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Abstract

A framework is proposed that addresses both conditional density estimation and latent vari-
able discovery. The objective function maximizes explanation of variability in the data, achieved
through the optimal transport barycenter generalized to a collection of conditional distributions
indexed by a covariate –either given or latent– in any suitable space. Theoretical results establish
the existence of barycenters, a minimax formulation of optimal transport maps, and a general
characterization of variability via the optimal transport cost. This framework leads to a family
of non-parametric neural network-based algorithms, the BaryNet, with a supervised version that
estimates conditional distributions and an unsupervised version that assigns latent variables. The
efficacy of BaryNets is demonstrated by tests on both artificial and real-world data sets. A parallel
drawn between autoencoders and the barycenter framework leads to the Barycentric autoencoder
algorithm (BAE).

Keywords: Unsupervised learning, optimal transport, neural network, autoencoders, factor dis-
covery.
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1 Introduction

In machine learning, one often considers joint distributions of the form ρ(x, z), where x is an observable
and z some latent variable, or alternatively z is the source and x the target variable. For instance, in
images of human faces, the data space x ∈ X may have a dimension up to 105 ∼ 106 if counted in
pixels, while a covariate z ∈ Z consisting of the face orientation is only two-dimensional.

A task of broad applicability is to extract, given data drawn from ρ(x, z), the conditional distri-
butions ρ(x|z). An example in medical studies has ρ(x|z) representing the distribution of blood sugar
level conditioned on a patient’s age and diet. In generative modeling, ρ(x|z) can represent the distri-
bution of images conditioned on a text description such as z=“cat”, and one seeks to generate samples
from ρ(x|z). A knowledge of ρ(x|z) allows one to estimate the conditional expectation Eρ(x|z)[f(x)]
for any function f of interest.

Alternatively, if one is only given the raw data ρ(x), then one can try to infer a reasonable latent
variable z that underlies x. For instance, for the facial images, discovering z as the face orientation
explains away a great portion of the data’s variability, thereby facilitating data compression and
generative modeling.

These two problems are known, respectively, as conditional density estimation and latent variable
discovery. The former can be seen as a probabilistic generalization of classification and regression,
while the later contains as special cases clustering and dimensionality reduction. They form a pair
of supervised/unsupervised problems, such that one learns the dependency of x on z, while the other
discovers z. This paper formulates and solves both problems in a single framework based on optimal
transport.
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1.1 Related work

Existing methods for conditional density estimation generally follow one of two approaches: to directly
model ρ(x, z) using kernel smoothing techniques [18, 16], or to model the mapping

z 7→ ρ(x|z)

For instance, the Mixture Density Network [6] models ρ(x|z) as a Gaussian mixture with z-dependent
parameters, the Conditional GAN [26] models ρ(x|z) by generative adversarial networks (GAN), Deep
Conditional Generative Models [35] use variational autoencoders (VAE), and [1] and [39] use normal-
izing flows. Essentially, these methods apply density estimation techniques for a single distribution to
the modeling of all conditional distributions simultaneously. We will introduce an alternative approach
such that all ρ(x|z) are represented by a single distribution µ, from which we can easily recover each
ρ(x|z), so that we only need to estimate µ.

Existing methods for latent variable discovery are vast and rich. For discrete latent variables z,
the problem reduces to clustering, where popular methods include k-means and the EM algorithm
[3, 7]. For continuous z, we have dimensionality reduction algorithms such as principal component
analysis (PCA), principal curves and surfaces [14], and undercomplete autoencoders (also known as
autoassociative neural networks) [3]. Depending on different regularizations on z, there are also the
VAE [21], AAE [24], WAE [38], and denoising and sparse autoencoders [3]. We will identify below a
parallelism between autoencoders and the algorithms that we propose.

Our theoretical model is based on optimal transport, in particular on the barycenter of probability
measures. The idea of applying barycenters to conditional density estimation originates from [37],
while the application to latent variable discovery is based on the previous work in [36, 43]. This
paper lays the theoretical foundation for the technique of barycenters, and introduces several neural
network-based algorithms.

1.2 Sketch of our approach

Intuitively, one of the principles of learning is to reduce uncertainty. Given arbitrary data, an effective
way to learn it is to find a representation of it so that some measure of uncertainty is reduced.
One prototypical example is the Kolmogorov complexity: when the data consists of a string such as
ababababab, it is natural to represent it by ab× 5, so the variability of a long string is reduced to that
of a shorter representative. Another instance is PCA, which seeks a low-dimensional representation of
high-dimensional data. It maximizes the amount of variance explained by the principal components,
thus minimizing the uncertainty remaining.

Clustering provides a similar setting: suppose that we are given the data displayed on the left image
of Figure 1, divided into three labeled clusters. We would naturally learn the data by memorizing the
clusters’ common shape and their relative positions. Equivalently, as in the right image, the data can
be represented by a common distribution plus the translations that bring the three clusters to it. As
we apply these translations to transform the original data, the variance is greatly reduced.

Figure 1: Clusters and their representative
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This intuition can be summarized as follows: given a sample space X such as R2 and a latent
variable space Z such as {1, 2, 3}, an effective way to learn a distribution ρ(x, z) ∈ P (X ×Z) is to find
a representative distribution µ with smaller variability, as well as the transformations between each
conditional distribution ρ(x|z) and µ.

In a data-based scenario, we are given a labeled sample {xi, zi}Ni=1. Once we obtain the transfor-
mations Tz that send ρ(x|z) to µ and their inverse transformations Sz, the representative µ can be
estimated by aggregating all sample points: {Tzi(xi)}. Then, given any z, the conditional distribution
ρ(x|z) can be sampled via {Sz ◦ Tzi(xi)}.

We can already see one advantage of this procedure: once the transformations are known, N sample
points for ρ(x, z) automatically provide N samples for each conditional ρ(x|z). This is particularly
helpful when there are many latent variables z or when these are continuous, so that for most values of
z, the conditional ρ(x|z) has very few or zero samples in {xi, zi}Ni=1. Furthermore, this procedure can
be used in conjunction with other density estimation algorithms or generative models: the difficult task
of modeling many ρ(x|z) (or a high-dimensional ρ(x, z)) is simplified into modeling a single µ, and one
can, for instance, first train the GAN or VAE on µ and then concatenate it with Sz to model each ρ(x|z).

The theory of optimal transportation is ideal for the formalization of the procedure above. Intu-
itively, the representative distribution µ should closely resemble each conditional ρ(x|z), that is, µ is
the minimizer of some average “distance” between µ and ρ(x, z) = ρ(x|z)ν(z):

µ = argminµ̃

∫
Z

distance
(
µ̃, ρ(x|z)

)
dν(z)

Thus, we refer to µ as the “barycenter” of ρ(x, z). The optimal transport cost (or “Earth mover’s
distance”) is a good candidate for distance, such that informally the distance between two distributions
µ1 and µ2 is the minimum “work” required to transport µ1 (thought of as a pile of sand) to µ2. When
a cost function c(x, y) is given (such as the Euclidean distance ‖x− y‖), the optimal transport cost is

Ic(µ1, µ2) ≈ inf
T

∫
c(x, T (z))dµ1,

where the infimum is taken over all maps T that transport µ1 to µ2. If we consider c(x, T (x)) as a
measure of pointwise distortion, then Ic(ρ(x|z), µ) is the distortion or information loss incurred on the
original data.

Optimal transportation has several advantages. The optimal transport cost Ic(µ1, µ2) depends on
a user-specified cost c and thus can directly incorporate task-specific information. In particular, if
the cost is based on the metric of the space, then Ic(µ1, µ2) reliably captures our intuitive sense of
distance between distributions [4], whereas other measures, such as the Kullback-Leibler divergence and
total variation, fail when the distributions have disjoint supports. Also, given that optimal transport
minimizes data distortion, it is natural to expect that µ1 can be easily recovered from its transported
image µ2, that is, the transport maps Tz are invertible. This is a useful property, since our procedure
needs to transform back and forth between the conditionals ρ(x|z) and the representative µ.

The greatest advantage, however, is duality. The theory of optimal transport abounds with duality
techniques, through which we convert optimization problems over probability measures to problems
over functions, and vice versa. A general rule is that, being less restricted, functions are easier to
model and optimize than probability distributions, and we perform this conversion whenever possible.
The primal problem of conditional density estimation is often intractable, because it is difficult to
model directly each of the possibly infinitely many conditionals ρ(x|z). Yet, optimal transport duality
converts the primal into an optimization over one transport map T (x, z) and one discriminator ψ(y, z),
which can be more easily solved by methods such as neural networks.

The next step is to apply our principle of minimum uncertainty to latent factor discovery, the
unsupervised counterpart to conditional density estimation. Recall that in the supervised setting with
ρ(x, z), our procedure reduces the uncertainty or “variability” of ρ(x) to the smaller variability of the
representative (or barycenter) µ. If one has the freedom to determine the labels z, one can reduce the
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variability of µ further. Thus, given an unlabeled data ρ(x), factor discovery should seek a labeling
ρ(x, z) that minimizes the variability of its barycenter µ, or equivalently,

max
ρ(x,z)

Variability(ρ(x))−Variability(µ).

If, for the dataset in Figure 1, one did not know the labels {1, 2, 3}, one could assign them. Clearly
some labelings are better than others: in the worst scenario, the labels {1, 2, 3} would be distributed
uniformly within each cluster, and our procedure would yield a barycenter µ with the same shape and
size as the original data, with no variability reduction at all.

We should define “variability” in a way that generalizes variance, so that factor discovery can
yield the obvious labeling of Figure 1. Also, variability should depend on the cost c(x, y) in order
to incorporate task-specific information. Intuitively, how much we learn is proportional to how much
effort we spend learning, or equivalently,

Reduced uncertainty = Work.

So we characterize “variability” as a measurement that satisfies

Variability(ρ(x))−Variability(µ) = Total transport cost

∫
Ic
(
ρ(x|z), µ

)
dν(z). (1)

In fact, Corollary 4 below shows that definition (1) yields exactly the variance when we use the squared
Euclidean distance cost c = ‖x− y‖2. Hence, factor discovery becomes

max
ρ(x,z)

Total transport cost,

which differs from conditional density estimation only by the additional maximization.

This paper is structured as follows. Section 2 develops the ideas presented in the introduction,
formulating conditional density estimation and latent factor discovery in the framework of optimal
transport barycenters. Section 3 addresses the algorithmic aspects, proposing the supervised and
unsupervised BaryNet algorithms, which use neural networks. It also discusses BaryNet’s relation to
existing methods, in particular the autoencoders, and introduces the Barycentric autoencoder (BAE)
based on BaryNet. Section 4 tests the performance of the BaryNet algorithms on real-world and
artificial data sets, and verifies that they can reliably solve conditional density estimation and latent
factor discovery. Finally, Section 5 summarizes the results and discusses possible future work. The
proofs of most theorems are provided in an appendix.

2 Theoretical foundation

The ideas presented in the introduction are formalized and proved in this section. We first define
optimal transport barycenter and prove its existence. Then, we obtain the conditional transport map
T (x, z) from a minimax problem. Finally, we prove the variance decomposition theorem and justify
our definitions of variability and latent factor discovery.

2.1 Preliminaries

We denote by X and Z the sample and latent variable spaces, and by Y the space that the barycenter
µ belongs to. In practice one often has X = Y , but this is not required here.

Most of our results will be presented with (X,Y, Z) Polish spaces, which are complete separable
metric spaces. These have enough structure to handle problems of optimal transport, while they are
general enough to include most spaces in real-world applications, such as Euclidean spaces Rd, closed
subsets of Rd, complete Riemannian manifolds Md, discrete sets such as {1, . . .K}, and function spaces
such as C([0, 1]), P (Rd).
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Given a Polish space X, we denote the space of continuous functions by C(X), the space of bounded
continuous functions by Cb(X) and the space of Borel probability measures by P (X).

For clarity, we sometimes write a measure ρ ∈ P (X) informally as ρ(x) to indicate the space it
belongs to, not implying by this that ρ has a density function, unless explicitly declared. For joint
probability measures, e.g. π ∈ P (X × Y × Z), we denote its marginals by πX , πY Z , etc. The tensor
product of probability measures µ and ν is denoted by µ⊗ ν.

Given ρ(x, z) ∈ P (X × Z), we define the conditional distributions ρ(x|z)ν(z) = ρ(x, z) using the
disintegration theorems [9]. The conditional ρ(x|z) always exists as a Borel measurable map from Z
to P (X) in the topology of weak convergence, and it is unique ν(z)-almost surely. Conversely, given
ν(z) and a measurable ρ(x|z), we define the joint distribution ρ(x, z) := ρ(x|z)ν(z) by

∀ψ ∈ Cb(X × Z),

∫
ψdρ(x, z) :=

∫
ψdρ(x|z)dν(z)

2.2 Optimal transport and barycenter

A map T : X → Y pushes-forward ρ ∈ P (X) to µ ∈ P (Y ) (denoted T#ρ = µ) if

µ(A) = ρ(T−1(A))

for all measurable subsets A ⊆ X. Monge’s original formulation of optimal transport [27]:

inf
T#ρ=µ

∫
X

c(x, T (x))dρ(x)

minimizes over all transport maps T the expected value of a cost function c on X × Y . Kantorovich
[19] generalized the transport maps to probabilistic couplings,

Π(ρ, µ) := {π ∈ P (X × Y ), πX = ρ, πY = µ},

relaxing the optimal transport problem to

Ic(ρ, µ) = inf
π∈Π(ρ,µ)

∫
X×Y

c(x, y)dπ(x, y). (2)

If the minimum of (2) is achieved by some coupling π, we call it an optimal transport plan, or a
Kantorovich solution. If π is concentrated on the graph of some function T : X → Y , then T is called
an optimal transport map, or a Monge solution.

Inspired by definitions from [37] and [20], we define optimal transport barycenter as follows:

Definition 1 (Barycenter problem). Given a cost function c(x, y), a labeled distribution ρ(x, z) =
ρ(x|z)ν(z) ∈ P (X × Z), and any µ ∈ P (Y ), the total transport cost between ρ(x, z) and µ is defined
by

Ic(ρ(x, z), µ) =

∫
Z

Ic(ρ(x|z), µ)dν(z) (3)

If the minimum total transport cost
inf

µ∈P (Y )
Ic(ρ(x, z), µ)

is achieved by some µ, then we call it the barycenter of ρ(x, z).

The notion of a barycenter of finitely many conditionals ρ(x|z) (that is, the label space is finite:
Z = {1, . . .K}) was introduced in [8, 10, 32], and its existence, uniqueness, and regularity were
examined in [2, 30, 20]. Barycenters of infinitely many conditional distributions are studied in [31, 20],
which deal with the case when X is either Euclidean space or compact Riemannian manifold and c is
the squared distance cost.

We show that the barycenter problem as defined above is well-posed, and the barycenter exists
under general conditions:
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Theorem 1 (Well-posedness and Existence of Barycenter). Let X,Y, Z be Polish spaces, let c ∈ C(X×
Y ) be a continuous cost that is bounded below (inf c > −∞), and let ρ(x, z) = ρ(x|z)ν(z) ∈ P (X×Z)
be a probability measure. Then,

1. Given any µ ∈ P (Y ), the total transport cost (3) is well-defined, and∫
Z

Ic(ρ(·|z), µ)dν(z) = min
π∈P (X×Y×Z)

πXZ=ρ
πY Z=µ⊗v

∫
X×Y×Z

c(x, y)dπ(x, y, z), (4)

so there exists a Kantorovich solution in the form π ∈ P (X × Y × Z).

2. If Assumption 1 from Appendix A holds, then there exists a barycenter µ ∈ P (Y ). Specifically,

min
µ∈P (Y )

∫
Z

Ic(ρ(·|z), µ)dν(z) = min
π∈P (X×Y×Z)

πXZ=ρ
πY Z=πY ⊗πZ

∫
X×Y×Z

c(x, y)dπ(x, y, z), (5)

and the marginal πY of every solution π is a barycenter.

Proof. See Appendix B. Note that πY Z = πY ⊗ πZ implies that the barycenter is independent of the
latent variable.

Remark 1. There are pathological examples where the barycenter does not exist: if X = Y = Rd and
c(x, y) = exp[−‖x−y‖2], then any barycenter will tend to be pushed arbitrarily far away. Assumption
1 is modeled after the squared distance cost c = ‖x− y‖2 and prevents such degeneracy.

2.3 Conditional transport maps

Having shown that the barycenter µ exists, the next step is to find the transport maps Tz and inverse
transport maps Sz between each conditional distribution ρ(x|z) and µ(y).

From Theorem 1, the barycenter problem admits a Kantorovich solution π ∈ P (X × Y × Z). If
π should also be a Monge solution, that is, π were concentrated on the graph of some transport map
T : X × Z → Y , it would follow that for v-almost all z,

T (·, z)#ρ(x|z) = µ(y)

or equivalently,
T̃#ρ(x, z) = µ(y)⊗ ν(z), where T̃ (x, z) := (T (x, z), z) (6)

We show that this holds in general:

Theorem 2. Given Polish spaces X,Y, Z, probability ρ(x, z) ∈ P (X × Z) and cost c ∈ C(X × Y )
that is bounded below (inf c > −∞), under Assumptions 1 and 2 from Appendix A, the barycenter
problem has a Monge solution: the minimum total transport cost (5) becomes

min
Borel measurable
T :X×Z→Y

sup
ψY (y)∈Cb(Y )
ψZ(z)∈Cb(Z)∫
ψZ(z)dν(z)=0

∫ [
c(x, T (x, z))− ψY (T (x, z))ψZ(z)

]
dρ(x, z) (7)

and every minimizer T is a transport map from ρ(x, z) to a barycenter µ(y).

Proof. See Appendix C.

Remark 2. The test function ψY (y)ψZ(z) in (7) serves as the “discriminator” that checks that all the
conditional distributions ρ(x|z) have been pushed-forward to the same barycenter µ. The technique of
discriminator has appeared in [4] to train the generative adversarial networks, and it has been applied
to the barycenter problem by [37], which derived test functions of the form

ψ(y, z) such that

∫
ψ(y, z)dν(z) ≡ 0
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Theorem 2 improves this technique, because ψY (y)ψZ(z) has much less complexity than ψ(y, z). From
a data-based perspective, with the distributions given through sample points {xi, yi, zi}Ni=1, the test
function ψ(y, z) becomes a full N ×N matrix, whereas ψY (y), ψZ(z) are two 1×N vectors, which can
be seen as providing a rank-one factorization of ψ(y, z). Later sections show that all computations are
thereby reduced from quadratic to linear time O(N).

An explanation for this improvement is that the barycenter problem has more freedom than the
ordinary optimal transport problem. Optimal transport would require the pushforward T̃#ρ(x, z) to
match a fixed target distribution, so that the dual problem needs to mobilize the entire Cb(Y × Z)
to pin it down. For the barycenter problem, however, Theorem 1 shows that πY Z = T̃#ρ(x, z) only
needs to satisfy the independence condition

πY Z = πY ⊗ πZ .

Correspondingly, the dual problem only requires a small subspace of Cb(Y × Z).

Regarding the inverse transport maps Sz, one approach is to set Sz = T−1
z . This is viable in many

scenarios: for instance, by Brennier’s Theorem [41], the inverse function T−1
z exists almost surely,

T−1
z ◦ Tz(x) = x for ρ(x|z)-almost all x,

and it is the optimal transport map for the inverse transport,

T−1
z #µ = ρ(x|z).

Then, computing Sz becomes a simple regression problem. Given the labeled data {xi, zi}Ni=1, we first
compute the barycenter {yi = T (xi, zi)} and then find a map S : Y × Z → X that approximates {xi}
by {yi, zi}. This is the approach used by our algorithms.

It might be helpful to note that there is a more general approach, which directly solves the optimal
transport from µ(y) ⊗ ν(z) back to ρ(x, z). Assertion 1 of Theorem 1 shows that there is always
a Kantorovich solution, while the arguments of Theorem 2 can be applied to show that the inverse
transport map S(y, z) can be solved from

min
Borel measurable
S:Y×Z→X

sup
ψ(x,z)∈Cb(X×Z)

∫ [
c(S(y, z), y)− ψ(S(y, z), z)

]
dµ(y)dν(z) +

∫
ψ(x, z)dρ(x, z).

Remark 3. As discussed in the introduction, given a labeled sample {xi, zi}Ni=1, we can estimate each
conditional distribution ρ(x|z) by the computed sample {Sz ◦ Tzi(xi)}Ni=1. Yet, when X = Y is an
Euclidean space and Sz(x) is differentiable (e.g. when Sz is modeled by a neural net), we can also
derive the probability density function of ρ(x|z): First, estimate the barycenter’s density µ(y) from
the computed sample {yi}Ni=1 (e.g. by kernel smoothing). Then, since Sz#µ = ρ(x|z), the density of
ρ(x|z) can be computed through

ρ(x|z) = |J(Sz(x))| · µ(Sz(x)),

where |J | is the Jacobian determinant. Then, we can estimate the density function ρ(x, z) through
ρ(x|z)ν(z), where ν(z) is estimated from the {zi}.

2.4 Latent factor discovery

Finally, we justify the definition (1) of variability, from which it follows that the minimization of the
barycenter’s variability, which is the objective of factor discovery, is equivalent to the maximization of
total transport cost. We illustrate this intuition in the case where X = Y = Rd and c(x, y) = ‖x−y‖2.
Then, the optimal transport cost Ic becomes W 2

2 , where W2 is the 2-Wasserstein distance. (See [41, 42]
for a reference of Wasserstein distance, and [2] for Wasserstein barycenters.)
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Theorem 3. Given any measurable space Z and probability measure ρ(x, z) = ρ(x|z)ν(z) ∈ P (Rd×Z),
there exists a Wasserstein barycenter µ ∈ P (Rd) that satisfies

V ar(ρ(x))− V ar(µ) =

∫
Z

W 2
2 (ρ(x|z), µ)dν(z). (8)

Proof. See Appendix D for the proof. The intuition is that the geometric properties of Rd can be lifted
to (P (Rd),W2). Specifically, consider the trivial case with Dirac masses:

ρ(x, z) =

K∑
k=1

Pkδxk ⊗ δzk

where Pk are positive weights. Then, ρ(x) becomes
∑
Pkδxk , and the unique W2-barycenter µ is

the Dirac mass on the mean of ρ(x). Both sides of (8) reduces to V ar(ρ). Applying approximation
arguments repeatedly, we can solve for general distributions over P (Rd). Meanwhile, if we consider
ρ(x|z) as a random variable from Z to P (Rd), then v(z) gives a distribution over P (Rd).

Corollary 4. Let V : P (Rd)→ R ∪ {∞} be any function such that V (δx) = 0 for any Dirac mass δx.
Then, V is the variance V ar if and only if for any measurable space Z and any ρ(x, z) ∈ P (Rd × Z),
there exists a barycenter µ that satisfies

V (ρ(x))− V (µ) =

∫
Z

W 2
2 (ρ(x|z), µ)dν(z) (9)

Proof. The “only if” part follows from Theorem 3. For the “if” part, set Z = Rd. Given any ρ(x) ∈
P (Rd), set ρ(x, z) = δz(x)ρ(z). Then, the X-marginal of ρ(x, z) is ρ(x), and the unique barycenter µ
is the Dirac measure at the mean of ρ(x). Then, (9) reduces to V (ρ(x)) = V ar(ρ(x)).

Since a Dirac measure δx represents a deterministic event without any uncertainty, V (δx) should
be zero for any reasonable variability function V . Then, it follows from Corollary 4 that the variability
defined by (1) is exactly the variance V ar, when the cost is the Euclidean squared distance.

Remark 4. As a further justification, notice that if the cost c(x, y) = ‖x − y‖2 is generalized to
(x − y)TQ(x − y) for some positive-definite symmetric matrix Q, then the corresponding variability
becomes a “weighted” variance, with a different scaling factor in each eigen-direction:

V (ρ) =

∫
(x− x)TQ(x− x)dρ(x) = V ar(

√
Q#ρ)

where x is the mean and
√
Q#ρ is the pushforward by the linear map

√
Q.

Proof. Given any ρ(x, z), formula (5) becomes

min
π∈P (Rd×Rd×Z)
πXZ=ρ(x,z)
πY Z=πY ⊗πZ

∫
(x− y)TQ(x− y)dπ(x, y, z) = min

π∈P (Rd×Rd×Z)
πXZ=ρ(x,z)
πY Z=πY ⊗πZ

∫
‖x− y‖2d(

√
Q,
√
Q, Id)#π(x, y, z)

= V ar(
√
Q#ρ(x))− V ar(

√
Q#µ),

where
√
Q#µ is a barycenter of (

√
Q, Id)#ρ(x, z) (under cost ‖x− y‖2) that satisfies (8). Then, µ is

a barycenter of ρ(x, z) (under cost (x− y)TQ(x− y)) and satisfies (9) with V (ρ) = V ar(
√
Q#ρ).

It follows from definition (1) that the variability of the barycenter is complementary to the total
transport cost (7) to the barycenter. As argued in the introduction, given any unlabeled data ρ(x),
latent factor discovery looks for a labeling ρ(x, z) that minimizes the variability of its barycenter.
Then, factor discovery has the following equivalent formulation based on (7):

sup
ρ(x,z)
ρX=ρ(x)

min
measurable
T :X×Z→Y

sup
ψY (y)∈Cb(Y )
ψZ(z)∈Cb(Z)∫
ψZ(z)dν(z)=0

∫ [
c(x, T (x, z))− ψY (T (x, z))ψZ(z)

]
dρ(x, z). (10)
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To solve (10), factor ρ(x, z) into p(z|x)ρ(x), where p(z|x) is the conditional label distribution for
the sample point x. In particular, when Z is finite, p(z|x) can be seen as a classifier on X. Thus, an
effective way to optimize ρ(x, z) and regularize the solution is to parameterize p(z|x): e.g. we can set

pθ(z|x) = Gθ(x, z)#N (0, I)

where Gθ is a neural net and N (0, I) is a unit normal distribution.
Nevertheless, trivial solutions could arise from supρ(x,z). For instance, whenever X = Z, we can

set
ρ(x, z) := δx(z)ρ(x) = δz(x)ρ(z)

then all of the data ρ(x) will be compressed to a barycenter that is a Dirac mass. This situation is
analogous to an autoencoder whose hidden layers have the same size as the input/output layers, so
that the network can become the identity function and learn the trivial latent variable z = x. We will
discuss ways to regularize ρ(x, z) and its connection to autoencoders in Sections 3.1.2 and 3.2.

3 Algorithmic design

In the previous section, we converted conditional density estimation, a problem involving probability
distributions, to the dual of the barycenter problem (7), which involves only functions. Then, latent
factor discovery becomes (10) with an additional maximization over all labelings ρ(x, z) whose marginal
ρX is the given unlabeled distribution ρ(x).

In practice, we are given a labeled finite sample set {xi, zi}Ni=1 for conditional density estimation,
and the objective (7) becomes

inf
τ

sup
ξ
L(τ, ξ) =

1

N

N∑
i=1

[
c
(
xi, Tτ (xi, zi)

)
− ψYξ

(
Tτ (xi, zi)

)
ψ̃Zξ (zi)

]
, (11)

where Tτ , ψ
Y
ξ , ψ

Z
ξ are maps parameterized by τ, ξ and

ψ̃Zξ (z) := ψZξ (z)− 1

N

N∑
i=1

ψZξ (zi), (12)

which is a sample-based version of the constraint
∫
ψZdv = 0 from (7).

For factor discovery, we follow the analysis in Section 2.4 to model the labelings ρ(x, z) via
pθ(z|x)ρ(x), where pθ(z|x) is a parameterized conditional label distribution. Then the objective (10)
becomes

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) =

1

N

N∑
i=1

Epθ(z|xi)
[
c
(
xi, Tτ (xi, z)

)
− ψYξ

(
Tτ (xi, z)

)
ψ̃Zξ
(
z
)]

ψ̃Z(z) := ψZ(z)− 1

N

N∑
i=1

Epθ(z̃|xi)ψ
Z(z̃).

(13)

It could be difficult to compute the expectation Epθ(z|xi) directly, unless it has an analytical solution
or Z is finite. For simplicity, we often restrict to the case pθ(z|x) = δzθ(x), that is, the labeling is given
by a deterministic map, zi = zθ(xi).

In the following sections, we demonstrate the efficacy of (11) and (13) by implementing them
through neural networks. We focus on the special case when X,Y are Euclidean spaces, Z is either
Euclidean or finite, and the cost c is differentiable.

3.1 BaryNet

Since (11) and the deterministic version of (13) are optimization problems that involve only functions,
it is natural to solve them by neural networks. By Theorems 1 and 2 of [17], feedforward neural
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nets are universal approximators for continuous functions C(Rd) and measurable functions L1(dρ),
so they can model the continuous test function ψY (y) (and ψZ(z) when Z is Euclidean) and the
measurable transport map T (x, z). We can also model the conditional latent distribution pθ(z|x) or
the deterministic zθ(x) by neural nets, if we require that they depend continuously on their parameters.
Hence, (11) and (13) become a collection of interacting networks, an architecture that we refer to as
“BaryNet”, for barycenter network. As (11) and (13) can be seen as a supervised/unsupervised pair,
we call the corresponding networks the supervised/unsupervised BaryNet.

One advantage of neural nets is the ease to control their expressivity. A neural net can approximate
any continuous function if either its width [17] or depth [23] goes to infinity, so we can adjust the
network’s size to solve problems with varying complexity. In factor discovery, for instance, if we know
a priori that the ideal labeling zθ should approximate the data’s principal components, or if we desire
simple labelings that are more easily interpretable, then we can reduce the size of zθ.

Another advantage is that the structure of the solution can be easily encoded in the network
architecture. For instance, if the ideal solution should be a perturbation to the identity: f(x) =
x + o(|x|), then we can model only the perturbation part: fθ(x) = x + gθ(x). This approach, known
as “residual network” [15], makes the network easier to optimize and increases the likelihood to reach
optimal solutions. It turns out that this residual design resembles the structure of the transport map
T (x, z).

3.1.1 Transport and inverse transport nets

As in residual networks, our transport map can be modeled as

Tτ (x, z) = x+Rτ (x, z), (14)

if the transportation takes place within a single space, X = Y = Rd. A motivation is that solutions to
the barycenter problem (7) generally have the following properties:

1. Each transport map Tz#ρ(x|z) = µ starts from an identity component x. This holds in general
for optimal transport maps in Euclidean spaces, as these are special cases of the transport maps
on complete Riemannian manifolds:

T (x) = expx(R(x))

where R(x) is a tangent vector that “points” to the transportation’s destination (e.g. see Mc-
Cann’s theorem, Theorem 2.47 of [41]), which in the Euclidean setting reduces to T (x) = x+R(x).

As a concrete example, Theorem 2.44 of [41] shows that if the cost c = c(x − y) is strictly
convex and superlinear, and if the source and target measures are absolutely continuous, then
the optimal transport map has the residual form

T (x) = x−∇c∗(∇φ(x)),

where c∗ is the Legendre transform of c and φ is c-concave. Another example is provided in
Section 3.3 of [36]: if ρ(x|z) and µ have similar shapes, then the transport map have the form

T (x) ≈ x+ β(z), β(z) = y − x(z), (15)

where x(z), y are the means of ρ(x|z) and µ. This T (x) approximates the optimal transport map
up to the first moment.

2. Each Tz is invertible: it was argued in Section 2.3 that under general conditions, such as under
the hypothesis of Brennier’s theorem [41], the transport map Tz is invertible ρ(x|z)-almost surely
and its inverse T−1

z transports µ back to ρ(x|z). The residual design (14) is an effective way to
ensure that Tz is invertible: if the residual term is small, in the sense that ∇xR ≈ O, then the
inverse exists locally by the inverse function theorem, and it has the form

Sz(x) = x−R(x, z) +O(‖∇xR(x, z)‖ · ‖R(x, z)‖). (16)
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An additional benefit of the residual design is that the Jacobian matrix ∇xTτ is close to the identity
when the residual term is small, thus alleviating both the exploding and vanishing gradient problem
during training [15].

Regarding the inverse transport map S(y, z), formula (16) suggests that we should also model
S(y, z) as a residual network with the same architecture as Tτ . As argued in Section 2.3, after the
transport map Tτ is obtained from the barycenter problem (11) or (13), the inverse S(y, z) can be
found through a regression problem:

inf
θ
Eρ(x,z)

[
c
(
x, Sθ(Tτ (x, z), z)

)]
≈ 1

N

N∑
i=1

c
(
xi, Sθ(yi, zi)

)
. (17)

3.1.2 Label net

For the factor discovery problem (13), we focus on two cases, when Z is either finite: Z = {1, . . .K}, or
Euclidean: Z = Rk. For the finite case, the conditional label distribution p(z|x) becomes a probability
vector, which can be modeled by the SoftMax function

pθ(z|x) = SoftMax(pθ(x)) =

[
ep

1
θ(xi)∑K

k=1 e
pkθ (xi)

, . . .
ep
K
θ (xi)∑K

k=1 e
pkθ (xi)

]
,

where pθ(x) : Rd → RK is some neural net. The test function ψZ(z) reduces to a vector [q1, . . . qK ],
and the transport map T (x, z) splits into K maps T k(x). The objective (13) becomes

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) =

1

N

N∑
i=1

K∑
k=1

pθ(k|xi)
[
c
(
xi, T

k
τ (xi)

)
− ψYξ

(
T kτ (xi)

)
q̃k
]
,

q̃k := qk −
K∑
h=1

qh

N∑
i=1

pθ(h|xi)
N

.

(18)

If we consider the conditional distributions ρk := ρ(x|k) as clusters, then p(k|xi) is the membership
probability that sample xi belongs to cluster ρk, and ρ1, . . . ρK become a clustering plan for ρ(x) with

weights 1
N

∑N
i=1 p(k|xi). Hence, problem (18) reduces to clustering (with soft assignments).

Remark 5. In prior work, optimal transport barycenter has been applied to the clustering problem
in [36, 43], which study the case with squared Euclidean distance cost and solve directly the primal
problem

min
p(k|xi)

V ar(barycenter) (19)

instead of the dual problem (18). If we simplify the transport maps Tk by their first-moment approxi-
mations (15), then [36] shows that (19) produces the k-means algorithm. If we approximate Tk so that
it aligns the second moments of ρ(x|z) and µ, then [43] shows that (19) leads to more robust algo-
rithms that recognize non-isotropic clusters. While [36, 43] only compute the membership probabilities
p(k|xi), the dual problem (18) solves for both p(k|xi) and Tk, without any simplifying assumption on
Tk.

For the Euclidean case Z = Rk, we focus on deterministic labelings p(z|xi) = δzi and model zi by
zθ(xi). Then the objective (13) simplifies into

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) =

1

N

N∑
i=1

[
c
(
xi, Tτ (xi, zθ(xi))

)
− ψYξ

(
Tτ (xi, zθ(xi))

)
ψ̃Zξ
(
zθ(xi)

)]
,

ψ̃Z(z) := ψZ(z)− 1

N

N∑
i=1

ψZ(zθ(xi)).

(20)
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An interesting property of the labeling ρ(x, z) is that it is invariant under bijections of the latent
variable space Z. This is trivial for the clustering problem, since any permutation of the labels
Z = {1, . . .K} produces a different but equivalent labeling. In general, given any ρ(x, z), T (x, z), ψZ(z)
for the factor discovery problem (10) and given any measurable f : Z → Z, the triple(

(Id, f)#ρ(x, z), T, ψZ
)

produces the same value as (
ρ(x, z), T ◦ (Id, f), ψZ ◦ f

)
,

so they can be considered equivalent solutions.
This invariance suggests that we can reduce the freedom in the architecture of zθ without affecting

the expressivity of the BaryNet. Let NN(X,Z) denote the set of all neural nets mapping X to Z.
Originally, zθ should range in NN(Rd,Rk), which is dense in C(K,Rk) for any compact K ⊆ Rd,
but now we can restrict to some smaller family Z ( NN(Rd,Rk) such that NN(Rk,Rk) ◦ Z is dense
in C(K,Rk). For instance, it is straightforward to show that Z can be the set of bounded Lipschitz
neural nets whose last layer is bias-free. Such restriction is helpful for training, as it reduces the size
of the search space.

Remark 6. The finite case (18) and the Euclidean case (20) can be combined into a cluster detection
task: first, we solve (20) with Z = Rk and k ≤ 3 small, so that Z can be visualized. Then, we inspect
the latent variables {zi} to see if there are recognizable clusters, and how many. If so, we perform
clustering (18) on either the original data {xi} or the processed data {zi}.

Without any regularization, problem (20) might yield degenerate solutions: If dimZ = k ≥ d =
dimX, then the optimal solution is the trivial labeling z = x, that is, ρ(x, z) = δz(x)ρ(z). One
simple regularization is to impose a bottleneck architecture, setting k < d. It is analogous to the
undercomplete autoencoder [12], whose intermediate layers are smaller than the input/output layers so
that the autoencoder cannot pass by learning the identity function. As it turns out, the connection to
autoencoders runs deeper than this.

3.2 Relation to autoencoders and generative modeling

The unsupervised BaryNet (13) can be conceptualized in terms of encoders and decoders. The label
net zθ (or more generally pθ(z|x)) encodes each xi into a latent code zi, and to recover xi, the inverse
transport map S(·, z) decodes zi probabilistically as the conditional distribution ρ(x|zi) = Szi#µ. Then
the “reconstruction loss” of the encoding/decoding process should be proportional to the variability
of ρ(x|z),

Reconstruction loss ∝
∫
V
(
ρ(x|z)

)
dv(z). (21)

Meanwhile, it is natural to expect that the variability of the barycenter V (µ) is positively correlated to
each V (ρ(x|z)), that is, greater variability in the conditional distributions results in greater variability
in their representative µ. By combining the two correlations, it appears that V (µ) behaves like a
reconstruction loss, making the factor discovery problem analogous to an autoencoder.

We formalize this intuition in the case when X = Y = Rd with squared distance cost c(x, y) =
‖x − y‖2, and when all conditionals ρ(x|z) are Gaussians. By Corollary 4, the variability V becomes
the variance V ar. Denote each ρ(x|z) by N (x(z), S(z)), where x is the mean and S is the covariance
matrix. Denote the principal square root matrix by

√
S.

Theorem 5. Given any measurable space Z and any ρ(x, z) = ρ(x|z)v(z) ∈ P (Rd × Z) such that
each ρ(x|z) is a Gaussian distribution N (x(z), S(z)), if the marginal ρ(x) has finite second moment:
Eρ(x)

[
‖x‖2

]
≤ ∞, then there exists a barycenter µ, which is a Gaussian N (x, S) and satisfies

x =

∫
x(z)dv(z) = Eρ(x)[x]

S =

∫ √√
S · S(z) ·

√
S dv(z).
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Furthermore, if the set of z such that ρ(x|z) is non-degenerate (its covariance S(z) is positive-definite)
has positive v-measure, then this is the unique barycenter.

Proof. See Appendix E.

Theorem 5 implies that the variability of the barycenter V (µ) = V ar(µ) = Tr[S] is positively
correlated to the variability of the conditional distributions V (ρ(x|z)) = Tr[S(z)]. A rigorous argument
could apply the implicit function theorem on Banach spaces to show that S depends differentiably on
S(z) ∈ L1((Rk, dv) → Rd×d), and that any perturbation to S(z) that increases its eigenvalues would
also increase the eigenvalues of S. Nevertheless, the following corollary seems sufficient to justify the
positive correlation.

Corollary 6. If we further assume that each ρ(x|z) is an isotropic Gaussian: S(z) = std2(z) · Id, then
the unique barycenter is an isotropic Gaussian with a standard deviation of

std =

∫
std(z)dv(z).

Proof. Insert S(z) = std2(z) · Id into Theorem 5.

It follows that V (µ) = std2 is proportional to
∫
std2(z)dv =

∫
V (ρ(x|z))dv(z).

Meanwhile, the intuition (21) can be justified by the calculation:∫
V ar(ρ(x|z))dv(z) =

1

2

∫∫∫
‖x− y‖2dρ(x|z)dρ(y|z)dv(z)

=
1

2

∫∫∫
‖x− y‖2dρ(y|z)dp(z|x)dρ(x)

=
1

2
Eρ(x)Ep(z|x)Eρ(y|z)

[
‖x− y‖2

]
=

1

2
Eρ(x)EencoderEdecoder

[
pointwise reconstruction error c(x, y)

]
,

where we interpret the conditional label distribution pθ(z|xi) as the encoder and the conditional density
ρ(x|zi) = Sz#µ as the probabilistic decoding of xi. The last term above is exactly the reconstruction
loss of a stochastic autoencoder, and has been used as objective function by models such as the
Wasserstein autoencoder (WAE) [38].

We conclude that the barycenter’s variability is positively correlated to the reconstruction loss of
the encoder pθ(z|x) and decoder Sz#µ, thus verifying the analogy between unsupervised BaryNet and
autoencoders. Nevertheless, a positive correlation does not imply equivalence. For instance, for the
clustering problem with Z = {1, . . .K}, the classical autoencoder’s reconstruction loss reduces to the
sum of within-cluster variances and the algorithm becomes k-means. Yet, [43] shows empirically that
minimizing the barycenter’s variance leads to more robust algorithms than k-means.

Remark 7. This correlation was foreshadowed by [36], which studied the primal problem (19) of
factor discovery. Suppose that all ρ(x|z) have the same shape (i.e. equal up to translations), then
the transport maps Tz are simplified into (15), and factor discovery reduces to finding a principal
surface (hypersurface). Similarly, the undercomplete autoencoder essentially constructs a principal
surface. This equivalence is more pronounced in the linear regime: assuming further that zθ is linear,
then factor discovery (15) reduces to principal component analysis [36], while the autoencoder without
nonlinearity also becomes PCA [12].

Naturally, the next step is to apply the regularization techniques of autoencoders to BaryNet, as
we have already explored the undercomplete autoencoder in Section 3.1.2. One popular regularization
requires that the latent distribution v(z) of any labeling ρ(x, z) must match some prescribed distri-
bution PZ (e.g. a unit Gaussian in Z = Rk). Then, the task of the autoencoder reduces to finding a
coupling ρ(x, z) between ρ(x) and PZ , such that the encoder ρ(z|x) and decoder ρ(x|z) minimize the
reconstruction loss. The motivation of this regularization is that v = PZ becomes easier to sample,
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and together with the decoder π(x|z), it makes possible the random sampling of ρ(x). Often, the
requirement that v(z) = PZ is relaxed, replacing it by a penalty on some distance between v(z) and
PZ [38].

This regularization technique was introduced by the Adversarial autoencoder (AAE) [24], which
refers to PZ as the prior and the latent distribution v(z) as the aggregated posterior. AAE is based on
the Variational autoencoder (VAE) [21], which penalizes the KL-divergence between the conditional
latent distribution p(z|x) and PZ ,

Eρ(x)

[
DKL(p(z|x), PZ)

]
and AAE replaces this penalty by

DGAN (v(z), PZ)

which is given by a discriminator network between v(z) and PZ .

By applying this regularization to the factor discovery problem, we obtain

min
ρ(x,z)∈P (X×Z)
ρX=ρ(x),ρZ=PZ

V (barycenter of ρ(x, z)).

Then, we derive a problem analogous to unsupervised BaryNet (13),

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) =Eρ(x)Epθ(z|x)

[
c
(
x, Tτ (x, z)

)
− ψYξ

(
Tτ (x, z)

)
ψ̃Zξ
(
z
)]

−
[
Eρ(x)Epθ(z|x)φτ (z)− EPZφτ (z)

]
ψ̃Z(z) :=ψZ(z)− Eρ(x)Epθ(z̃|x)ψ

Z(z̃),

(22)

which we call Barycentric autoencoder (BAE). The additional term in (22) is equivalent to

inf
θ

sup
τ

E(vθ−PZ)(z)

[
φτ (z)

]
and serves as a discriminator that enforces v = PZ . Alternatively, we can use the f -divergences or the
maximum mean discrepancy [13, 38] to penalize the difference between v and PZ .

Once the barycenter µ ≈ {yi}Ni=1 and inverse transport map S(y, z) are computed, ρ(x, z) can be
estimated through

ρ(x, z) = S#(µ⊗ PZ) ≈ {S(yi, zj)}j=1,...M
i=1,...N ,

where {zj}Mj=1 is any sample drawn from PZ . An advantage of BAE is that since the distribution PZ
is known, there is an unlimited supply of {zj}, and thus unlimited samples for ρ(x, z) and ρ(x).

3.3 Semi-supervised factor discovery

Let us mention briefly that BaryNet can be adapted to the semi-supervised setting. Since the super-
vised (11) and unsupervised (13) differ only in the freedom to choose pθ(z|x), it is straightforward
to modify p(z|x) to be semi-supervised in the following two scenarios, which we demonstrate in the
deterministic case (20) with zθ.

In the first scenario, only a subset of the sample has labels. In this case, we have a labeled sample
{x1

i , zi}Ni=1 and an unlabeled sample {x2
j}Mj=1. Then, problem (20) assigns labels or latent variables zj

to the unlabeled sample through

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) =

λ

N

N∑
i=1

[
c
(
x1
i , Tτ (x1

i , zi)
)
− ψYξ

(
Tτ (x1

i , zi)
)
ψ̃Zξ
(
zi
)]

+
1− λ
M

M∑
j=1

[
c
(
x2
j , Tτ (x2

j , zθ(x
2
j ))
)
− ψYξ

(
Tτ (x2

j , zθ(x
2
j ))
)
ψ̃Zξ
(
zθ(x

2
j )
)]

ψ̃Z(z) :=ψZ(z)− λ

N

N∑
i=1

ψZ(zi)−
1− λ
N

M∑
j=1

ψZ(zθ(x
2
j ))

(23)
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where λ ∈ (0, 1) is a constant that weights the two samples.
In the second scenario, only some of the labels z1 are provided, while others z2 are hidden. This

scenario was introduced in [36] as factor discovery with confounding variables: we are given a labeled
sample {xi, z1

i } and need to discover a hidden label {z2
i }. For instance, xi can be climate data, z1

i can
be time of the year, and the uncovered z2

i could correspond to a priori unknown climate patterns such
as El Niño. Then, (20) assigns the label z2 through

sup
θ

inf
τ

sup
ξ
L(θ, ξ, τ) =

1

N

N∑
i=1

[
c
(
xi, Tτ (xi, (z

1
i , z

2
θ(xi)))

)
− ψYξ

(
Tτ (xi, (z

1
i , z

2
θ(xi)))

)
ψ̃Zξ
(
(z1
i , z

2
θ(xi)

)]
ψ̃Z(z) := ψZ(z)− 1

N

N∑
i=1

ψZ
(
(z1
i , z

2
θ(xi))

)
.

3.4 Optimization

We train BaryNet by gradient descent. Since (11) and (13) are min-max problems, we need optimiza-
tion algorithms that are guaranteed to converge to the saddle points, such as the optimistic mirror
descent (OMD) [25] and the quasi implicit twisted descent (QITD) [11]. Note that näıve methods such
as alternating SGD fails to converge [11] even for elementary problems such as

inf
x

sup
y
x · y.

For reference, the algorithms OMD and QITD are listed in Appendix F.
It is common for saddle point algorithms to assume some convexity condition, e.g. the objective

function is (locally) quasiconvex-quasiconcave [11]. Then, minimax theorems such as Sion’s [34] imply
that (locally) the minimization and maximization can be interchanged. In fact, one can check that
neither OMD nor QITD discriminate between

inf
x

sup
y
F (x, y)

and
sup
y

inf
x
F (x, y) = − inf

y
sup
x

(−F (x, y)) ,

since their update steps for the two problems are the same. Hence, whenever we apply these saddle
point algorithms, we are allowed to exchange the inf and sup, so the factor discovery problem (13) can
be modified into

sup
θ

inf
τ

sup
ξ
L(θ, τ, ξ) = inf

τ
sup
θ,ξ

L(θ, τ, ξ) (24)

Remark 8. It is possible to avoid the min-max in problem (11) by using the maximum mean dis-
crepancy (MMD) [13]. The max in (11) arises from the discriminators ψY (y)ψZ(z), which enforce the
independence πY Z = πY ⊗ πZ . We can instead penalize the MMD between πY Z and πY ⊗ πZ : let
k(y1, y2), h(z1, z2) be characteristic kernels on Y, Z,

MMD(πY Z , πY ⊗ πZ)

=EπY Z(y,z)EπY Z(y′,z′)[k(y, y′)h(z, z′)]− 2EπY Z(y,z)EπY (y′)EπZ(z′)[k(y, y′)h(z, z′)]

+ EπY (y)EπZ(z)EπY (y′)EπZ(z′)[k(y, y′)h(z, z′)]

≈ 1

N(N − 1)

N∑
i=1

N∑
n=1

k(yi, yn)h(zi, zn)− 2

N3

N∑
i=1

( N∑
m=1

k(yi, ym) ·
N∑
n=1

h(zi, zn)
)

+
1

N2(N2 − 1)

N∑
i,j=1

k(yi, ym) ·
N∑

m,n=1

h(zj , zn)

where {yi, zi}Ni=1 is a sample of πY Z . Then, (11) simplifies to a minimization problem. A disadvantage,
however, is increased computational time. Computing the objective function in (11) takes only O(N)
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time, whereas the above estimator for MMD takes O(N2) time. It is possible to use subsampling to
reduce both the sample size of πY ⊗ πZ and the cost of MMD down to O(N), giving O(N) time in
total, but at the expense of increasing the variance of the estimator.

4 Test results

In the following sections, we test BaryNet on real and artificial datasets. Section 4.1 uses supervised
BaryNet (11) on synthetic conditional density estimation problems, while Section 4.2 uses unsupervised
BaryNet (13) on latent factor discovery problems, discovering meaningful hidden variables in climate
and earthquake data. Section 4.3 offers a closer look into the functioning of BaryNet, showing how it
learns the dependency of data xi on label zi and uncovers patterns in climate data. Finally, Section
4.4 applies the transport maps Tz, Sz to color transfer.

4.1 Artificial data

In order to evaluate supervised BaryNet’s performance on conditional density estimation, we devise
a sample with known conditional distributions. Set X = Y = R2, Z = R, and c = ‖x − y‖2. The
data {xi, zi} consists of 500 points drawn from the distribution ρ(x|z)v(z) where v(z) is uniform over
[−1, 1] and each ρ(x|z) consists of a mixture of two Gaussians,

ρ(x|z) =
1

2
N
([

(z + 1)/2
−(z + 1)/2

]
,

[
0.1

0.1

])
+

1

2
N
([
−(z + 1)/2
(z + 1)/2

]
,

[
0.1

0.1

])
.

Below are the results of applying supervised BaryNet (11) with the QITD algorithm. See Appendix
G.1 for the network architecture and training parameters.

Figure 2: Left: the labeled sample ρ(x, z) ≈ {xi, zi}. Middle: the X marginal, ρ(x) ≈ {xi}. Right:
the barycenter µ ≈ {yi = T (xi, zi)} produced by BaryNet.

Then, the inverse transport map S(y, z) is computed from (17) using SGD. Below, the conditional
distributions ρ(x|z) ≈ {S(yi, z)} recovered by BaryNet (in orange) are compared with samples of the
same size drawn from the true distribution ρ(x|z) (in blue).
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Figure 3: Left: ρ(x|z = −1). Middle: ρ(x|z = 0). Right: ρ(x|z = 1). All of them show a close match.

We see that BaryNet can reliably recover the conditional distributions ρ(x|z). In particular, its per-
formance does not deteriorate in the extreme cases with z = ±1, at the two endpoints of the support
of v(z).

4.2 Continental climate and seismic belt

To evaluate unsupervised BaryNet’s performance on latent factor discovery, we apply it to real-world
data that has a meaningful latent variable and test whether BaryNet can discover it. The first dataset is
the average daily temperature recorded from 56 stations across U.S. in the ten-year period [2009, 2019),
provided by NOAA [28]. The sample space is X = Y = R56 and each xi represents the temperature
distribution in U.S. at a particular date. The cost is set to be c = ‖x−y‖2. An intuitive latent variable
would be the seasonal effect, represented by the time of the year

cos
[ 2π

365
(date− n)

]
, (25)

where n is the coldest day in the year (around January 15 in U.S.). Thus, the latent space is Z = R. We
apply unsupervised BaryNet (20) in its min-max formulation (24) and train it by the OMD algorithm.
As argued in Section 3.1.2, we restrict the label net zθ(x) to be Lipschitz, using the clamp function
introduced by [4], and set its last layer to be bias-free. See Appendix G.2 for implementation details.

Below are the results of BaryNet on the temperature data {xi}. The discovered latent variable {zi}
exhibits periodicity in time and a strong correlation with (25), with a Pearson correlation of 0.9686,
indicating that BaryNet has discovered the seasonal effect, from an input that does not contain any
information on time. The non-periodic component of the discovered z, a multiyear modulation with a
scale in the order of four years, is consistent with El Niño Southern Oscilation.
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Figure 4: Up left: The chosen weather stations. Down left: The latent variables zi discovered by
BaryNet, plotted against time. Right: Scatter plot between the time of the year (25) and zi.

The second dataset consists of earthquakes’ coordinates. The data is taken from USGS [40], which
records historical earthquakes from 1900 to 2008. We focus on earthquakes that occurred on the Peru-
Chile Trench (see Figure 5 below). The earthquakes’ locations are represented in spherical coordinates,
so the sample space has X = Y = S2, and we set the cost function c to be the squared great circle
distance

c = d2, d
(
(x1, x2), (x1

∗, x
2
∗)
)

= arccos
(

sinx2 sinx2
∗ + cosx2 cosx2

∗ cos(x1 − x1
∗)
)
,

where x1, x2 are longitude and latitude. Judging from the earthquake plot in Figure 5, since the
earthquakes are distributed roughly vertically along the Peru-Chile Trench, it is intuitive that the
(one-dimensional) latent variable should be proportional to the earthquake’s latitude.

We apply unsupervised BaryNet (24) and train it by OMD (See Appendix G.3 for implementation
details.) The discovered latent variable {zi} shows a strong correlation with the latitude, with a
correlation of 0.9954, indicating that BaryNet has discovered the seismic belt.

Figure 5: Left: Earthquakes on Peru-Chile Trench. Right: Scatter plot between the earthquake’s
latitude and the latent variables zi discovered by BaryNet.

The label nets zθ(x) for both the temperature and the earthquake tests are intentionally set to be
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feedforward. Unlike the residual nets, these are highly non-linear maps without any linear component,
and it is difficult for them to learn linear mappings such as (x1, x2) 7→ x2, making it highly unlikely
that BaryNet arrived at the desired solutions by chance.

4.3 Hourly and seasonal temperature variation

As discussed in the introduction, supervised BaryNet “learns” the data ρ(x, z) by decomposing it
into a representative µ of the conditional densities ρ(x|z) plus the transformations between them.
Equivalently, it represents ρ(x, z) as S#(µ ⊗ v). Thus, BaryNet can be seen as a “probabilistic”
generalization of regression, which learns the probabilistic mapping z 7→ ρ(x|z), approximating it via

z 7→ (Sθ(·, z) ◦ Tτ )#ρ = (Sz)θ#µτ . (26)

Its expressivity derives from the nonlinearity of Tτ and Sθ, which enables BaryNet to learn the complex
dependency of the data x on the latent variable z.

We demonstrate this intuition using meteorological data where xi is the average hourly temperature
at Ithaca, NY in the ten-year period [2007, 2017), provided by NOAA [29]. The latent variables zi
chosen are the time of day and time of year, represented by

sin(2πhour/24), cos(2πhour/24), sin(2πdate/365), cos(2πdate/365).

Hence X = Y = R, Z = R4, and we set c = (x− y)2.
BaryNet (11) is trained on {xi, zi} by the QITD algorithm, see Appendix G.4 for implementation

details. To facilitate visualization, the probabilistic regression (26) is displayed through its conditional
mean:

z 7→ E(Sz#ρ)(x)[x] ≈ 1

N

N∑
i=1

Sθ(yi, z)

We compare BaryNet with the linear regression on {xi, zi}:
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Figure 6: Hourly temperature at Ithaca, NY. Left column: data for the year 2007. Right column:
data for the week of Jan 21-28, 2007. Top row: Linear regression on {xi, zi}. Bottom row: Supervised
BaryNet. The blue curve represents the temperature data, and the orange curve the regression (for
linear regression) and the conditional mean (for BaryNet). (Due to the daily oscillation, the regression
curve appears as a thick band in the yearly plot). The regression curves cannot perfectly fit the data,
since date and hour alone cannot fully account for the irregularity of weather systems.

BaryNet exhibits higher expressivity than linear regression in both the yearly and weekly plots. In
the yearly plot, BaryNet’s curve oscillates with greater amplitude during summer than in winter, indi-
cating that the daily temperature during summer has greater variance. In the weekly plot, BaryNet’s
curve is highly non-sinusoidal, and has greater upward slope during the day than downward slope at
night, in agreement with the real daily cycle during winter time.

4.4 Color transfer

We describe briefly here a useful application of the transport maps. As a by-product of BaryNet,
the transport map Tz(x) and inverse transport map Sz(y) can be concatenated into a transportation
between any pair of conditional distributions:

(Sz2 ◦ Tz1)#ρ(x|z1) = ρ(x|z2)

Even though we can directly compute a transport map from ρ(x|z1) to ρ(x|z2), BaryNet is more
efficient if one seeks all pairwise transport maps (just as we may seek all pairwise translations among
several languages). If there are K labels (Z={1,. . . K}), then there will be O(K2) pairwise transport
maps, whereas BaryNet only needs to compute 2K maps, Tk and Sk. If Z is continuous (e.g. Rk), then
BaryNet only needs two maps, T (x, z) and S(y, z), while doing individual pairwise maps i unfeasible,
not only because there are infinitely many of them, but also because each conditional distribution has
one sample point or less.

Instead of languages, we apply this procedure to images. An image can be seen as a 3-dimensional
matrix of size 3 × H ×W , which represent the RGB color channels, height and width (in terms of
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pixels). Alternatively, an image can be treated as a sample of H ×W points in R3. Thus, we view
the following images as color distributions, ρ1, ρ2, ρ3 ∈ P (R3), and apply BaryNet to compute the
transport maps Tk, Sk.

Figure 7: “Starry Night”, “Water Lilies and Japanese Bridge”, “Sunflowers” by Monet and van Gogh,
and their color distributions in R3.

Then, the coloring style of image j can be transferred to image k by applying pixel-wise the
transport map Sj ◦ Tk to image k. The results are displayed in Figure 8 below. We used supervised
BaryNet (11) with Z = {1, 2, 3} and trained it by OMD. See Appendix G.5 for implementation details.

Remark 9. A task very similar to color transfer is color normalization [22], that seeks to eliminate
the differences in several images’ color distributions with minimum distortion. For instance, in medical
imaging, we may want to remove irrelevant variations, such as different lighting conditions or staining
techniques. BaryNet can easily solve this task by mapping the color distributions ρk to their common
barycenter, which by definition minimizes total distortion.

5 Conclusions

Conditional density estimation and latent variable discovery are two intimately related problems in
machine learning: one learns the dependence of data x on a given variable z, while the other infers
a latent variable z from data x. This paper proposes to solve both problems in the framework of
optimal transport barycenters. Our method is based on an intuitive principle of minimum uncertainty,
that is, the goal of learning is to reduce some measure of uncertainty or variability. Specifically, for
latent variable discovery, we begin with some data ρ(x) and our learning ends with a joint distribution
ρ(x, z), which assigns the latent variables z to each data point x through ρ(z|x). Our principle leads
to maximizing the reduction in variability from ρ(x) to ρ(x, z).

How should we characterize the variability of a joint distribution ρ(x, z)? A simple approach is to
take the maen variability of the conditional distributions ρ(x|z). Yet this approach does not always
lead to sensible results: the k-means algorithm, for example, minimizes the sum of squared errors,
or equivalently the weighted average of each cluster’s variance, and it is known that it often fails to
recognize clusters with different sizes and shapes [43].

Instead, we seek a distribution µ that can act as a representative of all ρ(x|z), and measure the
variability of ρ(x, z) by that of µ. This idea naturally leads to the optimal transport barycenter, which
minimizes a user-specified distance between µ and each ρ(x|z). A characterization of variability arises
from the barycenter’s optimal transport cost, indicating that variability and transport cost are two
sides of the same coin. Under simplifying assumptions [36, 43], this definition of ρ(x, z)’s variability
includes the aforementioned simple approach as special case.

It follows that latent variable discovery should seek assignments ρ(z|x) that minimize the variability
of the barycenter of the ρ(x|z). At the same time, conditional density estimation also benefits from the
barycenter representation. The difficult task of learning the possibly infinitely many ρ(x|z) is reduced
to learning just the barycenter µ, from which we can recover each ρ(x|z).

The contributions of this paper are
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Figure 8: Color transferred images. The k-th column and j-th row is obtained by Sj ◦ Tk#ρk, so it is
image k with the color of image j.

1. The introduction of the BaryNet algorithms, which use neural nets. The unsupervised BaryNet
performs latent variable assignment ρ(z|x), while the supervised BaryNet computes the barycen-
ter µ and estimates each conditional distribution ρ(x|z). Their effectiveness is confirmed by tests
on artificial and real-world data, with Euclidean and non-Euclidean costs.

2. Enrichment of the theory of optimal transport barycenters. In particular, the existence of Kan-
torovich and Monge solutions for barycenters with infinitely many ρ(x|z) are studied (Theorems
1 and 2), and geometric properties of the Wasserstein space are discovered that resemble those
of Euclidean space (Theorems 3 and 5).

3. An intimate connection between autoencoders and BaryNet is identified. In particular, with
squared Euclidean distance cost and the simplifying assumption that ρ(x|z) are equivalent up to
translation, BaryNet includes the following algorithms as special cases: k-means, PCA, principle
curves and surfaces, and undercomplete autoencoders.

The theoretical framework developed in this article opens up several new directions of research:

1. Parallelism to autoencoders. We proposed the Barycentric autoencoder (BAE) algorithm in
Section 3.2, based on the parallelism between autoencoders and unsupervised BaryNet. It would
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be interesting to compare the performance of BAE with that of VAE, WAE or AAE. One can also
apply the regularizations of denoising autoencoders and sparse autoencoders [12] to BaryNet.

2. Cooperation for density estimation. Given labeled data ρ(x, z) and any density estimation al-
gorithm or generative modeling algorithm, such as WGAN [4], one can check whether the algo-
rithm’s performance can be improved by first estimating the density of the barycenter µ, and then
transporting to each ρ(x|z) through BaryNet, instead of learning the joint distribution ρ(x, z)
directly.

3. Transfer learning and domain adaptation. The semisupervised BaryNet introduced in Section 3.3
can be applied to solve transfer learning problems. For instance, given some unlabeled data {x′j}
and a few labeled data {xi, zi} (such that xi and x′j may be drawn from different distributions), we
can perform classification on {x′j} based on the information of {xi, zi}. Then, the semisupervised
BaryNet (23) produces a labeling in accordance with the principle of minimum uncertainty.

4. Metric learning: When a clustering plan or label assignment ρ(x, z) is provided, we can try
to infer what metric or cost function is responsible for that particular assignment of z. As an
example, let X be the space of images, and ρ(x, z) be some image dataset whose labels are text
descriptions. Since human vision is better tuned to discerning faces than inanimate objects such
as buildings, there would be more labels related to faces than to buildings. Specifically, X’s
subspace of facial images would have a greater density of labels z than the subspace of buildings’
images, or equivalently, if label z1 concerns facial feature (e.g. “smiling face”) and z2 concerns
building’s feature (e.g. “old building”), then the Euclidean variance of ρ(x|z1) is most likely
smaller than that of ρ(x|z2). Assume that g is a Riemannian metric on X, such that ρ(x, z)
becomes an optimal solution to the factor discovery problem (10) with squared geodesic distance
cost c = d2(x, y) induced by g, then (X, g) should not be Euclidean, and instead g should assign
greater distances to the subspace of faces, so that factor discovery adapts to g by making ρ(x|z1)
“smaller” than ρ(x|z2). Note that, (10) evaluates any assignment ρ(x, z) when given a cost
c(x, y); alternatively, it might be modified so as to evaluate any candidate cost or metric when
given an assignment.
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Appendices

A Assumptions

Assumption 1. The cost function c on X × Y is locally uniformly coercive, that is, for some (and
thus every) y0 ∈ Y and for every compact K ⊆ X,

lim
d(y,y0)→∞

inf
x∈K

c(x, y) =∞

where the limit is taken over all sequences in Y . Also, the space Y satisfies the Heine-Borel property
that every closed bounded subset is compact.
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Most cost functions c used in practice are locally uniformly coercive: for instance, given any
metric space (X, d), the lp distance cost d(x1, x2)p with p ∈ (0,∞) trivially satisfies the condition.
Also, a broad class of spaces Y satisfy the Heine-Borel property, including Euclidean spaces, complete
Riemannian manifolds, and all their closed subsets.

Assumption 2. Assume that for all µ ∈ P (Y ) and v-almost all z, the optimal coupling between
ρ(x|z) and µ(y) is unique and is a Monge solution, i.e. π(x, y|z) = (Id, Tz)#ρ(x|z) for some transport
map Tz.

This assumption holds in most real-world applications. For instance, by Theorem 2.44 of [41], if
X = Y = Rd and the cost c is strictly convex and superlinear, then it holds whenever almost all ρ(x|z)
are absolutely continuous. In practice, we are only given samples drawn from unknown probabilities,
so we can typically assume that they come from absolutely continuous ρ(x|z).

B Proof of Theorem 1

Since we constructed the conditional distributions ρ(x|z) using disintegration, the map Z → P (X)×
P (Y ), z 7→ (ρ(x|z), µ) is automatically measurable (in the topology of weak convergence) for any given
µ. Then, Corollary 5.22 of [42] implies that there is a measurable assignment: z 7→ π(x, y|z) such that
each π(x, y|z) is an optimal transport plan between ρ(x|z) and µ(y).

Given that c is bounded below, let cn := min(c, n) be a sequence of bounded continuous functions
that increases pointwise to c. Then, by the monotone convergence theorem, the total transport cost
from ρ(x, z) to µ(y) becomes∫

Z

Ic(ρ(·|z), µ)dν(z) =

∫∫
c(x, z)dπ(x, y|z)dν(z) = lim

n→∞

∫∫
cndπ(x, y|z)dν(z)

The last term is well-defined since z 7→
∫
cndπ(·|z) is measurable, so the barycenter problem is well-

defined.
Factor the measure π(x, y, z) into π(x, y|z)ν(z). Then, integrating π yields 1, showing that π is a

probability measure, and integrating π times test functions ψ ∈ Cb(X × Z) and φ ∈ Cb(Y × Z) shows
that π has the marginals: πXZ = ρ(x, z) and πY Z = µ(y)⊗ ν(z). This proves the ≥ side of (4). Since
the ≤ side of (4) is evident, the first assertion of Theorem 1 is proved.

To prove the second assertion, we need the following lemmas:

Lemma 7. Given any µ ∈ P (Y ), the total transport cost (3) satisfies the following duality formula

(3) = min
π∈P (X×Y×Z)

πXZ=ρ
πY Z=µ⊗v

∫
X×Y×Z

c(x, y)dπ(x, y, z)

= sup
φ∈Cb(X×Z)
ψ∈Cb(Y×Z)
φ+ψ≤c

∫
X×Z

φ(x, z)dρ(x, z) +

∫
Y×Z

ψ(y, z)dµ(y)dν(z),
(27)

so that (3) is lower semi-continuous in µ in the topology of weak convergence of P (Y ).

Proof. Define a cost function from X × Z to Y × Z,

c̃(x, z1, y, z2) = c(x, y) +∞ · δz1 6=z2 =

{
c(x, y) if z1 = z2

∞ otherwise,

which is lower semi-continuous on X ×Z ×Y ×Z. Then, we can apply Kantorovich duality (Theorem
5.10 of [42]) to ρ(x, y) and µ⊗ v to obtain the duality formula

min
π̃∈P (X×Z×Y×Z)

πXZ1
=ρ

πY Z2
=µ⊗v

∫
c̃ dπ̃ = sup

φ∈Cb(X×Z)
ψ∈Cb(Y×Z)
φ+ψ≤c

∫
X×Z

φ(x, z)dρ(x, z) +

∫
Y×Z

ψ(y, z)dµ(y)dν(z).

26



This is part of the theorem that the minimum on the left side is achieved.
It remains to show that

min
π̃∈P (X×Z×Y×Z)

πXZ1
=ρ

πY Z2
=µ⊗v

∫
c̃ dπ̃ = min

π∈P (X×Y×Z)
πXZ=ρ

πY Z=µ⊗v

∫
X×Y×Z

c dπ. (28)

Define the map P (x, y, z) = (x, z, y, z). For the ≤ part of (28): given any coupling π(x, y, z) that solves
the right side, the pushforward π̃ := P#π is applicable to the left side. For the ≥ part: if the left side
is infinite, then we are done. Else, given an optimal coupling π̃(x, z1, y, z2),∫

c̃ dπ̃ =

∫
c(x, y) +∞ · δz1 6=z2 dπ̃(x, y|z1, z2)dπ̃Z1Z2

(z1, z2) <∞.

It follows that π̃Z1Z2

(
{z1 6= z2}

)
= 0, so the measure π̃ must be concentrated on the diagonal {z1 = z2}.

Then, we can define the pullback π = P−1#π̃, which has the correct marginals πXZ , πY Z and is
applicable to the right side of (28):∫

c dπ =

∫
c(x, y) dπ̃(x, z, y, z) =

∫
c̃ dπ̃.

Hence, we have proved formula (27).
Theorem 2.8 of [5] implies that for any ψ ∈ Cb(Y × Z), the map

µ 7→ µ⊗ v 7→
∫∫

ψdvdµ

is a continuous linear functional in the topology of weak convergence of µ ∈ P (Y ). So the right side
of (27), as a supremum over continuous functions, is lower semi-continuous in µ.

Lemma 8. Given any µ(y) ∈ P (Y ), the total transport cost (3) has the lower bound:

Ic(ρ(x, z), µ) ≥ Ic(ρ(x), µ)

where we “forget” the labeling z on the right side.

Proof. This is a direct corollary of Theorem 4.8 of [42].

Denote the total transport cost (27) by F (µ). Let {µn} ⊆ P (Y ) be a minimizing sequence such
that F (µn) converges to the optimal transport cost inf F . If inf F =∞, then any µ ∈ P (Y ) can serve
as a barycenter. Else, assume that inf F < ∞ and choose a constant C ≥ 0 large enough so that
supF (µn) < C.

We show that Assumption 1 implies that {µn} is tight. Since Y is assumed to satisfy the Heine-
Borel property, it suffices to show that, for any ε > 0, there is some radius R such that

sup
n
µn
(
BCR (y0)

)
≤ ε, (29)

where y0 ∈ Y is some arbitrary point and BCR (y0) = {y ∈ Y, d(y, y0) ≥ R}.
Let K ⊆ X be a compact set whose complement has small measure ρ(KC) < ε/2. Since c is

assumed to be locally uniformly coercive and bounded below, we can choose a radius R such that

inf
d(y,y0)>R

inf
x∈K

c(x, y) > 2(C − inf c)/ε.

Assume for contradiction that there is some µn such that µn
(
BCR (y0)

)
> ε. Then, for any coupling

π between ρ(x) and µn,

π
(
K ×BCR (y0)

)
≥ µn

(
BCR (y0)

)
− ρ(KC) > ε/2
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that is, any transport plan must move more than ε/2 of mass inside K ⊆ X to BCR (y0) ⊆ Y , which
gives a lower bound on the transport cost:∫

c dπ ≥ 2(C − inf c)/ε · π
(
K ×BCR (y0)

)
+ inf c ·

[
1− π

(
K ×BCR (y0)

)]
> C

Therefore, the optimal transport cost is bounded by Ic(ρ(x), µn) ≥ C.
Meanwhile, Lemma 8 implies that F (µn) ≥ Ic(ρ(x), µn). Hence,

C > F (µn) > C

a contradiction. It follows that condition (29) holds, so that {µn} is uniformly tight.
By Prokhorov’s theorem, {µn} is precompact, so some subsequence {µnk} converges weakly to

some µ ∈ P (Y ). By Lemma 7, F is lower semi-continuous, so

inf F = lim inf F (µnk) ≥ F (µ) ≥ inf F.

It follows that µ minimizes the total transport cost and is a barycenter of ρ(x, z).
Finally, notice that the two minimization problems are equivalent:

min
µ∈P (Y )

min
π∈P (X×Y×Z)

πXZ=ρ
πY Z=µ⊗v

= min
π∈P (X×Y×Z)

πXZ=ρ
πY Z=πY ⊗πZ

.

Then formula (5) is proved.

C Proof of Theorem 2

We need the following results:

Lemma 9. Let Y,Z be metric spaces and π a Borel probability measure on Y ×Z. The two marginals
πY , πZ are independent (π = πY ⊗ πZ) if and only if for all f ∈ Cb(Y ), g ∈ Cb(Z),∫

Y×Z
f(y)g(z)dπ(y, z) =

∫
Y

f(y)dπY (y)

∫
Z

g(z)dπZ(z). (30)

Proof. The “only if” follows from straightforward integration. For the “if” part, let U ⊆ Y,W ⊆ Z be
arbitrary closed subsets, and define the following Cb functions

fn(y) = max
(
1− n · dY (y, U), 0

)
, gn(z) = max

(
1− n · dZ(z, U), 0

)
that descend to the indicator functions of U and W . Apply (30) to fn · gn and take the limit n→∞;
the Dominated Convergence Theorem implies that

π(U ×W ) = πY (U)πZ(W ). (31)

Let PY , PZ be the collections of all closed subsets of Y,Z. Let SY be the collection of all Borel
measurable subsets U of Y such that for any closed W ∈ PZ , the independence formula (31) holds.
We seek to apply Dynkin’s π-λ theorem. PY ⊆ SY is closed under intersection and thus is a π-system.
Meanwhile, it is straightforward to show that SY is closed under set difference and countable union
of increasing sequence, so SY is a λ-system. It follows from Dynkin’s theorem that SY contains the
σ-algebra of Y .

Similarly, we define SZ to be the collection of all Borel measurable subsets W of Z such that for
any measurable U ∈ SY (not just PY ), the independence formula (31) holds. Repeating the above
argument for SZ , SY shows that SZ contains the σ-algebra of Z. Hence, (31) holds for all measurable
rectangles in Y × Z and π = πY ⊗ πZ .
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Corollary 10. Given the same condition as in Lemma 9, the independence π = πY ⊗ πZ holds if and
only if for all f ∈ Cb(Y ), g ∈ Cb(Z),∫

g(z)dπZ(z) = 0→
∫
Y×Z

f(y)g(z)dπ(y, z) = 0. (32)

Proof. The condition (30) can be rearranged into∫
Y×Z

f(y)
[
g(z)−

∫
g dπZ

]
dπ(y, z) = 0.

As argued in the beginning of Section 2.3, we can define the transport maps T (x, z) by formula
(6), which is a Monge formulation of the constraints on the Kantorovich solution from (5): given any
candidate transport map T : X × Z → Y , the corresponding transport plan is

π := T̃#ρ(x, z) ∈ P (X × Y × Z), (33)

with T̃ (x, z) := (T (x, z), z). The marginal constraint πXY = ρ(x, z) is satisfied automatically, while
the independence constraint πY Z = πY ⊗ πZ can be checked via Corollary 10.

Specifically, define the indicator function:

I(T ) =

{
0 if there exists µ ∈ P (Y ) such that T̃#ρ(x, z) = µ⊗ v
∞ otherwise.

Then, Corollary 10 implies that

I(T ) = sup
ψY ∈Cb(Y )

sup
ψZ∈Cb(Z)∫
ψZdv=0

∫
Y×Z

ψY (y)ψZ(z) dT̃#ρ

= sup
ψY ∈Cb(Y )

sup
ψZ∈Cb(Z)∫
ψZdv=0

∫
ψY (T (x, z))ψZ(z) dρ(x, z).

It follows that we have a Monge formulation of the barycenter problem (5):

inf
Borel measurable

T :X×Z→Y

∫
c(x, T (x, z)) dρ(x, z) + I(T )

= inf
Borel measurable
T :X×Z→Y

sup
ψY ∈Cb(Y )
ψZ∈Cb(Z)∫
ψZdv=0

∫
c(x, T (x, z))− ψY (T (x, z))ψZ(z) dρ(x, z).

(34)

Essentially, (34) is a minimization over couplings of the form (33), which are Kantorovich solutions
concentrated on graphs. Therefore, (34) is bounded below by (5), which minimizes over general
Kantorovich solutions. To finish the proof, it suffices to show that (5) can be achieved by some
transport map T .

Let π be a Kantorovich solution of (5), which exists by Theorem 1, and let µ = πY be the
corresponding barycenter. By Assumption 2, there exists some subset Z0 ⊆ Z such that v(Z−Z0) = 0
and for all z ∈ Z0, the unique optimal coupling between ρ(x|z) and µ is concentrated on the graph
of some transport map Tz. By uniqueness, the conditional π(x, y|z) of the solution π is exactly
(Id, Tz)#ρ(x|z) for all z ∈ Z0. Define the map T (x, z) := Tz(x) for z ∈ Z0 (for those negligible z /∈ Z0,
we can set Tz to be some constant y0). It follows that T : X × Z → Y is Borel measurable: For any
open subset U ⊆ Y ,

T−1(U) = ProjX×Z
(
supp π ∩ X × U × Z0

)
is a Borel measurable subset of X × Z. Hence,

(5) =

∫
c dπ =

∫
c(x, T (x, z))dρ(x, z) ≥ (34).
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D Proof of Theorem 3

If the marginal ρ(x) does not have finite second moment, then both sides of (8) are infinite: ei-
ther V ar(µ) or W 2

2 (ρ(x), µ) must be infinite and Lemma 8 bounds
∫
W 2

2 (ρ(x|z), µ)dν(z) below by
W 2

2 (ρ(x), µ). Hence, in the following proof we can assume that

∞ > Eρ(x)[X
2] =

∫
Rd×Z

‖x‖2dρ(x, z) =

∫
Z

Eρ(x|z)[X2]dν(z). (35)

We first prove the special case where ν(z) is finitely-supported and that the conditionals ρ(x|z) are
absolutely continuous.

Denote the subset of P (Rd) that consists of probabilities measures with finite second moments by
P2(Rd). Denote the support of ν by {zk}Kk=1 ⊆ Z. Denote the positive numbers ν({zk}) by Pk and the

conditionals ρ(x|zk) by ρk(x). Then, the marginal ρ(x) is the weighted sum
∑K
k=1 Pkρk. Condition

(35) implies that each ρk ∈ P2(Rd).

Lemma 11. Given absolutely continuous measures ρk ∈ P2(Rd) and weights Pk > 0 for 1 ≤ k ≤ K,
there exists a unique barycenter µ and it satisfies the discrete version of (8):

V ar(ρ(x)) = V ar(µ) +

K∑
k=1

PkW
2
2 (ρk, µ) (36)

Proof. By Theorems 3.1 and 5.1 of [20], since ρk are absolutely continuous, there exists a unique
barycenter µ(x) and it is also absolutely continuous. Then, Brenier’s theorem (Theorem 2.12 [41])
implies that there is a unique optimal transport map Tk from each ρk to µ. The transport maps have
the form Tk = ∇ψk for some convex functions ψk, and they are invertible almost everywhere: let ψ∗k
be the Legendre transform of ψk, then

∇ψ∗k ◦ ∇ψk(x) = x, ∇ψk ◦ ∇ψ∗k(y) = y

for ρk-almost all x and µ-almost all y. Furthermore, ∇ψ∗k serves as the optimal transport map from µ
back to ρk.

Denote the mean of ρ(x) by x. Note that x is also the mean of the barycenter µ: let π be the
(unique) Kantorovich solution given by Theorem 1, let Xk be the random variables of ρk = πXZ(x|zk),

and let Y be the random variable of µ = πY . Define the mean X =
∑K
k=1 PkXk. Then the barycenter

problem’s objective (5) becomes

E
K∑
k=1

Pk||Y −Xk||2 = E||Y −X||2 +

K∑
k=1

PkE||X −Xk||2. (37)

Since Y minimizes the objective, we must have Y = X, so that E[Y ] = x. Then

V ar(ρ) =

∫
Rd
‖x− x‖2dρ(x) =

K∑
k=1

Pk

∫
‖(x− Tk(x)) + (Tk(x)− x)‖2dρk(x)

=

K∑
k=1

Pk

∫
‖x− Tk(x)‖2 + ‖Tk(x)− x‖2 + 2〈x− Tk(x), Tk(x)− x〉dρk(x).

The first term is exactly the total transport cost, while the second term is the barycenter’s variance:

K∑
k=1

Pk

∫
‖Tk(x)− x‖2dρk(x) =

K∑
k=1

Pk

∫
‖y − x‖2dµ(y) = V ar(µ).
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Regarding the third term, we use the fact that ∇ψ∗k#µ = ρk to obtain∑
Pk

∫
〈x− Tk(x), Tk(x)− x〉dρk(x) =

∑
Pk

∫
〈∇ψ∗k(y)− y, y − x〉dµ(y)

=

∫ 〈 K∑
k=1

Pk∇ψ∗k(y)− y, y − x
〉
dµ(y).

Remark 3.9 from [2] shows that
∑
Pk∇ψ∗k is exactly the identity, so the third term vanishes. It follows

that formula (36) holds.

Now we tackle the general case when ρ(x, z) is an arbitrary probability measure over Rd × Z.
Condition (35) implies that ρ(x|z) ∈ P2(Rd) for v-almost every z, so without loss of generality, ρ(x|z)
can be seen as a random variable from Z to P2(Rd). We denote its distribution by Ω(η), which belongs
to P (P2(Rd)), the space of probability measures over P2(Rd).

Abusing notation, we denote by P2(P2(Rd)) the space of probabilities Ω′(η) on (P2(Rd),W2) with
finite second moment, that is, for some (and thus any) ρ0 ∈ P2(Rd),∫

P2(Rd)

W 2
2 (ρ0, η)dΩ′(η) <∞.

Then P2(P2(Rd)) can be equipped with the 2-Wasserstein metric. Condition (35) implies that our
distribution Ω belongs to P2(P2(Rd)): for any ρ0 ∈ P2(Rd),∫

P2(Rd)

W 2
2 (ρ0, η) dΩ(η) =

∫
inf

π∈P (Rd×Rd)
π1=ρ0,π2=η

∫
‖x− x′‖2dπ(x, z′) dΩ(η)

≤
∫∫
‖x− x′‖2 dρ0 ⊗ η(x, x′) dΩ(η) by the trivial coupling

≤
∫∫

2(‖x‖2 + ‖x′‖2)dρ0(x)dη(x′)dΩ(η)

≤ 2Eρ0(x)[X
2] + 2

∫
P2(Rd)

Eρ(x)[X
2]dΩ(ρ)

≤ 2Eρ0(x)[X
2] + 2

∫
Z

Eρ(x|z)[X2]dν(z)

<∞ by (35).

By Theorem 6.18 of [42], both (P2(Rd),W2) and (P2(P2(Rd)),W2) are Polish spaces, each of whose
elements can be approximated by finitely-supported probability measures. Let {Ωn}∞n=1 ⊆ P2(P2(Rd))
be a sequence of finitely-supported measures that converge to Ω in W2. Then, each Ωn can be expressed
as

Ωn =

Kn∑
k=1

Pnk δρnk ,

where Kn is the size of the support of Ωn, the positive numbers Pnk are the weights, and δρnk is the

Dirac measure at ρnk ∈ P2(Rd). Define the marginal ρn of Ωn by

ρn =

Kn∑
k=1

Pnk ρ
n
k . (38)

It follows that ρn ∈ P2(Rd).
In order to apply Lemma 11, we show that these ρnk can be assumed to be absolutely continuous.

A nice property of (P2(Rd),W2) is that absolutely continuous measures are dense in it: any measure in
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(P2(Rd),W2) can be approximated by finitely-supported measures, which can then be approximated
by absolutely continuous measures using kernel smoothing. Thus, for each Ωn, we can construct

Ω̃n =

Kn∑
k=1

Pnk δρ̃nk , such that W 2
2 (ρnk , ρ̃

n
k ) <

1

nKn
, so that W 2

2 (Ωn, Ω̃n) <
1

n
,

so that Ω̃n also converge to Ω in (P2(P2(Rd)),W2). It follows that ρn are also absolutely continuous.
Now given that each Ωn consists of absolutely continuous ρnk , Lemma 11 implies that each Ωn has

a unique barycenter µn and it satisfies

V ar(ρn) = V ar(µn) +

∫
P2(Rd)

W 2
2 (µn, η)dΩn(η). (39)

The following two lemmas show that ρn and µn enjoy good convergence properties.

Lemma 12. The marginal ρn converges to ρ(x) in (P2(Rd),W2).

Proof. We apply condition (iv) of Theorem 7.12 from [41], which shows that for any Polish space X
with metric d, a sequence ηn converges to η in (P2(X),W2) if and only if

lim
n→∞

∫
X

ψdηn =

∫
X

ψdη (40)

for any continuous function ψ that grows at most quadratically: |ψ(x)| ≤ C(1 + d(x0, x)2) for some
x0 ∈ X and C > 0. Therefore, it suffices to show that

lim
n→∞

∫
Rd
ψdρn =

∫
ψdρ

for any ψ with a quadratic bound: |ψ(x)| ≤ C(1 + ‖x‖2) for some C > 0.
By (38), it is equivalent to

lim
n→∞

∫
P2(Rd)

Fψ(η)dΩn(η) =

∫
Fψ(η)dΩ(η), (41)

where Fψ(η) :=
∫
ψdη. The function Fψ is continuous on (P2(Rd),W2) by condition (40). The

quadratic bound on ψ translates to a quadratic bound on Fψ:

Fψ(η) ≤ C
(
W 2

2 (η, δ0) + 1
)
,

where δ0 is the Dirac measure at 0.
Then we can apply Theorem 7.12 [41] on (P2(P2(Rd)),W2), and (41) follows from the W2 conver-

gence of Ωn to Ω.

Lemma 13. A subsequence of {µn} converges in (P2(Rd),W2) to a barycenter µ of Ω.

Proof. First, the total transport cost from Ωn to its barycenter µn can be computed through

cn :=

∫
P2(Rd)

W 2
2 (η, µn)dΩn(η) = W 2

2 (δµn ,Ω
n),

where the second W2 belongs to P2(P2(Rd)) and δµn is the Dirac measure on µn. Then, for any n,m,

cn ≤W 2
2 (δµm ,Ω

n) since µn minimizes total transport cost

≤ cm +W 2
2 (Ωn,Ωm) by the triangle-inequality

→|cn − cm| ≤W 2
2 (Ωn,Ωm).
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Since W 2
2 (Ωn,Ω)→ 0, the difference W 2

2 (Ωn,Ωm)→ 0 as n,m→∞, so |cn − cm| → 0. It follows that
{cn} is a Cauchy sequence and thus converges.

Next, we establish some uniform bound on the decay of {µn} at infinity. We begin with a weak
bound: by Lemma 8 and triangle inequality,

W 2
2 (ρ(x), µn) ≤W 2

2 (Ω, δµn)

≤ cn +W 2
2 (Ωn,Ω).

Denote by δ0 ∈ P (Rd) the Dirac measure at 0 and by BR ⊆ Rd the open ball centered at 0 with radius
R. By the triangle inequality, for any R,

W2(ρ(x), µn) ≥ |W2(µn, δ0)−W2(ρ(x), δ0)|

≥

√∫
Rd−BR

R2dµn −

√∫
Rd
‖x‖2dρ(x)

≥ R
√
µn(Rd −BR)−

√
Eρ(x)[X2].

Combining the two inequalities, we obtain for any n and R,

µn(Rd −BR) ≤
(√Eρ(x)[X2] +

√
cn +W 2

2 (Ωn,Ω)

R

)2

.

Since the second moment Eρ(x)[X
2] is finite by (35) and cn,W 2

2 (Ωn,Ω) are convergent sequences, there
exists some constant C large enough so that

sup
n
µn(Rd −BR) ≤ C

R2
. (42)

An immediate consequence is that µn is uniformly tight. Then, Prokhorov’s theorem implies that
{µn} has a subsequence {µni} that converges weakly to some limit µ ∈ P (Rd). By Kantorovich duality
[42], the optimal transport cost W 2

2 (·, ·) on P (Rd) can be expressed as a supremum over bounded
continuous functions, and thus is lower semi-continuous in the topology of weak convergence of P (Rd).
Thus,

∀η ∈ P (Rd), W 2
2 (µ, η) ≤ lim inf

ni→∞
W 2

2 (µni , η).

In particular, by setting η = δ0, we have shown that µ has finite second moment: µ ∈ P2(Rd).
Now we prove that µni converge to µ in the stronger topology of (P2(Rd),W2), and we need a

better tail bound than (42). Condition (ii) of Theorem 7.12 of [41] indicates that it is necessary and
sufficient to prove that

lim
R→∞

lim sup
ni→∞

∫
Rd−BR

‖x‖2dµni(x) = 0. (43)

We show that in fact condition (43) holds for the entire sequence {µn}.
Recall the arguments of Lemma 11: since ρnk , µ

n are absolutely continuous for all n and 1 ≤ k ≤ Kn,
Brennier’s theorem implies that the optimal transport maps ∇ψnk ,∇(ψnk )∗ between them are invertible
almost everywhere and [2] implies that

∑
Pk∇(ψnk )∗ = Id. Then, µn-almost all x can be expressed as

the convex combination x =
∑
Pnk ∇(ψnk )∗(x). It follows from Cauchy-Schwarz inequality that

‖x‖2 ≤
Kn∑
k,h=1

Pnk P
n
h ‖∇(ψnk )∗(x)‖ · ‖∇(ψnh)∗(x)‖ ≤

Kn∑
k=1

Pnk ‖∇(ψnk )∗(x)‖2.

Then, ∇(ψnk )∗#µn = ρnk implies that,∫
Rd−BR

‖x‖2dµn(x) ≤
Kn∑
k=1

Pnk

∫
Rd−BR

‖∇(ψnk )∗(x)‖2dµn(x)

=

Kn∑
k=1

Pnk

∫
∇(ψnk )∗(Rd−BR)

‖x‖2dρnk (x). (44)
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In the last line above, we are integrating the measure ρnk restricted to the domain ∇(ψnk )∗(Rd −BR).
Equivalently, we are integrating over some measure ρ̃nk (not necessarily a probability measure) such
that 0 ≤ ρ̃nk ≤ ρnk (setwise) and

ρ̃nk (Rd) = ρnk
(
∇(ψnk )∗(Rd −BR)

)
= µn(Rd −BR).

For convenience, for any R,n and 1 ≤ k ≤ Kn, define the following collections of measures:

Mn
k (R) := {ρ̃nk ∈M+(Rd), ρ̃nk ≤ ρnk and ρ̃nk (Rd) ≤ C/R2}

Mn(R) := {ρ̃n ∈M+(Rd), ρ̃n ≤ ρn and ρ̃n(Rd) ≤ C/R2}
M(R) := {ρ̃ ∈M+(Rd), ρ̃ ≤ ρ and ρ̃(Rd) ≤ C/R2},

where M+(Rd) is the set of nonnegative Borel measures, and the uniform upper bound C/R2 comes
from (42).

It follows that the restriction of ρnk to ∇(ψnk )∗(Rd −BR) belongs to Mn
k (R) and∫

∇(ψnk )∗(Rd−BR)

‖x‖2dρnk (x) ≤ sup
ρ̃nk∈M

n
k (R)

∫
Rd
‖x‖2dρ̃nk (x). (45)

Given any choice of {ρ̃nk}K
n

k=1, it is straightforward to show that the weighted sum

ρ̃n :=

Kn∑
k=1

Pnk ρ̃
n
k

belongs to Mn(R) and

Kn∑
k=1

Pnk sup
ρ̃nk∈M

n
k (R)

∫
‖x‖2dρ̃nk (x) ≤ sup

ρ̃n∈Mn(R)

∫
‖x‖2dρ̃n. (46)

For any n, since ρn is absolutely continuous, Brennier theorem implies that there is an optimal
transport map Tn such that Tn#ρn = ρ. Given any ρ̃n ∈ Mn(R), it is straightforward to show that
ρ̃ := Tn#ρ̃ ∈M(R) and that the optimal transport cost

W2(ρ̃n, ρ̃) ≤W2(ρn, ρ).

Denote by δ̃0 the Dirac measure at zero with the same mass as ρ̃n. By the triangle inequality,√∫
‖x‖2dρ̃n = W2(ρ̃n, δ̃0) ≤W2(ρ̃, δ̃0) +W2(ρ̃, ρ̃n)

≤

√∫
‖x‖2dρ̃+W2(ρ, ρn)

(47)

Combining the inequalities (44), (45), (46), (47), we obtain∫
Rd−BR

‖x‖2dµn(x) ≤
[

sup
ρ̃∈M(R)

√∫
Rd
‖x‖2dρ̃+W2(ρ, ρn)

]2
(48)

for all R and n.
Since ‖x‖2 is increasing in the radial direction, a minimizer ρ̃R over M(R) in (48) can be easily

constructed, and it can be made monotonously decreasing in R (If R0 < R1, then ρ̃R0
≤ ρ̃R1

setwise).
Since ρ̃(R) is absolutely continuous with respect to ρ, we can represent it by its Radon-Nikodym
derivative dρ̃R/dρ(x). By (42), the mass of ρ̃R goes to zero as R→∞, so dρ̃R/dρ decreases pointwise
to zero ρ(x)-almost everywhere. By the Dominated Convergence Theorem,

lim
R→∞

sup
ρ̃∈M(R)

∫
Rd
‖x‖2dρ̃ = lim

R→∞

∫
‖x‖2 dρ̃R

dρ
(x)dρ(x) = 0.
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By Lemma 12, W2(ρ, ρn)→ 0 as n→∞. Then, condition (43) follows from (48):

lim
R→∞

lim sup
n→∞

∫
Rd−BR

‖x‖2dµn(x) ≤
[

lim
R→∞

sup
ρ̃∈M(R)

√∫
Rd
‖x‖2dρ̃+ lim sup

n→∞
W2(ρ, ρn)

]2
= 0,

since the marginal ρn converges to ρ in W2 by Lemma 12. Then, it follows from condition (43) that
the subsequence µni converges to µ in W2.

Finally, we show that µ is a barycenter of Ω. For any µ̃ ∈ P2(Rd) and any ni,

cni = W 2
2 (Ωni , δµni ) ≤W 2

2 (Ωni , δµ̃). (49)

Since W2(Ω,Ωni) → 0 and W2(δµ, δµni ) = W2(µ, µni) → 0, the cost W 2
2 (Ωni , δµni ) converges to

W 2
2 (Ω, δµ) by the triangle inequality. Then, (49) implies that

W 2
2 (Ω, δµ) ≤ lim

ni→∞
W 2

2 (Ωni , δµ̃) = W 2
2 (Ω, δµ̃).

Since the inequality holds for all µ̃ ∈ P2(Rd), the limit µ is a barycenter of Ω.

Now, we can take the limit in the subsequence ni in equation (39). Lemma 12 and Lemma 13
imply that {ρni} and {µni} converge in W2, while the functions V ar and W 2

2 are continuous over W2,
so that

V ar(ρ) = V ar(µ) +W 2
2 (Ω, δµ),

which finishes the proof of formula (8).

E Proof of Theorem 5

We apply the arguments of Appendix D. Since ρ(x) is assumed to have finite second moment, ρ(x, z)
can be converted to a distribution Ω ∈ P2(P2(Rd)). We seek to construct a sequence of finitely-

supported measures Ωn that converge to Ω in W2, such that each Ωn =
∑Kn

k=1 Pkδρnk and each ρnk is
a non-degenerate Gaussian (i.e. the covariance S(z) is positive-definite). Fix some ρ0 ∈ supp Ω. For
each n, let Cn ⊆ P2(Rd) be a compact subset such that∫

P2(Rd)−Cn
W 2

2 (ρ0, η)dΩ(η) <
1

n
.

Let {B(ρnk , 1/2n)}Kn

k=1 be a finite cover of Cn by open balls, where ρnk ∈ supp Ω and thus are Gaussians.
If ρnk is degenerate, then replace it with some non-degenerate Gaussian ρ̃nk ∈ B(ρnk , 1/2n) and use the
ball B(ρ̃nk , 1/n). Define the disjoint cover {Unk }K

n

k=1 by

Unk = B(ρnk , 1/n)−
k−1⋃
h=1

B(ρnh, 1/n).

Define a map Fn on P2(Rd) that sends each Unk to ρnk and everything else to ρ0. Define

Ωn = Fn#Ω =

Kn∑
k=1

Ω(Unk )δρnk +
(

1−
Kn∑
k=1

Ω(Unk )
)
δρ0 .

It follows that

W 2
2 (Ω,Ωn) ≤

∫
W 2

2 (η, Fn(η))dΩ(η) <
2

n

So Ωn → Ω in W2.
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Denote ρnk by N (xnk , S
n
k ), and denote the X-marginal of Ωn by ρn =

∑
Pkρ

n
k . Now, Theorem 6.1

of [2] implies that Ωn has a unique barycenter µn, which is a Gaussian whose covariance Sn satisfies

Sn =

Kn∑
k=1

Pk

√√
SnSnk

√
Sn =

∫ √√
SnS(η)

√
SndΩn(η),

where S(ρ) is the covariance of ρ. Also, the argument (37) implies that the mean xn of µn satisfies

xn =
∑

Pkx
n
k = Eρn(x)[x].

Taking a subsequence if necessary, Lemma 12 implies that ρn converges to the marginal ρ(x) in W2,
and Lemma 13 implies that µn converges to a barycenter µ of Ω in W2. It follows that µ is a Gaussian
N (x, S). By Theorem 7.12 of [41], the covariance function S(η) is continuous over η ∈ (P2(Rd),W2),
so we can take the limit in n:

S = lim
n→∞

Sn = lim
n→∞

∫ √√
SS(η)

√
SdΩn(η) + o(1) ·

∫ √
S(η)dΩn(η)

=

∫ √√
SS(η)

√
SdΩ(η).

Similarly,

x = lim
n→∞

∫
xdρn(x) =

∫
xdρ(x).

Finally, suppose that the set of z ∈ Z such that ρ(x|z) is a non-degenerate Gaussian (and thus,
absolutely continuous) has positive measure. Lemma 3.2.1 of [31] implies that for each such ρ(x|z),
the optimal transport cost µ 7→ W 2

2 (µ, ρ(x|z)) is strictly convex. Then, the total transport cost
µ 7→

∫
W 2

2 (µ, ρ(x|z))dv is strictly convex and the barycenter is unique.

F Saddle point algorithms

Let infτ supξ L(τ, ξ) be a min-max problem. For convenience, denote

J =

(
Idimτ

−Idimξ

)
, w =

[
τ
ξ

]
Then, the OMD algorithm [25] (using Euclidean squared distance) becomes,

Parameters: Learning rates ηn.
for n← 1, 2, . . . do

Compute the waiting state w̃ ← wn − ηnJ∇L(wn)
Acutual update wn+1 ← wn − ηnJ∇L(w̃)

end
return w∞

Algorithm 1: Optimistic mirror descent

We present the QITD algorithm [11] in its data-based setting, such that L is estimated from samples,
just as in (11),
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Parameters: Iteration number T . Batch size M . Initial learning rate η0. Decay rate γ ∈ (0, 1).
Stopping threshold ε� 1. Increase factor β > 0. Maximum learning rate ηmax.

Data: Sample X = {xi}Ni=1.
Initialize quasi Newton matrix B1 ← J .
for n← 1 to T do

Randomly sample a minibatch Xn of size M .
Compute gradient gn ← ∇L(wn |Xn).
Initialize learning rate ηn ← ηn−1.
Compute update wn+1 ← wn − ηnBngn.
while ηn > εηn−1 and the anticipatory constraint

L(τn+1, ξn |Xn) ≤ L(τn+1, ξn+1 |Xn) ≤ L(τn, ξn+1 |Xn) (50)

is not satisfied do
Line search ηn ← γηn.
Update wn+1 ← wn − ηnBngn.

end
if constraint (50) has been satisfied then

Increase learning rate ηn ← max((1 + β)ηn, ηmax)
end
Compute new gradient gn+1 ← ∇L(wn+1 |Xn).
Rank-one update of Bn:

s← Jgn+1 −Bngn

α← ‖s‖2

〈gn, s〉
α← sign(α) min

(
|α|, 1

)
Bn+1 ← Bn + α

s · sT

‖s‖2

end

return wT
Algorithm 2: Stochastic quasi implicit twisted descent

The algorithm has running time O(TD2), where D = dimτ + dim ξ. The quasi Newton matrix Bn

can be replaced by a list of its rank-one updates: {sn, αn}Tn=1, changing the running time to O(T 2D).

G Implementation details

Unless specified, all activation functions are ReLU.

G.1 Artificial data test of Section 4.1

Following Section 3.1.1, we model the transport map T (x, z) and inverse transport map S(y, z) as
residual networks (14). Both residuals are feedforward nets (FNN) with the same layer sizes:

3→ 7→ 7→ 2

The test function ψY is FNN with layer size:

2→ 6→ 6→ 1

The test function ψZ :
1→ 5→ 1.

Since any constant term is eliminated in (12), the affine map of the last layer of ψZ is bias-free in order
to reduce the number of parameters.
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Parameters for QITD (Algorithm 2): iteration number T = 10000, batch size M = sample size N ,
η0 = 4× 10−3, γ = 0.75, ε = 10−3, β = 0.1, ηmax = 2× 10−2.

Parameters for SGD (for regression problem (17)): T = 20000, ηn ≡ 5× 10−2.

G.2 Continental temperature test of Section 4.2

The daily temperature data is taken from NOAA [28]. We chose the 56 stations with the fewest missing
values, and any xi with missing entry is discarded.

Training in high dimensions becomes more unstable, so we follow the technique introduced by the
DCGAN paper [33], applying batch normalization to all networks and leaky ReLU to the discrimina-
tors. Denote by BN the vanilla batch normalization and LR the leaky ReLU with negative slope 0.1.
The residual part of the transport map is given by

57
ReLU−−−−→
BN

2
ReLU−−−−→
BN

56

The reason the hidden layer has limited width is that the temperature distribution conditioned on any
date is approximately a Gaussian with similar variance, so the transport map Tz should be close to its
first-moment approximation (15) and thus can be specified using little information.

The test function ψY :

56
LR−−→
BN

14
LR−−→
BN

1

The test function ψZ :

1
LR−−→
BN

5
LR−−→
BN

1

and its last layer is bias-free.
The labeling function z(x):

56
LR−−→
BN

5
LR−−→
BN

5
LR−−→
BN

1

and its last layer is bias-free. To enforce Lipschitz continuity, we clamp the parameters of z to be
within [−0.1, 0.1] after each update step.

Parameters for OMD (Algorithm 1): T = 50000, M = 1000, ηn ≡ 10−5.

G.3 Seismic test of Section 4.2

The earthquake data is taken from [40] and scaled by π/180 to yield spherical coordinates.
The residual of the transport map:

3
ReLU−−−−→
BN

7
ReLU−−−−→
BN

7
ReLU−−−−→
BN

7
ReLU−−−−→
BN

2

The test function ψY :

2
LR−−→
BN

5
LR−−→
BN

5
LR−−→
BN

5
LR−−→
BN

1

The test function ψZ :

1
LR−−→
BN

5
LR−−→
BN

5
LR−−→
BN

1

and its last layer is bias-free. The label net z(x):

2
LR−−→ 6

LR−−→ 6
LR−−→ 1

and its last layer is bias-free.
Parameters for OMD (Algorithm 1): T = 20000, M = N , ηn ≡ 10−3.
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G.4 Climate test of Section 4.3

The hourly temperature data is taken from [29]. We chose Ithaca, NY and the time range Jan 1 2007
to Dec 31 2016 because there are few missing values, which are filled by linear interpolation.

The transport map T (x, z) and inverse S(y, z) are residual nets (14), and the residual part has
sizes:

5→ 9→ 9→ 1

The test function ψY :
1→ 5→ 5→ 1

The test function ψZ :
4→ 8→ 1

and its last layer is bias-free.
Parameters for QITD: T = 10000, M = 2400, η0 = 2 × 10−3, γ = 0.75, ε = 10−3, β = 0.1,

ηmax = 1× 10−2.
Parameters for SGD (for regression (17)): T = 10000, M = 24× 365, ηn ≡ 5× 10−3.

G.5 Color transfer of Section 4.4

We set X = Y = R3, c = ‖x− y‖2, Z = {1, 2, 3}.
All conditional transport maps Tk(x) and inverse Sk(y) (k = 1, 2, 3) are residual nets. The residuals

share the same layers sizes:
3→ 7→ 7→ 3

The test function ψY :
3→ 7→ 7→ 1

Since Z is finite, ψZ reduces to a vector ∈ R3.
Each of the RGB color channels has range [0, 1]. Theoretically, the transported distributions

Sj ◦Tk#ρk are always supported in [0, 1]3. Nevertheless, the computed result is only an approximation
to the true distribution, and sometimes a few points are mapped outside of [0, 1]3, so we project them
back.

Parameters for OMD (Algorithm 1): T = 125000, M = 5000, ηn ≡ 10−2.
Parameters for SGD (for regression (17)): T = 10000, M = 3000, ηn ≡ 5× 10−3.
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