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Abstract

The Immersed Boundary (IB) method is a mathematical framework for constructing robust
numerical methods to study fluid-structure interaction in problems involving an elastic structure
immersed in a viscous fluid. The IB formulation uses an Eulerian representation of the fluid
and a Lagrangian representation of the structure. The Lagrangian and Eulerian frames are
coupled by integral transforms with delta function kernels. The discretized IB equations use
approximations to these transforms with regularized delta function kernels to interpolate the
fluid velocity to the structure, and to spread structural forces to the fluid. It is well-known that
the conventional IB method can suffer from poor volume conservation since the interpolated
Lagrangian velocity field is not generally divergence-free, and so this can cause spurious volume
changes. In practice, the lack of volume conservation is especially pronounced for cases where
there are large pressure differences across thin structural boundaries. The aim of this paper
is to greatly reduce the volume error of the IB method by introducing velocity-interpolation
and force-spreading schemes with the property that the interpolated velocity field in which the
structure moves is at least C 1 and satisfies a continuous divergence-free condition, and the force-
spreading operator is the adjoint of the velocity-interpolation operator. We confirm through
numerical experiments in two and three spatial dimensions that our new IB method equipped
with divergence-free velocity interpolation and force spreading is able to achieve substantial
improvement in volume conservation compared to other existing IB methods, at the expense of
a modest increase in the computational cost.

Keywords: Immersed boundary method, fluid-structure interaction, incompressible flow,
volume conservation, velocity interpolation, force spreading

1. Introduction

The Immersed Boundary (IB) method [1] is a general mathematical framework for numerical
solution of fluid-structure interaction problems arising from biological and engineering applica-
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tions. The IB method was introduced to simulate flow patterns around the heart valves [2, 3],
and since its success in modeling cardiac fluid dynamics [4, 5, 6, 7], it has been extended and
applied to various other applications, including but not limited to motion of biological swimmers
[8, 9], dynamics of red-blood cells [10, 11] and dry foam [12, 13], and rigid body motion [14, 15].

The essence of IB method as a numerical method lies in its simple way of coupling an
Eulerian representation of the fluid and a Lagrangian representation of the structure, that is,
force spreading from the structure to the fluid and velocity interpolation from the fluid to the
structure are carried out via a regularized delta function δh. One effective way to construct
δh is to require the regularized delta function to satisfy a set of moment conditions to achieve
approximate grid translation-invariance and desired interpolation accuracy [16], thereby avoiding
any complication of special grid treatment near the fluid-structure interface. In spite of its
wide applicability and ease of implementation, the conventional IB method with collocated-grid
discretization (IBCollocated) has two well-known shortcomings in accuracy: only first-order
convergence for problems that possess sharp-interface solutions [17, 18] and lack of volume
conservation in fluid regions enclosed by immersed structure [19]. Much research effort has
been put into improving the convergence rate of the IB method to second order or even higher
order for problems with singular forcing at the sharp interface, notably, the Immersed Interface
Method (IIM) [20, 21], and more recently, a new method known as Immersed Boundary Smooth
Extension [22, 23]. Our focus here, however, is on improving the volume conservation properties
of the IB method.

As an immediate consequence of fluid incompressibility, which is one of the basic assumptions
of the IB formulation, the volume enclosed by the immersed structure should be exactly conserved
as it deforms and moves with the fluid. Thus, it is certainly a desirable feature of an IB method
to conserve volume as nearly as possible. However, in practice, it is observed that, even in
the simplest case of a quasi-static pressurized membrane [24], the IB method (regardless of
collocated- or staggered-grid discretization) still produces volume error that persistently grows
in time as if fluid “leaks” through the boundary. An intuitive explanation for this “leak” is that
fluid is “squeezing” between the marker points used to discretize the boundary in a conventional
IB method; however, this is not the full story, as refining the Lagrangian discretization does
not improve the volume conservation of the method for a fixed Eulerian discretization. Peskin
and Printz realized that the main cause of poor volume conservation of IBCollocated is that
the interpolated velocity used to move the structure is not divergence-free in the continuous
sense [19], despite that the discrete fluid velocity is enforced to be divergence-free with respect
to the discrete divergence operator by the fluid solver. To improve volume conservation of the
conventional IB method, Peskin and Printz proposed a modified finite-difference approximation
to the discrete divergence operator to ensure that the average of the continuous divergence of
the interpolated velocity is equal to zero in a small control volume with size of a grid cell [19].
Their IB method with modified finite-difference operators (IBModified) was applied to a heart
model in two dimensions, and it achieved improvement in volume conservation by one-to-two
orders of magnitude compared to IBCollocated. Nevertheless, a major drawback of IBModified
that limits its use in applications is its complex, non-standard finite-difference operators whose
coefficients are derived based on the choice of the regularized delta function (but see [12, 13] for
applications). To address the issue of spurious currents across immersed structure supporting
extremely large pressure differences, Guy and Strychalski developed a different extension of
the IB method that uses non-uniform Fast Fourier Transform [25, 26] (NUFFT) to generate
“spectral” approximations to the delta function [27], which also has superior volume conservation
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property.
Over the past two decades, the staggered-grid (MAC) discretization has been widely adopted

by the IB community [5, 7, 8, 14, 15, 28]. In addition to its most celebrated feature of avoiding
the odd-even decoupling in the Poisson solver that can otherwise occur with collocated-grid
discretization, which leads to “checkerboard” instability in the solutions, Griffith [24] concluded
from his numerical studies that the improvement in volume conservation of the IB method with
staggered-grid discretization (IBMAC) is essentially the same as that of IBModified. In practice,
IBMAC is more favorable than IBModified in that the improvement in volume conservation
directly comes as a byproduct of grid discretization without any modification to the finite-
difference operators, and it is relatively straightforward to extend IBMAC to include adaptive
mesh refinement [5, 29] and physical boundary conditions [30]. However, we emphasize that the
nature of Lagrangian velocity interpolation of IBMAC remains the same as that of IBCollocated,
and hence, there is much room for further improvement in volume conservation by ensuring that
the interpolated velocity is constructed to be nearly or exactly divergence-free. We note that
the methods designed to improve the convergence rate of IB methods, such as IIM [20, 21] and
the Blob-Projection method [31] also improve volume conservation because the solution near the
interface is computed more accurately. These methods, however, are somewhat more complex
and less generalizable than the conventional IB method.

This paper is concerned with further improving volume conservation of IBMAC by intro-
ducing a velocity interpolation scheme that is divergence-free in the continuum sense. In every
time step of the conventional IB method, the Lagrangian velocity by which the immersed struc-
ture moves is interpolated from a discretely divergence-free fluid velocity field obtained from
the fluid solver. The key idea is first to construct a discrete vector potential that lives on an
edge-centered staggered grid from the discretely divergence-free fluid velocity, and then to apply
the conventional IB interpolation scheme to obtain a continuum vector potential, from which
the interpolated velocity field is obtained by applying the continuous curl operator. Note that
the existence of the discrete vector potential relies on the fact that the discrete velocity field is
discretely divergence-free. The interpolated velocity field obtained in this manner is guaranteed
to be continuously divergence-free, since the divergence of the curl of any vector field is zero. We
also propose a new force-spreading operator that is defined to be the adjoint of velocity interpo-
lation, so that Lagrangian-Eulerian interaction conserves energy. The Eulerian force density that
is the result of applying this force-spreading operator to a Lagrangian force field turns out to be
discretely divergence-free, so we refer to this new force-spreading operation as divergence-free
force spreading. We name the IB method equipped with the new interpolation and spreading
operators as the Divergence-Free Immersed Boundary (DFIB) method. In contrast to the lo-
cal nature of interpolation and spreading in the conventional IB method, these operators of the
DFIB method turn out to be non-local in that their construction requires the solution of discrete
Poisson equations, which can be computed efficiently by the Fast Fourier Transform (FFT) or
multigrid methods. Another new feature of our method is that transferring information between
the Eulerian grid and the Lagrangian mesh involves derivatives of the regularized delta function
∇δh instead of only δh. We confirm through various numerical tests in both two and three spatial
dimensions that the DFIB method is able to reduce volume error by several orders of magnitude
compared to IBMAC and IBModified at the expense of a modest increase in the computational
cost. Moreover, we confirm that the volume error for DFIB decreases as the Lagrangian mesh
is refined with the Eulerian grid size held fixed, which is not the case in the conventional IB
method [19]. In addition to the substantial improvement in volume conservation, the DFIB
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method is quite straightforward to realize from an existing modular IB code with staggered-grid
discretization, that is, by simply switching to the new velocity-interpolation and force-spreading
schemes while leaving the fluid solver and time-stepping scheme unchanged.

The rest of the paper is organized as follows. In Sec. 2, we begin by giving a brief description
of the continuum equations of motion in the IB framework. Then we define the staggered grid
on which the fluid variables live and introduce the spatial discretization of the equations of
motion. Sec. 3 introduces the two main contributions of this paper: divergence-free velocity
interpolation and force spreading. In Sec. 4, we present a formally second-order time-stepping
scheme that is used to evolve the spatially-discretized equations, followed by a cost comparison
of DFIB and IBMAC. Numerical examples of applying DFIB to problems in two and three
spatial dimensions are presented in Sec. 5, where the volume-conserving characteristics of the
new scheme are assessed.

2. Equations of motion and spatial discretization

2.1. Equations of motion

This section provides a brief description of the continuum equations of motion in the IB
framework [1]. We assume a neutrally-buoyant elastic structure Γ that is described by the
Lagrangian variables s, immersed in a viscous incompressible fluid occupying the whole fluid
domain Ω ⊂ R3 that is described by the Eulerian variables x. Eqs. (2.1) and (2.2) are the
incompressible Navier-Stokes equations describing mass and momentum conservation of the fluid,
in which u(x, t) denotes the fluid velocity, p(x, t) is the pressure, and f(x, t) is the Eulerian
force density (force per unit volume) exerted by the structure on the fluid. In this formulation,
we assume that the density ρ and the viscosity µ of the fluid are constant. The fluid-structure
coupled equations are:

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∇2u + f , (2.1)

∇ · u = 0, (2.2)

f(x, t) =

∫
Γ

F (s, t) δ(x−X(s, t)) ds, (2.3)

∂X

∂t
(s, t) = u(X(s, t), t) =

∫
Ω

u(x, t) δ(x−X(s, t)) dx, (2.4)

F (s, t) = F [X(·, t) ; s] = − δE
δX

(s, t). (2.5)

Eqs. (2.3) and (2.4) are the fluid-structure interaction equations that couple the Eulerian and
the Lagrangian variables. Eq. (2.3) relates the Lagrangian force density F (s, t) to the Eulerian
force density f(x, t) using the Dirac delta function, where X(s, t) is the physical position of
the Lagrangian point s. Eq. (2.4) is simply the no-slip boundary condition of the Lagrangian
structure, i.e., the Lagrangian point X(s, t) moves at the same velocity as the fluid at that point.
In Eq. (2.5), the system is closed by expressing the Lagrangian force density F (s, t) in the form
of a force density functional F [X(·, t) ; s], which in many cases can be derived from an elastic
energy functional E[X(·, t) ; s] by taking the variational derivative, denoted here by δ/δX, of
the elastic energy. These functionals describe in two different ways the material properties of
the immersed elastic structure.
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(a) (b) (c)

Fig. 1: Staggered grids on which discrete grid functions are defined. (a) Cell-centered (green) and node-centered
(black) grids for scalar functions. (b) Face-centered grid for vector grid functions. (c) Edge-centered grid for
vector grid functions.

2.2. Spatial discretization

Throughout the paper, we assume the fluid occupies a periodic domain Ω = [0, L]3 that
is discretized by a uniform N × N × N Cartesian grid with meshwidth h = L

N
. Each grid

cell is indexed by (i, j, k) for i, j, k = 0, . . . , N − 1. For the Eulerian fluid equations, we use the
staggered-grid discretization, in which the pressure p is defined on the cell-centered grid (Fig. 1a),
denoted by C, i.e., at positions xi,j,k = ((i+ 1

2
)h, (j+ 1

2
)h, (k+ 1

2
)h). The discrete fluid velocity u

is defined on the face-centered grid (Fig. 1b), denoted by F, with each component perpendicular
to the corresponding cell faces, i.e., at positions xi− 1

2
, j, k , xi, j− 1

2
, k and xi, j, k− 1

2
for each velocity

component respectively. We also introduce two additional shifted grids: the node-centered grid
(Fig. 1a) for scalar grid functions, denoted by N , i.e., at positions xi− 1

2
, j− 1

2
, k− 1

2
, and the edge-

centered grid (Fig. 1c) for vector grid functions, denoted by E, with each component defined to
be parallel to the corresponding cell edges i.e., at positions xi, j− 1

2
, k− 1

2
, xi− 1

2
, j, k− 1

2
and xi− 1

2
, j− 1

2
, k

for each component respectively. In Sec. 3, we will use these half-shifted staggered grids to
construct divergence-free velocity interpolation and force spreading.

To discretize the differential operators in Eqs. (2.1) and (2.2), we introduce the central
difference operators corresponding to the partial derivatives ∂/∂xα,

Dh
αϕ :=

ϕ(x + h
2
eα)− ϕ(x− h

2
eα)

h
, α = 1, 2, 3, (2.6)

where ϕ is a scalar grid function and {e1, e2, e3} is the standard basis of R3. We can use Dh
α to

define the discrete gradient, divergence and curl operators:

Ghϕ := (Dh
1ϕ, D

h
2ϕ, D

h
3ϕ), (2.7)

Dh · v := Dh
αvα, (2.8)

Dh × v := εijkD
h
j vk, (2.9)

where v is a vector grid function, εijk is the totally antisymmetric tensor, and the Einstein sum-
mation convention is used here. The discrete differential operators may be defined on different
pairs of domain and range (half-shifted staggered grids), and therefore, in a slight abuse of
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notation, we will use the same notation to denote the different operators,

Gh : ϕ(C) −→ v(F) or ϕ(N) −→ v(E), (2.10)

Dh· : v(E) −→ ϕ(N) or v(F) −→ ϕ(C), (2.11)

Dh× : v(E) −→ v(F) or v(F) −→ v(E). (2.12)

Although the curl operator does not appear in the equations of motion explicitly, we define it
here for use in Sec. 3. The discrete scalar Laplacian operator can be defined by Lh = Dh ·Gh,
which yields the familiar compact second-order approximation to ∇2:

Lhϕ :=
3∑

α=1

ϕ(x + heα)− 2ϕ(x) + ϕ(x− heα)

h2
. (2.13)

Note that the range and domain of Lh are a set of grid functions defined on the same grid, and
that grid can be C or N or any of the three subgrids of E or F on which the different components
of vector-valued functions are defined. We will use the notation Lh to denote the discrete vector
Laplacian operator that applies (the appropriately shifted) Lh to each component of a vector
grid function.

We follow the same treatment of discretization of the advection term as in earlier presenta-
tions of the IB method [28]. From the incompressibility of the fluid flow ∇ ·u = 0, we can write
the advection term in the skew-symmetric form

[(u · ∇)u]α =
1

2
u · (∇uα) +

1

2
∇ · (uuα), α = 1, 2, 3. (2.14)

Let S(u)u denote the discretization of Eq. (2.14), and we define

[S(u)u]α =
1

2
ũ ·G2huα +

1

2
D2h · (ũuα), α = 1, 2, 3, (2.15)

where ũ denotes an averaged collocated advective velocity whose components all live on the
same grid as uα. In the work of [28], the advective velocity ũ is obtained by using the same
interpolation scheme as the one used for moving the immersed structure. In our work, we simply
take the average of u on the grid. For example, the three components of ũ in the x-component
equation are

ũ1 = u1(xi− 1
2
,j,k) ,

ũ2 =
u2(xi,j− 1

2
,k) + u2(xi,j+ 1

2
,k) + u2(xi−1,j− 1

2
,k) + u2(xi−1,j+ 1

2
,k)

4
,

ũ3 =
u3(xi,j,k− 1

2
) + u3(xi,j,k+ 1

2
) + u3(xi−1,j,k− 1

2
) + u3(xi−1,j,k+ 1

2
)

4
.

Note that in the y- and z-component equations, we need different averages of u to construct ũ.
We choose to use the wide-stencil operators in Eq. (2.15) so that the resulting grid functions are
all defined on the same grid as uα. A more compact discretization of the advection term has
been previously described in [24, 30, 32].

The immersed structure Γ is discretized by a Lagrangian mesh of M points or markers, and
we denote the Cartesian position of the mth Lagrangian marker Xm and the Lagrangian force
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density Fm, for m = 1, . . . ,M . The discretized interaction equations (Eqs. (2.3) and (2.4)) can
be concisely written in the form

f(x) = S[X]F, (2.16)

U(X) = S∗[X]u, (2.17)

where S denotes the force-spreading operator that spreads a collection of discrete Lagrangian
force densities to the Eulerian fluid, and S∗ denotes the adjoint velocity-interpolation operator
that interpolates the discrete fluid velocity u to obtain the Lagrangian velocity at X. In the
conventional IB method, these operators are simply discrete approximations of the surface and
volume integrals in Eqs. (2.3) and (2.4), i.e.,

S[X]F :=
M∑
m

Fm δh(x−Xm)∆s, (2.18)

S∗[X]u :=
∑
x∈F

u(x)δh(x−X)h3. (2.19)

Note that Eq. (2.19) is a vector equation. For each of the three components of the equation, the
sum x ∈ F is to be understood here and in similar expressions as the sum over the appropriate
subgrid of F. In Eqs. (2.18) and (2.19), the Dirac delta function is replaced by a regularized
delta function δh to facilitate the coupling between the Eulerian and Lagrangian grids, which is
taken to be of the tensor-product form

δh(x) =
1

h3
φ
(x1

h

)
φ
(x2

h

)
φ
(x3

h

)
, (2.20)

where φ(r) denotes the one-dimensional immersed-boundary kernel that is constructed from
a set of moment conditions to achieve approximate grid translation invariance [1, 16]. The
conventional IB interpolation Eq. (2.19) does not give a Lagrangian velocity that is continuously
divergence-free, i.e.,

∇ ·U(X) = −
∑
x∈F

u(x) · (∇δh)(x−X)h3 6= 0, (2.21)

even though u is discretely divergence-free. In the following section, we develop a new velocity
interpolation and force spreading scheme that produces an exactly divergence-free interpolated
velocity field U(X) given a discretely divergence-free fluid velocity field u(x). Moreover, the new
force-spreading operator that we shall describe is the adjoint of the new velocity-interpolation
operator.

In summary, the spatially-discretized equations of motion are

ρ

(
du

dt
+ S(u)u

)
+ Ghp = µLhu + S[X]F, (2.22)

Dh · u = 0, (2.23)

dXm

dt
= U(Xm, t) = S∗[Xm]u. (2.24)
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3. Divergence-free velocity interpolation and force spreading

This section presents the two main contributions of this paper: divergence-free velocity
interpolation and force spreading. Familiarity with discrete differential operators on staggered
grids and with some discrete vector identities, reviewed and summarized in Appendix A, will
facilitate the reading of this section.

3.1. Divergence-free velocity interpolation

Here we introduce a new recipe for computing an interpolated velocity field U(X) = S∗[X]u,
that is divergence-free in the continuous sense, i.e., ∇ ·U(X) = 0 for all X. For now we drop
the dependence on time and assume X is defined everywhere in the domain Ω ⊂ R3, not just
on the Lagrangian structure Γ. The main idea is first to construct a discrete vector potential
a(x) that is defined on the edge-centered staggered grid E, and then to apply the conventional
IB interpolation to a(x) to obtain a continuum vector potential A(X), so that the Lagrangian
velocity defined by U(X) = ∇×A is automatically divergence-free.

Suppose the discrete velocity field u(x) is defined on F and is discretely divergence-free, i.e.,
Dh · u = 0. Let u0 be the mean of u(x),

u0 =
1

V

∑
x∈F

u(x)h3, (3.1)

where V =
∑

x∈F h
3 is the volume of the domain. Making use of the Helmholtz decomposition,

we construct a discrete velocity potential a(x) for x ∈ E that satisfies{
Dh × a = u− u0,
Dh · a = 0,

(3.2)

where a(x) being divergence-free is an arbitrary gauge condition that makes a(x) uniquely
defined up to a constant. Note that Dh · a is a scalar field defined on N. In Appendix B, we
prove that the the discrete vector potential a(x) defined by Eq. (3.2) exists (see Theorem 3). To
determine a(x) explicitly, we take the discrete curl of the first equation in Eq. (3.2) and use the
identity Eq. (A.3), which leads to a vector Poisson equation for a(x),

− Lh a = Dh × u, (3.3)

that can be efficiently solved. Note that the solution of the Poisson problem Eq. (3.3) determines
a(x) up to an arbitrary constant. It is not necessary to uniquely determine a(x) because the
constant term vanishes from differentiation later.

The next step is to interpolate the discrete vector potential a(x) in the conventional IB
fashion to obtain the continuum vector potential

A(X) =
∑
x∈E

a(x) δh(x−X)h3. (3.4)

Lastly, we take the continuum curl of A(X) with respect to X,

(∇×A)(X) =
∑
x∈E

a(x)× (∇δh)(x−X)h3, (3.5)
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and our new interpolation is completed by adding the mean flow u0, that is,

U(X) = S∗[X]u = u0 +
∑
x∈E

a(x)× (∇δh)(x−X)h3. (3.6)

We note that the interpolation Eq. (3.4) is not performed in the actual implementation of the
scheme but ∇δh is computed on the edge-centered staggered grid E in Eq. (3.6). We emphasize
again that, by construction, the interpolated velocity in Eq. (3.6) is exactly divergence-free.

There are two important features of our new interpolation scheme that are worth mention-
ing. First, in comparison to locally interpolating the velocity from the nearby fluid grid in the
conventional IB method, our new interpolation scheme is non-local, in that it involves solving
the discrete Poisson problem Eq. (3.3). Second, we note that the gradient of the regularized
delta function ∇δh, instead of δh itself, appears in the new interpolation scheme in Eq. (3.6).
We have numerically found that the improvement in volume conservation of the DFIB method
depends on the smoothness of the IB kernel that is used to construct δh. With C 1 IB kernels,
such as the standard 4-point IB kernel [1] (denoted by φ4h), we achieve little improvement in
volume conservation of DFIB compared to IBMAC unless the Lagrangian mesh is discretized
with impractically high resolution (4 to 8 markers per fluid meshwidth, see Fig. 5). On the
other hand, we can obtain substantial reduction in volume error by using IB kernels that are
at least C 2 with only a moderate resolution of the Lagrangian mesh (1 to 2 markers per fluid
meshwidth). We do not have a clear mathematical argument for the connection between volume
conservation and smoothness of IB kernels. However, it is not surprising that higher regularity
of the IB kernel certainly would be helpful since the derivative of δh is needed. The IB kernels
that will be used later in Sec. 5 include the C 3 5-point and 6-point kernels [16] (denoted by φnew

5h

and φnew
6h respectively), and the C 2 4-point B-spline kernel [33],

φB4h(r) =


2
3
− r2 + 1

2
r3 0 ≤ |r| < 1,

4
3
− 2r + r2 − 1

6
r3 1 ≤ |r| < 2,

0 |r| ≥ 2,

(3.7)

and the C 4 6-point B-spline kernel,

φB6h(r) =


11
20
− 1

2
r2 + 1

4
r4 − 1

12
r5 0 ≤ |r| < 1,

17
40

+ 5
8
r − 7

4
r2 + 5

4
r3 − 3

8
r4 + 1

24
r5 1 ≤ |r| < 2,

81
40
− 27

8
r + 9

4
r2 − 3

4
r3 + 1

8
r4 − 1

120
r2 2 ≤ |r| < 3,

0 |r| ≥ 3.

(3.8)

These B-spline kernels are members of a sequence of functions obtained by recursively convolving
each successive kernel function against a rectangular pulse (also known as the window function),
starting from the window function itself [33]. The limiting function in this sequence is a Gaussian
[34], which is exactly translation-invarant and isotropic. The family of IB kernels with nonzero
even moment conditions, such as φ4h and φnew

6h , also have a Gaussian-like shape, but it is not
currently known whether this sequence of functions also converges to a Gaussian.

3.2. The force-spreading operator

The force-spreading operator is constructed to be adjoint to velocity interpolation so that
energy is conserved by the Lagrangian-Eulerian interaction, that is, the power generated by the
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elastic body forces is transferred to the fluid without loss,1

∑
x∈F

u(x) · f(x)h3 =
M∑
m=1

Um · Fm∆s, (3.9)

where Um = U(Xm) is the Lagrangian velocity, and Fm∆s is the Lagrangian force applied to
the fluid by the Lagrangian marker Xm. Our goal is to find an Eulerian force density f(x) that
satisfies the power identity Eq. (3.9). To see what Eq. (3.9) implies about f(x), we rewrite both
sides in terms of a(x). On the left-hand side of Eq. (3.9), we use Eq. (3.2) to obtain∑

x∈F

u(x) · f(x)h3 = u0 ·
∑
x∈F

f(x)h3 +
∑
x∈F

(Dh × a)(x) · f(x)h3

= u0 · f0V +
∑
x∈E

a(x) · (Dh × f)(x)h3, (3.10)

where the average of f(x) over the domain is

f0 =
1

V

∑
x∈F

f(x)h3. (3.11)

Note that we have used the summation-by-parts identity Eq. (A.5) to transfer the discrete curl
operator Dh× from a(x) to f(x), and thus, the grid on which the summation is performed in
Eq. (3.10) is E not F. On the the right-hand side of Eq. (3.9), we substitute for Um by using
the divergence-free velocity interpolation Eq. (3.6),

M∑
m=1

Um · Fm∆s = u0 ·
M∑
m=1

Fm∆s +
M∑
m=1

∑
x∈E

a(x)× (∇δh)(x−X) · (Fm∆s)h3

= u0 ·
M∑
m=1

Fm∆s +
∑
x∈E

a(x) ·
M∑
m=1

(∇δh)(x−X)× (Fm∆s)h3. (3.12)

Since u0 and a(x) are arbitrary (except for Dh · a = 0), the power identity Eq. (3.9) is satisfied
if and only if

f0 =
1

V

M∑
m=1

Fm∆s (3.13)

and

Dh × f =
M∑
k=1

(∇δh)(x−X)× (Fm∆s) + Ghϕ, for all x ∈ E, (3.14)

where ϕ is an arbitrary scalar field that lives on the node-centered grid N. Note that we have
the freedom to add the term Ghϕ in Eq. (3.14), since from the identity Eq. (A.4) and Dh ·a = 0,
we have ∑

x∈E

a(x) ·
(
Ghϕ

)
h3 = −

∑
x∈N

(
Dh · a

)
(x)ϕ(x)h3 = 0.

1Here and in similar expressions,
∑

x∈F u(x) · f(x)h3 is a shorthand for
∑3

i=1

∑
x∈F ui(x)fi(x)h3.
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Indeed, we are required to include this term since the left-hand side of Eq. (3.14) is discretely
divergence-free but there is no reason to expect the first term on the right-hand side of Eq. (3.14)
is also divergence-free. Note that it is not required to find ϕ in order to determine f(x), because
we can eliminate ϕ by taking the discrete curl on both sides of Eq. (3.14),

Dh × (Dh × f) = Dh ×

(
M∑
m=1

(∇δh)(x−X)× (Fm∆s)

)
, for all x ∈ E. (3.15)

By imposing the gauge condition
Dh · f = 0, (3.16)

we obtain a vector Poisson equation for f(x),

− (Lh f)(x) = Dh ×

(
M∑
m=1

(∇δh)(x−X)× (Fm∆s)

)
, for all x ∈ E. (3.17)

Note again that ∇δh is computed on E, so that the cross-product with Fm is face-centered, which
agrees with the left-hand side of Eq. (3.17). Note that the solution of Eq. (3.17) can be uniquely
determined by the choice of f0. Like our velocity interpolation scheme, the new force-spreading
scheme is also non-local because it requires solving discrete Poisson equations. We remark that
the new force-spreading scheme is also constructed so that the resulting force density f(x) is
discretely divergence-free. This means that f(x) includes the pressure gradient that is generated
by the Lagrangian forces. We do not see a straightforward way to separate the pressure gradient
from f(x) in case it is needed for output purposes.

4. Time-stepping scheme

In this section, we present a second-order time-stepping scheme, similar to the ones developed
previously [7], that evolves the spatially-discretized system Eqs. (2.22) to (2.24). Let un,Xn

denote the approximations of u and X at time tn = n∆t. To advance the solutions to un+1 and
Xn+1, we perform the following steps:

Step 1. First, update the Lagrangian markers to the intermediate time step n + 1
2

using the
divergence-free velocity interpolation Eq. (3.6),

X̃n+ 1
2 = Xn +

∆t

2
S∗ [Xn] un. (4.1)

Step 2. Evaluate the intermediate Lagrangian force density at X̃n+ 1
2 from the force density

functional or the energy functional, and spread it to the Eulerian grid using the force-
spreading scheme Eq. (3.17) to get

fn+ 1
2 = S

[
X̃n+ 1

2

]
Fn+ 1

2 . (4.2)

Step 3. Solve the fluid equations on the periodic grid [28],
ρ

(
un+1 − un

∆t
+ Ñn+ 1

2

)
+ Ghpn+ 1

2 = µLh

(
un+1 + un

2

)
+ fn+ 1

2 ,

Dh · un+1 = 0,

(4.3)
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# of scalar Poisson solves # of scalar interpolation/spreading

2D 3D 2D 3D

DFIB IBMAC DFIB IBMAC DFIB IBMAC DFIB IBMAC

S∗ in Eq. (4.1) 1 - 3 - 2 2 6 3

S in Eq. (4.2) 2 - 3 - 2 2 6 3

Fluid solver 3 3 4 4 - - - -

S∗ in Eq. (4.5) 1 - 3 - 2 2 6 3

Total 7 3 13 4 6 6 18 9

Table 1: Cost of DFIB versus IBMAC in terms of the number of scalar Poisson solves and interpolation/spreading
of a scalar from/to the Eulerian grid.

where the second-order Adams-Bashforth (AB2) method is applied to approximate the
nonlinear advection term

Ñn+ 1
2 =

3

2
Nn − 1

2
Nn−1, (4.4)

and Nn = S(un)un.

Step 4. In the last step, update the Lagrangian markers Xn+1 by using the mid-point approxi-
mation

Xn+1 = Xn + ∆t S∗
[
X̃n+ 1

2

](un+1 + un

2

)
. (4.5)

Note that the time-stepping scheme described above requires two starting values because of the
treatment of the nonlinear advection term using the AB2. To get the starting value at t = ∆t,
we can use the second-order Runge-Kutta (RK2) scheme described in [1, 28].

In Table 1 we compare the cost of DFIB and IBMAC for the above IB scheme in terms
of the number of the two cost-dominating procedures: the scalar Poisson solver which costs
O(Nd logN) using FFT on the periodic domain, where d ∈ {2, 3} is the spatial dimension, and
spreading/interpolation of a scalar field between the Eulerian grid and the Lagrangian mesh
which costs O(M). In summary, DFIB is only more expensive than IBMAC by 4 scalar Poisson
solves for two-dimensional (2D) problems, and is more expensive by 9 scalar Poisson solves and
9 scalar interpolation and spreading for three dimensional (3D) problems. Therefore, the DFIB
method is about two times slower than IBMAC per time step in 3D. We point out that if the
RK2 scheme [1, 28] is employed rather than the scheme above, then we can save one interpolation
step per time step, but the fluid equations need to be solved twice.

5. Numerical Results

This section presents numerical results of the DFIB method for various benchmark problems
in 2D and 3D. We first consider in 2D a thin elastic membrane subject to surface tension of the
membrane only. The continuum solution of this simple 2D problem has the special feature that
the tangential component of the elastic force vanishes, and therefore, the normal derivative of the
tangential fluid velocity does not suffer any jump across the immersed boundary. This has the
effect that second-order convergence in the fluid velocity u and the Lagrangian deformation map
X can be achieved [18]. In the second set of tests, we compare volume conservation in 2D, i.e.,
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area conservation of DFIB and IBMAC by applying them to a circular membrane under tension,
and we discuss the connection between area conservation and the choice of Lagrangian marker
spacing relative to the Eulerian grid size. In the third set of computations, we apply the DFIB
method to a problem in which a 2D elastic membrane actively evolves in a parametrically-forced
system. In the last set of numerical experiments, we extend the surface tension problem to 3D,
and compare volume conservation of DFIB with that of IBMAC.

5.1. A thin elastic membrane with surface tension in 2D

It is well-known that the solutions to problems involving an infinitely thin massless mem-
brane interacting with a viscous incompressible fluid possess jump discontinuities across the
interface in the pressure and in the normal derivative of the velocity due to singular forcing
at the interface [21, 35]. These sharp jump discontinuities cannot be fully resolved by the IB
method because of the use of the regularized delta function at the interface. Consequently, the
numerical convergence rate for the Lagrangian deformation X is only first order even though
the discretization is carried out with second-order accuracy. To achieve the expected rate of
convergence, we consider problems with solutions that possess sufficient smoothness.

As a simple benchmark problem with a sufficiently smooth continuum solution we consider
a thin elastic membrane that deforms in response to surface tension only. Suppose that the
elastic interface Γ is discretized by a collection of Lagrangian markers {X1, . . . ,XM}. The
discrete elastic energy functional associated with the surface tension of the membrane is the
total (polygonal) arc-length of the interface [12],

E[X1, . . . ,XM ] = γ
M∑
m=1

|Xm −Xm−1| , (5.1)

where X0 = XM and γ is the surface tension constant (energy per unit length). The Lagrangian
force generated by the energy functional at the marker Xm is

Fm∆s = − ∂E

∂Xm

= γ

(
Xm+1 −Xm

|Xm+1 −Xm|
− Xm −Xm−1

|Xm −Xm−1|

)
. (5.2)

In our tests, we set the initial configuration of the membrane to be the ellipse

X(s, 0) = L ·
(

1

2
+

5

28
cos(s),

1

2
+

7

20
sin(s)

)
, s ∈ [0, 2π]. (5.3)

The Eulerian fluid domain Ω = [0, L]2 is discretized by a uniform N × N Cartesian grid with
meshwidth h = L

N
in each direction. The elastic interface Γ is discretized by a uniform La-

grangian mesh of size M = dπNe in the Lagrangian variable s, so that the Lagrangian markers
{X1, . . . ,XM} are physically separated by a distance of approximately h

2
in the equilibrium cir-

cular configuration. In all of our tests, we set L = 5, ρ = 1, γ = 1, µ = 0.1. The time-step size
is chosen to be ∆t = h

2
to ensure the stability of all simulations up to t = 20 when the elastic

interface is empirically observed to be in equilibrium.
We denote by uN(t) the computed fluid velocity field and by I2N→N a restriction operator

from the finer grid of size 2N × 2N to the coarser grid of size N ×N . The discrete lp-norm of
the successive error in the velocity component ui is defined by

εNp,u,i(t) =
∥∥uNi (t)− I2N→Nu2N

i (t)
∥∥
p
. (5.4)
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Fig. 2: Rescaled l∞-norm (top panel) and l2-norm (bottom panel) errors of the x, y-component of the fluid
velocity defined by Eq. (5.4), and errors of the Lagrangian deformation map defined by Eq. (5.5) for the 2D
surface tension problem are plotted as a function of time from t = 0 to t = 20. The left and middle columns show
errors of the fluid velocity components and the right column shows errors of the Lagrangian deformation map.
The Eulerian grid sizes are N = 64, 128, 256 and the corresponding Lagrangian mesh sizes are M = 202, 403, 805,
so that the spacing between two Lagrangian markers is kept at a distance of approximately h

2 in the equilibrium
configuration. For the finer grid resolution N = 128, 256, the errors in each norm are multiplied by a factor of
4 and 42 respectively. After rescaling, the error curves of the finer grid resolution almost align with the error
curves of grid resolution N = 64, which indeed confirms that second-order convergence in u and X is achieved.
For this set of computations, we use the C 3 6-point IB kernel in the discrete delta function, and the time-step
size is chosen to be ∆t = h

2 .

To avoid artifacts in the error-norm computation because of Lagrangian markers getting too
clustered during the simulation, we re-parametrize the interface (for the purpose of the error
computation only) from the computed markers using periodic cubic splines after each time step,

and compute the lp-norm error of X based on a collection of M ′ uniformly sampled markers X̃
from the re-parametrized interface, that is,

εNp,X(t) =
∥∥∥X̃N(t)− X̃2N(t)

∥∥∥
p
, (5.5)

where M ′ does not change with N . We emphasize that the re-sampled markers are only used to
compute the error norm and are discarded after each time step. In Fig. 2 the successive l∞-norm
and l2-norm errors of the x, y-component of the fluid velocity and of the deformation map are
plotted as a function of time from t = 0 to t = 20 for grid resolution N = 64, 128 and 256.
The number of re-sampled markers for computing εNp,X(t) is M ′ = 128. To clearly visualize that
second-order convergence is achieved by our scheme, we multiply the computed errors for the
finer grid resolution N = 128 and 256 by a factor of 4 and 42 respectively, and plot them along
with errors for the coarser grid resolution N = 64 in Fig. 2. The observation that all three error
curves almost align with each other (as shown in Fig. 2) confirms that second-order convergence
in u and X is achieved.

5.2. Area conservation and IB marker spacing

As an immediate consequence of fluid incompressibility, the volume enclosed by the immersed
structure should be exactly conserved as it deforms and moves with the fluid. However, it is
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observed that even in the simplest scenario of a pressurized membrane in its circular equilib-
rium configuration [24], the volume error of an IB method with conventional interpolation and
spreading systematically grows at a rate proportional to the pressure jump across the elastic
interface [19]. In this set of tests, we demonstrate that, the “volume” or area enclosed by a 2D
membrane is well-conserved by the DFIB method when the Lagrangian interface is sufficiently
resolved.

We follow the same problem setup as in the test described in [24]. A thin elastic membrane
X(s, t), initially in a circular equilibrium configuration,

X(s, 0) =

(
1

2
+

1

4
cos(s),

1

2
+

1

4
sin(s)

)
, s ∈ [0, 2π], (5.6)

is immersed in a periodic unit cell Ω = [0, 1]3 with zero initial background flow. The Lagrangian
force density on the interface is described by

F (s, t) = κ
∂2X

∂s2
, (5.7)

in which κ is the uniform stiffness coefficient. The elastic membrane is discretized by a uniform
Lagrangian mesh of M points in the variable s. We approximate the Lagrangian force density
by

Fm =
κ

(∆s)2
(Xm+1 − 2Xm + Xm−1), (5.8)

which corresponds to a collection of Lagrangian markers connected by linear springs of zero
rest length with stiffness κ. For this problem, since the elastic interface is initialized in the
equilibrium configuration with zero background flow, any spurious fluid velocity and area loss
incurred in the simulation are regarded as numerical errors.

In our simulations, we set ρ = 1, µ = 0.1, κ = 1. The size of the Eulerian grid is fixed
at 128 × 128 with meshwidth h = 1

128
. The size of the Lagrangian mesh M is chosen so that

two adjacent Lagrangian markers are separated by a physical distance of hs in the equilibrium
configuration, that is, M ≈ 2πR/hs, where R is the radius of the circular membrane. The
time-step size is set to be ∆t = h

4
for stability of computation. In all computations, we use the

C 3 6-point IB kernel to form the regularized delta function δh.
In Fig. 3 we compare the computational results of DFIB with those of IBMAC for different

hs = 4h, 2h, h and h
2

(from the left to right in Fig. 3). Each subplot of Fig. 3 shows a magnified
view of the same arc of the circular interface along with its nearby spurious fluid velocity field.
The interface represented by the Lagrangian markers X(t = 1) is shown in red and the initial
configuration X(t = 0) is shown in the blue curve. In addition, we also include 1024 passive
tracers Xtracer(t = 1) that move with the interpolated velocity associated with the corresponding
IB method in the yellow curve. In the first column of Fig. 3 in which hs = 4h, we see that the
maximum spurious velocity ‖u‖∞ of IBMAC is of the same magnitude as that of DFIB. At such
coarse resolution in the Lagrangian mesh, fluid apparently leaks through the gap between two
adjacent markers, as can be observed by the wiggly pattern in the passive tracers. As the the
Lagrangian mesh is refined gradually from hs = 4h to h

2
(from left to right in Fig. 3), we see that

‖u‖∞ decreases from 10−3 to 10−7 in the DFIB method, whereas ‖u‖∞ stops improving around
10−4 in IBMAC. Moreover, in the columns where hs = 2h, h, h

2
, we see a clear global pattern in

the spurious velocity field in IBMAC, while the spurious velocity field of DFIB appears to be
much smaller in magnitude and random in pattern.

15



hs = 4h
0.25 0.35

0.6

0.7

‖u‖∞ = 7.33e-03

hs = 2h
0.25 0.35

0.6

0.7

‖u‖∞ = 2.95e-04

hs = h

0.25 0.35

0.6

0.7

‖u‖∞ = 2.77e-04

hs = 0.5h
0.25 0.35

0.6

0.7

‖u‖∞ = 2.76e-04

X(t = 0) X(t = 1) Xtracer(t = 1)

(a) IBMAC
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(b) DFIB

Fig. 3: A magnified view of the quasi-static circular membrane and its nearby spurious velocity field for different
Lagrangian mesh spacing hs = 4h, 2h, h and h

2 , as indicated below each figure panel, while keeping h = 1
128

fixed. The top panel (a) shows the computational results from IBMAC, and the bottom panel (b) shows the
results from DFIB. The interface represented by the Lagrangian markers X(t = 1) is shown in red, the initial
configuration X(t = 0) is shown in blue, and the interface represented by 1024 passive tracers is shown in yellow.
The time-step size is set to be ∆t = h

4 for stability. In the above computations, the C 3 6-point IB kernel φnew6h is
used in IBMAC and DFIB.
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We define the normalized area error with respect to the initial configuration

∆A(t; X) :=
|A(t; X)− A(0; X)|

A(0; X)
, (5.9)

where A(t; X) denotes the area of the polygon enclosed by the collection of Lagrangian markers
{X1, . . . ,XM} at time t. Fig. 4 and Fig. 5 show normalized area errors defined by Eq. (5.9) for
DFIB and IBMAC with different choices of the IB kernels: φ4h ∈ C 1, φB

4h ∈ C 2, φnew
5h ∈ C 3,

φnew
6h ∈ C 3 and φB

6h ∈ C 4. For the coarse Lagrangian marker spacings, for example, when
hs = 2h, 4h, the area errors for IBMAC and DFIB have similar orders of magnitude (compare
Fig. 4a, 4b to Fig. 5a, 5b). As the Lagrangian marker spacing is reduced from 2h to h, we see
a decrease in ∆A(t; X) for IBMAC by approximately a factor of 10 (see Fig. 4b, 4c) for all the
IB kernels we consider in this set of tests. In contrast, the area errors for DFIB improve by at
least a factor of 103 for the IB kernels that are at least C 2 (see Fig. 5b, 5c), and in the best
scenario, ∆A(t; X) for φB

6h decreases from 10−4 to 10−9. Moreover, as the Lagrangian mesh is
refined from h to h

8
, area errors for DFIB keep improving, even to the machine precision for φB

6h

at hs = h
4
, h

8
and for φnew

6h at hs = h
8

(see Fig. 5e, 5f). For a moderate Lagrangian marker spacing,
such as hs = h and h

2
, area errors for DFIB are several orders of magnitude smaller than those of

IBMAC. On the other hand, area errors for IBMAC stop improving around 10−5 for hs ≤ h, no
matter how densely the Lagrangian mesh is refined (see Fig. 4c to Fig. 4f). We remark that the
smoothness of the IB kernel appears to play an important role in volume conservation of DFIB.
In this study DFIB achieves the best volume conservation result for hs ≤ h with φB

6h, and this
kernel also has the highest regularity of the kernel functions considered in this work.

5.3. A thin elastic membrane with parametric resonance in 2D

In many biological applications, the immersed structure is an active material, interacting
dynamically with the surrounding fluid and generating time-dependent motion. It has been re-
ported that the simulation of active fluid-structure interactions using the conventional IB method
may suffer from significant loss in the volume enclosed by structure [19]. A simple prototype
problem for active fluid-structure interaction is a thin elastic membrane that dynamically evolves
in a fluid in response to elastic forcing with periodic variation in the stiffness parameter [36, 37],
that is,

F (s, t) = κ(t)
∂2X

∂s2
, (5.10)

where κ(t) is a periodic time-dependent stiffness coefficient of the form

κ(t) = Kc(1 + 2τ sin(ω0t)). (5.11)

It is quite remarkable that such a purely temporal parameter variation can result in the emer-
gence of spatial patterns, but that is indeed the case. We assume that the immersed structure
is initially in a configuration that has a small-amplitude perturbation from a circle of radius R,

X(s, 0) = R(1 + ε0 cos(ps)) r̂(s), (5.12)

where r̂(s) denotes the position vector pointing radially from the origin. For certain choices
of parameters, the perturbed mode in the initial configuration may resonate with the driving
frequency ω0 in the periodic forcing, leading to large-amplitude oscillatory motion in the mem-
brane. The stability of the parametric resonance has been studied in the IB framework using
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Fig. 4: Normalized area errors of the pressurized circular membrane simulated by IBMAC with the IB kernels:
φ4h ∈ C 1, φB4h ∈ C 2, φnew5h ∈ C 3, φnew6h ∈ C 3 and φB6h ∈ C 4, and with different Lagrangian marker spacings
hs ∈

{
4h, 2h, h, h2 ,

h
4 ,

h
8

}
indicated above each figure panel. Note that area errors for IBMAC stop improving

around 10−5 for hs ≤ h, no matter how densely the Lagrangian mesh is refined.

ρ µ L R Kc ω0 p ε0 τ

1 0.15 5 1 10 10 2 0.05
0.4 (damped oscillation)

0.5 (growing oscillation)

Table 2: Parameters used to simulate the motion of the 2D membrane with parametric resonance.

Floquet linear stability analysis for a thin elastic membrane in 2D [36, 37], and recently for an
elastic shell in 3D [38]. Motivated by the linear stability analysis of [36, 37], we consider two sets
of parameters listed in Table 2 for our simulations. The first set of parameters with τ = 0.4 leads
to a stable configuration in which the membrane undergoes damped oscillations (Fig. 6a), and
the second set with τ = 0.5 leads to an unstable configuration in which the membrane oscillates
with growing amplitude (Fig. 6b).

The computational domain Ω = [0, L]2 is discretized by a 128× 128 uniform Cartesian grid
with meshwidth h = L

128
. The number of Lagrangian markers is determined so that the distance

between the Lagrangian markers is hs ≈ h
2

in the initial configuration. The discretization of the
Lagrangian force density Eq. (5.10) is constructed in the same way as Eq. (5.8). The time-step
size is ∆t = h

10
to ensure the stability of computation. On the left panel of Fig. 6 we show

snapshots of the membrane configuration for each case, and on the right panel we plot the
time-dependent amplitude ε(t) of the ansatz

X(s, t) = R(1 + ε(t) cos(ps)) r̂(s) (5.13)
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Fig. 5: Normalized area errors of the pressurized circular membrane simulated by DFIB with the IB kernels:
φ4h ∈ C 1, φB4h ∈ C 2, φnew5h ∈ C 3, φnew6h ∈ C 3 and φB6h ∈ C 4, and with different Lagrangian marker spacings,
hs ∈

{
4h, 2h, h, h2 ,

h
4 ,

h
8

}
indicated above each figure panel. As the Lagrangian mesh is refined, area errors for

DFIB keep improving, even to the machine precision for φB6h at hs = h
4 ,

h
8 and for φnew6h at hs = h

8 .

by applying the FFT to the Lagrangian marker positions X. In the case of growing oscillation
(Fig. 6b), the amplitude of the perturbed mode increases from 0.05 to 0.3 until nonlinearities
eventually stabilize the growing mode and the membrane starts to oscillate at a fixed amplitude.

We next give a direct comparison of area conservation of IBModified (with φcos
4h [19]), IBMAC

and DFIB with the IB kernels: φ4h ∈ C 1, φB
4h ∈ C 2, φnew

5h ∈ C 3, φnew
6h ∈ C 3 and φB

6h ∈ C 4. In
Fig. 7 and Fig. 8 we show time-dependent area errors enclosed by the parametric membrane for
the damped-oscillation and the growing-amplitude cases respectively. For the damped-oscillation
case (Fig. 7), we see that area errors for DFIB are at least two orders of magnitude smaller than
those of IBMAC and IBModified for IB kernels that are at least C 2. The volume conservation
of IBModified and IBMAC was not directly compared in the previous work [24], but it was
anticipated that they are similar. In our comparison, we find that IBModified is only slightly
better than IBMAC in volume conservation, yet IBMAC is much simpler to use in practice.
In this set of tests, the choice of IB kernel also plays a role in affecting area conservation. In
particular, the area errors for DFIB using φnew

6h and φB
6h are smaller than those of φB

4h and φnew
5h by

approximately one order of magnitude. Additionally, the error curves of DFIB with φnew
6h and φB

6h

remain oscillating below 10−7 while apparent growth of error in time is observed with φB
4h and

φnew
5h , and in the other IB methods. We select two timestamps t = 4 and 10, at which we report

the numerical values of ∆A(t; X) of the three IB methods, as well as the ratio of improvement
with respect to IBCollocated with φ4h as the benchmark in Table 3. The improvements in area
conservation of DFIB is consistently more than 104 times over IBCollocated and about 103 times
over IBMAC. Similar results are obtained for the growing-amplitude case (see Fig. 8 and Table 4)
except that the parametrically-unstable membrane has experienced some area loss due to the
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Fig. 6: Left panel: snapshots of the 2D membrane with parametric resonance. Right panel: the time-dependent
amplitude ε(t) of the perturbed mode in Eq. (5.13). (a) Damped oscillation (b) Growing oscillation.
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Fig. 7: Normalized area errors ∆A(t;X) of the 2D parametric membrane undergoing damped oscillatory motion
(corresponding to the motion shown in Fig. 6a) are plotted on the semi-log scale. Computations are performed
using IBMAC and DFIB with the IB kernels: φ4h ∈ C 1, φB4h ∈ C 2, φnew5h ∈ C 3, φnew6h ∈ C 3 and φB6h ∈ C 4, and
IBModified with φcos4h ∈ C 1. The top panel shows area errors for IBMAC and IBModified, and the bottom panel
shows area errors for DFIB.

growing-amplitude oscillation before its motion is stabilized by the nonlinearities.

5.4. A 3D thin elastic membrane with surface tension

In our final test problem, we examine volume conservation of the DFIB method by extending
the surface tension problem to 3D. We consider in 3D a thin elastic membrane that is initially in
its spherical equilibrium configuration. The spherical surface of the membrane is discretized by
a triangulation consisting of approximately equilateral triangles with edge length approximately
equal to hs, constructed from successive refinement of a regular icosahedron by splitting each
facet into four smaller equilateral triangles and projecting the vertices onto the sphere to form
the refined mesh (see Fig. 9 for the first two levels of refinement). We use {X1,X2, . . . ,XM}
and {T1,T2, . . . ,TP} to denote the vertices (Lagrangian markers) and the triangular facets of
the mesh respectively. The generalization of discrete elastic energy functional of surface tension
in 3D is the product of surface tension constant γ (energy per unit area) and the total surface
area of the triangular mesh [13], that is,

E[X1, . . .XM ] = γ
P∑
p=1

|Tp| , (5.14)

where |Tp| is the area of the pth triangle. The Lagrangian force Fk∆s at the kth vertex is minus
the partial derivative of E[X1, . . . ,XM ] with respect to Xk,

Fk∆s = − ∂E

∂Xk

= −γ
∑

l∈nbor(k)

∂|Tl|
∂Xk

, (5.15)
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Method IB Kernel
∆A(t = 4; X) ∆A(t = 10; X)

(damped) ratio (damped) ratio

IBCollocated φ4h 9.965e-03 - 2.394e-02 -

IBMAC

φB
4h 1.033e-03 9.6 2.508e-03 9.5

φ4h 3.888e-04 25.6 9.574e-04 25.0

φnew
5h 4.673e-04 21.3 1.150e-03 20.08

φnew
6h 2.229e-04 44.7 5.566e-04 43.0

φB
6h 4.853e-04 20.5 1.119e-03 21.4

IBModified φcos
4h 1.510e-04 66.0 3.616e-04 66.2

DFIB
φ4h 3.076e-05 323.9 7.465e-05 320.7

φB
4h 6.597e-07 1.5e+04 1.285e-06 1.9e+04

φnew
5h 2.741e-07 3.6e+04 4.491e-07 5.4e+04

φnew
6h 9.401e-08 1.1e+05 5.659e-08 4.2e+05

φB
6h 8.078e-08 1.2e+05 1.484e-08 1.6e+06

Table 3: Normalized area errors ∆A(t;X) of the 2D parametric membrane undergoing damped oscillatory motion
(Fig. 6a) are reported for t = 4 and 10. The ratios are computed using the area error for IBCollocated with φ4h
as the benchmark.
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Fig. 8: Normalized area errors ∆A(t;X) of the 2D parametric membrane undergoing growing-amplitude oscil-
latory motion (corresponding to the motion shown in Fig. 6b) are plotted on the semi-log scale. Computations
are performed using IBMAC and DFIB with the IB kernels: φ4h ∈ C 1, φB4h ∈ C 2, φnew5h ∈ C 3, φnew6h ∈ C 3 and
φB6h ∈ C 4, and IBModified with φcos4h ∈ C 1. The top panel shows area errors for IBMAC and IBModified, and
the bottom panel shows area errors for DFIB.
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Method IB Kernel
∆V (t = 2; X) ∆V (t = 25; X)

(growing) ratio (steady) ratio

IBCollocated φ4h 4.935e-03 - 1.842e-02 -

IBMAC

φB
4h 5.083e-04 9.7 6.858e-04 26.9

φ4h 1.894e-04 26.0 1.930e-04 92.4

φnew
5h 2.263e-04 21.8 5.976e-04 30.8

φnew
6h 1.057e-04 32.7 5.451e-04 33.8

φB
6h 2.354e-04 21.1 5.248e-04 35.1

IBModified φcos
4h 7.449e-05 66.3 2.673e-04 68.9

DFIB
φ4h 6.227e-06 792.5 3.858e-04 47.7

φB
4h 3.005e-07 1.6e+04 6.834e-06 2.7e+03

φnew
5h 4.169e-08 1.2e+05 8.368e-07 2.2e+04

φnew
6h 6.203e-08 7.9e+04 2.267e-07 8.1e+04

φB
6h 6.963e-08 7.1e+04 1.073e-06 1.72+04

Table 4: Normalized area errors ∆A(t;X) of the 2D parametric membrane undergoing growing-amplitude os-
cillatory motion (Fig. 6a) are reported for t = 2 and 25. The ratios are computed using the area error for
IBCollocated with φ4h as the benchmark.
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where nbor(k) denotes the set of indices of triangles that share Xk as a vertex2. Each component
of the term ∂|Tl|/∂Xk in Eq. (5.15) can be computed analytically [13],(

∂|Tl|
∂Xk

)
α

=
∂

∂Xk,α

(
1

2

∣∣∣(Xk −X′k)× (X′k −X
′′

k)
∣∣∣)

=
1

2

(
(X

′

k −X
′′

k)× n̂l

)
α
, α = 1, 2, 3, (5.16)

where Xk, X
′

k, X
′′

k denote the three vertices of the triangle Tl ordered in the counterclockwise
direction and n̂ is the unit outward normal vector of Tl.

The computation is performed in the periodic box Ω = [0, 1]3 with Eulerian meshwidth
h = 1

128
using DFIB with φnew

6h . For the quasi-static test, the initial fluid velocity is set to
be zero, and for the dynamic test, we set u(x, 0) = (0, sin(4πx), 0). In the computational
results shown in Fig. 10, the spherical membrane is discretized by triangulation (as shown in
Fig. 9) with 5 successive levels of refinement from the regular icosahedron (Fig. 9a), which
results in a triangular mesh with M = 10242 vertices and P = 20480 facets. The radius of
the spherical membrane is set to be R ≈ 0.1 which corresponds to hs ≈ h

2
. The remaining

parameters in the computation are ρ = 1, µ = 0.05, γ = 1 and the time-step size ∆t = h
4
. In

Fig. 10 we show snapshots of the 3D elastic membrane at t = 0, 1
32
, 1

4
and 1

2
for the dynamic

case. The elastic interface is instantaneously deformed by the fluid flow in the y-direction,
and due to surface tension, the membrane eventually relaxes back to the spherical equilibrium
configuration. Colored markers that move passively with the divergence-free interpolated fluid
velocity are added for visualizing the fluid flow in the vicinity of the interface.

The volume enclosed by the triangular surface mesh is approximated by the total volume
of tetrahedra formed by each facet and one common reference point (e.g. the origin) using the
scalar triple product. To study volume conservation of the DFIB method in 3D, we compare
the normalized volume error defined by

∆V (t; X) :=
|Vol(t; X)− Vol(0; X)|

Vol(0; X)
(5.17)

using IBMAC and DFIB with hs = h, h
2
, h

4
, which correspond to triangular meshes with 4,5,6

levels of refinement from the regular icosahedron respectively. For the quasi-static case (Fig. 11a),
volume errors for DFIB are at least 2 orders of magnitude smaller than those of IBMAC. Further,
volume errors for DFIB keep decreasing as the Lagrangian mesh is refined from hs = h to h

4
. For

the dynamic case (Fig. 11b), both methods suffer a significant amount of volume loss arising from
the rapid deformation at the beginning of simulation. The volume error for DFIB with hs = h
is similar to those of IBMAC in magnitude and they all grow consistently in time. However, for
hs = h

4
, h

2
, the volume errors for DFIB remain steady in time once the membrane comes to rest.

It appears that the behavior of volume error changes in nature from hs = h to h
2
, which coincides

with the conventional recommendation that the best choice of Lagrangian mesh spacing in the IB
method is hs = h

2
in practice. Finally, we remark that the improvement in volume conservation

does not seem to be as substantial as the improvement in area conservation in 2D. We suspect

2Here ∆s is the Lagrangian area associated with each node and Fk is the Lagrangian force density with
respect to Lagrangian area, but note that we do not need Fk and ∆s separately; only their product is used in
the numerical scheme.
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(a) (b) (c)

Fig. 9: Triangulation of a spherical surface mesh via refinement of a regular icosahedron. (a) Regular icosahedron
(b) Refined mesh after one level of refinement (c) Refined mesh after two levels of refinement.

that this may be attributed to the larger approximation error in computing the volume using
the tetrahedral approximation (after the triangular mesh is deformed), whereas we have re-
parametrized the computed interface using cubic splines when approximating the area in 2D.
Nevertheless, the reduction in volume error from the Lagrangian mesh-refinement experiments
indeed confirms that the DFIB method can generally achieve better volume conservation if the
immersed boundary is sufficiently resolved (hs ≤ h

2
).

6. Conclusions

In this paper, we introduce an IB method with divergence-free velocity interpolation and
force spreading. Our IB method makes use of staggered-grid discretization to define an edge-
centered discrete vector potential. By interpolating the discrete vector potential in the conven-
tional IB fashion, we obtain a continuum vector potential whose curl directly yields a continuum
Lagrangian velocity field that is exactly divergence-free by default. The corresponding force-
spreading operator is constructed to be the adjoint of velocity interpolation so that energy is
preserved in the interaction between the fluid and the immersed boundary. Both the new inter-
polation and spreading schemes require solutions of discrete vector Poisson equations which can
be efficiently solved by a variety of algorithms. The transfer of information from the Eulerian
grid to the Lagrangian mesh (and vice versa) is performed using ∇δh on the edge-centered stag-
gered grid E. We have found that volume conservation of DFIB improves with the smoothness
of the IB kernel used to construct δh, and we have numerically tested that IB kernels that are at
least C 2 are good candidate kernels that can be used to construct the regularized delta function
in the DFIB method.

We have incorporated the divergence-free interpolation and spreading operators in a second-
order time-stepping scheme, and applied it to several benchmark problems in two and three
spatial dimensions . First, we have tested that our method achieves second-order convergence in
both the fluid velocity and the Lagrangian deformation map for the 2D surface tension problem,
which is admittedly a special case, since its continuum solution has a continuous normal deriva-
tive of the tangential velocity across the immersed boundary. The highlight of the DFIB is its
capability of substantially reducing volume error in the immersed structure as it moves and de-
forms in the process of fluid-structure interaction. Through numerical simulations of quasi-static
and dynamic membranes, we have confirmed that the DFIB method improves volume conserva-
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(a) t = 0 (b) t = 1
32

(c) t = 1
4 (d) t = 1

2

Fig. 10: Deformation of a 3D elastic membrane immersed in a viscous fluid with initial velocity u(x, t) =
(0, sin(4πx), 0) at t = 0, 1

32 ,
1
4 and 1

2 . The computation is performed using DFIB with φnew6h in the periodic box
Ω = [0, 1]3 with Eulerian meshwidth h = 1

128 . The elastic membrane, initially in spherical configuration with
radius R ≈ 0.1, is discretized by a triangular surface mesh with M = 10242 vertices and P = 20480 facets so that
hs = h

2 in the initial configuration. Colored markers that move passively with the divergence-free interpolated
fluid velocity are added for visualizing the fluid flow in the vicinity of the membrane interface.
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Fig. 11: Normalized volume error ∆V (t;X) of a 3D elastic membrane using IBMAC and DFIB with hs = h, h2 ,
h
4 ,

where h = 1
128 . For (a) the quasi-static test, ∆V (t,X) of DFIB decreases with mesh refinement, while there

is no improvement in volume error for IBMAC. For (b) the dynamic test, the volume error in DFIB remains
(almost) steady in time for hs = h

2 ,
h
4 as the membrane rests, whereas we see no substantial improvement in

volume conservation with mesh refinement for IBMAC, and the volume loss keeps increasing in time. For this
set of computations, the C 3 6-point kernel φnew6h is used.
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tion by several orders of magnitude compared to IBMAC and IBModified. Furthermore, owing
to the divergence-free nature of its velocity interpolation, the DFIB method reduces volume error
with Lagrangian mesh refinement while keeping the Eulerian grid fixed. A similar refinement
study would not yield improved volume conservation when using the conventional IB method.

Unlike other improved IB methods that either make use of non-standard finite-difference
operators (IBModified [19]) that complicate the implementation of the fluid solver, or rely on
analytically-computed correction terms (IIM [20, 21] or Blob-Projection method [31]) which may
not be readily accessible in many applications, the DFIB method is generally applicable, and it
is straightforward to implement in both 2D and 3D from an existing IB code that is based on the
staggered-grid discretization. Moreover, the additional costs of performing the new interpolation
and spreading do not increase the overall complexity of computation and are modest compared
to the existing IB methods.

We point out two limitations of our present work. First, the current version of DFIB method
is based on the assumption of periodic boundary conditions. Extending the method to include
physical boundary conditions at the boundaries of the computational domain is one possible
direction of future work. Second, we note that the pressure gradient generated by the Lagrangian
forces is part of the resulting Eulerian force density in the DFIB method because force spreading
is also constructed to be discretely divergence-free. We do not yet see an obvious way to extract
the pressure from the Eulerian force density in case it is needed for output purposes. However,
this may also be an important advantage of our method from the standpoint of accuracy, since
it means that jumps in pressure across the interface do not require any explicit representation.
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Appendix A. Vector identities of discrete differential operators

Suppose ϕ(x) is a scalar grid function defined on C, and u(x) and a(x) are vector grid
functions defined on F and E respectively. The following discrete vector identities are valid on
the periodic staggered grid just as in the continuum case,

Dh ×Ghϕ = 0, (A.1)

Dh · (Dh × u) = 0, (A.2)

Dh × (Dh × u) = Gh(Dh · u)− Lhu, (A.3)∑
x∈F

u(x) · (Ghϕ)(x)h3 = −
∑
x∈C

(Dh · u)(x)ϕ(x)h3, (A.4)∑
x∈E

a(x) · (Dh × u)(x)h3 =
∑
x∈F

(Dh × a)(x) · u(x)h3. (A.5)

Eqs. (A.1) and (A.3) are merely discrete analogues of well-known vector identities involving
gradient, divergence and curl. These identities can be proved in the same manner as their
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continuous counterparts. Eqs. (A.4) and (A.5) can be verified via “summation by parts”. Note
that Eqs. (A.2) and (A.3) also hold if we replace u (which lives on F) by a (which lives on E).

Appendix B. Existence of discrete vector potential

Lemma 1. Suppose Dh · u = 0 and Dh × u = 0 for x ∈ F, then u(x) is a constant function on
F.

Proof. To prove this statement, we use Eqs. (A.3) to (A.5),∑
x∈E

(Dh × u)(x) · (Dh × u)(x)h3 =
∑
x∈F

u(x) · (Dh × (Dh × u))h3

=
∑
x∈F

u(x) ·Gh(Dh · u)h3 −
∑
x∈F

u(x) · (Lhu)h3

= −
∑
x∈C

(Dh · u)2h3 +
∑

x∈E,i 6=j
x∈C,i=j

(
Dh
j ui
)2
h3.

Thus, ∑
x∈E,i 6=j
x∈C,i=j

(
Dh
j ui
)2
h3 =

∑
x∈E

∣∣(Dh × u)
∣∣2 h3 +

∑
x∈E

(Dh · u)2h3. (B.1)

Since Dh ·u = 0 and Dh×u = 0 by hypothesis, the left-hand side of Eq. (B.1) is also zero. But
this implies ui is constant for i = 1, 2, 3.

Lemma 2. If ψ is a scalar grid function that lives on one of the staggered grids, such that∑
x

ψ(x)h3 = 0, (B.2)

then there exists a grid function ϕ such that

Lhϕ = ψ. (B.3)

Proof. This lemma states the solvability of the discrete Poisson problem Eq. (B.3). Since
Lh = Dh ·Gh is symmetric with respect to the inner product on the periodic grid

(ϕ, ψ) =
∑
x

ϕ(x)ψ(x)h3, (B.4)

what we have to show is that any ψ satisfying Eq. (B.2) is orthogonal to any ϕ0 in the null space
of Lh. But the null space of Lh with periodic boundary conditions contains only the constant
function, and hence (ψ, ϕ0) = 0 because of Eq. (B.2) as required.

Now we are ready to state the theorem that guarantees the existence of a discrete vector
potential a(x) for x ∈ E given a discretely divergence-free velocity field u(x) for x ∈ F.
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Theorem 3. Suppose u(x) is a periodic grid function for x ∈ F, and u(x) satisfies∑
x∈F

u(x)h3 = 0 and Dh · u = 0, (B.5)

then there exists a grid function a(x) for x ∈ E such that

u = Dh × a. (B.6)

Proof. We choose a(x) to be any solution of

− Lh a = Dh × u. (B.7)

Such an a(x) exists by Lemma 2, because∑
x∈E

(
Dh × u

)
i
(x) = εijk

∑
x∈E

1 ·Djuk h
3

= −εijk
∑
x∈F

(Dj1)uk h
3

= 0.

By applying Dh· to Eq. (B.7) and using the property that Lh and Dh· commute, we also have

− Lh(Dh · a) = Dh · (Dh × u) = 0. (B.8)

Because the null space of Lh contains only the constant function, it follows that

Gh(Dh · a) = 0. (B.9)

If we use Eq. (B.9) and Eq. (A.3) for a , we can rewrite Eq. (B.7) as

Dh × (Dh × a) = Dh × u, (B.10)

or
Dh × (Dh × a− u) = 0. (B.11)

But we also know from Eq. (A.2) and the requirement that Dh · u = 0 that

Dh · (Dh × a− u) = 0. (B.12)

From Eqs. (B.11) and (B.12) and Lemma 1, it follows that

Dh × a− u = constant. (B.13)

The constant must be zero, however, since Dh × a has zero sum by “summation by parts”, and
u has zero sum by assumption. This completes the proof of the existence of a vector potential
satisfying u = Dh × a.
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