

Basic Algorithms – Midterm Exam

- (1) Suppose the dictionary has been hashed to a table H such that probing costs constant time. (a) Show that the n -by- n word puzzle problem can be solved in $O(n^2)$ steps, by testing the presence of a word in H for each ordered quadruple (row, column, orientation, number of characters). (b) How do you refer to the runtime, as linear or quadratic? Hint: number of orientations is 8; maximum word size is some small constant.
- (2) Design an algorithm to *Find* in a heap (and return positions in the table of) all nodes less than some value x . Your algorithm should run in $O(K)$, where K is the number of nodes whose positions are returned.
- (3) Solve two of the following three recurrence equations for $W(n)$ at $n = 1 + 4k$, $T(n)$ or $S(n)$ at $n = 2^k$ (you are required to provide expressions for W , T or S in terms of n , not in terms of k).
 - (a) $W(i + 4) = W(i) + i$, $W(1) = 1$.
 - (b) $T(2i) = 7 \cdot T(i) + i^2$, $T(1) = 0$.
 - (c) $S(2i) = r \cdot S(i) + 1/i$, $S(1) = 0$, $0 < r < 1$.

Hint to (b) and (c): Scale the variable i first and then treat the factors 7 or r . Make use of $\log_b(a) = 1/\log_a(b)$ when necessary.

- (4) a) Prove by induction that a heap with n nodes has exactly $p = \lceil n/2 \rceil$ leaves.
b) Write a recursive algorithm for building a heap of size n in linear runtime.
- (5) (Optional)

By inserting n numbers into a binary search tree and then performing an in-order traversal, we obtain a sequence of numbers so traversed. (a) Give a property of the sequence; (b) Show the runtime of the whole operation and justify your answer.