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Some phenomena involving intersection of weak shock waves at small angles are considered: the 
focusing of curved fronts at a&es, the transition between regular and irregular reflection of 
oblique shock waves on rigid walls and the diffraction patterns arising behind obstacles. The 
intersection of three shock waves plays a central role in most of these phenomena, giving rise to 
the von Neumann paradox of oblique shock reflection and to the curious transition between 
linear and fully nonlinear focusing investigated experimentally by Sturtevant and Kulkarny [J. 
Fluid Mech. 73, 651 (1976)]. This “triple-point paradox” is studied in the context of an 
asymptotic model, and a solution is proposed that involves an unusual kind of singularity. 

I. INTRODUCTION 

Wave motion can often be modeled as an essentially 
one-dimensional phenomenon. Wave fronts may certainly 
be curved, but, in many situations, they still behave as if 
locally planar with curvature playing only a secondary 
role. This local one-dimensionality is a clue to much of our 
theoretical understanding of waves. Geometrical optics, for 
instance, treats high-frequency waves as if they had definite 
directions of propagation given by “rays.” Nonlinear hy- 
perbolic systems and shock waves are also best understood 
in nearly one-dimensional situations, where simple analyt- 
ical models like the inviscid Burgers’ equation or the Rie- 
mann problem and relatively simple experimental setups, 
such as shock-tubes, are often available. 

There are many situations, however, in which these 
one-dimensional models are insufficient. The best known 
example is the diffraction of light through a crystal or after 
hitting an obstacle, where the failure of ray theory gave rise 
to the discovery of the wave-like character of light and, in 
a broader context, to quantum physics. Another is the in- 
tersection of two or more fronts, particularly for nonlinear 
waves. This includes phenomena arising in shock wave 
crossings, a shock’s passage through the interface between 
two media and its reflection on a rigid wall. Yet another 
example is the focusing of concave fronts, where transverse 
effects destroy the nearly one-dimensional picture prior to 
focusing. All these situations abound in open problems and 
give rise to apparently paradoxical behaviors. 

In this work, we concentrate on interactions involving 
almost parallel, weak shock waves. We have in mind two 
related problems: the focusing of a concave front and the 
reflection of nearly glancing weak shocks on rigid walls. A 
third problem, somewhat simpler but also intimately re- 
lated to the previous two, is the diffraction of shock waves 
across singular rays, the “shadow lines” of geometrical 
optics. The reasons for the choice of this particular class of 
interactions are twofold: on the one hand, it includes many 
intriguing phenomena; on the other, a multiple scale mod- 
ification of weakly nonlinear geometrical acoustics pro- 

vides a unifying framework for its study. We will show 
that, in this asymptotic framework, the following paradox 
occurs: triple shocks, which the equations do not seem to 
admit, do nonetheless arise. In the context of oblique shock 
reflection, this is the core of the von Neumann paradox. 
We deal only with inviscid flows; the paradox cannot be 
resolved by invoking viscosity, unless one is willing to ad- 
mit that the inviscid equations do not have a solution. 

The tone of this paper will be mostly descriptive: many 
results will be stated without proof and, although numer- 
ical solutions will be freely displayed to illustrate phenom- 
ena and even to make points, the algorithm itself will not 
be explained in detail. Besides, we will concentrate more in 
posing paradoxes that in solving them. The main reference 
for missing details is Ref. 1. The numerical algorithm will 
be discussed in Ref. 2 and the analytic results in Refs. 3 
and 4, where we will hopefully solve some of the questions 
opened here. 

Over the years, problems of focusing and diffraction 
have captured the interest of physicists and mathemati- 
cians. Their solution, within the framework of linear geo- 
metrical optics, was found by R. N. Buchal and J. B. 
Keller in 1960,5 and made uniform by D. Ludwig in 1966.” 
The transition between linear and nonlinear behavior was 
studied experimentally by B. Sturtevant and V. A. 
Kulkamy in 1976;7 their surprising results (summarized in 
Sec. II A) constitute one of the main motivations for the 
present work. 

A thorough study of oblique shock reflection on rigid 
walls was carried out by J. von Neumann and a group of 
experimentalists at Princeton in 1943.8*9 Besides distin- 
guishing the different types of reflection and explaining 
many of these in a completely satisfactory manner, von 
Neumann pointed out a variety of situations in which the 
theory was not at all clear and sometimes seemed to con- 
tradict the experiments. One of these situations, involving 
weak shocks at almost glancing incidence, gave rise to the 
“van Neumann paradox,” which is the other main moti- 
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vation for the work which follows. Later work on this wwe front 

paradox can be found in Refs. 10-16. /- 

The theory of weakly nonlinear geometrical acoustics, 
particularly for complex interactions, was developed in the 
seventies and eighties mainly by Y. Choquet-Bruhat, J. K. 
Hunter, J. B. Keller, A. Majda, and R. R. Rosales (see 
Ref. 17 for a review). Nonlinear expansions were conjec- 
tured at singular rays, caustics, and a&es, based on the 
geometry of the linear solutions, in Refs. 18-20. In the 
present work we study the output of these expansions, 
which coincides with the equations of time dependent 
small disturbance transonic flow, and show that they pre- 
dict the von Neumann paradox and the behavior at focus- 
ing of weak shock waves. 

This paper is structured as follows. In Sec. II, we de- 
scribe the experiments that motivated this work and make 
some physical connections between them. In Sec. III, we 
introduce the asymptotic model, show how it applies to the 
different phenomena under study, and discuss some impor- 
tant symmetries and exact solutions. In Sec. IV, we show 
the “triple shock paradox” arising in oblique shock reflec- 
tion, focusing of curved fronts, and a class of modified 
singular rays. Finally, in Sec. V, we explain the need of 
singular behavior behind the triple point, verify this insight 
numerically, and briefly discuss some of its consequences. 
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FIG. 1. Linear focusing. Ray tubes collapse at the caustics, which origi- 
nate at the a&e. 

initial front. Thus the standard configuration, known as a 
swallow-tail, has two caustics meeting at an a&e. 

The situation in the fully nonlinear case (Fig. 2) is 
completely different. As a section of the focusing front 
approaches the a&e, its amplitude’s growth locally accel- 
erates the front, flattening it up, and avoiding the ray cross- 
ing and front folding altogether. Instead, the high pressure 
behind the a&e, after pushing the front ahead, diffracts 
through compression waves, which eventually become 
shocks. Triple points therefore arise at the intersection be- 
tween these diffracted shocks and the focusing wave; and 
then move away from the focusing region. An approximate 
theoretical description of this process is provided by 
Whitham’s Geometrical Shock Dynamics’l 

II. SOME PUZZLES INVOLVING WEAK SHOCK 
WAVES 

In this section, we describe some simple yet intriguing 
phenomena involving weak shock waves moving into a gas 
at rest and intersecting at small angles. Understanding 
these phenomena is required to complete the theory of 
weakly nonlinear geometrical acoustics. 

A. Focusing of weak shock waves 

The focusing of curved fronts is a process extraordi- 
narily rich in qualitatively different behaviors yielding pat- 
terns not yet completely understood. Even linear theory is 
far from trivial, and the weakest nonlinearity gives rise to 
apparent paradoxes. Solving these paradoxes is crucial to 
complete the insight provided by geometrical acoustics, 
that describes the local behavior of the fronts away from 
the focus. The problem has also practical interest, since 
most wave fronts arising in nature are curved, so focusing 
is almost as ubiquitous as the waves themselves. For a first 
glimpse of this variety of behaviors, let us briefly describe 
the linear and fully nonlinear cases. 

Linear focusing (Fig. 1) is best described in the lan- 
guage of geometrical acoustics. The fronts move normal to 
themselves at the velocity of sound. Introducing the bi- 
characteristics or “rays,” which are straight lines every- 
where normal to the fronts, we can write an ordinary dif- 
ferential equation for the wave’s amplitude, which states 
that energy is conserved on ray tubes. These tubes, how- 
ever, collapse at the envelopes of the rays, called caustics, 
yielding in principle an infinite value for the wave’s ampli- 
tude. The first crossing of rays takes place at the “ar%e,” 
that evolves from the point of maximal curvature in the 

Sturtevant and Kulkary7 performed a series of care- 
fully designed experiments to study the transition between 
the linear and nonlinear regimes. They created plane waves 

FIG. 2. Fully nonlinear focusing. The amplification of intensity as the 
front approaches the argte leads to a local acceleration of the front, which 
makes it flatten up, avoiding focusing altogether. The high pressure be- 
hind the failed a&e diffracts to the sides through compressive waves, 
which eventually break into shocks. Thus triple points form along the 
focusing front, and then move away from the focusing region. 
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FIG. 3. Focusing at an intermediate amplitude. The nonlinear flattening 
with formation of diffracted shocks always takes place. If the shocks are 
weak enough, the triple points eventually collide at the axis of symmetry, 
yielding a configuration qualitatively similar to the linear swallow-tail. 

of different amplitudes in a shock-tube, and made them 
reflect on a curved mirror at the end of the tube, to produce 
curved focusing shocks of a controlled initial wave-front 
shape. They found for strong shocks the configuration of 
Fig. 2. For weaker shocks (Fig. 3 ), nonlinearity still pre- 
vails at the beginning, giving rise to two diverging triple 
points. These, however, eventually converge and cross, cre- 
ating a pattern visually equivalent to the linear swallow- 
tail. This process takes place even for vanishingly small 
amplitudes, yielding the surprising result that the linear 
configuration is always preceded by a transient nonlinear 

fnrident shock 

I_ 
R7=32L! 

(The flow is uniform ahead, 
non uniform behind) 

aj Regular reflection 

one. In the linear limit, the duration of the nonlinear tran- 
sient state tends to zero and the path of the triple shocks 
shrinks to a point. 

B. Oblique shock reflection on a rigid wall 

Another phenomenon closely related to nonlinear fo- 
cusing is the reflection of a shock wave on a rigid wall. This 
was thoroughly studied by von Neumann in 194487g both 
theoretically and experimentally. When a sufficiently weak 
shock wave hits a wedge, a pattern known as “regular 
reflection” arises. In this Fig. 4 (a)], the velocity normal to 
the wall is set back to zero by a reflected shock. For larger 
amplitudes, however, this pattern can be shown not to 
hold. Instead [Fig. 4(b)], the experiments give, for a wide 
range of parameters, a “Mach reflection,” in which the 
intersection between the incident and reflected shocks de- 
taches from the wall, and a glancing, much stronger shock, 
the “Mach stem,” appears. Behind the point where the 
three shocks meet, a slip line marks the discontinuity in 
entropy between the gas that went through the incident 
and reflected shocks and the gas that crossed the Mach 
stem. 

These two kinds of reflection do not fill the whole field 
of parameters. Particularly pertinent to our study is what 
happens to weak shock waves at almost glancing incidence. 
Figure 4(c) shows the boundary in angle-amplitude space 
below which regular reflection is not allowed. For small 
enough amplitudes, neither regular nor Mach reflection 
can take place below this line. The experiments performed 

Reflected shock 

b) Irregular reflection 

c) Boundary between regular and irregular reflection 

FIG. 4. Reflection patterns. When a shock moving glancing to a wall reaches a wedge, a great variety of configurations may occur. For large enough 
angles or small enough intensity of the shock, regular reflection takes place. For relatively small angles and strong shocks, a Mach-stem arises. The von 
Neumann paradox arises in situations when both the wedge-angle and the shock-intensity are small, and regular reflection is not allowed. 
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Fl[G. 5. Linear singular ray. Across the shadow line, diffraction processes 
occur, whereby the dark and illuminated regions learn of the presence of 
each other. 

mG. 6. Nonlinear singular ray. The shadow line goes up due to the higher 
velocity of sound in the more pressurized region. 

by von Neumann yielded nonetheless a configuration very 
much alike a Mach reflection, but with shocks that did not 
seem to satisfy the Rankine-Hugoniot jump conditions. 
This apparent contradiction is known as the “von Neu- 
mann paradox” of oblique shock reflection. 

We can relate these phenomena to the focusing of 
shock waves by considering an axisymmetric front and re- 
placing its axis of symmetry by a wall, an analogy perfectly 
correct if we neglect viscosity. If we do this conceptual 
change in Fig. 1, we see a curved shock wave reflecting on 
a wall; as it has zero amplitude, it gives rise to regular 
reflection. In Fig. 2, instead, we see a fully nonlinear case 
yielding a Mach stem. Finally, for weak waves, we find 
ourselves in the context of the von Neumann paradox. 
Observe that the a&e corresponds to an incident shock 
with zero angle, hence nonlinear effects are to be expected 
even for negligibly small intensities. But the incident shock 
is curved; as a more oblique section approaches the wall, 
regular reflection is again allowed, and we get the delayed 
swallow-tail of Fig. 3. To predict whether a symmetric 
concave front will give rise to a swallow-tail or to a pattern 
of diverging triple shocks, it is enough to look at the pa- 
rameters far away from the axis of symmetry, and check 
from Fig. 4(c) which kind of reflection the asymptotic 
slope and intensity of the shock would yield. 

C. Singular rays 

Another failure of geometrical acoustics occurs behind 
obstacles, along the so-called shadow lines, where diffrac- 
tion effects neglected by the theory become important. 
Consider a shock wave moving parallel to a wall that ends 
abruptly at a corner (Fig. 5). After the wall’s end, ray 
theory predicts a discontinuity in behavior across a 
curve-the shadow line or singular ray-that continues the 
line of the wall. Above this, in the “illuminated” region of 
geometrical optics, the shock continues propagating at a 
uniform horizontal velocity; below, in the %hade,” the me- 
dium remains undisturbed. This discontinuous picture is 
contradicted both by experiments and analytic results. The 
solution to this problem in the linear case was found in 
Ref. 5. In a thin layer surrounding the shadow line, trans- 

verse effects become comparable to the longitudinal ones, 
henceforth affecting the balance of geometrical acoustics. 
The resulting picture can be best understood using Huy- 
ghens’ theory of light: the acute corner acts as a point 
source, emitting circular waves that darken the medium 
behind the shock and illuminate it below the shadow line. 

In the nonlinear case, we should expect a similar be- 
havior, only geometrically distorted by the nonuniformity 
of wave speeds. The singular ray moves up (Fig. 6)) due to 
the faster propagation of sound waves in the upper region, 
where pressure is higher. The compression wave steepens 
up and forms a curved shock, that continues the straight 
remaining part of the original shock into the nonuniform 
diffractive region. 

Singular rays have a much simpler structure than 
a&es, caustics, and Mach-stems. We will see, however, 
that they are closely related to all three of them, so their 
simplicity might help understanding the i6paradoxical” be- 
havior of their more sophisticated relatives. 

Ill. ASYMPTOTIC MOQEL 

In this section, we describe an asymptotic model for 
the behavior of weak shock waves at singular rays, a&es, 
and almost glancing reflection on rigid walls. We motivate 
the model’s geometrical ansatz and display its equations, 
pose initial-value problems corresponding to the different 
phenomena, discuss some of their symmetries and show an 
important family of exact solutions. 

A. The asymptotic equations 

Our asymptotic model will use the equations of time 
dependent small disturbance transonic flow. We will not 
derive these equations here (for derivations see for instance 
Refs. l&20), but we will briefly motivate their geometrical 
ansatz. The idea is basically an extension to weakly non- 
linear situations of the geometrical diffraction theory de- 
veloped in Ref. 5. 

Weakly nonlinear geometrical acoustics considers 
fronts that are locally planar, with small wave amplitude 
[say O(E)] and short wavelengths of the same order in an 
appropriate nondimensionalization. The plane wave ap- 
proximation reduces the number of independent variables 
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FIG. 7. Scaling for a singular ray. The same scale applies to the transition 
from regular to irregular reflection of weak shock waves and to weakly 
nonlinear ar&s. 

to two (time and the direction of propagation) and the 
number of dependent variables to one. The amplitude is 
chosen at the threshold for nonlinear effects. These approx- 
imations fail close to singular rays, caustics, a&es and, in 
general, locations where more than one front meet. To 
describe a linear singular ray, for instance, we need differ- 
ent scalings for the two spatial coordinates. If we consider 
a frame of reference moving at the velocity c of the straight 
front, and introduce a small parameter E so as to magnify 
the vicinity of the singular ray, it is clear from Fig. 7 that, 
to the longitudinal variable x= (X--+9)/e, corresponds 
the “slower” transversal y= Y/e”‘. This same scaling can 
be used for weakly nonlinear singular rays with an O(E) 
amplitude.20 

The (E,E”~) scaling also applies to the transition from 
regular to irregular reflection in the context of the von 
Neumann paradox. This follows from the fact that, for 
small amplitudes, the cotangent of the angle below which 
regular reflection cannot hold scales as the square root of 
the shock’s strength [see Fig. 4(c)], which must be of the 
same order of the wavelength in the X direction for weakly 
nonlinear effects to apply. 

The scales for a linear a&e are different, since this 
involves a front with continuous slope but infinite curva- 
ture. It can be seen that the variables to adopt in this case 
are (X-cT)/E and Y/ti’4, which require an O(E”~) am- 
plitude for nonlinear effects to manifest themselves. This 
seems to indicate (see Ref. 22 for a similar argument re- 
garding caustics) that the a&es of weakly nonlinear 
acoustics are always linear. The reasoning proceeds as fol- 
lows: at a linear a&e, the amplitude is E- 1’4 higher than at 
the outer solution. But this amplification factor falls short 
of the e~t’~ which, multiplied by the O(E) amplitude of 
the incoming focusing wave-as given by w’eakly nonlinear 
geometrical acoustics-would yield the 0( it’s) threshold 
of nonlinearity. Nevertheless, the experiments of Sturte- 
vant and Kulkarny and the arguments of Sec. I lead to the 
opposite conclusion, that nonlinear effects are always sig- 
nificant at an a&e. Fortunately, they also show why the 
preceding argument fails: the infinite curvature of the lin- 
ear geometry is never reached; before that, the smoother 
scaling of the previous paragraph, corresponding to a front 

that has not yet focused, gives rise, in the context of the 
von Neumann paradox, to nonlinear diverging triple 
points. Therefore, nonlinearity manifests itself by altering 
the linear geometry, flattening the front and replacing the 
linear a&e by a completely different configuration. 

We see that the‘same scaling applies to singular rays, 
pseudo-Mach-stems and nonlinear a&es. Doing the corre- 
sponding asymptotic expansion (see for instance Refs. 18 
and 20) yields a set of equations whose canonical form is 

a,+ I- 
! J 

2 -t77y=Q 
x 

uy-q,=o. (1) 
Here (T is proportional to the O(E) term in the perturbation 
to a constant state of density, pressure, temperature, and 
longitudinal velocity, while the transversal velocity begins 
at 0( c?~), with a term proportional to 77. These equations, 
which are the same as those of unsteady small disturbance 
transonic flow, constitute the basic tool of this work. Their 
associated jump conditions across a shock with position 
given implicitly by S(x&) =0 are 

(LY,+&a 101 +qrl1 =Q 
Sybl --~xtTl=o7 

where the brackets stand for jumps in the enclosed vari- 
ables, and 5 for the average of o on the two sides of the 
shock. Equivalently we can write 

I 02 \ 

s,= - ($+s$-), 

iI?11 sy -=- 
to1 &’ (2) 

We can normalize S at any point to have S,= 1 and 
S,= -a, where a is the cotangent of the shock’s inclina- 
tion angle. Then, for straight shocks, we can rewrite Eqs. 
(2) as 

x-ay-(C+a2)t=const, 

[VI =-aLal* (3) 

The entropy condition requires CT to decrease from left to 
right across shocks. 

6. Model problems 

We need to complement the equations in ( 1) with ap- 
propriate initial and boundary conditions for the different 
physical problems. Let us begin with oblique shock reflec- 
tion. The condition at the wall is simply q=O. The condi- 
tions at the time at which a glancing shock hits a wedge are 
plotted in Fig. 8 (a). It seems intuitively obvious that the 
corresponding initial conditions for the model equations 
(1) are those represented in Fig. 8(b) (a detailed justifi- 
cation will be provided in Ref. 4). We have chosen to 
parametrize the angle of incidence of the shock by its co- 
tangent a. 
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a) Original setting b) Asymptotic model 

FIG. 8. Initial conditions for oblique shock reflection. 

For a singular ray, there are no boundaries, and the 
conditions in both physical space and the asymptotic 
model immediately after a glancing shock has reached the 
end of an obstacle are plotted in Figs. 9(a) and 9(b). In 
Fig. 9(c), we have represented another initial condition, 
corresponding to what we will call a “modified” singular 
ray, whose relevance will be explained in Sec. IV. 

The design of initial conditions for a focusing front 
involves a good deal of arbitrariness, since there is not a 
clear “time zero” for focusing as there was for shock re- 
flection and singular rays. For our numerical computa- 
tions, we have chosen the configuration of Fig. 10, with an 
initial front consisting of a quadratic parabola which, from 
some point on, continues as a straight line. 

High pressure 

z ,> < ,/ , ,r r ,I , ,< , 
,’ , /’ , ,’ , ,’ , ,’ , ,’ 

/’ 
I 

, 
I’ 

, 
11’ 

a) Original setting 

-+- 

Low 
pITSSUIT. 

C. Symmetries; elliptic and hyperbolic domains 

Both Eqs. (1) and the initial conditions for the differ- 
ent problems have a number of symmetries with important 
consequences. First, the equations’ invariance under the 
Galilean transformation 

o-+a+oo, 

x-+x--u0 t (4) 

allows us to take a,=0 in all four problems. The invari- 
ance under 

x+cx, 

pC1'2JJ, 

f Y 

0 = 0, 0 = o. 
x 

0 = Go O”D 0 

b) Asymptotic model 

Intermediate pressure 

High pressure 

c) Modified singular ray 

FIG. 9. Initial conditions for standard and modified singular rays. 
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FIG. 10. Initial conditions for focusing. 

U-+CU, 

7 --* c”“rl 

(5) 

leaves al/a2 as the only parameter in the shock reflection 
problem, makes the choice of o1 arbitrary in standard sin- 
gular rays, and reduces the choices, in modified singular 
rays, to that of the quotient ~;?/a, and, in focusing, to that 
of a quotient between o1 and the curvature at the origin 
plus again a value of 01/a2, with a the slope of the straight 
part of the shock. Fmally, the equations in (1) and the 
initial conditions for shock reflection and both standard 
and modified singular rays are invariant under the stretch- 
ing 

x*cx, 

Y -CY2 (6) 

t-*ct. 

This implies that, in these cases, the solution is a function 
of g=x/t and r=y/t alone. In these variables, the equa- 
tions read 

-&-ru,+ (0%)~+~.,=0, 

a,-- qt=o. (7) 

The reason for calling r the quotient y/t is that, as we 
will see, it really acts as a time-like variable. In a way, the 
unsteady patterns travel away from the axis r=O, so their 
distances from it become a measure of the time elapsed. 
The characteristics of (7) are 

d&dr= -r/2 A dw, (8) 

where 5 stands for u in smooth regions and for its average 
on the two sides of shocks [for shocks, d&dr in (8) is the 
shock speed in the (&r) coordinates]. The equations in (7) 
are hyperbolic for ?/4+g--Z> 0 and elliptic elsewhere. 
There is a strong parallel between the appearance of elliptic 
and hyperbolic domains for (7) and that of subsonic and 
supersonic flows for both ( 1) and the original equations of 
gas dynamics. We will make this parallel precise in Refs. 3 
and 4. An important related result is that, for waves prop- 
agating into a gas at rest, the solution can be locally non- 
constant only in the elliptic (“subsonic”) domain. 
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D. A family of exact solutions 

We will now compute the simple waves of (7), i.e., the 
solutions that depend on only one parameter. In regions 
where the solution is smooth, we can rewrite (7) as 

- ((--(r)u~-ra,+?77=Q 

a,-7Q=o. 

This suggests switching to the semi-implicit coordinates 
x=c- CT, 7: In these, the equations become 

a(wl) =. -~ux-ru,+rlT+- J(x,r> ’ 

O,--rlx=O, (9) 

where a(u,v)/d(~,r) is the Jacobian CT~~.,--CT,~~. Notice 
that these equations are almost the same as (7), with the 
Jacobian replacing the nonlinear term (d/2),. But the 
Jacobian will vanish whenever D and r] are functionally 
dependent, so this formulation is particularly suitable to 
the study of simple waves, where both u and q are func- 
tions of the same variable S. Assume u=F(S) and 
q=G(S). Then (9) becomes 

( -~Sx-rS,)F;l(S)+S,G’(S)=O, 

S, F’(S) -S,G’(S) =O. 

For this system to have nontrivial solutions, we must have 

S,/s.u= r/2 f JF7Gjj 

which can be read as an ordinary differential equation for 
the contour lines of S: 

dX 
x= --7/2=F 4-i. 

This equation has the one-parameter family of solutions 
x=ar+a’, together with its envelope x=-g/4, which 
coincides with the boundary of the elliptic region. These 
contour lines, which we will call “pseudocharacteristics,” 
are plotted in Fig. 11. 

Notice that, at a given point (x, r), a can be computed 
as a= --7/2F 4s. But there is a one to one relation 
between a and the contour lines of S, so in particular we 
can take S=a. Then we have found the following families 
of solutions, depending on an arbitrary function F and the 
sign chosen for the square root: a=F(S), r~ = G(S), with 
S= --7/2F dci and G’(S) = -SF’(S). The 
pseudocharacteristics on which we build these solutions 
are indeed characteristics, because the only difference be- 
tween (8) and (10) is the term dcr/dr=dc/dr-dx/dr, 
and this vanishes along a pseudocharacteristic, where u is 
constant by construction. 

These solutions hold in the hyperbolic domain 
$+4x > 0. But the method also works, at least formally, in 
the elliptic domain, yielding complex results. This is not a 
problem in the linear case, where real and imaginary parts 
decouple and we can keep either as a real solution (notice 
that, in this linear case, 6=x). This suggests a simple rec- 
ipe for solving the linear equations with data given on the 
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FIG. 11. Pseudocharacteristics in the implicit coordinates M, T. Both 
families of characteristics are tangent to the parabolic line. 

boundary of the elliptic domain: Consider these data as the 
imaginary part of a complex function F(S) [or G(S) if 7 
is given instead of o] that we only need to extend analyti- 
cally into the interior of the elliptic domain to get the full 
solution. In other words. we have found that. in the svstem . 
of coordinates (r/2, dz), the linear equations im- 
ply Laplace’s for both IT and q:“We will use this procedure 
in the following section to compute the exact linear solu- 
tions for unsteady regular reflection and singular rays. 

There is a more explicit representation of the simple 
waves in the hyperbolic domain. Notice that, since u is 
constant along pseudocharacteristics, these are straight 
lines in both the implicit coordinates (x, 7) and the explicit 
(c, r). This suggests considering any one-parameter family 
of straight lines in the (5, 7) plane and look for a solution 
to (7) where both (I and r] have these as contour lines. We 
will show next that such a solution, necessarily a simple 
wave, always exist, and has a very simple explicit formula. 
For this, consider the family as generated by its envelope, 
given parametrically by ~=&,(f3>, r=re(13). Here 8 is the 
angle of the tangent to the curve, so we must have 
rh( 6) = tan( @(A,( 0). Notice that this will be trivially sat- 
isfied if rh( 0) = {h ( 0) = 0, so we can consider a single point 
as a particular case of enveloping curve. Now, in the region 
towards which (&( f3) ,r,-,( 0) ) is concave, we introduce a 
system of coordinates (8(&r),$(c,r)> in the following 
way (Fig. 12): we trace from ({,r) a tangent to 
({e(6) ,~a( 0) ), and denote by 0 the angle of inclination of 
this tangent and by 4 the distance along it from the curve. 
Then 

e=m-‘(;---;;;;), 

+5go(8) 
c0ge) . 

The equations in (7) become, after some manipulation, if 
we consider the case in which IJ and 77 are functions of 8 
alone, 

FIG. 12. New coordinates, appropriate for an explicit description of the 
simple waves. 

1 
(gob(e) -a) -262 - ’ 

tan(f3) tar?(e) 00=o* 1 
Hence either oe=O or 

7,(e) 1 
u=&(e) -- - 

tan(e) tan2( i3) 

with 71 defined by the first formula. This is an explicit 
formula for our simple waves. Notice that the arbitrary 
choice of t;(S) in the implicit formulation corresponds to 
that of the family’s envelope in the explicit coordinates. In 
particular, the solution with co( 0) and r,(e) constant (a 
fan emanating from a point) is 

o=~o~rok-5? _ e.6 2, r-7-0 ( ) r--r0 
,=c+;(gz+g (-J. (12) 

Just as the implicit formulation could be used in the 
elliptic domain, so can the explicit formulas be applied in 
the region not covered by rays, i.e., the region towards 
which the envelope is convex. There 8 and the solution 
( 11) are complex. This again is not a problem in the linear 
case, where real and imaginary parts decouple, and either 
part yields an exact solution. 

E. A numerical algorithm 

In the following sections, we will often use numerical 
results to illustrate phenomena and motivate discussions. 
The algorithm that we use will be fully described in Ref. 2; 
a very brief description here seems appropriate though to 
make this paper self-contained. 

Our goal is to solve Eqs. ( 1) numerically for different 
initial and boundary conditions. The fact that makes this a 
delicate task is that the planes with constant time are char- 
acteristic surfaces of the equations. Advancing a solution 
in time is therefore a nonlocal operation; certain perturba- 
tions propagate with infinite velocity. In the presence of 
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FIG. 13. “Oblique” coordinates for the numerical solution of the asymp- 
totic equations. 

shocks, this leads to spurious dispersive effects that ruin 
the accuracy of any standard numerical method. 

A remedy that we have found to this is to switch to the 
“oblique,” noncharacteristic coordinates c= t+x, r= t-x, 
y. In these coordinates, the equations are 

b-o%>,+ (a+~/2)g+77y=0, 

Introducing w = u- (i?/2, with inverse o= 1 - ,,/E (as- 
suming o< 1 and w < l/2), we get 

q- cm+2 jh=)~+rl,=o, 

r],-JJQ-- ( Jl’i--2w),==O. 

Here r is not a characteristic of the equations; indeed, it is 
a valid time-like variable. Thus we advance in r instead of 
t, using a fractional-step alternate-direction procedure to 
decouple the c and y derivatives. The two systems to solve 
are 

co,- (w+2 t/-i-z&=0, 
%%--77g=o, 

and 

%+vy=O, 
r/T-- ( Q+o. 

The first system decouples into two scalar equations, 
while the second may be viewed as describing a polytropic 
evolution of gas dynamics in Lagrangian coordinates, with 
o acting as specific volume, ( -v) as velocity, and with 
pressure given by the convex P(o) = d=. We solve 
both systems with a second order Godunov method that 
works on nonrectangular grids,” since in the new coordi- 
nates (&,r) the domain of integration for fixed y has the 
shape sketched in Fig. 13, which cannot be covered by a 
rectangular mesh. The boundary conditions that comple- 
ment this algorithm will be discussed in Ref. 2. 

Reflected \hock 
Incoming shock 

/ 

“, 
/; 

I 

1 ; 0, >o 
/ ; 

:\ 

; ’ 

I 91 =--cIq 
* B- 1: 

.__.._... j a 

:I:\\, ,/ ;r”, 
FIG. 14. Steady regular reflection. The equations for the reflected shock 
have two solutions for c,,/& < l/2 and none otherwise. To decide which 
solution really takes place, the unsteady process has to be considered. 

IV. THE VON NEUlWANN PARADOX IN THE 
ASYMPTOTIC MODEL 

In this section, we show evidence that triple shocks, 
which the equations in principle do not admit, do nonethe- 
less occur in many situations. We discuss regular reflec- 
tion, both steady and unsteady, and show that this can only 
take place for a limited range of parameters. This fact and 
the theorem that we prove next on triple shocks not being 
allowed constitute the core of the von Neumann paradox. 
This gets enhanced when we show, in a half-theoretical, 
half-experimental way, that triple shocks need to arise, at 
least for a range of parameters, in unsteady irregular re- 
flection. We fI.nd the same paradox in a class of modified 
singular rays, where we can prove rigorously that triple 
shocks occur. Finally, we show numerically that triple 
shocks arise in both weak and strong focusing of curved 
fronts, occurring in the latter as in shock reflection, and in 
the former as an inverted triple shock that replaces the 
linear caustic. 

A. Regular reflection 

We will study the domain of validity of regular reflec- 
tion. First, let us concentrate on the steady state solution. 
This is represented in Fig. 14. We have, in the notation of 
Fig. 8, an unperturbed state with ao=~c=O, an incoming 
shock with parameters a > 0, o1 > 0, and v1 = -an1 and a 
reflected shock with a-u2 and inclination 0 that restores 17 
to zero. Entropy requires that a2 > u1 > 0. 

The incoming shock has horizontal velocity 
c=u1/2+a2, which has to match the reflected 
c = ((T, + u2) /2 +$. This gives the condition 

u2/2+ @‘-a’) =O. (13) 

In addition, the reflected shock has to restore the velocity 
normal to the wall to zero. Then 

/3(u2-al> +aul=O. 

From.(13) and (14), 

(P-a> (WP+a) +a11 =O 

(14) 
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FIG. 15. Characteristics in unsteady regular reflection. The incident and 
reflected shocks belong to different families of characteristics. All spatial 
and temporal nonuniformities are confined to the elliptic domain. 

so either /?=a, a2 = 0 (a nonentropic reflected shock which 
completely cancels out the incoming one), or 

j?=(-1/2rt1/2JKX&P)a 

with corresponding 

(15) 

u2=(1+al/a2~ Jm)a’. (16) 

These solutions break for ul/a2> l/2; hence no regu- 
lar reflection can occur beyond this limit. When regular 
reflection is allowed, there are two possible solutions, both 
satisfying the entropy condition. The choice of one or the 
other must arise from considerations involving causality; it 
is in principle conceivable that different initial conditions 
could give rise to the two solutions. In order to elucidate 
which occurs in our problem, we need therefore to study 
the unsteady case. 

The initial condition corresponding to the time at 
which the incident shock hits the wedge has already been 
plotted in Fig. 8. As both the asymptotic equations and the 
initial and boundary conditions are invariant under the 
stretching (6) the solution must be a function of 5=x/t 
and r=y/t alone, so Eqs. (7) apply. 

The two families of characteristics (8) are plotted in 
Fig. 15 in the different regions of an unsteady regular re- 
flection. The incoming shock belongs to the family of char- 
acteristics approaching the wall, while the reflected shock 
must belong to the family getting away from it. The elliptic 
domain of (7), also plotted in Fig. 15, completes the pic- 
ture of regular reflection; it is the region where the steady 
pattern has not yet arisen. 

We can verify, at least partially, that the configuration 
of Fig. 15 is correct, by solving the linear problem exactly 
with the techniques of Sec. III D. In the linear case, ( 15) 
and (16) give p= -a and u2=2ut, which, together with 
rll = --au1 , yield the picture of Fig. 16. Now, if we recall 
that S= -r/2+ ,/s, we have to build an analytic 
function G(S) with the boundary conditions of Fig. 17. 
The solution is 

G(S)=-Tlog((afS)(a-s)) 

so 

s 

-G’(S) 
F(S)= s &=u,[2i-;log(~)]. 

G’(S) = -S F’(S) 

FIG. 16. Linear regular reflection. The discontinuity in the data along the 
parabolic line will give rise to a fan-like singularity in the elliptic domain, 
centered at the point where the reflected wave meets the parabolic line. 

Then a( c,r) and ~({,;7) inside the elliptic domain are 
given by 

“=“li2+d(~~~)], 

rl=-E2tan-1 r\112i4’f;l 
77 ( 1 al--c--i/2 ’ (17) 

where tan- ’ is taken to range from 0 to n-. This exact linear 
solution is plotted in Fig. 18. To show that essentially the 
same pattern arises in nonlinear regular reflection, we have 
plotted the numerical solution to a case with ul/a2=0.2 in 
Fig. 19. In the three-dimensional (3-D) plots, u is viewed 
from ahead of the incident shock and -?I from behind the 
reflected one. 

In the general nonlinear case, the boundary of the el- 
liptic region touches the wall at g=x/t=u2. This is the 
“sonic” point corresponding to u2; behind it, a constant 
state with CT= u2 cannot sustain itself, since the information 
from the incoming shock would never reach it. In the pic- 
tures drawn so far, we have assumed that this point lies 
behind that at which the incident shock meets the wall. Let 
us now elucidate under which conditions this is the case. 

At the wall, the incoming shock has &=01/2+a2. 
On the other hand, from ( 16), the sonic point correspond- 
ing to a2 is 

Im(G) = 0 
Im(G) = -ao, 

1 --- 
-R&S) 

3( 1” 
-a 

FIG. 17. Boundary conditions for G(S). 
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FIG. 18. Linear regular reflection (exact solution). The fan-like singu- 
larity at the junction of the reflected wave and the parabolic boundary has 
the structure of a linear singular ray. 

g-sson=a2+a~ f jiizq. (18) 

From this we can already see that, in order to have 
!5on < tine f we need to adopt the minus sign in ( 15) and 
( 16). This corresponds to choosing the solution with 
smaller a2 and more oblique reflected pattern. Further- 
more, a small computation shows that &,,, <& also im- 
plies that 

o,,a2<&=o.4721 <0.5. 

A more conceptual reason why the minus sign has to 
be chosen in ( 15) is that, in the solution with the plus sign, 
the constant state behind the “reflected” shock arises from 
the conditions at 03, not from information reflected from 
the wall. In the language of Fig. 15, both the incident and 

FIG. 19. Nonlinear regular reflection (numerical). The fan-like singular- 
ity is “eaten” by the reflected shock wave, which moves more slowly than 
the singular point. 
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“reflected” shock belong to the family of characteristics 
approaching the wall. It is clear that such solutions would 
be highly artificial, and that it is improper to call the sec- 
ond shock “reflected” in this context. A truer interpreta- 
tion is that we have two incident shocks, arranged just 
right so that their reflections cancel. 

So far, we know the following about the range of va- 
lidity of regular reflection for the asymptotic equations: A 
locally steady solution with a regularly reflected shock can 
only be obtained, for the wedge problem, when 
01/a2 < 0.4721. However, a solution with a reflected shock 
arising from the wall is in principle plausible up to 
01/a2=0.5. If a “regular” reflection occurs between 
01/a2 = 0.472 1 and 0.5, the state behind the reflected shock 
will be nowhere uniform. For al/a2 > 0.5, neither regular 
reflection nor a standard Mach stem are allowed, as the 
following subsection shows. 

B. The asymptotic equations do not admit triple 
shocks 

We show here that Rqs. ( 1) do not admit triple shocks 
separating regions where the solution is continuous. Notice 
that such triple-shock configuration is not possible for the 
original equations of gas dynamics either. In that context, 
the occurrence of slip-lines gives one extra degree of free- 
dom which, in many cases, accounts for the appearance of 
triple shocks. As the shocks become weaker and more par- 
allel, however, the changes of entropy, which are of higher 
order, become negligible, and the slip lines are so weak that 
they no longer suffice to make triple shocks permissible. In 
the context of Eqs. ( 1 >, this manifests itself in the complete 
absence-of vorticity-and therefore of slip lines. The fol- 
lowing argument shows that, unless some different kind of 
discontinuity appears, triple shocks in this regime cannot 
arise. 

We need to characterize the family of shocks having 
one common (moving) point. This point we can take to be 
given by x = ut, y= ut. The jump conditions (3 ) imply that, 
for a shock with inclination specified by its cotangent a, 

(f=u-au-a2, (20) 

where 5 is the average of u on the two sides of the shocks. 
Let us now consider three shocks, with a common 

point that moves at velocity ( u,u), separating three regions 
where, for simplicity, we will assume o and rl to be con- 
stant (see the note at the end of the proof). As shown in 
Fig. 20, we will denote the three regions with Roman num- 
bers I, II, and III, while the shocks will be identified with 
Arabic numbers, 1 for the shock separating the regions II 
and III, 2 for the one between regions I and III, and 3 for 
that between regions I and II. We will call ai the cotangent 
of the angle 8i. 

The jumps in o across the shocks and the averages of ~7 
on both sides of them are connected by the following rela- 
tions: 

(am-o-u) =2(~~-~3), 

(~I-& =2&--ad, 
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FIG. 21. Pseudo-Mach-stem, exhibiting a triple point and a strongly non- 
uniform region behind the reflected wave. 

FIG. 20. Triple shock configuration. The only crucial assumption is that 
the solution is continuous inside the three domains separated by the 
shocks. 

Using (20), we can transform these into 

(cm--a111 =Wa3--a2) +Xa:--a& 

(q-q111)=2u(al--a3) +2(a:--a:), 

(aa-q)=2u(a2--aI) +2(ai-at). 

We can get the jumps in VI from the jump conditions 
[771=44: 

Cm--rid =alW(a3--cr2) +X4-4)), 

(w--?1d =a2(24q--a3) +Xa:-a:)), 

(rln--q)=a3(24a2--al) +2(&--al)). 
Adding these up, we obtain the consistency requirement 

O=i .i [q]i=a,(a~-a~) +a2(af--cr~) +a3(a$-a:). 
Z-l 

Now think of this as an equation for al, with a2 and 
a3 fixed. It clearly has the roots al=a2 and al=3. It can 
have no more, because the equation is quadratic. But these 
two roots are trivial; they yield a configuration that reduces 
to a single shock. Hence triple shocks are not allowed, as 
was to be proved. 

Note: Although for simplicity we have worked with 
straight shocks separating constant states, the theorem re- 
mains valid under more general conditions. It is enough to 
assume that each shock has a definite tangent as it ap- 
proaches the triple shock, and that both o and r] are con- 
tinuous at the triple point inside each of the three regions 
into which the shocks divide the plane. 

C. Irregular reflection 

What happens when regular reflection is no longer al- 
lowed? To get a first glimpse of the answer to this question, 
we have plotted in Fig. 21 the numerical solution to Eqs. 
( 1) with (r1/a2= 1.6, well inside the domain of irregular 
reflection. A clear triple point appears, with three waves 
which do look like shocks. We need more solid evidence 
for this, since it seems to contradict the theorem of the 
previous section. It has in fact been argued (see Refs. 10, 
12, and 13) that there is no reflected shock in this regime; 
that the incident shock merely bends until becoming par- 
allel to the wall and behind this shock only a smooth com- 
pression wave forms. We will show that this is unlikely by 
relating the question of smoothness to that of the location 
of the elliptic and hyperbolic domains. But first we can 
perform some simple tests. 

It is hard to distinguish visually between a shock and a 
very steep compression wave. However, in a numerical 
computation, the width of a shock should scale with the 
grid size (typically two meshpoints for a strong shock and 
five or more for very weak ones for second order Godunov- 
like schemes), while every contour line of a smooth wave, 
once resolved, should be basically invariant under further 
refinements. Therefore a good check for shocks is the be- 
havior under grid refinements. If we could refine our grid 
forever, this test would always yield a defmite answer. As 
we are bounded by our computing capabilities, however, 
we can only say the following: if for our finest grid the 
wave’s width, measured as the distance between the con- 
tour lines of two tied values, keeps scaling with the grid 
size, we are either in the presence of a discontinuity, or we 
have a wave so steep that even so fine a grid cannot tell it 
from a discontinuity. If the two values are very far apart 
and the finest grid is really very tine, common sense will tell 
us that a shock is a lot more likely. In Fig. 22 we have 
plotted details of the solution to a fixed problem with two 
grids, one five times finer than the other in each direction. 
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FIG. 22. Contour lines of o for two computations over the same domain 
and data, with grid sizes scaIed by a factor of 5. The reflected wave has a 
finite jump across a band of about one grid size; this strongly indicates the 
presence of a discontinuity. 

The number n in the figure is a measure of the grid size, 
which will be defined in Sec. IV. For this problem, 
crO= -0.8, ol= -0.4, and a=O.5, so (ot-00)/a2=1.6. 
The numbers labeling the axis of the plots represent mesh 
points. In the two top figures, we have plotted a relatively 
distant view, to show that both grids resolve the field away 
from the shocks consistently. In the plots at the bottom, we 
have made a more extreme close-up of the the triple point 
in the x-direction, to be able to appreciate the exact width 
of the waves. The contour lines in these plots were chosen, 
from right to left, at the values -0.79 (to mark the front 
edge of the incident shock), -0.41 and -0.39 (to trace 
the back edge of the incident shock and the front edge of 
the reflected wave), -0.35, -0.3, -0.25, -0.2, -0.15, 
and -0.1. Looking first at the incident shock, we observe 
that it has a width of about one grid size in both resolu- 
tions. Turning next our attention to the reflected wave, we 
see that the interval between -0.39 and -0.2 also scales 
consistently with the grid size; it has actually a width of 
only one grid size as well. The value o= - 0.15 probably 
lies close to the back edge of the reflected shock, while 
CT= -0.1 is resolved by both computations as being away 
from the leading edge of the wave. The similarity of the 
two computations is striking; the fact that the predicted 
shock has a jump of about 0.2, i.e., half the intensity of the 
incident shock, resolved in just one cell with A~=0.01, 
seems to us compelling evidence that the reflected wave is 
indeed a shock. We will now show more subtle arguments 
to the same effect. 

Recall that Eqs. (7) switch from hyperbolic to elliptic 
when ?+4c-a becomes negative. We can compute this 
expression at every point in the numerical solution, and 
thus determine the solution’s local character. The bound- 
ary between the two domains is shown with continuous 
solid trace in Fig. 23, with the (dotted) contour lines of (T 
as background. We see that this boundary coincides with 
the reflected front. Then the hyperbolic domain consists 

:.; 
:.; 

.-_ 
--, 

*., 

:.., 

5 IO IS 20 25 30 35 40 
K 

FIG. 23. Real and hypothetical boundaries of ellipticity. The solid line 
marks the real (numeric) boundary; the dotted line corresponds to the 
parabolic line computed with o=oi. If the reflected wave were not a 
shock, both lines should coincide. 

solely of constant states separated by the incident shock, 
while all nonuniformities in space and time are confined to 
the elliptic domain. There is another line marked on Fig. 
23 with dashes: it corresponds to a hypothetical boundary 
of ellipticity computed with (T=cT~. This should coincide 
with the previous one were the reflected front not a shock, 
because then the value of o at the head of the reflected 
wave would be o1 by continuity. We conclude that this 
cannot be the case, since the distance between the two lines 
exceeds by far the order of magnitude of any possible nu- 
merical error. 

This argument was based on numerical evidence. 
Many of its components, however, can be sustained on 
purely analytic grounds. We will take ae=O and consider 
the range at/a2 < 2. As regular reflection cannot take place 
for at/a’> l/2, this range covers the transition between 
regular and irregular reflection. We will show that, under 
one assumption, a smooth reflected wave cannot hold in 
this range. Recall that the location of the incident shock is 
given by 

c=;+a'+ar 

while the condition for ellipticity, for a state with u=ut , is 

72 
&q-4 

As r > 0 and a2 > ai/2 by hypothesis, we see that, if there 
is a smooth reflection wave, its leading edge will have 
o=oi, and will therefore lie inside the hyperbolic domain 
of Eqs. (7), at least in some neighborhood of the triple 
point. Then the reflected wave must lie on a characteristic 
of the equations. To which of the two families of charac- 
teristics may it belong? In our chosen range of parameters, 
the characteristics of the same family of the incident shock 
have positive slope, i.e., dQdr> 0. But in all the experi- 
mental and numerical results known to us, including those 
used in Refs. 10 and 12 to support the theory of the 
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ss=d 
T)=-lj1 

FIG. 24. Initial value problem which shows that a smooth reflected wave 
cannot arise. The dotted line marks the location of the parabolic line, 
boundary of the elliptic domain, computed with (T=CT, . For the assumed 
range of parameters, this line lies entirely behind the point where the 
incident shock wave, if continued, would hit the wall. 

“smooth compression wave,” the reflected wave has nega- 
tive slope. We  conclude that the assumed smooth reflected 
wave must belong to the other family of characteristics, 
those emanating from the wall, as is the case in regular 
reflection. This assumption, which can also be justified in- 
voking causality, is equivalent to the statement that -5 is 
a time-like variable for f; > go, for some go which is strictly 
smaller than the value of c at the triple point. The necessity 
of this assumption on the family of characteristics to which 
a smooth reflected wave must belong is the only reason 
why we cannot yet call our argument against the existence 
of such wave a theorem. Once this is assumed, however, a 
contradiction follows immediately. 

Consider the initial value problem plotted in Fig. 24, 
where -g plays the role of time. For simplicity, we have 
replaced the wall by an axis of symmetry, in order to give 
initial data on the whole g=f;c axis, where L& must be 
chosen large enough to lie ahead of the reflected wave. This 
initial value problem clearly has a solution consisting of the 
incident shock and its mirror image, up to the time when 
they meet at the wall. But this solution is unique. Unique- 
ness of the solution to homogeneous hyperbolic systems 
was proved by Diperna in Ref. 24; the extension to the case 
with variable coefficients should be straightforward, partic- 
ularly for 2x2 systems in one space dimension. Therefore 
the assumption of existence of another solution with a 
smooth reflected wave cannot hold, as we wanted to prove. 
To invalidate the uniqueness argument, we need - 6 not to 
be a valid time at the triple point, and this forces the re- 
flected wave to be a shock, since -{ is time-like along the 
incident shock all the way to the wall for u= (TV. 

We  have therefore shown that, despite the theorem of 

SO 

FIG. 25. Linear singular ray (exact solution). At the edge of the com- 
pressive wave, the solution has vertical slope. 

Sec. III B, triple shocks are required in at least some range 
of irregular reflection. Before attempting a way out of this 
paradox, we will see, in the following two sections, how it 
arises in two different contexts: in a type of modified sin- 
gular ray and in both quasilinear and fully nonlinear fo- 
cusing. 

D. Standard and modified singular rays 

At the standard singular ray occurring when a shock 
reaches the end of an obstacle, the many symmetries of 
both Eqs. ( 1) and the initial data of Fig. 9 (b) reduce the 
whole phenomenon to a single, time independent configu- 
ration. To see this, observe that, on the one hand, the 
invariance under stretching (6) makes the solution depend 
only on x/f and y/t. On the other hand, the Galilean in- 
variance (4) turns the choice of a0 arbitrary. Finally, the 
invariance under the similarity transformation (5) reduces 
the choice of cl to that of appropriate x/t and y/t scales. 
Therefore, the result of any experiment at any time and 
location can be drawn from one single picture! 

This reduction of all nonlinear singular rays to one 
configuration makes the singularity of the linear limit even 
more striking: there appears to be two-and only two- 
distinct patterns, one nonlinear-but not amplitude 
dependent!-and one linear. The latter is a limiting case of 
the former in two ways: for fixed x, y, and r, as the ampli- 
tude goes to zero and, for fixed amplitude, as x/t and y/t 
go to infinity with y2/x fixed. 

W ith the same methodology of Sec. IV A we can com- 
pute the exact solution in the linear case. The solution is 

2 
a=; tan-’ 

( 

-i- 

J 
, 

(21) 

plotted in Fig. 25. Next we consider the nonlinear case. 
From the discussion above, the choice of parameters here 
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FIG. 26. Nonlinear singular ray (numerica1). The compressive wave is 
now a shock, and the fan-like singularity has disappeared. 

is a question of convenience alone. We have adopted 
gl= 1, ao=O [see Fig. 9(b)]; the numerical results at t=2 
are plotted in Figs. 26 and 27. As we can see, the nonlinear 
structure resembles a lot the linear one, with two impor- 
tant differences: the singularity that appears in the elliptic 
region of the linear solution at {=r=O is “eaten” by the 
shock, that moves backward relative to the sound velocity 
behind it, and the infinite slope at the end of the compres- 

9 

-7-r- ~ r----r- 
I 

10 20 30 40 SO 60 70 80 90 

FIG. 27. Nonlinear singular ray (numerical). Notice the shock slicing the 
otherwise smooth solution. 

t=Z dx=dy=0.05.q=-0.~,q=-0.9,~~,., 

FIG. 28. Singular ray with triple shock (detail). The von Neumann par- 
adox arises here in a conceptually simpler context. 

sive wave (the square-root singularity at the edge of the 
linear elliptic region) breaks into a shock This last point, 
that will be shown below to be somewhat paradoxical, can 
be “proved” by the same technique of Fig. 23, by looking 
at the location of the boundary between elliptic and hyper- 
bolic domains. However, in this case the same idea can be 
made into a purely analytic proof.3 

As we have seen, nonlinear singular rays have a rela- 
tively simple structure, much easier to explain, qualita- 
tively at least, than pseudo-Mach-stems, a&es, and caus- 
tics. It would be interesting, therefore, to make up some 
intermediate object that, sharing the basic behavior of sin- 
gular rays, incorporates some of the paradoxes related to 
triple points. Such an object is readily available in the ini- 
tial configuration of Fig. 9(c). If we let this configuration 
progress in time (see Fig. 28, where we have taken, in the 
notation of Fig. 9, ae=-0.1, at=0.9, and u2= l.l), the 
shock between states 0 and 2 will move forward faster than 
that between 0 and 1, since a2 > (~1. The latter will, there- 
fore, intersect the compressive front of this modified sin- 
gular ray. If this is still a shock, as it is when ol = 02, we 
will have again a triple shock intersection in principle for- 
bidden by the theorem of Sec. IV B. But we can prove that, 
for a range of parameters, this triple shock has to arise.3 
This fact enables us to state the von Neumann paradox in 
a way that does not depend on delicate experimental mea- 
surements: If there is a solution to Fqs. ( 1) with the initial 
data of Fig. 9(c), it needs to develop triple shocks. On the 
other hand, triple shocks separating smooth states are not 
allowed by the equations. 

E. Weak and strong focusing of shocks 

We will illustrate the two possible configurations, qua- 
silinear and fully nonlinear, with two typical runs. In the 
first one (Figs. 29-3 1 ), we see the initial flattening, delayed 
focusing and eventual folding of a relatively weak shock 
wave. In the notation of Fig. 10, we have c+~=O, ai=O.I, 
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FIG. 29. Quasilinear focusing. Initial flattening of the front. 

h=6, and a=0.6. In the second (Figs. 32 and 33), a 
stronger wave with ao=O, al=0.5 and the same geometric 
parameters is shown as it goes through front flattening, 
formation of compressive diffraction waves and appearance 
of diverging triple shocks. The parameter that will deter- 
mine whether the front will eventually fold on itself or 
flatten up, namely the quotient (a, -ao)/a2, takes in the 
two cases the values 0.28 and 1.39, corresponding to reg- 
ular and irregular reflection respectively. 

In Fig. 29, we see the initial nonlinear flattening of a 
weak focusing shock. The time in Fig. 30 corresponds 

Aa=ll.I. W  a4.6 

1=7 

IO 20 30 40 50 60 70 80 90 100 

FIG. 30. Quasilinear focusing. Collision of the two triple points. EG. 32 Fully nonlinear focusing. Initial flattening of the front. 

FIG. 31. Quasilinear focusing. Swallow-tail with triple shocks. 

roughly to that of a linear a&e (or rather a perfect focus, 
since the parabolic initial front adopted here corresponds 
to a circle in the original equations). In Fig. 3 1, we see the 
nonlinear equivalent of the linear “swallow-tail.” There is 
an important difference between quasilinear focusing and 
regular reflection, in that the fortier has a triple-shock 
encounter where the latter has a singular ray. This can be 
seen in Fig. 31, where the inverted front at the end of the 
uniform pressurized region is a compressive shock. This 
contrasts with the smooth expansion that arises in the same 
place in regular reflection (see Fig. 18). To clarify this, we 
have plotted in Fig. 34 a schematic cut at y=O of Figs. 18 
and 3 1. We observe in Fig. 3 1 an inverted pseudo-Mach- 
stem where in the linear case we should find a caustic. This 

t=9, detail 

dx=dyzO. 1. axis labelled in mesh points 
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t=l8 t-18, detail 

dx=dy=O.l, axis labelled in mesh points 

FIG. 33. Fully nonlinear focusing. The diffracted compressive waves have 
developed into shocks, yielding a new instance of the von Neumann 
paradox. 

provides a new tool for analyzing triple shocks, namely a 
linear limit. We did not have this in irregular reflection, 
since this was inherently nonlinear: before the amplitude 
vanished, we had to switch to regular reflection, thus loos- 
ing the triple point altogether. 

Figure 32 shows the flattening of a stronger concave 
shock, and the formation of diffracted compression waves 
behind it. In Fig. 33, these waves have steepened into 
shocks, giving rise to triple points, completely analogous in 
this case to those of irregular retlection. Therefore the nu- 
merics agree with the experimental results of Sturtevant 
and Kulkarny and the theoretical predictions of Sec. III. 
We conclude that Eqs. ( 1) do capture the transition be- 
tween linear and nonlinear focusing, and that a complete 
understanding of both the quasilinear and weakly nonlin- 
ear regimes must await the resolution of the von Neumann 
paradox. 

V. SINGULAR BEHAVIOR BEHIli’lQ TRIPLE SHOCKS 

We have proved in Sec. IV B that Eqs. ( 1) do not 
admit triple shocks dividing regions where the variables 
vary continuously. But triple shocks do arise in a variety of 

/ i’ __.- / 1’ 
I I 

a) Regular reflection Wig. 18) b) Quasi-linear focus (fig. 31) 

FIG. 34. Sections at the wall and axis of symmetry of a regular reflection 
and a quasilinear focus. The latter has a shock followed by a rarefaction 
where the former has only a rarefaction. 

situations. The conclusion we can draw is that the states 
separated by these shocks are not all smooth. As two of 
these states are constant, all singularities must lie in the 
nonuniform region behind the triple point, where Eqs. (7) 
are elliptic. This imposes a serious constraint on the class 
of admissible singularities. In particular, fan-like singular- 
ities are not allowed, as the following argument shows: Let 
us denote the singular point by (g*,r*> and the variable 
associated with the fan by S( 6,~). Unless another variable 
with unbounded derivatives plays a role in the solution, a 
dominant balance in the neighborhood of (t*,r*) yields 
the equations 

s, a’(S) -Spf(S> =o, 

which only have nontrivial solutions if 

For this to be real, the point ({*,r*) must lie in the hy- 
perbolic domain, which we know cannot be true. 

This same argument holds in the linear case. In the 
latter, however, the definition of hyperbolic and elliptic 
domains does not depend on (T. This allows us to take the 
point (g*,7*) on the boundary between the two domains, 
which yields the singularities we have already found for 
linear singular rays. This is not possible in the nonlinear 
case, where the condition of (6*,7*) lying on the sonic line 
can only be achieved for one value of a, not the required 
whole interval [the hypothesis that only r] be multivalued 
at the triple point cannot hold, since then no term could 
balance the unbounded derivatives of 7 in (7)]. Therefore, 
there must be another singular variable R, different from S, 
that behaves in such a way as to contribute to the dominant 
balance at the triple point. But it is easy to see, on purely 
geometrical grounds, that such second variable cannot be 
bounded. As CT cannot conceivably go to intinity, since it 
represents the speed of sound, the unbounded variable has 
to be r]. Moreover, 71 cannot go to infinity along all paths 
reaching (g*,+). In particular, it cannot do so along the 
shocks, since otherwise these would have to be horizontal, 
something impossible to achieve with finite ds. The only 
possibility apparently left is that v tend to infinity and (T 
have a fan-like singularity inside a finite wedge. 

In the runs of Sec. IV, however, we never saw any hint 
of r] being unbounded at the triple point. This might be due 
to the local character of the singularity, which only man- 
ifests itself as we approach the triple point along a re- 
stricted set of paths. This might make the peak of q very 
sensitive to numerical viscosity. We will now show that 
this is indeed the case by conducting a series of new exper- 
iments with much finer grids. 

The invariance of Eqs. ( 1) under the stretching (6) 
yields two equivalent ways of refining a grid: either take 
smaller Ax, Ay, and At’s or compute the solution for longer 
times. We have randomly used both approaches in the ex- 
periments that follow; so we will define, as a measure of the 
refinement, the number n = t/At. The mesh size of the spa- 
tial variables is always Ax=Ay=4At, which satisfies the 
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FIG. 35. Singularity not yet visible. Elsewhere the solution is fully re- 
solved. 

FIG. 37. The singularity becomes more apparent. 

Courant-Friederichs condition for the range of o’s cov- 
ered. In Figs. 35-38, we see plots of 77 from a series of 
experiments on irregular reflection (Ao=O.4, (r=OS) 
with increasing values of n. The singularity in 7, initially 
hidden by numerical viscosity, gradually manifests itself as 
the grid is refined. The variable u, instead, remains basi- 
cally unchanged and seemingly regular, with at most a 
fan-like singularity, as can be observed in Figs. 21 and 22. 

We have been looking for the analytic structure of this 
singularity, with some degree of success: we can build fam- 
ilies of exact solutions to Eqs. (7) where cr has fan-like 
singularities and 7 grows logarithmically inside the elliptic 
domain. However, we could not yet match these solutions 
with the jump conditions at the shocks. 

VI. CONCLUSIONS 

We have shown that a variety of important phenomena 
involving interactions of weak shock waves at small angles 
are intimately connected. These include the transition be- 
tween regular and irregular reflection on rigid walls, the 
focusing of curved fronts in both the quasilinear and fully 
nonlinear regimes, and the diffraction patterns at singular 
rays. Furthermore, all these phenomena can be studied 

[=I, dx=dy~.oo5, n=soo 

with a single canonical set of asymptotic equations, those 
of unsteady small disturbance transonic flow. We have ver- 
ified both theoretically and numerically that these equa- 
tions contain all the sometimes paradoxical behavior of the 
physical situations. 

One particular pattern plays a crucial role in these 
phenomena: the intersection of three shocks, with a very 
distinctive kind of singularity between two of them. We 
have shown that these shock intersections do take place 
and that a singularity is necessary to make them consistent. 
We have also ruled out a whole class of relatively simple 
“fan-like” singularities, since these are by nature super- 
sonic, while the region behind a triple point is always sub- 
sonic. The only remaining way out of the “triple shock 
paradox” turns out to be a very localized singularity aris- 
ing inside a wedge, where one of the the expansion’s vari- 
ables becomes unbounded. A thorough study of this singu- 
larity and its consequences for the original equations of gas 
dynamics will be the subject of further work. 

FIG. 36. Fit glimpse of the singularity. 
FIG. 38. Finest grid. Further numerical resolution of this singularity 
requires numerical capabilities beyond our reach at the time of this work. 
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