

S1 − 1
)

w12
]

u3 =
1

3

[(

S1 − 1
)

w31 −
(

S2 − 1
)

w23
]

.(4.2)

The differences of the M ’s can also be easily inverted:

M2 − M1 = −
1

3

(

S2 − S1
)

M3 − M2 = −
1

3

(

S3 − S2
)

M1 − M3 = −
1

3

(

S1 − S3
)

.(4.3)

Clearly only two of the w’s and two of the S’s are independent, since w12+w23+w31 =
0 and S1 + S2 + S3 = 0; hence the reduction from 6 to 4 equations

S1
t −

((

1 − S1
)

u1
)

x
= 0,

S2
t −

((

1 − S2
)

u2
)

x
= 0,

w12
t + u2u2

x − u1u1
x −

1

3

(

S2 − S1
)

x
= 0

w23
t + u3u3

x − u2u2
x −

1

3

(

S3 − S2
)

x
= 0.

with u′s given above. The system has the form Vt+AVx = 0 where V = (S1 S2 w12 w23)T .
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4.2. Stability criteria. Since we have an analytic expression for the matrix A,
we can find the location of the three-dimensional sonic surface. In practice this is
difficult to do analytically except in special cases. An example where the surface can
be described analytically is the section with S1 = S2 = 0, corresponding to a point
(x, t) where the three-layers have the same width. This stability region is the hexagon
displayed on the left in figure 4.2 , given by the inequalities

w122

(1 − S1) + (1 − S2)
=

1

Ri12
≤

2

3

w232

(1 − S2) + (1 − S3)
=

1

Ri23
≤

2

3
(4.4)

w312

(1 − S3) + (1 − S1)
=

1

Ri31
≤

2

3
.

The Richardson number for each layer pair, given be the expression

Ri12 =
g′(h1 + h2)

(u1 − u2)2
,(4.5)

in terms of the dimensional variables, can be shown to equal the quotient Ep/Ek of
potential energy barrier to mixing 2 consecutive layers divided by the kinetic energy
available for mixing. Recall that, in the two layer case, stability is equivalent to
Ri12 ≥ 1, while in the continuous case, a sufficient condition for linear stability in
terms of energy quotients is Ri ≥ 1

2
, corresponding to the classical 1/4 criterion in

terms of the conventional definition of the Richardson number [4, 3]. On the right in
figure 4.2 is another section of the sonic surface for S1 = ω23 = 0.
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Fig. 4.1. Two sections of the three-dimensional boundary of the stable domain for the three-
layer system. On the left we show the section S1 = S2 = 0. On the right, the section is S1 = ω23 = 0.
(Outside the central hyperbolic regions, there are other areas where the system is hyperbolic. These
stable domains, however, are not physically meaningful: they correspond to two interfaces becoming
unstable which, in a layered formulation, results in the cancellation of the two instabilities.)

Two-layer flows are nonlinearly stable: when the initial data are in the hyperbolic
domain, they remain there for all times. This result was linked to the fact that the
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system describing two-layer flows has Riemann invariants. This is not the case for
three-layer flows, for which, in fact, such a strong nonlinear stability result does not
hold. This can be seen by providing a counterexample to the necessary condition
for nonlinear stability of section 3. We have verified numerically that typical points
on the sonic boundary on the right panel of figure 4.2 do not satisfy the necessary
condition, providing the required counterexample.

To illustrate the fact that initially hyperbolic data (that is, with shears below
the threshold for local instability) can lead to solutions which cross the sonic surface
at a later time, we show in Figure 4.2 a numerical example where two or the four
eigenvalues collide and become complex, making the problem elliptic. This is an
example of a shear instability arising from the nonlinear wave motion.
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Fig. 4.2. Numerical simulation of a three layer flow showing that initially hyperbolic data can
evolve into the elliptic region. We show the four eigenvalues of the system as a function of position.
The dashed lines correspond to the imaginary part of the eigenvalues. Left: Eigenvalues for the
initial data. Right: Eigenvalues at t = 2.5.

5. Conclusions. This article considers two-layer flows, as well as multilayered
flows which are vertically periodic, with two and three-layer periodicity.

We show that two-layer flows can be mapped into single-layer, free-surface flows.
This extends the known linear analogy between barotropic and first-baroclinic waves
into the nonlinear realm. Moreover, another map shows that multilayer flows with
two-layer peridicity are also equivalent to one layer shallow water.

Multilayered models are systems of conservation laws, for which the natural char-
acterization of local stability is the system’s type: a hyperbolic system is stable,
whereas an elliptic one, ill-posed in time [6], is unstable. In this framework, we have
established a new nonlinear stability criterion for general systems of conservation laws,
a necessary condition for nonlinear stability based on the local geometry of the sonic
surface: in phase space, its tangent plane needs to contain the eigenvector correspond-
ing to the degenerate eigenvalue. Using this condition, it is shown that contrary to
two-layer flows, three–layer flows are not nonlinearly stable.

Appendix: Conserved quantities. A single layer shallow water flow must
conserve mass and momentum even when shocks form, so the conservation form in
(2.13, 2.14), which preserves the integrals of h and hu, is the correct one. For two
layer flows, the situation is far more complex. If the two fluids are miscible, then the
mass of the individual layers needs not be conserved; and their densities will change
due to entrainment at shocks. As for the momentum of the individual layers, it is
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not clear a priori even for immiscible fluids how they will evolve at shocks, since the
momentum exchange between layers at the location of the jump cannot be calculated
without further hypothesis [7].

In order to explore possible closures at shocks for our two layer system, we may
start by asking which candidate conserved quantities are consistent with the equations
(2.11, 2.12) in smooth parts of the flow. In other words, we want to write the system
in the conservation form Ft + Gx = 0, where F (R, L) is a conserved quantity, and
G(R, L) its associated flux. Expanding Ft = FR Rt +FL Lt and Gx = GR Rx +GL Lx,
we find that

FR(3R − L) = 4GR,(5.1)

FL(3L − R) = −4GL.(5.2)

so all conserved quantities F must satisfy the PDE

2(R + L)FRL = FR + FL ,(5.3)

and reciprocally all solutions to (5.3) represent conserved quantities consistent with
the flow evolution in smooth parts.

For shallow water, which has the same Riemann invariant form, h = 1

4
(R+L)2 and

u = 1

2
(R−L). Therefore, possible conserved quantities include the height h, velocity

u momentum hu, and energy h2 + hu2, which, when translated through the map
to two-layer and multilayer with two-layer periodicity flows gives more complicated
expressions.

Carrying out a similar procedure for F in terms of h and u for two-layer flows with
rigid lid gives the following equation for the candidate conserved quantity F (h, u):

hFhh −
2hu

1 − h
Fuh +

(

u2

(1 − h)2
+ h − 1

)

Fuu = 0.(5.4)

Solutions here include h, u, the energy h2 + hu2/(1 − h), and r = u/(1 − h). The
momentum hu of the lower layer, on the other hand, is not conserved even by the
smooth evolution.
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