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Abstract. An algorithm for the solution of general isotropic nonlinear wave equations is pre-
sented. The algorithm is based on a symmetric factorization of the linear part of the wave operator,
followed by its exact integration through an integrating factor in spectral space. The remaining
nonlinear and forcing terms can be handled with any standard pseudospectral procedure. Solving
the linear part of the wave operator exactly effectively eliminates the stiffness of the original prob-
lem, characterized by a wide range of temporal scales. The algorithm is tested and applied to several
problems of three-dimensional long surface waves: solitary wave propagation, interaction, diffraction,
and the generation of waves by flow over slowly varying bottom topography. Other potential appli-
cations include waves in rotating and stratified flows and wave interaction with more pronounced
topographic features.
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1. Introduction. Wave phenomena in nature often involve relatively small per-
turbations of equilibrium states. These small perturbations can be described success-
fully by linear theory over short time intervals. For longer times, however, nonlinear
effects accumulate and substantially affect the evolution of the waves. The effect
of such nonlinearity is varied: Discrete sets of waves may interact resonantly, either
directly or through a slowly changing medium; a single wave may steepen up and
break; the nonlinear steepening may be balanced by small dispersive effects, yielding
coherent structures such as solitons; and, in higher dimensions, nonlinearity may de-
lay, prevent, or drastically change wave focusing. The mathematical description of
these weakly nonlinear waves typically involves the linear structure, characterized by
a dispersion relation, and small nonlinearities which effectively modulate the linear
solutions over long times (see, for instance, [1] and [12]).

Examples of weakly nonlinear waves in geophysics are the very long waves in the
atmosphere and the ocean. Here the equilibrium state is one of uniform rotation;
deviations from this state give rise to a wide variety of waves, with a significant
impact on our climate. On smaller scales, surface and internal waves in lakes and
oceans usually consist of relatively small deviations from a state of rest, so they also
can be modeled accurately as weakly nonlinear phenomena.

The temporal scales associated with the linear and nonlinear components of these
models typically are very different. The linear part involves a huge range of scales,
from the very slow to the very fast, while the effects of nonlinearity are felt only
over long time intervals and couple the various linear modes. Thus the numerical
solution of the resulting equations encounters the problem of stiffness: one is normally
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NONLINEAR WAVE EQUATIONS 1103

interested in phenomena taking place in the nonlinear time scale, but one has to
resolve the much faster linear frequencies in order to reach these long times. When
the phenomena under study involve the nonlinear interaction of only a few waves, an
asymptotic analysis may filter the linear frequencies, leaving equations that are no
longer stiff for the slow evolution of the wave amplitudes. When these interactions
are more complex, however, and involve a wide range of linear modes, no such filtered
models exist a priori and one has to solve numerically the full set of weakly nonlinear
equations.

In this work, we describe an effective procedure to overcome stiffness and solve
numerically a class of nonlinear wave equations occurring often in the description of
waves in isotropic media. The method is based on the explicit analytical integration
of the linear part of the equation, through an integrating factor. The idea of exactly
integrating a stiff linear part has been developed before in various contexts. Hou,
Lowengrub, and Shelley [6] used this idea to remove the stiffness arising from surface
tension in interfacial flows; Rogallo [11] applied it to the numerical solution of the
Navier–Stokes equations. For the Korteweg–de Vries (KdV) equation, the implicit
pseudospectral methods of Chen and Kerkhoven [3] also aim to minimize the problems
of stiffness encountered in the often used method by Fornberg and Whitham [4].

The isotropic wave equations with which we concern ourselves here admit a sym-
metric factorization which makes their numerical solution particularly efficient. This
factorization reduces a second order real equation to a first order complex one, for
which integrating factors are readily available.

This paper is structured as follows. In section 2, we describe the basic procedure
for the numerical solution of a broad class of nonlinear waves. In section 3, we
apply this procedure to the study of long surface waves, in the limit in which the
dispersive and the nonlinear effects have the same order of magnitude. We simulate
the propagation of a single solitary wave, the interaction of two solitary waves at small
angles, the diffraction of a solitary wave past a strait or off the end of a topographic
feature, and the emission of waves by a mean current flowing over topography. Finally,
further applications and generalizations are proposed along with some concluding
remarks.

2. The basic procedure. In this section, we describe the basic procedure as it
applies to partial differential equations of the form(

∂2

∂t2
+ L2

)
φ = G(φ, φt,∇φ),(1)

where φ(x, t) is a real function, L2 is a positive-definite operator normally involving
spatial derivatives, and G is an arbitrary, not necessarily local function. The most
frequent example for L2 is minus the Laplacian, which turns (1) into a nonlinear wave
equation. Other examples we are interested in are

L2 = (−∆)
1
2 tanh

[
(−∆)

1
2

]
,

the general linear wave operator for surface waves in water of arbitrary depth, and

L2 = −∆ + f2,

which appears often in the study of geophysical waves. Here ∆ is the two-dimensional
Laplacian and f is the local Coriolis parameter 2Ω sin(α), where Ω is the angular
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1104 PAUL A. MILEWSKI AND ESTEBAN G. TABAK

velocity of the Earth and α is the local latitude. Other examples are presented in the
next section.

The present procedure can be generalized easily to settings different from (1),
such as systems of equations. For concreteness, however, we prefer to develop it in
this particular context.

A difficulty usually encountered in numerically solving equations like (1) is stiff-
ness: the operator L2 often gives rise to a wide range of time scales, and one is
normally interested in the much slower time scale associated with the comparatively
small nonlinearity G. In order to study this slow evolution, however, one needs to
resolve all the fast frequencies associated with L2. Doing this numerically is imprac-
tical. The algorithm presented here circumvents this difficulty by resolving the high
frequencies analytically. We now describe the method as it applies to (1).

First we reduce (1) to a first order system. To this end, we introduce the new
dependent variables

u =

(
∂

∂t
+ iL

)
φ,(2)

v =

(
∂

∂t
− iL

)
φ,

in terms of which (1) becomes(
∂

∂t
− iL

)
u = G(φ, φt,∇φ),(3) (

∂

∂t
+ iL

)
v = G(φ, φt,∇φ).(4)

Notice that, under this symmetric factorization of the wave equation (1), since L
is real, u and v are complex conjugates and (3) and (4) are actually the same equation.
In addition, φ and φt can be computed from the real and imaginary part of u,

φt = Re (u),

Lφ = Im (u),(5)

so the right-hand side of (3) can be written in terms of u. (When L is not fully
invertible, some further work may be required; we will discuss this issue below.) Then,
instead of the system (3), (4), one is left with the single complex-valued equation (3).

If the model equation is first order in time, it is already in the required form
(3), and the same method applies. In this context, the method has been applied to
a fifth order, forced KdV-like equation in [9]. Since that problem is fifth order, it
is crucial to be able to circumvent the stiffness of the problem, as we will describe
below. The procedure has also been applied in [8] to the study of turbulent cascades
in a one-dimensional weakly nonlinear dispersive system. Here the stiffness was due
to the necessity to resolve a range of scales wide enough so that a self-similar cascade
could be sustained.

The next step involves resolving the stiffness associated with (3) through the
exact integration of its linear part. How this is done depends strongly on the spatial
domain, the boundary conditions, and the form of the operator L. We shall consider
here the simplest case of a periodic domain—the torus Tn—and an operator L which
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NONLINEAR WAVE EQUATIONS 1105

is diagonal in Fourier space, as are the examples presented above. We introduce
ûj(t) = û(kj , t), the Fourier transform of u(x, t):

ûj(t) = F [u](kj , t).

Taking the Fourier transform of (3) yields(
∂

∂t
− iL̂(kj)

)
ûj(t) = F [G(φ, φt,∇φ)] (kj , t),(6)

which is a system of ordinary differential equations for the ûj , where L̂(kj) is the

Fourier symbol of the operator L. Multiplying (6) by the integrating factor e−iL̂(kj)(t−tn),
one obtains

dÛj
dt

= e−iL̂(kj)(t−tn)F [G(φ, φt,∇φ)] (kj , t),(7)

where

Ûj(t) = e−iL̂(kj)(t−tn)ûj(t).(8)

The constants tn will be useful when (7) is discretized in time. Including these con-
stants in the integrating factor makes the algorithm look identical at each time step,
so a number of necessary coefficients can be computed only once.

Now the equations in (7) form a system of ordinary differential equations coupled
by the right-hand side, which normally involves convolutions of the Ûj . These convo-
lutions are not computed directly but rather handled as products in physical space,
a standard procedure in pseudospectral methods. Then the system (7) can be solved
with any algorithm for integrating ordinary differential equations; we chose a fourth
order Runge–Kutta method for the examples in the following section. Notice that if
G = 0, then Ûj is time independent, and we recover the exact solution to (1).

How was the stiffness issue resolved? In considering (7) instead of (3), we have
switched from a problem of stability to one of accuracy : the homogeneous solutions to
(3) involve very high frequencies which, if not appropriately resolved with correspond-
ingly small time intervals, yield catastrophic numerical instabilities. In (7) instead,
the high frequencies have been resolved exactly and are now in the right-hand side,
where they do not affect the stability of the method. It may appear that, by taking
long time steps associated with the nonlinear time scale, this oscillatory right-hand
side is not properly resolved. Yet this is not the case: we show below that when the
nonlinear effects are important in (1), long time steps in (7) will be sufficient to re-
solve them. The only underresolved nonlinear effects are those that are unimportant
in (1). Furthermore, these underresolved nonlinear terms will be averaged to zero by
the method.

To see this, consider a general dispersive equation of the form

ut + i L(u) = G(u)(9)

with Fourier transform

ût + i L̂(k) û = F(G(u)) ,(10)

where L̂(k) grows rapidly with k. Introducing Ûj as in (8), we obtain

dÛj
dt

= e−iL̂(kj)(t−tn)F(G(u)).(11)
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1106 PAUL A. MILEWSKI AND ESTEBAN G. TABAK

If G(u) is a linear function, with Fourier transform Ĝ(k)û, then the right-hand side of
(11) takes the simple form Ĝ(kj)Ûj . In other words, the rapidly oscillating factor on
the right-hand side cancels out, and our method has no accuracy problem. If instead
G(u) is quadratic, with Fourier transform

∑
Ĝ(k, l)ûlûk−l, the right-hand side of (11)

takes the form ∑
l

Ĝ(k, l)ÛlÛk−l ei(L̂l+L̂k−l−L̂k)(t−tn),

where we have simplified the notation by taking L̂(kj) = L̂j .

If the modes l, l−k, and k are in resonance, that is, if L̂l+ L̂k−l = L̂k, then again
the oscillations on the right-hand side cancel out; if they are close to resonant, the
oscillations are slow. In either case, the methodology presented here has no accuracy
problem when the timestep is long compared to L̂k. Thus, the method resolves the
nonlinearities when they are important.

If the modes are far from resonant, their nonlinear interaction is very weak; thus
by taking long time steps we under-resolve, and in a stable way, only unimportant
nonlinearities. The only issue left to check is whether by under-resolving weak inter-
actions, we are not making these interactions effectively stronger. This is the case
only if the nonlinear terms are sampled at an integer multiple of their period. This
can happen if the timestep ∆t satisfies(

L̂l + L̂k−l − L̂k
)

∆t = 2nπ ,

where n is an integer. Then, the numerical method would make the modes l and k− l
resonate with k, although they do not in the original equation. Even such fictitious
resonances should not contaminate the solution: these would occur only to high-
frequency modes with little energy and, if the equation is conservative, would only
exchange energy conservatively between the modes. In our numerical experiments,
we never observed the effects of such resonances. If they ever become an issue, simple
and inexpensive solutions, such as randomly alternating between two irrational time-
steps, may be devised. If the time step ∆t does not satisfy this resonant condition,
then it is easy to see that the underresolved terms average to zero.

The argument above extends straightforwardly to general nonlinearities. In fact,
it can be made very precise; a more detailed discussion, however, goes beyond the
scope of this article.

Returning to the basic procedure, in order to solve the system (7), one needs to
compute the right-hand side in terms of the Ûj(t). Clearly ûj(t) can be computed
from (8). The computation of φ(x, t) from (5) is done in Fourier space, where one

obtains φ̂(k, t) = F [φ(x, t)] and φ̂t(k, t) = F [φt(x, t)] from the Fourier transform of
(2):

û(k, t) = φ̂t(k, t) + iL̂(k) φ̂(k, t),

û(−k, t) = φ̂∗t (k, t) + iL̂(−k) φ̂∗(k, t) ,

where we have used the reality of φ to replace φ̂(−k, t) by φ̂∗(k, t). Then

φ̂(k, t) =
û(k, t)− û∗(−k, t)
i
(
L̂(k) + L̂(−k)

) ,(12)

φ̂t(k, t) =
û(k, t) + û∗(−k, t)

2
.(13)
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NONLINEAR WAVE EQUATIONS 1107

Equation (13) determines all the modes of φ̂t. However, the computation of φ̂ from
(12) may be complicated by a lack of invertibility of L. For instance, when L = −∆,

φ̂(0, t) cannot be obtained from (12), and one needs to compute this mode separately.
This is achieved by adding to the system of ordinary differential equations (7) for the

Ûj(t) another differential equation for φ̂(0, t). This equation is obtained by evaluating
(13) at k = 0:

φ̂t(0, t) = Re (û(0, t)) .(14)

With this issue resolved, the description of the basic procedure is complete. In the
next section, we apply it to examples of scientific interest, extending the procedure
along the way to deal with situations slightly more general than the one presented in
this section.

3. Examples: Long surface waves. Irrotational surface waves can be de-
scribed in terms of two dependent variables: the potential function φ(x, y, z, t) and
the surface height η(x, y, t), measured for convenience as a departure from the mean
level H corresponding to equilibrium. Here x and y are horizontal coordinates, z is
the vertical coordinate, and t represents time. When the waves are long relative to
the mean depth, the potential φ does not depend on z to leading order, i.e., the flow
is essentially two-dimensional. If, in addition, the waves have small amplitude, their
behavior over relatively small—O(1)—time intervals is well described by the wave
equation

Φtt −∆Φ = 0,(15)

where Φ(x, y, t) = φ(x, y,H, t) and ∆ stands for the two-dimensional (horizontal)
Laplacian. The elevation of the free surface η is given to leading order by

η = −Φt.(16)

Over longer time intervals, however, the effects of nonlinearity and finite wavelength
accumulate, affecting the shape of the solutions to (15) at a rate given by the strength
of the nonlinearity and the dispersive terms. If we call εH the amplitude of the waves
and H/µ the typical horizontal wavelength, the critical balance for which the nonlinear
and the dispersive effects have the same order of magnitude is given by

ε = µ2 � 1.

For one-dimensional waves, this is the regime described by the KdV and Boussinesq
equations. The corresponding equation for isotropic waves in two dimensions is [2, 10]

Φtt −∆Φ = ε

[
1

3
∆2Φ− Φt∆Φ− 2∇Φ∇Φt

]
.(17)

This equation contains the KdV and Boussinesq equations when restricted to one-
dimensional waves, and the Kadomtsev–Petviashvili (KP) equation as a limiting case
in nearly one-dimensional situations. However, (17) is isotropic, which makes it suit-
able for the study of more general two-dimensional wave propagation. Notice that
the leading order behavior of the solutions is given by the wave equation (15) and
that the next order includes a linear dispersive correction, given by the square of
the Laplacian, and two Burgers-like nonlinear terms. (They take exactly the form of
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1108 PAUL A. MILEWSKI AND ESTEBAN G. TABAK

the nonlinearity in Burgers if one follows a characteristic of the leading order wave
equation.) Now, the free surface displacement is given by η = −Φt +O(ε). In all the
results presented, we plot −Φt(x, y), that is, the leading order approximation to the
free surface at a fixed time.

To apply the procedure of the previous section to (17), we put all linear terms on
the left-hand side. The problem with this, however, is that the operator

L2 = −
(

∆ +
ε

3
∆2
)
,

which is positive definite for moderate wavenumbers, becomes negative for large
wavenumbers scaling as 1/

√
ε. Not only does the numerical procedure fail in this

case, but the equation itself becomes ill-posed. Thus something should be done about
these short waves. Notice that (17) is derived under the assumption that the waves
are long, so it cannot really model short waves. Thus we are free to modify the equa-
tion for short waves to make it well behaved. This is done by replacing ∆2Φ by ∆Φtt,
using the leading order wave equation for Φ. The O(ε2) error that this introduces in
(17) just adds to the truncation error already there. Thus (17) becomes

Φtt −∆Φ− ε

3
∆Φtt = −ε [Φt∆Φ + 2∇Φ∇Φt] ,(18)

which does not have the ill-posedness problem of (17). In order to get this equation
into the form (1), we factor the left-hand side as[(

1− ε

3
∆
) ∂2

∂t2
−∆

]
Φ =

(
1− ε

3
∆
)( ∂2

∂t2
− ∆

1− ε
3∆

)
Φ,

so (18) may be rewritten as(
∂2

∂t2
− ∆

1− ε
3∆

)
Φ = − ε

1− ε
3∆

[
Φt∆Φ + 2∇Φ∇Φt

]
,(19)

which has the required form (1). Notice that this equation is not only well-posed but
also well-behaved for large wavenumbers, with L2 approaching 3/ε and the prefactor
of the right-hand side approaching zero.

Still it may be convenient to filter the high wavenumbers of each factor of the
right-hand side, since the differentiation of these terms creates large amplitudes that
could require small computational time intervals. Since we are allowed to tamper with
the wavenumbers k of order ε−1/2, which lie beyond the range of validity of (17), a
consistent filter is given by a function of

√
ε|k|. For example, we have tested

filter = e−α(ε|k|2)2

,

where α is a constant. We multiply the Fourier transform of Φ used to compute the
right-hand side of (19) by this filter. This corresponds to a dissipative term α (ε∆)

2

on the right-hand side of (17). For the experiments reported in this work, we found
that filtering the high frequencies was not necessary.

Equations (17), (18), and (19) admit solitary waves in any direction, given by

η = −Φt = A(|k|)sech2(k · x− C|k|t),(20)

where A(|k|) and C(|k|) are given, for (18), (19), by

C2 =
1

1− ε 4
3 |k|2

,
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Fig. 1. Propagation of an oblique solitary wave, with parameters ε = 0.1 and k = 1√
5

(2, 1), in

a grid with periods L = 14π and H = 28π and 256× 256 points. (a) Initial data, t = 0. (b) t = 10.
(c) t = 20. (d) Log-log plot of the normalized error after one tour of the periodic box, as a function
of ∆t.

A =
4

3
C2|k|2.(21)

These solitary waves are the main building blocks for the numerical experiments
described below. To fit these solitary waves in a periodic box, in principle they have
to be replaced by the corresponding cnoidal waves. If the period of the numerical box
is large enough, there is no perceptible difference between (20) and the cnoidal waves.
We also need to make Φ corresponding to (20) periodic. This is achieved by writing

Φ =
A

C|k| tanh(k · x− C|k|t) + B · x(22)

and choosing the constant B such that Φ is periodic.
As a first test of the algorithm, we consider the case of a single solitary wave.

Figure 1(a)–(c) shows the numerical evolution of an oblique solitary wave of the form
(20), with ε = 0.1 and k = 1√

5
(2, 1). The x and y periods of the box are given

by L = 14π and H = 2L = 28π, respectively, so that the initial data has support
surrounding a main diagonal of the numerical domain. The numerical evolution of
this data, with Nx = 256 and Ny = 256 modes in x and y, respectively, is virtually
indistinguishable from the exact solution (20). Figure 1(d) shows the L2 error of the
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Fig. 2. Interaction of two solitary waves at a small angle. Each solitary wave has parameters
ε = 0.1 and |k| = 0.5; they intersect at an angle of 2 tan−1(0.1). The grid has periods L = 14π
and H = 140π and has 256 × 256 points. (a) Contours of the initial data, t = 0. (b) t = 100. (c)
t = 250. (d) Detail of a perspective of the solution at t = 250.

numerical Φt after one tour of the periodic box, normalized by |Φt|2, as a function
of the time interval ∆t. We see that this error scales as (∆t)4 and that, for a ∆t as
large as one, the relative error is about 10 percent, although a typical mode of the
computation has a linear frequency close to ω = 5, so we are sampling about one
point per period. This is a clear indication that the stiffness of the problem has been
duly resolved.

Our second experiment studies the interaction of two solitary waves (20) prop-
agating at small angles to each other. The problem of steady traveling solutions to
(17) depending on two phases kj · x − Cj |kj |t was studied by Milewski and Keller
in [10]. They showed that for large angles, solitary waves will not interact, and, to
the approximation implicit in (17), they can be superposed linearly. For small angles
between the directions of propagation (less than 40◦), the waves interact strongly,
and the linear superposition is no longer a solution to (17). In this case Milewski and
Keller found steady spatially periodic solutions corresponding to a hexagonal trav-
eling pattern. In an infinite domain the analogous solutions consist of two traveling
solitary waves connected by one wave of larger amplitude, similar to a Mach stem in
oblique shock reflection.

We present some solutions for the corresponding initial value problem: we study
the evolution of initial data consisting of two solitary waves at small angles to each
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Fig. 3. Edge diffraction of a truncated solitary wave. We solve 19 on a 128 × 256 grid (half
of which is shown) with ε = 0.1 and initial data corresponding to a truncated solitary wave 20 with
|k| = 1.15. (a) Initial data, t = 0. (b) t = 15. (c) t = 30.

other. We ran experiments with angles ranging from π/2, with almost no interaction
between the solitary waves, to nearly glancing, with strongly nonlinear interaction.
Figure 2(a)–(d) displays the results of a run with an angle of 2 tan−1(0.1) ∼ 12◦,
where nonlinear effects are important over very long time intervals, thus testing the
power of the algorithm most strongly. The initial data have ε = 0.1 and |k| = 0.5; the
periods in x and y are L = 14π and H = 140π, respectively, and there are 256 grid
points both in x and in y. In the plots, we see how the forward half of the two solitary
waves detach from the backward halves, creating a single front with a lengthening,
large amplitude, one-dimensional midsection (similar to a Mach stem). Because of
the detachment of the backward halves of the solitons, it does not appear that this
initial data will lead to the hexagonal patterns of [10].

In a third numerical experiment with (19), we studied a model problem corre-
sponding to the diffraction of a solitary wave traveling parallel to a boundary which
ends abruptly. Physical examples include waves past straits and waves diffracting
off the end of topographical features. To avoid introducing nonperiodic boundary
conditions, we took as initial data a solitary wave of the form (20) truncated at the
ends with a fast cutoff. This is intended to represent the wave immediately after the
passage of a strait and ignores the finite time it would take for a solitary wave to exit
the strait. Physically, one could imagine that a solitary wave is traveling parallel to
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1112 PAUL A. MILEWSKI AND ESTEBAN G. TABAK

a boundary which is removed at t = 0. Figure 3 displays the numerical solution to
(19) at various later times. (The actual computational domain was twice as large to
allow for periodicity.) We can see the solitary wave propagating without change and a
nearly circular refraction pattern emanating from the end of the truncated nonlinear
wave. Since the solitary wave travels at a speed larger than any linear wave, a linear
theory would not adequately describe the diffraction pattern off the end of the soliton.

Finally, we experimented with forcing effects on such weakly nonlinear evolution
equations. A physical example of such a forcing are the waves generated by a flow
with constant nonzero velocity U over a localized topographical feature, such as the
ripples observed on the surface of water flowing over a bump. To make the equations
isotropic, we will consider a frame moving with the mean velocity of the flow, so
that the topography will in fact be moving with speed −U . The limit in which the
topography is small O(ε2) and the velocity U is close to 1 is termed resonant since
it generates a relatively large, O(ε) response on the free surface. In this limit, the
governing equation (17) is forced by the topography:

Φtt −∆Φ + ε

[
−1

3
∆2Φ + Φt∆Φ + 2∇Φ∇Φt

]
= εUHx(x+ Ut, y).(23)

The depth of the fluid layer is given by 1 + ε2H(x, y). Equation (23) can be cast in
the form of (19) and the forcing can be treated either exactly with the linear part of
the equation or together with the nonlinear terms. In the results that follow we have
used the latter method, for simplicity. Figure 4 presents typical results for a small
localized bump H(x, y) = −sech2((α(x−x0))2 +(β(y−y0))2) and U = −1. In Figure
4(b)–(d) there are two bumps at x = 50, centered approximately under the large
troughs of the free surface; the bumps are shown in Figure 4(a). In Figure 4(e), there
is only one bump. Again, nonlinear effects are evident: in linear theory, there should
be no disturbance ahead of the bumps but, nonlinearly, we see the generation of three-
dimensional nonlinear bow waves upstream. (For a discussion of related phenomena
in the KdV and KP equations, see [5, 7].) It is also interesting to note the nonlinear
interaction of the waves from one bump when they meet waves generated by the other
bump in Figure 4(a)–(c). Nonlinearity inhibits the focusing and a large amplitude
plane wave is generated, together with hexagonal-like patterns discussed in [10] (see
Figure 4(c), x ≈ 60, y ≈ 100). In the wake of the topography one sees a wave pattern
similar to that of the Kelvin wake.

4. Conclusions. A general procedure has been presented for the numerical so-
lution of a large class of nonlinear wave equations. This procedure uses a symmetric
factorization to reduce a second order real equation to a first order complex one and
uses an integrating factor in Fourier space to solve the linear part of the equation
exactly. The resulting system of ordinary differential equations for the Fourier modes
of the solution is not stiff and can be solved by any standard pseudospectral method.

Applications have been presented to the study of long surface waves, their diffrac-
tion and their interaction with a bottom topography. Further applications that are
currently being developed include the effects of rotation and stratification on geo-
physical flows and the interaction of waves with topographic features of a magnitude
comparable to the waves themselves.

Some of these applications require slight generalizations of the procedure devel-
oped here. In particular, the Fourier modes have to be replaced by more general eigen-
functions of the linear operator either when this does not have constant coefficients,
as is the case of the latitude-dependent Coriolis force, or when boundary conditions
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Fig. 4. Generation of surface waves by a flow over topography. We solve 23 with H(x, y) =
−sech2((0.3x)2 + (0.15y)2) and U = −1 on a 128× 128 grid for (b)–(d) (two copies of the domain
are shown to highlight the interaction of the waves from two adjacent bumps centered at y = 50, 150),
and on a 128× 256 grid for e, with a domain twice as large to minimize the wave interactions from
the periodic array of bumps centered at y = 100). (a) Bottom topography for figures (b)–(e). (b)
t = 100.5. (c) t = 201.1. (d) Grayscale plot for t = 301.6. (e) Grayscale plot for t = 301.6.
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1114 PAUL A. MILEWSKI AND ESTEBAN G. TABAK

other than periodic are required, such as decay at infinity or no-flow through rigid
boundaries. Another straightforward generalization involves working with systems
instead of a single wave equation. This latter case is important in the study of stably
stratified flows and of interactions between rotational and irrotational components of
free surface fluid flows.
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