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Abstract

A methodology based on the theory of optimal transport is devel-
oped to attribute variability in data sets to known and unknown factors
and to remove such attributable components of the variability from the
data. Denoting by x the quantities of interest and by z the explanatory
factors, the procedure transforms x into filtered variables y through
a z-dependent map, so that the conditional probability distributions
ρ(x|z) are pushed forward into a target distribution µ(y), independent
of z. Among all maps and target distributions that achieve this goal,
the procedure selects the one that minimally distorts the original data:
the barycenter of the ρ(x|z). Connections are found to unsupervised
learning and to fundamental problems in statistics such as conditional
density estimation and sampling. Particularly simple instances of the
methodology are shown to be equivalent to k-means and principal com-
ponent analysis. An application is shown to a time-series of ground
temperature hourly data across the United States.

Keywords: optimal transport, barycenter, confounding factors, batch ef-
fect, conditional density estimation, principal component analysis, ENSO.

1 Introduction

Real world observations are often highly individualized. Medical data ag-
gregates samples of patients having each a unique combination of age, sex,
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diet, prior conditions, prescribed drugs, and theses samples are often col-
lected and analyzed at facilities with different equipment and personnel.
Meteorological observations are performed at different locations, heights,
times and seasons, with a variety of apparatus and evolving technologies.
Financial data aggregates assets of many categories, companies of various
sizes, stock prices at different markets and days of the week. Economic
data covers regions of diverse history, development, connectivity, geographic
location, demographics. Virtually every data-rich field has similar explana-
tory variables, which enrich and confound the variability in the quantities
of interest.

The individualized nature of data can be both a blessing and a curse. On
the one hand, it opens the way to personalized medicine, to economic policies
tailored to local conditions, to accurate micro-local weather forecasts, to
reduced risk and increased predictability. On the other, the existence of
so many confounding factors poses severe challenges to statistical analysis:
how can one determine or even define the effect of a treatment, when the
outcome may be influenced and confounded by a multitude of factors such
as age and prior conditions?

Two complementary tasks arise in connection to these individual fac-
tors: determining how much of the variability in the quantities of interest
can be attributed to them, and filtering this attributable variability from
the data. The need for filtering is clearest for confounding factors with no
domain-related relevance, such as the lab where an analysis was performed.
However, even for relevant factors, such as age as an explanatory factor for
blood pressure, filtering the attributable component of the variability facil-
itates seeking further, possible unknown variability sources. Which brings
in a third, related task: to find previously unknown factors that explain
variability in the data. Classical examples include clustering, which ex-
plains part of the variability in a dataset by the class assigned to each
observation, and principal component analysis, which explains variability in
high-dimensional data through variables in a smaller-dimensional manifold.

This article presents a new methodology for the explanation of variabil-
ity, based on the mathematical theory of optimal transport. The connection
to optimal transport presents itself naturally in the context of removing from
observations {xi} the variability attributable to a factor z. The existence of
such attributable variability means that the conditional distribution ρ(x|z)
depends on z. Removing the attributable variability is therefore tantamount
to estimating a set of maps x → y = Y (x; z) such that the resulting distri-
bution µ(y) is independent of z, so that none of the variability remaining
in y can be attributed to it. In addition, one wants these maps to dis-
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tort the data minimally, so that the remaining variability in x, unrelated
to z, is not affected by the transformation from x to y. In the language
of optimal transport, one seeks the barycenter µ of the set of distributions
ρ(: |z) under a cost associated with our measure of data distortion (since the
barycenter is defined precisely as the distribution that minimizes the total
cost of transporting all ρ(: |z) to µ.)

For clarity of exposition, rather that presenting a general theory from
the beginning of the article, we build it gradually. Thus we start with the
removal of discrete confounding factors, such as batch effects, where the need
for filtering and its connection to optimal transport are clearest. We then
consider the amalgamation of datasets and the removal of other discrete
factors whose explanatory nature may be of interest in itself, unlike batch
effects, which represent just a nuisance for the analysis. It is at this point
that we make our first technical stop, discussing how the problem can be
posed and solved in terms of the observations available, as opposed to the
unknown underlying distributions ρ(x|z). This is most naturally done at the
level of the dual of a Kantorovich–like formulation of the filtering problem.

Next we consider the extension to continuous and vectorial (multiple)
factors. At this point, we introduce a pair of “poor-man-solutions”, which
restrict the maps over which transport is optimized to a minimal set of affine
maps or even rigid translations. Although far more restrictive than the
general setting, these reductions make the arguments more concrete and the
computational algorithms required much simpler. Finding the Wasserstein
barycenter of a set of distributions ρk(x) is a challenging numerical problem;
even though there are numerical algorithms available for this task (see for
instance [10]), the formulation of algorithms specifically designed for the
statistical analysis of confounding factors is the subject of current research.

We then consider factor discovery: the explanation of variability in terms
of unknown factors. We show that the methodology extends naturally to this
setting, and that it includes as nearly trivial examples such powerful tools as
principal component analysis and clustering through k-means, which allows
one to generalize these classical procedures in a number of ways. We also
discuss broad areas of applicability of the methodology, such as conditional
density estimation and sampling.

We illustrate the article’s main ideas through synthetic examples and
through an application to real data: the explanation of the variability in
temperature across the United States. Using hourly temperature observa-
tions gathered from 48 stations over more than a decade, we first filter from
these the effects of the time of the day and seasonality, a station at a time,
then the effects of latitude and elevation across stations, and finally perform
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a smooth principal component analysis that uncovers the effects of El Niño
Southern Oscillation.

The problem of attributing variability in a quantity of interest to co-
variates –also called confounding and explanatory variables– has a long-
standing and fruitful history in statistics and in specific data-rich fields.
Classical methodologies include ANOVA, ANCOVA, MANCOVA ([20]), the
many variations of factor analysis ([18]) (all of these involve linear regression
combined with statistical models), stratification ([8]), de-trending of time-
series, various methodologies for the removal of batch effects ([7, 16]), and
a large number of specialized techniques developed within individual fields
–notoriously bio-statistics, psychology, sociology, econometrics and the en-
vironmental sciences. An alternative methodology involves the statistical
elimination of confounding effects by the design of randomized experiments
([17]), as opposed to the observational studies where covariates are unavoid-
able. This article is not the right place to summarize all these widely used
procedures; we refer the reader to the references cited and the vast litera-
ture on the field. Our methodology differs from those mentioned in some
fundamental ways. It provides a general conceptual framework to discuss
the explanation of variability, illustrated in this article through some simple
instances (maps limited to affine and even to rigid translations) but not lim-
ited to these. By contrast, all the procedures above rely on strong hypothe-
ses. For instance stratification, where the data set is divided into groups
on which the confounding factor is roughly constant, requires the sample
size for each group to be proportional to its variance (for this reason, strat-
ification is well know to work best with a limited number of confounders.)
ANCOVA relies on the linearity of the relation between the independent
and dependent variables and homogeneity of this dependence among groups
(“the assumption of parallel lines”.) Most methodologies make assumptions
on the errors (making them i.i.d Gaussian variables, etc.) By contrast, our
methodology does not conceptualize deviations from the conditional mean
as “errors” but just as samples from the conditional probability distribution
of the data, which can be very general (we just require that the solution
to the Wasserstein barycenter problem exists and is unique, entailing essen-
tially finite second moments for each ρ(x|z)). Even though our poor-man
solutions involve linear models, they do so differently than in the classical
methodologies, in that the linearity is in the maps, not in the models for the
parameters of the conditional distributions. This yields different results; for
instance, in one-dimension the standard deviation behaves as an additive
variable –not the variance as is typical in statistics. These poor-man exam-
ples serve only as a proof of concept; they are not intended to show that
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the methodology outperforms traditional methods when used in its simplest
setting.

The central idea of this article has a number of potential ramifications.
Rather than pursuing them all, we limit ourselves here to a description of
the driving ideas and a few illustrative examples. Avenues of further re-
search include alternative formulations in terms of the samples available,
of spaces richer that the poor-man solutions used for the examples, of cost
functions other the squared-distance, and many powerful extensions of prin-
cipal component analysis, just to mention a few. Field-specific applications,
for instance to medicine, climate science and economics, can be better de-
scribed in individual, focussed articles (The explanation of temperatures
across the US is only included to exemplify the use of real data; its proper
discussion in a meteorological context requires a separate article informed
by the discipline.)

2 Discrete factors

We begin our discussion with the explanation of variability through factors
that admit only a discrete set of values. A prominent example is the removal
of batch effects, which permeates high-throughput biostatistics. We first ad-
dress this particular case and then extend the results to the amalgamation of
datasets and to the general explanation of variability by discrete variables.
After introducing a conceptual framework for the removal of variability at-
tributable to discrete factors, we discuss its implementation in terms of the
data points available.

2.1 Removal of batch effects

Due to equipment limitations, high-throughput biological experiments are
often performed in batches, each containing a limited number of samples. It
has been observed repeatedly that, when the results from the various batches
are brought together into a single dataset, much of the variability among
samples can be attributed to the batch where each originates. This is the
batch effect, a persistent confounding factor in biostatistics. A number of
techniques have been developed for removing batch effects; see for instance
the two reviews in [7, 16]. Here we propose a novel approach based on the
theory of optimal transport.

The fact that one can infer from the data at least partial information
about the batch to which each sample belongs implies that the distributions
ρk(x) underlying the data {xi}, i ∈ {1, . . . ,m} in the various batches k ∈
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{1, . . . ,K} are different. Filtering from the data x all information related
to the batch k is transforming the data

x→ y, yi = Yzi (xi)

so that one cannot infer from yi the batch k = zi from which xi was drawn:
the distribution underlying y must be independent of k.

This problem can be phrased naturally in the language of optimal trans-
port [19, 14]. We seek a set of maps Yk(x) that push forward the distributions
ρk(x) into a common target distribution µ(y) (see Figure 1), namely∫

Y −1
k (A)

ρk(x) dx =

∫
A
µ(y) dy (1)

for all sets A. Moreover, the maps and target are to be chosen so that the
data is minimally distorted, since we want to preserve as much as possible
the variability in the data not attributable to the batch. Introducing a cost
function c(x, y) that measures the level of distortion from mapping point x
into point y, we seek to minimize the “total distortion” :

min
µ,Yk

D =

K∑
k=1

Pk

∫
c (x, Yk(x)) ρk(x) dx, (2)

where Pk is the proportion of samples in batch k. The target distribu-
tion µ(y) defined through this minimization process is the P -weighted c-
barycenter of the ρk(x) [1]1.

Many applications of optimal transport have a specific cost function
c(x, y) appropriate for the problem under consideration. This is not the
case here, since the notion of distortion admits more than one quantification.
Throughout this article, we will use the standard squared-distance cost

c(x, y) =
1

2
‖y − x‖2, (3)

with a rationale similar to the one underlying the use of least-squares for
regression: it is a convenient, sensible choice that leads naturally to the use
of standard tools in linear algebra. As in regression, there are scenarios
where other cost functions would be more appropriate; most of the results

1Here our focus is on the removal of variability explainable by the batch of origin.
Other relevant tasks in data analysis, such as cleaning the data of outliers, which might
be addressed through a differently chosen cost function, fall outside the scope of this
article.

6



�1

�2

�3

�

Figure 1: Removal of batch effects. In this example, x is a two dimensional
dataset drawn from three batches. The blue stars represent individual sam-
ples and the red contours represent the three distributions ρk(x) underlying
these samples. Three transformations Yk(x) represented by arrows map
these three distributions into a single target µ(y). Once the maps have been
performed, one cannot tell from yi from which batch the sample xi has been
drawn. The choice of µ that minimizes the total distortion of the data is
the barycenter of the ρk under the Wasserstein metric associated with the
cost c(x, y).

in this paper extend to such more general costs. An additional, a poste-
riori rationale is that the squared-distance cost function leads to curl-free
maps Yk(x) = ∇φk(x), a quite natural characterization of maps with min-
imal distortion [4, 2] (One can build examples where this cost would fail
to characterize the true maps, for instance when there is significant, batch
dependent rotation of the data. To include such scenarios, different cost
functions must be chosen.)

7



2.2 Other confounding discrete factors and supervised un-
learning

The batch effect of biostatistics is just one instance of a more general problem
of wide applicability: to compile an integrated dataset from data collected
under different circumstances. These can be data from different labs or
hospitals, different censuses, different experiments. Taken separately, these
datasets may lack enough samples to yield statistically significant results.
Taken together, a large fraction of their variability may be attributable
to their study of origin. Hence the need to filter from the data during
amalgamation those characteristics that are idiosyncratic to each study.

Such amalgamation of datasets can be viewed more generally as explana-
tion of variability : the component of the variability in x attributable to the
batch of origin has been explained away, leaving behind in the transformed
variables y the remaining, unexplained variability. This is the language
used for instance in principal component analysis, where the variability is
measured by the variance and the amount explained by each component is
given by the square of the corresponding singular value. When viewed in
these terms, the procedure extends far beyond the compilation of disjoint
datasets. It can be used, for instance, to explain away the patient’s gender
in microarray data, the state of a switch in a controlled system, the day of
the week in trading data.

The procedure remains completely unchanged: given a set of samples xi
and corresponding discrete labels zi ∈ {1, . . . ,K}, one seeks the set of maps
Yk(x) pushing forward the distributions ρk(x) underlying the data into a
common target distribution µ(y) while minimizing the total distortion D.
Yet the new perspective suggests a new language: in supervised learning,
given features xi and corresponding labels zi, one seeks an assignment func-
tion z(x). In unsupervised learning, no label zi is provided for observation
xi, and one seeks structure in the features x alone, for instance clustering
the samples into classes, thus assigning them previously unknown labels. In
the problem treated in this section, the labels zi are given, but our goal is
to explain them away, effectively removing all signal of the labels from the
data. Hence one might denote the procedure “supervised unlearning”. If
all effects from the labels are removed from the data, there is no way in
which an unsupervised procedure applied to the filtered data yi can recover
the original labels zi, or a supervised procedure can determine the correct
assignment function z(x).

A further generalization is brought about by factor discovery, where the
labels to remove from the data are unknown. This can be thought of as
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an instance of clustering, whereby the samples are divided into classes, fol-
lowed by filtering, whereby any information related to the newly-discovered
classes is removed from the original data. Factor discovery, both discrete
and continuous, is discussed in a unified setting in section 5.

3 Posing the problem in terms of samples

We have formulated the problem of discrete factor removal in terms of the
probability densities ρk(x) underlying the data for each value k of the factor.
Yet these underlying densities are not known: we only have a set of sample
points xi drawn from them (Even with known densities, solving the optimal
transport problem is not trivial; see for instance [6, 3, 11, 22, 12, 9] for
some of the numerical methods developed in recent years.) In addition, our
problem involves not only optimal transport between each ρk and µ, but
also the search for the optimal µ, the barycenter of the ρk.

We are provided with data consisting of the features xi ∈ Rn and the
labels zi ∈ {1, . . . ,K}, with i ∈ {1, . . . ,m}. The goal is to formulate and
solve the problem of transforming each xi into yi = Yzi(xi) so as to remove
the variability in x explained by z. We will first sketch a general framework
to address this problem, and then describe two “poor man” solutions that
restrict consideration to affine maps and to rigid translations. These and
generalizations to continuous, multiple and unknown factors are the proce-
dures that we will use to illustrate this paper’s proposal with synthetic and
real examples.

3.1 Kantorovich formulation and its dual

In order to pose the problem in (1,2) in terms of sample points rather than
distributions, we start with Kantorovich relaxation from maps Yk(x) pushing
forward ρk to µ to joint distributions πk(x, y) coupling ρk and µ, namely:

min
µ,πk

K∑
k=1

Pk

∫
c (x, y)πk(x, y) dxdy, (4)

subject to ∫
πk(x, y) dy = ρk(x),

∫
πk(x, y) dx = µ(y). (5)

For the squared Euclidean distance cost function (3), the optimal solutions
to the original (1,2) and relaxed (4,5) problems agree ([25, 5], see also (8)
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below):
πk(x, y) = ρk(x)δ (y − Yk(x)) .

The relaxed formulation in (4,5) is an infinite dimensional linear pro-
gramming problem, with dual

max
φk,ψk

K∑
k=1

∫
φk(x)ρk(x)dx, (6)

∀x, y φk(x) + ψk(y) ≤ Pk c(x, y), ∀y
K∑
k=1

ψk(y) ≥ 0. (7)

For the squared-distance cost (3), the Kantorovich’s dual and Monge’s pri-
mal solutions are linked through

Yk(X) = x− 1

Pk
∇φk(x) (8)

with the implication that the coupling πk(x, y) is supported on a curl-free
map ([25]).

One can simplify the dual problem further, noticing that its constraints
are equivalent to2

∀x =

 x1

. . .
xK

 ,
K∑
k=1

φk(x
k) ≤ min

y

K∑
k=1

Pk c(x
k, y). (9)

Thus, introducing the y-independent cost function

C(x1, . . . , xK) = min
y

K∑
k=1

Pk c(x
k, y), (10)

the dual problem adopts the form

max
φk

K∑
k=1

∫
φk(x)ρk(x)dx, ∀x =

 x1

. . .
xK

 ,

K∑
k=1

φk(x
k) ≤ C(x1, . . . , xK).

(11)

2The implication (7) ⇒ (9) follows by summing over k and taking the minimum over
y. Since ψ does not appear in the objective function (6), the reverse implication follows
from verifying that, given (9), the function ψk(y) = minx(Pkc(x, y)− φ(x)) satisfies (7).
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Notice that the y minimizing (10) is the weighted barycenter of the xk

under the square-distance c(x, y). In fact, for our specific cost function, the
cost C can be written without reference to y and hence without an inner
optimization problem:

C(x1, . . . , xK) =
1

2

∑
k,l

PkPl‖xk − xl‖2.

3.2 Data-driven formulation

The dual formulation in (11) involves the distributions ρk(x) only through
integrals representing the expected values of the φk(x) under ρk (a fact
exploited in [24] to implement regular data-driven optimal transport.) Thus,
if only samples from ρk are available, it is natural to replace these expected
values by empirical means:

max
φk

K∑
k=1

1

mk

∑
i∈Sk

φk (xi)

∀x =

 x1

. . .
xK

 ,
K∑
k=1

φk(x
k) ≤ C(x1, . . . , xK), φk ∈ F, (12)

where Sk denotes the set of samples {i} with zi = k. Replacing the averages
with empirical means is the standard Monte Carlo approximation, with error
that goes to zero as var(φk)/N , where N is the number of sample points.
In (12), mk is the number of samples with label k and F is the space of
functions over which the φk are restricted in order not to overfit the samples,
for instance by placing a delta function around each.

It follows from the dual problem (6,7) that the ψk are the Legendre
transforms of the φk, so restricting the latter to a set F of convex functions
is equivalent to restricting the ψk to the dual set F ∗ of their Legendre trans-
forms. A particularly simple example is the space F of convex quadratic
functions, which agrees with its dual F ∗. In this case, recomputing the pri-
mal problem from the dual with φk and ψk restricted to F and the expected
values of the φk replaced by their empirical means yields the original ob-
jective function (4) but with the constraints in (5) replaced by their weak
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counterpart

∀φ, ψ ∈ F,
∫  1

mk

∑
i∈Sk

δ (x− xi)−
∫
πk(x, y) dy

φ(x) dx = 0 (13)

∫ [
µ(y)−

∫
πk(x, y) dx

]
ψ(y) dy = 0, (14)

meaning that the x-marginal of the πk and the empirical distribution re-
placing ρk(x) are not required to agree pointwise, but only to yield identical
expected values for all test functions φ(x) in F , and similarly the y-marginals
of the various πk are only required to yield the same expected values for all
test functions ψ(y) in F . Since F is the space of convex quadratic functions,
only the mean and covariance matrix of the x-marginal of πk need to agree
with their corresponding empirical values under ρk(x), and only the mean
and covariance of the target µ need to be the same for all K maps.

3.3 Poor man solutions

The data-based barycenter problem can be solved with a level of accuracy
that adjusts to the number of samples available by defining the space F
of allowed test functions adaptably: in areas where there are more sample
points, the functions in F should have finer bandwidths. For instance, one
could extend the flow based procedure developed for the data-driven optimal
transport problem [24]. For what remains of this article, we will instead
adopt two much simpler, non-adaptive “poor man” procedures. The point
of these simple-minded approaches is that they permit exploring at ease a
number of interesting scenarios (such as continuous, multiple or unknown
factors) that would become more complex and computationally expensive
in a more accurate, adaptive setting. In addition, we shall see that even
the simplest of these settings includes and greatly extends well-established
procedures such as principal component analysis and autoregressive models.
Hence we postpone the exploration of adaptive procedures to further work.

The richer of the two poor man solutions that we propose is based on the
example at the end of the prior subsection: optimizing the dual, data-based
problem over test functions φk from the space F of quadratic polynomials.
As reasoned above, this choice only captures the empirical mean and co-
variance matrices of the distributions ρk. Moreover, from the relation in
(8) between Kantorovich’s dual and Monge’s formulations, this choice yields
affine maps Yk(x) = αkx+ βk.
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To fix ideas, consider first the case where x is one-dimensional. Let
(x̄k, σk) be the empirical mean and standard deviations of the ρk(x), and
(ȳ, σy) be the unknown mean and standard deviation of the target µ(y).
Substituting φ(x) =

(
x, x2

)
and ψ(y) =

(
y, y2

)
in the marginal constraints

(13), (14) yields

αk =
σy
σk
, βk = ȳ − αkx̄k. (15)

Therefore, after imposing these constraints, the empirical version of the
objective function D in (2) depends only on ȳ and σy:

D =
K∑
k=1

Pk
1

mk

∑
i∈Sk

[(
σy
σk
− 1

)
xi +

σkȳ − σyx̄k
σk

]2
, (16)

which is minimized by

ȳ =
∑
k

Pkx̄k, σy =
∑
k

Pkσk, Dmin =
∑
k

Pk

[
(x̄k − ȳ)2 + (σk − σy)2

]
.

Then αk and βk are determined from (15), and the filtered signal is given
by

yi = αzixi + βzi .

The multidimensional case follows a similar pattern, though with less
straightforward algebra and no explicit expression for the parameters of
the barycenter µ. The input data are the empirical vectorial means x̄k
and covariance matrices Σk of the ρk, and the unknown parameters of the
barycenter are ȳ and Σy. In terms of these, the map Yk(x) = αkx+βk (here
αk is a matrix and βk a vector) has parameters [15]

αk = Σk
− 1

2

(
Σk

1
2 ΣyΣk

1
2

) 1
2

Σk
− 1

2 βk = ȳ − αkx̄k. (17)

Minimizing D yields

ȳ =
∑
k

Pkx̄k = x̄

for ȳ as before, and the implicit condition for Σy

Σy =
∑
k

Pk

(
Σy

1
2 ΣkΣy

1
2

) 1
2
, (18)

which can be solved effectively using the following iterative scheme [15]:
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• Propose an initial guess for Σy, such as

Σ0 =

[
K∑
k=1

(
PkΣk

1
2

)]2
or Σ0 =

K∑
k=1

PkΣk, and

• given Σn, write

Σn+1 =
K∑
k=1

Pk

(
(Σn)

1
2 Σk (Σn)

1
2

) 1
2
.

This sequence converges to Σy.

Our “poorest man” solution has the maps restricted even further to rigid
translations of the form

Yk(x) = x+ βk.

From the means x̄k, one obtains ȳ =
∑

k Pkx̄k = x̄ as before, and hence

βk = x̄− x̄k,

which moves the means x̄k of each class to the global mean x̄. The reason
to even mention this seemingly vastly under-resolving procedure is that, as
we shall see, when extended to unknown factors, it is rich enough to include
and generalize widely used tools such as principal components and K-means.

4 Continuous and multiple factors

Factors that explain variability are not necessarily discrete as in the ex-
amples considered so far. In medical studies, the patient’s age could be a
confounding factor; in climate studies, the level of solar radiation or of at-
mospheric CO2; in financial studies, indicators such as liquidity or company
size. A large proportion of the variability factors found in applications are
continuous.

Extending the procedure above to continuous factors naively has the
problem of excessive granularity: since each sample xi has its own unique
factor’s value zi, one would need to estimate values for the mean and co-
variance from just one sample, a hopelessly over-resolving task. Instead, we
replace the K maps Yk(x) by the continuous family of maps

y = Y (x; z),
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with the dependence on z constrained so as to avoid over-resolution: making
this dependence smooth links together samples with nearby values of zi. In
particular, for the affine maps of our first poor man solution, one has

y = α(z)x+ β(z).

One can either model the map parameters α(z), β(z) directly –a procedure
that will be developed elsewhere– or in terms of a model for the z-dependence
for the mean and covariance of the data:

α(z) = Σ(z)−
1
2

(
Σ(z)

1
2 ΣyΣ(z)

1
2

) 1
2

Σ(z)−
1
2 , β(z) = ȳ − α(z)x̄(z), (19)

x̄ = x̄(z; γ), Σ = Σ(z;φ),

where γ and φ are sets of parameters fitted to the data (xi, zi). A simple
way to frame this fitting procedure is through maximal likelihood, assuming
ρ(x|z) to be a Gaussian with mean x̄(z) and covariance Σ(z), which yields
the loss function (minus the log-likelihood)

L =
∑
i

[
1

2
log |Σ (zi)|+

1

2
[xi − x̄ (zi)]

′Σ−1 (zi) [xi − x̄ (zi)]

]
(20)

to minimize over (γ, φ). This is not meant to imply that restricting the maps
x→ y to affine corresponds to a Gaussian-mixture model for the data: the
Gaussian-based maximal likelihood is just one convenient framework for
parameter fitting, and the minimizer of L in (20) is a regular estimator for
the mean and covariance independently of the distribution underlying the
samples.

One simple model for scalar x is

x̄(z) = az + b, σ(z) = ecz+d,

depending on the four scalar parameters a, b, c, d (Here the exponential func-
tion is introduced to guarantee the positivity of σ(z).) An analogous pro-
posal for vectorial x has the standard deviation σ replaced by the covariance
matrix Σ, and the scalar parameters γ = a, b and φ = c, d by vectors and
symmetric matrices respectively. This model can be generalized to

x̄(z) =
∑
j

ajfj(z) + b, Σ(z) = e
∑
j cjgj(z)+d, (21)

where the fj , gj are arbitrary feature functions, designed to capture non-
linear dependence of ρ(x|z) on z. The Cholesky decomposition provides an
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alternative parameterization of positive Σ(z) different from the exponential
in (21) [21].

Real data typically depend on more than one external factor (for instance
on a patient’s age, sex and ethnicity in medical studies, and on time of the
day, time of the year, latitude and elevation in whether prediction.) The
procedure above can be generalized to such multi-factor cases, replacing the
scalar factor z by a vectorial one. In fact, this is already a particular instance
of (21), if one introduces as feature functions (fj(z), gj(z)), the components
zj of z.

We consider now three examples that illustrate the versatility of the
methodology just described: evaluation of whether a variable differs across
groups in the presence of covariates, which we compare with ANCOVA, time
series analysis, and the explanation of ground temperature variation across
the United States.

4.1 Comparison with ANCOVA

To illustrate how the methodology developed in this article compares with
those used in statistical practice for the removal of confounding factors,
we chose the analysis of covariance (ANCOVA). This is used to evaluate
whether the mean of a continuous variable depends on a categorical one,
while controlling for a possible affine dependence on covariates. For the
comparison, we create synthetic data that fits the formal frameworks of
both ANCOVA and our poor-man solution filtering, through the following
procedure:

1. Draw N i.i.d. samples zi ∼ N (2, 1) of a confounding factor z.

2. Divide these N points into 3 groups identified by the categorical vari-
able s ∈ {1, 2, 3}, with a random assignment that depends on z, defined
through

si = arg min
s

(qi(s)) , where qi(s) = |ξi − s| , ξi ∼ N (zi, 0.25).

3. Sample the zi-dependent variable xi ∼ N (Azi +B, exp(Czi +D)),
with A = 0.742, B = −1.35, C = 0.4924, D = −0.542.

The procedure above generates samples xis (zis respectively) where xis is
the i-th observation from group s. The goal is to compare x across the three
groups while controlling for the confounding factor z. For our example, a
successful test would reveal that the difference in the distribution of x among
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the 3 groups is due solely to the effect of the confounding factor z. In other
words, by removing the effect of the confounding factor we should see no
difference among the three groups.

We will denote by ρs the distribution of the data points xis in the group
s, and by µs the filtered distribution obtained with our poor man solution.

We first use ANCOVA with the xis and zis. Figure 2 displays 1000 sam-
ple points from ρs=1,2,3 with their respective regression lines (top-left panel).
With an F statistics associated with the interaction term x ∗ z of 0.9 and a
corresponding p-value of 0.4, ANCOVA finds that the slopes of the regres-
sion lines associated with each group are not significantly different. Hence
enforcing the same slope on the three regression lines, ANCOVA computes
the three intercepts, and concludes –correctly– that, after excluding the ef-
fect of the covariate z, the mean values of x in the three groups are not
significantly different, with p-values of 0.75, 0.36 and 0.78.

Using our methodology, we compare instead the filtered probability den-
sities µs=1,2,3 showed in Figure 2 (bottom-left panel). For this, we perform
an ANOVA test, with results displayed through a notched box plot in the
bottom-right panel. In addition, we perform a two-sample F-test for equal
variances with the built-in vartest2 MATLAB function. With p =0.5 for
the three means being equal and p =0.99, 0.4802 and 0.4830 for the pairwise
difference between the three variances, the tests finds the differences among
µs=1,2,3 not to be significant.

Even though the two procedures are successful in this example, the pro-
cedure of this paper gives richer results, as it verifies not only that the mean
of x does not vary among the three populations, but also that the variance is
the same (allowing maps richer than our poor man solution’s would provide
further information on the dependence of the distributions ρ(x|z) on s, and
would not require the dependence of x on z to be affine.)

In our example, not only the mean of x but also its standard deviation
depends on z, with largest spreads for s = 3, since this population has typ-
ically larger values of z and hence of σ. This makes ANCOVA particularly
sensitive to the resulting outliers as the number of sample points decreases.
Figure 3 shows an experiment with 20 sample points. In this case, ANCOVA
finds the hypothesis of parallel lines not to hold (the p value of the interac-
tion term x ∗ z is p = 0.0012. This makes it conclude –wrongly– that the
relation between z and x depends on s. By contrast, the ANOVA analysis
and the two-sample F-test for equal variances reveal that the means and
the variances of the filtered µs=1,2,3 are not significantly different from each
other: the p values of the two-sample F-test are p = 0.29 (comparing µ1 and
µ2), p =0.83 (comparing µ1 and µ3), p =0.42 (comparing µ2 and µ3).
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Figure 2: 1000 points data set. Top-left: Scatter plot of the xis as functions
of the zis, with points colored according to the value of s. Top-right: his-
togram of ρs=1,2,3. Bottom-left: histogram of µs=1,2,3 obtained by filtering z
from x. Bottom-right: Notched box plot of the sample points from µs=1,2,3

produced by the anova1 MATLAB function.

4.2 Time series analysis

When analyzing a time series xn, one may propose a Markov model

xn+1 = F
(
xn, zn+1

known, w
n+1, tn+1

)
, (22)

where t is the time, zknown represents known factors (external to the model)
that influence x, and w represents unknown sources of variability, typically
including unknown external factors and random effects. Hence the available
data consists of the time series xn, the times tn and the znknown; both the
wn and the function F are unknown.

The form of (22) suggests explaining away through optimal transport the
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Figure 3: 20 points data set. Top-left: Scatter plot of the xis as functions of
the zis, with points colored according to the value of s. Top-right: histogram
of ρs=1,2,3. Bottom-left: histogram of µs=1,2,3 obtained by filtering z from
x. Bottom-right: Notched box plot of the sampled points from µs=1,2,3.

variability in xn+1 attributable to zn+1 = [xn, tn+1, zn+1
known], with emphasis

placed on the xn: the prior element in the time series acts as an explanatory
factor for xn+1. After the filtering map

yn = Y (xn; zn) ,

one has yn = G (wn), meaning that we will have uncovered the hidden source
of variability w.

As a simple example, we analyze synthetic data generated from the fol-
lowing two-dimensional Markov process:

xn =
(
Axn−1 + b

)
+ Σ(xn−1)wn, n ∈ [1 . . .m] (23)
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where A,Σ ∈ R2×2 and b, x, w ∈ R2×1. The source of variability w has the
form (unknown to the analyzer)

wn =

(
sin(2πn/m)wn1
cos(4πn/m)wn2

)
, (24)

where wn1 and wn2 are i.i.d. normally distributed scalars. The inverse of the
matrix Σ has the form

Σ−1 =

(
a21 ε12a2a2

ε12a2a2 a22

)
(25)

with ai = exp(αTi x+βi), αi ∈ R2, βi ∈ R and ε12 ∈ [0, 1]. Overall the model
depends on 13 parameters that, together with the initial value x0 and the
realization of white noise in the wni , were chosen randomly to generate the
data represented in Figure 4.

The input to the algorithm is the time series {xn}, which automatically
generates the explanatory {zn} = {xn−1}. The parametric form used to
model the Σ(z) is the same of the one used to generate the data. The
parameters are estimated via log-likelihood maximization and are used to
compute the affine map described by eq. (19).

The goal is to compare the filtered signal y generated by the algorithm
with the unknown source of variability w used in the model and displayed
on the left panel of Figure 4. Figure 5 compares the filtered signal y (upper
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Figure 4: The left panel displays the hidden signal used to generate the time
series displayed on the right panel according to the model in (23)

right panel) and the original signal x (left panel) together with the unknown
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Figure 5: Upper left panel: the two components (at the top and bottom)
of the hidden (w1,2) and original (x1,2) signals. Upper right panel: hidden
(w) and filtered (y) signals. After explaining away the variability in xn+1

attributable to xn, one should obtain yn = G(wn). Because the poor-man
solution uses only affine maps, G is also affine. We performed a linear least
square fit between w and x (respectively y) to determine G. As one can
see, while the best linear fit between w and x does not reveal any particular
relation between the two variables, a linear fit between w and y, brings y to
overlap with w, confirming that yn = G(wn). Bottom panel: zoom of the
upper right panel.

source of variability w. Because the model used to generate the data is the
same as the one implemented in the filtering algorithm, the filtered signal
recovers almost exactly the unknown source of variability as expected.
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By contrast, Figure 6 shows an example in which the covariance matrix
Σ(z) used by the filtering algorithm and the one used to generate the time
series in (23) have two different parametric forms. The covariance matrix
used to generate the data is

Σ =

(
cos(a21)

2 d

d a
1/4
2

)
(26)

with a1 = exp(αT (cos(z)2 + βz) + γ), a2 = δT sin(z)2 where α, γ ∈ R2,
β, γ ∈ R, and the functions sin(z)2, cos(z)2 are defined entry-wise for z ∈ R2.
The functional form for the hidden variable w is still given by (24). The
model for the covariance matrix used by the filtering algorithm is (25) as
before. Even though in this case we cannot expect to recover exactly the
hidden source of variability w by looking at the filtered signal y, we should
still be able to see that these two variables are linearly related to a good
approximation. This is shown in Figure (6), which displays moving averages
of y and w over small time intervals.

4.3 A real world example: explanation of temperature vari-
ability across the United States

As an example of the use of our methodology on real data, we develop an ap-
plication to meteorology: the explanation of ground temperature variability
in the continental United States. We use data publicly available in http:

//www1.ncdc.noaa.gov/pub/data/uscrn/products/hourly02, consisting
of hourly-measured temperatures at various stations across the United States
and one station in Ontario, Canada. We use only those 48 stations (see map
in figure 7) for which data is available since at least 2005, thus covering over
a decade of hourly data3.

4.3.1 Filtering time of the day, season and global trends from
each station

Figure 8 displays the temperature series available for Boulder, Colorado, at
four levels of resolution: over 12 years, one year, one month and one week.
The first two show a clear seasonal effect, with warm summers and cold
winters, and the fourth a diurnal cycle of alternating warm days and cold

3Some of these stations provide data as early as 2003; we use this additional data
when filtering factors individually from each station but not for global explanations of
variability.

22



Time
0 200 400 600 800 1000

x
1

-4

-2

0

2

4

Time
0 200 400 600 800 1000

x
2

-4

-2

0

2

4

6

Signal

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

1.5

Time

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

1.5

Hidden (blue), original signal (red)

0 200 400 600 800 1000

-0.2

0

0.2

0.4

0.6

0.8

Time

0 200 400 600 800 1000

-0.5

0

0.5

1

Hidden (blue), filtered signal (red)

350 400 450 500 550 600 650

-1

-0.5

0

0.5

1

1.5

Time

350 400 450 500 550 600 650

-2

-1

0

1

2

3

Hidden (blue) vs filtered signal (red) - Zoom

Figure 6: Top left panel: Signal x generated using the model in (23) with w
and Σ given by (24) and (26) respectively. Top right panel: best linear fit
between the moving averages of x(t) and w(t), with averaging time window
set to 10 time-steps. Bottom left panels: moving averages of the best linear
fit between w(t) and the filtered signal y(t) (with correlation values of 0.91
and 0.92 for the two components.) Bottom right panel: zoom of the best fit
between wn and yn.

nights. The third has a less regular level of organization, yet one sees the
typical weather systems running through the mid-latitudes with time-scales
of around 5 days.

In order to filter the seasonal and diurnal variability, we introduce vari-
ability factors z that are periodic in time, with periods of one year and one
day respectively, through Fourier series truncated after the fourth harmonic.
All possible products of these two series are included too, as the parameters
for daily variation may depend on the time of the year. In addition, we
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Figure 7: Location of the 48 stations used for the explanation of ground-
temperature variability

include a trend linear in time, to account for possible long term effects such
as global warming. Thus the matrix z adopts the form

z =



ty
cos (ty)
sin (ty)
. . .

cos (4ty)
sin (4ty)
cos (td)
sin (td)
. . .

cos (4td)
sin (4td)

cos (ty) cos (td)
. . .

cos (2ty) sin (3td)
. . .

sin (4ty) sin (4td)



,

where t represents the time in days, td = 2πt and ty = 2πt
365.25 .

The resulting time-series y of filtered temperature values are displayed
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Figure 8: Hourly ground temperature measurements at Boulder (CO) at
various degrees of resolution: full time series, one year, one month and one
week. One can see seasonal effects in the first two panels, diurnal effects in
the last panel, and less regular weather systems lasting a few days in the
third. The time t is measured in days elapsed since January 1st 2000.

in figure 9 at the same levels of resolution of figure 8. As one can see, the
seasonal and diurnal effects have been explained away, not so the aperiodic
weather systems in the one-month plot. Figure 10 contains histograms of x
(temperature) and y showing the reduction in variability that filtering the
factors brings. Figure 11 displays, over an interval of 10 days, the original
temperature x(t), the filtered y(t), and the estimated mean µ(t) plus/minus
one standard deviation σ(t). Here one sees the shape of the mean daily
profile for this particular time of the year (late winter), and the effect of
filtering this from the raw data. The patterns are quite different in figure
12 for Barrow, Alaska, where the daily signals are very small and the strong
seasonal effects dominate.
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Figure 9: Filtered hourly ground temperature measurements at Boulder
(CO) at the same degrees of resolution as in figure 8. The diurnal and
seasonal effects have been eliminated, while the weather systems persist.
The time t is measured in days elapsed since January 1st 2000.

4.3.2 Further filtering of latitude and elevation: repeated factor
values

We have at this point a set of filtered time-series
{
yi (tj)

}
, where i stands for

the station where the measurements have been performed and from which we
have removed the variability associated with the diurnal cycle, the seasons
and linear global trends. We switch focus now to the variability among sta-
tions, attempting to remove the fraction explainable by two external factors
z: latitude and elevation.

The procedure is considerably simplified by the fact that many obser-
vations share the same factor values: all entries in the time series

{
yi (tj)

}
share the same factors zi. This simplification results from the partition of
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Figure 10: Histograms of hourly temperature data for Boulder (CO), with
the original signal on the left, and the signal with seasonal and diurnal effects
filtered on the right.

the variability into within and between stations in the loss function L:

L =
∑
i

∑
j

1

2

[
yi (tj)− ȳ (zi)

σ (zi)

]2
+ log (σ (zi))

=
∑
i

∑
j

1

2

[(
yi (tj)− ȳi

)
+
(
ȳi − ȳ (zi)

)
σ (zi)

]2
+ log (σ (zi))

= m
∑
i

1

2

[
σi

2
+
(
ȳi − ȳ (zi)

)2
σ (zi)

2

]
+ log (σ (zi)) , (27)

where m is the number of times tj . Here we have made a distinction between
the mean and standard deviation of each time-series (ȳi, σi) and their mod-
eled values as functions of z, (ȳ (zi) , σ (zi)). If the functional dependence
of the latter on z were left completely free, minimizing L would make these
two sets of values agree. However, for parametric or otherwise constrained
models, this is generally not the case: two stations with nearby values of
latitude and altitude will have nearby modeled parameters, while the pa-
rameters of their two time-series may be completely different due to other
variability factors not included in the model, such as their proximity to the
sea. The minimization of L from (27) requires only the mean and standard
deviation for each station as opposed to the full time series, yielding a huge
reduction in computational expense.

27



3340 3342 3344 3346 3348 3350

-20

-15

-10

-5

0

5

10

15

Figure 11: Temperature evolution over ten days in Boulder (CO), with the
original signal in black, the modeled time-dependent mean in blue, the mod-
eled standard deviation in light blue (added and subtracted to the mean),
and the filtered signal in red. The diurnal signal is absent in the filtered
signal, which lies above the original data because the ten days displayed are
in winter time.

The results of this further filtering process are displayed in Figure 13,
showing the filtered and furthered-filtered signals from all 48 stations over
a period of 40 days. While the individually filtered signals show significant
stratification and high variability among stations, the jointly-filtered ones
have both highly reduced. Concatenating the data from all stations together,
the total variance decreases from 63.8 to 30.2.

The natural next step would be to explain the joint variability across
stations through global climate and weather patterns. This involves factor
discovery, which we study in the following section.

5 Factor discovery

We have concentrated so far on the explanatory power of known factors. Yet
one often seeks hidden factors to explain variability in data, with clustering
and principal component analysis as typical examples. There are various
ways to think of factor discovery. One is dimensionality reduction, where
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Figure 12: Temperature evolution over ten days in Barrow (AK), with the
original signal in black, the modeled time-dependent mean in blue, the stan-
dard deviation in light blue (added and subtracted to the mean), and the
filtered signal in red. The diurnal signal is much smaller at this extreme lat-
itude, where seasonal effects dominate. Because these are ten winter days,
the red signal, with seasonal effects filtered, lies well above the unfiltered
black one.

one replaces the original data x by a smaller-dimensional, possibly discrete
set of variables z that captures much of the original variability. Another is
true explanation: the discovery of hidden underlying causes for the observed
variability, such as a biological condition or a set of dynamical modes. Then
there are areas intermediate between factor discovery and explanation of
variability by known factors, including softly assigned factors and situations
where only some values for the factors are known, for instance when certain
illnesses are known to underlay a set of symptoms, but other yet to be found
biological conditions are conjectured to account for much of the remaining
variability.

The methodology in this article extends naturally to factor discovery.
One proposes as before filtering maps

yi = Y (xi, zi),

where the zi are now extra unknowns, additional to the parameters that
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Figure 13: Results of filtering latitude and elevation effects from the already
station-wise filtered temperature signals, displayed over 40 days. On the left,
the filtered signals yi(t) from all 48 stations. On the right, the signals further
filtered of elevation and latitude, which yields a cross-sectional reduction of
variability.

determine the map Y . In order to assign the zi, one requires that the
variability left in the filtered variable y be minimal, thus making the zi
maximally explanatory. A natural quantification of the variability in y is
given by its empirical variance,

Var(y) =
1

m2

∑
i,j

‖yi − yj‖2,

so we propose
min
{zi}

Var ({yi = Y (xi, zi)})

The next subsections show how this principle yields k-means for z discrete
and principal component analysis for z continuous when the maps Y (x; z)
are restricted to rigid translations, the poorest man solution of section 3.3.
Hence these two procedures can be generalized broadly through the use of
more general models.

5.1 Discrete factor discovery and k-means

Discrete factor discovery is tantamount to clustering: assigning a discrete
label zi ∈ {1, 2, . . . ,K} to each observation amounts to dividing the dataset
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into K classes. Mapping all these classes into their barycenter further filters
from the data the variability associated with the class assignment.

Consider the very specific situation where the original variables x are in
Rn and one restricts the maps to rigid translations (see end of section 3.3)

yi = xi + βzi ,

where

βzi = ȳ − x̄zi , ȳ =
1

m

∑
i

x̄zi .

In this setting, the variance of the filtered signal can be rewritten as:

Var(y) =
1

m2

∑
i,j

‖yi − yj‖2 =
1

m2

∑
i,j

‖(xi − x̄zi)− (xj − x̄zj )‖2 =

=
2

m

∑
i

‖xi − x̄zi‖2 =
2

m

∑
k

∑
i∈Sk

‖xi − x̄k‖2
(28)

where we have used the fact that

1

m

∑
i

(xi − x̄zi) = 0, (29)

and have reorganized the result into sums by class, denoting by Sk the set
of samples {i} with zi = k.

It follows that minimizing Var(y) over all the possible assignments zi
agrees with k-means, which divides the data into K classes, where the ob-
servations in class k are closer to their class mean x̄k than to the means of all
other classes. Hence the procedure replicates k-means, followed by K rigid
translations that move all centers x̄k into their barycenter ȳ, thus removing
the variability associated with the newly-discovered classes.

5.2 Continuous factor discovery and principal component
analysis

In the continuous setting, the poorest man solution yields

y = x+ β (z) , (30)

with

β (z) = ȳ − x̄ (z) , ȳ =

∫
x̄ (z) ν(z)dz, x̄(z) =

∫
xρ(x|z)dx,
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where ν(z) and ρ(x|z) indicate the distribution of z and the conditional
distribution of x given z. As in the previous subsection we have that∫ ∫

‖y1 − y2‖2µ(y1)µ(y2)dy1dy2 = 2

∫ ∫
‖x− x̄(z)‖2f(x, z)dxdz (31)

where f(x, z) is the joint probability distribution of x and z and we have
used the fact that ∫

(x− x̄(z))f(x, z)dxdz = 0.

Hence, in terms of samples, minimizing the variance of y over the assign-
ments zi corresponds to minimizing

1

m

∑
i

‖xi − x̄zi‖2.

The link with principal component analysis arises if we model x̄ as a
affine function of z:

x̄(z) = Az + b,

where A ∈ Rn×d, b ∈ Rn. Then the zi ∈ Rd are minimizers of

L =
∑
i

‖xi − (Azi + b)‖2 . (32)

Notice though that L is also the loss function that A and b minimize when
the zi are given (it defines the mean x̄z), so factor assignment and filtering
jointly satisfy the variational principle

min
A,b,{zi}

L.

To understand the nature of the solution to this minimization problem,
assume that A and b have already been found. Then Az + b determines a
d-dimensional hyperplane, and minimizing (32) over each zi finds the point
Azi + b on that hyperplane that is closest to xi, i.e. the projection of xi
onto the hyperplane. Hence minimizing (32) over A and b corresponds to
finding the hyperplane of dimension d that minimizes the sum of the square
distances between the xi and their projections onto that hyperplane. But
this is also the definition of the subspace generated by the first d principal
components of the matrix X = [x1 . . . xm].

Then we have “rediscovered” principal component analysis as a partic-
ularly simple instance (affine β(z)) of our “poorest man solution” of factor
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discovery through optimal transport. To understand how principal com-
ponents are interpreted from this viewpoint, notice that the resulting map
Y (x; z) = x − x̄(z) + ȳ removes from each x its projection onto the hyper-
plane Az+ b, leaving only the unexplained component normal to this plane,
and then adds a uniform ȳ that agrees with the mean of all xi, so as to
preserve this mean for the yi and hence minimally distort the data.

Notice that the optimal hyperplane Az + b and the means x̄ (zi) are
generally unique, but the matrix A, the vector b and factor values zi are
not: the gauge transformation

z → C (z − z0) , A→ AC−1, b→ b+Az0

preserves optimality for any invertible matrix C and vector z0. This is a
general feature of factor discovery: any invertible function of the factors z
can explain the same variability as z. In the present case, where the model
for the dependence on z of the map’s parameters is linear, the gauge is
limited to invertible linear functions of z. This gauge invariance allows us to
choose the representation corresponding to the sorted principal components
of x: we perform the QR decomposition A = QR, define Z = Rz, perform
the singular value decomposition Z = ŨΣV ′, and finally write

x− b ≈ Az = UΣV ′, where U = QŨ.

Clearly the procedure can be easily generalized, thus providing powerful
extensions of principal components analysis. Here we mention three such
extensions; many more will be developed in [23]:

1. Using non-linear models for x̄(z), for instance through the introduc-
tion of feature functions fj(z) as in (21), moves us away from linear
components into principal surfaces [13].

2. Moving from rigid translations to general affine maps y = α(z)x+β(z)
–thus modeling both the mean x̄ and the covariance Σ as functions of
z– greatly increases the amount of explainable variability.

3. Smooth principal components: In our example of ground temper-
ature data, one may be interested in capturing modes of the system
that evolve smoothly over time. One way to achieve that is to penalize
the non-smoothness of the z in (32) through the modified optimization
problem [23]

L =
∑
i

‖xi − (Azi + b)‖2 + λ
d∑

k=1

‖Ak‖2
m∑
j=2

‖zkj+1 − zkj ‖2, (33)
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where Ak indicates the k-th column of A and the penalization constant
λ can be written in the form

λ =

(
T

∆t

)2

,

with ∆t the time interval between observations, and T the time scale
below which one penalizes O(1) variations. Figures 14 and 15 show
the result of applying this procedure to find the first smooth principal
component of the filtered temperature data from subsection 4.3.2, with
T = 180 days. We see on the map that the spatial pattern (the entries
of A) consists of a dipole between the West Coast and the rest of the
country, with the strongest signal in the midwest. The entries of z, on
the other hand, evolve smoothly –as required– over time, with a typical
time scale of roughly 4 years. A natural climate variability factor
known to evolve over such scales is the El Niño Southern Oscillation
(ENSO). We superimpose on the plot of z the evolution of the El
Niño Index (ENI), representing the three month moving average of
the temperature over the Indian Ocean. As one can see, there is a
clear relation between ENI and z: they follow each other, correlating
positively until the late 2010, and negatively since. To our knowledge,
this is the first time that this signature of ENSO on the ground level
temperature across the US has been detected.

For comparison, we display in Figures 16 and 17 the results of ap-
plying the same procedure with identical parameters to the original,
unfiltered data. Here the first smooth principal component captures
the seasonal effects, as well as their modulation through the years. On
the map, one sees the seasons affecting felt most strongly the areas
furthest from the sea. Thus the time-scale of the first smooth prin-
cipal component of the filtered data agrees with the El Niño Index
in time scale (of about 4 years, in contrast to the yearly scale of the
unfiltered data); the Pearson correlations of the filtered and unfiltered
components with the ENI are 0.26 and −0.065 respectively up to 2010,
and −0.18 and −0.07 from 2010 on.

6 Conditional density estimation and sampling

Conditional density estimation is ubiquitous when estimating uncertainty:
the conditional distribution ρ(x|z) quantifies the variability in x not at-
tributable to z, as opposed to the unconditioned probability distribution
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Figure 14: Spatial distribution of the first smooth principal component of
the filtered data: a dipole between the west coast and the rest of the country,
with signal strongest in the mid-west.

ρ(x) which includes the variability in z. Even conventional tools such as
least-square regression can be regarded as estimators of the mean of the
variable of interest conditioned on the value of the predictors.

In the framework of this article, conditional density estimation arises as
a byproduct of the filtering algorithm. Since the maps y = Y (x; z) push
forward the conditional distributions ρ(x|z) into their barycenter µ(y), it
follows that

ρ(x|z) = Jz(x) µ (Y (x; z)) ,

where Jz(x) is the Jacobian determinant of Y (x; z). Thus one only needs
to estimate µ(y), a comparatively much easier task than estimating ρ(x|z)
directly, since:

1. There is only one density to estimate, as opposed to one for each value
of z.

2. There are as many samples (m in our notation) yi of µ as original pairs
(xi, zi), as opposed to few or no samples of ρ(x|z) for individual values
of z.
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Figure 15: Temporal evolution of the first smooth principal component in
blue and El Niño Index (the three-month moving average of the temperature
over the Indian Ocean) in red. Until the late 2010, the two signals are posi-
tively correlated (implying that the temperature in the mid west correlates
negatively with the temperature of the Indian Ocean), while from the late
2010 onwards the two signals are negatively correlated.

3. The distribution µ(y) has less variability than the unconditioned ρ(x),
as the variability attributable to z has been removed.

A task much simpler –and oftentimes more useful– than estimating
ρ(x|z) for a given value z∗ of z is to sample it. Since the filtering pro-
cedure has already produced m samples yi of µ, one can produce m samples
xz
∗
i from ρ(x|z∗) by simply inverting the filtering map using that particular

value for z:
xz
∗
i = X(yi, z

∗), (34)

where X(y, z) is the inverse map for fixed z of Y (x; z). Thus the procedure
transforms m samples xi from different distributions ρ(x|zi) into m samples
of the single distribution ρ(x|z∗).

For a first example that can be solved in closed form and that adapts
naturally to our poor man solution, consider the family of exponential dis-
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Figure 16: Spatial distribution of the first smooth principal component of
the unfiltered data: the seasons are most strongly felt furthest from the sea.

tributions
ρ(x|z) = λ(z)e−λ(z)(x−s(z)), (35)

where the rate λ(z) > 0 and the displacement s(z) are given by smooth
functions of z.

The barycenter of this family of distributions ρ(x|z) is again an expo-
nential distribution

µ(y) = λµ e
−λµ(y−sµ),

with rate λµ and displacement sµ given by

1

λµ
= E

[
1

λ(z)

]
and

sµ = E [s(z)] ,

where the expected value is taken over the distribution ν(z) underlying z.
To see this, notice that the linear transformations

xz =
λµ
λ(z)

(y − sµ) + s(z)
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Figure 17: Temporal evolution of the first smooth principal component of
the unfiltered data, capturing the seasons as well as their yearly variability.

1. push µ(y) to ρ(x|z),

2. are optimal, as they are given by the gradient of the convex potential

φ(y) =
1

2

λµ
λ(z)

(y − sµ)2 + s(z)y,

3. satisfy the property that

y = E [xz] =

∫
xzν(z) dz,

as can be readily verified.

Properties 1, 2 and 3 fully characterize µ as the barycenter of the ρ(x|z) [1].
In this case, restricting the maps to affine, as in our poor man solution,

does not introduce any approximation regarding the barycenter µ, so by
inverting the map we can recover exactly ρ(x|z) for any value z∗ of z. Figure
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18 shows a numerical example, where z has a bimodal distribution given by
the Gaussian mixture

ν(z) =
1

3
[N (−0.43, 0.3) +N (0.8, 0.25) +N (4, 0.5)]

where N (m,σ) denotes a Gaussian with mean m and standard deviation σ,
and each conditional distribution ρ(x|z) is exponential

ρ(x|z) =

{
λ(z)e−λ(z)(x−s(z)) if x > s

0 otherwise

with λ(z) = exp(0.91z + 0.76) and s(z) = 0.54z + 0.831.
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Figure 18: Left panel: after sampling m points zi from ν(z), one samples
for each zi a point xi from ρ(x|z). The left panel shows the distribution
ρ(x) =

∫
ρ(x|z)ν(z)dz, where ν(z) is a 2 component Gaussian mixture.

Right panel: exact distribution ρ(x|z∗) (in red) together with the histogram
of the points xz

∗
i obtained from mapping each sample yi from the barycenter

µ through X(yi, z
∗).

The perfect results in the example above follow from the fact that the
restriction to affine maps in our poor man filtering procedure was in fact
not restrictive at all for the exponential family of distributions. An affine
map does not change the shape of a distribution, so the fact that we could
transform samples from ρ(x|z1) into samples from ρ(x|z2) for z1 6= z2 was
only possible because both distributions had the same shape. This raises
the question of how to sample ρ(x|z) when the family of maps allowed is
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not big enough to push forward the ρ(x|z) for different values of z into each
other.

In order to overcome this limitation, one could only map back those
samples that have original values zi of z not too far from z∗. Better still,
one can give each sample xz

∗
i a weight w(zi) that peaks near z∗, such that∑

iwizi∑
iwi

= z∗,

thus giving more relevance to those sample points yi of µ that were mapped
from pairs (xi, zi) with zi close to z∗. As a proof of concept, consider the
family of distributions

ρ(x|z) = φ(z)N (2, 0.4) + (1− φ(z))N (5, 0.8), (36)

with φ(z) = 1− z and z ∈ [0, 1]. The barycenter µ of this family of distribu-
tion under affine maps is showed in Figure 19. Even though µ is unimodal,
it is still possible to recover the original, bimodal ρ(x|z∗) by mapping the
points with the inverse of the affine map Y (x; z∗) and then re-weighting
them with w(z). In the numerical example displayed in Figure 19, w(z) was
chosen to be a Gaussian with mean z∗ and standard deviation σw = 10−2. In
general, the width of w(z) is problem specific, depending on the smoothness
of ρ(x|z) as a function of z and on how many sample points from ρ(x|z) are
available in a neighborhood of z∗.
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Figure 19: Upper left panel: histogram of points sampled from ρ(x) as in
the left panel of Figure 18. Upper right panel: histogram of the points
obtained by mapping µ with y−1(x, z∗). Lower panel: histogram of the
points obtained by weighting the points mapped from µ as described in the
text.
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7 Conclusions

This article has introduced and developed a methodology for the attribution
of variability in a set of observations {xi} to known and unknown factors
{zi}, as well as the removal of those attributable components of the variabil-
ity from the data. In the language of optimal transport, the procedure seeks
a family of maps y = Y (x; z) that push forward the conditional probability
distributions ρ(x|z) onto their weighted barycenter µ(y) while minimizing a
transportation cost E[c(x, y)] associated with data distortion.

The factors z can be discrete (as in the amalgamation of data sets and
the removal from clinical data of the variability associated with a patient’s
sex) or continuous (as in a patient’s age in clinical data and the time of the
day in meteorological observations.) Time series analysis can be regarded
as a particular instance of the procedure, with factors that include at each
time elements from the past.

Uncovering previously unknown discrete factors is tantamount to clus-
tering, followed by the removal of the variability associated with the classes
just found. In this discrete case, when the maps Y (x; z) are restricted to
rigid, z-dependent translations, the resulting clustering procedure agrees
with k-means. When similar rigid translations are made to depend linearly
on unknown factors z adopting a continuum of values, one recovers principal
component analysis. This immediately suggest a number of generalizations,
some of which will be described in [23].

Since the maps Y (x; z) are necessarily invertible, they immediately pro-
vide a natural procedure for the estimation and sampling of conditional
probability distributions, a task of broad applicability in fields ranging from
personalized medicine to financial risk quantification.

This article discussed a general framework and some ramifications of the
methodology proposed, but postponed many natural extensions to further
work. In particular, the family of maps used for the examples was restricted
to at most affine transformations. When extending the procedure to more
general maps, a choice has to be made on whether to still model the con-
ditional distributions ρ(x|z) –as when parameterizing x̄(z) and Σ(z) in the
context of the poor man solution– or to model directly the maps Y (x; z),
imposing as a constraint that the resulting {yi} should be independent of the
{zi}. Work in progress explores various ways of achieving higher generality
in the maps, both in parametric and non-parametric ways.

The general methodology developed here has significant applicability
in many data-rich fields. To do them justice, these applications must be
developed in field-specific work. In particular, this applies to the explana-
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tion of ground temperature variability across the United States, which was
sketched here to illustrate the use of the methodology on real data. This
explanation can be carried much further: for instance, we stopped short
of explaining the variability in the data attributable to traveling whether
systems through asynchronous principal components, another extension of
PCA to be described in [23].
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