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Abstract

We derive a minimal continuum model to investigate the hydrodynamic mechanism behind the
fingering instability recently discovered in a suspension of microrollers near a floor [Driscoll et al.
Nature Physics, 2016]. Our model, consisting of two continuous lines of rotlets, exhibits a linear
instability driven only by hydrodynamic interactions, and reproduces the lengthscale selection
observed in large scale particle simulations and in experiments. By adjusting only one parameter,
the distance between the two lines, our dispersion relation exhibits quantitative agreement with
the simulations and qualitative agreement with experimental measurements. Our linear stability
analysis indicates that this instability is caused by the combination of the advective and transverse
flows generated by the microrollers near a no-slip surface. Our simple model offers an interesting
formalism to characterize other hydrodynamic instabilities that have not been yet well understood,
such as size scale selection in suspensions of particles sedimenting adjacent to a wall, or the recently

observed formations of traveling phonons in systems of confined driven particles.

* delmotte@courant.nyu.edu



I. INTRODUCTION

When suspended in a viscous fluid at low Reynolds number, small moving particles in-
teract through long range hydrodynamic interactions. These many-body interactions can
give rise to strong density and velocities fluctuations in the bulk and lead to instabilities
[1]. The addition of boundaries strongly modify the hydrodynamic interactions between
particles and affect the dynamics of the system. For instance, sedimenting particles between
two parallel plates exhibit a transverse Rayleigh-Taylor-like instability whose wavelength

strongly depends on the distance between the plates [2].

When these particles are driven by means of an external field, or by self-propulsion
mechanisms, they induce active flows that modify the interactions within the suspension
and sometimes lead to strong density fluctuations and long ranged orientational correlations
3, 4]. A well-known example is the instability of the isotropic state in suspensions of
elongated swimmers, which was predicted by the theory [5-8] and reported by both numerics
[9-11] and experiments [12-16]. Under confinement, active and driven suspensions exhibit a

wide variety of behaviours such as the formation of vortices, asters or polar bands [17-20].

In a recent work, we have uncovered a new hydrodynamic instability in a driven system
of microrollers: suspensions of colloids rotating parallel to a floor [21]. These microrollers
consists of spherical polymer colloids with radius ¢ = 0.66 gm which have a small perma-
nent magnetic moment (jm| ~ 5-107'® Am?) due to an embedded hematite cube [22], see
schematic in Fig. la. Their equilibrium gravitational height is given by the competition
between gravity and thermal fluctuations: h, = a + kgT/mg, where a is the particle ra-
dius, m its buoyant mass, g the gravitational acceleration and kg7 the thermal agitation
energy. More details about the experimental system are provided in [21]. When driven by a
magnetic field rotating about an axis parallel to the floor, these microrollers generate strong
advective flows in their vicinity. These flows are responsible for the large-scale collective ef-
fects observed in uniform suspensions. When the particle distribution is discontinuous, the
microrollers form a shock front with a well defined width (Fig. 1b), which quickly becomes
unstable and generates finger-like structures with compact tips (Fig. 1c). These fingertips

can detach to form compact autonomous structures, called “critters” [21].

Our large scale particle simulations and experiments suggest that the fingering instability

is a linear instability controlled by the height of the particles above the floor (Fig. 1c,d,e).
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With the addition of Brownian motion, our simulations (Fig. 1d) achieve quantitative
agreement with the experiments on the measured wavelength for various gravitational heights
hy [23]. The fingering instability was also reproduced with a much simpler 2D system (Fig.
le): rotlets, i.e. point torques, interacting only through hydrodynamic interactions in a
plane at a fixed height above the floor [21].

These simulations showed that the instability is controlled by far-field hydrodynamic
interactions in the plane parallel to the floor, but they do not provide a clear physical
picture of the instability mechanism. Nonlinear phenomena such as the shock formation do
not elucidate the exact mechanisms at play behind the transverse instability of the front
that forms the fingers.

We recently developed a theoretical model to study density fluctuations in uniform sus-
pensions of microrollers and to investigate the formation of the shock front [24]. This model
relies on a nonlocal description of the far-field hydrodynamic interactions between micro-
rollers treated as rotlets. The theoretical results and comparisons with experiments and
simulations showed that the front forms due to the nonlocal nature of far-field hydrody-
namic interactions in the plane above the floor, and that it has a well defined finite width
which is controlled by the particle height. However, the model used in this prior work to
describe the front [24] is one-dimensional and does not allow for transverse variations, and
therefore cannot be used to study the two-dimensional transverse fingering instability.

In this paper, we derive a minimal two-dimensional continuum model, based on a nonlocal
description, in order to: (1) confirm that the transverse instability is a linear instability, (2)
study the dependence of the characteristic wavelength on the control parameters, (3) identify
precisely the hydrodynamic mechanisms at play. We compare the linear stability analysis
with numerical simulations and experiments and discuss the validity of the model. We
take advantage of the flexibility and simplicity of the model to study the stability of the
microrollers above a slip surface and finally offer promising extensions to other particulate

systems within the same framework.

II. MODEL AND LINEAR STABILITY ANALYSIS

Our goal is to model the shock front in a simplified manner in order to carry out an ana-

lytic linear stability analysis of the system. Using a finite sheet would make the calculations
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FIG. 1: a Schematic of a single microroller at height A above the chamber floor. Due to
the permanent moment, m, the particle can be rotated at angular frequency w by an
external magnetic field B about the y-axis. b Experimental images of the shock front

development from initial uniform state (f = 20 Hz, h; = 1um). ¢ Experimental images of
fingering instability at two different heights (f = 10 Hz) [21]. Left: h, =1 pum. Right:

hg = 2.5 pm. d Large scale 3D Brownian dynamic simulations using same parameters as in

the experiments shown on panel ¢ [23]. e Quasi-2D simulations without Brownian motion

[21], f = 6.4 Hz. Left: particle height h = 1.97 ym. Right: A = 3.94 pm.

untractable because of the nonlocality of the hydrodynamic interactions. Suspensions of
particles have been studied with a two-fluid approach [2, 25, 26], which requires computing
the effective viscosity of the suspension. However, a two-fluid model is not applicable to the
confined microroller suspension where hydrodynamic interactions are nonlocal and depend
on the particle height h. We found that the simplest and most relevant approach to analyt-
ically model an unstable front of microrollers is to consider two lines of rotlets interacting
hydrodynamically in a plane parallel to the floor at a fixed height h, as one line of rotlets is

linearly stable to perturbations.

A. Governing equations

Consider two infinite lines of rotlets, labelled “1”, at the back, and “2”, at the front,
respectively, with rotlet densities p;(y) and ps(y), rotating around the y axis in a plane at
a fixed height h above a no-slip boundary. Their x position is parametrized by y, with an
initial state z1(y,t = 0) = 0 and x2(y,t = 0) = d (see Fig. 2a). Here, we neglect out of plane
motion in the z-direction and only consider the velocities in the xy-plane. Although out of
plane motion is seen in the experiments, our quasi-2D simulations in Fig. 1c¢ confirm that

the fingering instability still occurs when considering particles confined to a plane (with 3D
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hydrodynamics).
A point rotlet located at a position (z’,y’; h) induces a horizontal fluid velocity at point

(x,y; h) given by [24, 27]:
v,y h) = Go (v — ',y — /s 1)

_ (z—a')?
N Sh[(9&—»’6’)2+(y—y’)2+4h215/2 ’ (1)

vy(z,y; h) =Gy (x — ',y —y's h)

_ (z=2)(y—y')
T @)

where S = 67,,/(87n), T,, > 0 is the applied constant torque around the y-axis (i.e. the rotlet
magnitude). Changing the sign of 7, would change the direction of motion of the system
and reverse the role of the lines. G, and G, are the hydrodynamic interaction kernels in the
xy-plane. Note that these kernels are not singular because of the finite constant height in
the denominator h > 0. The velocity field around a rotating particle above a no-slip wall
is shown in Fig. 2b. In an unbounded fluid, this velocity field would be zero in the whole
plane. The transverse flow v, observed in Fig. 2b arises from the image system of the rotlet
which includes a stresslet [27]. Since h is fixed, we will henceforth omit it in the argument
of the kernels: G(z,y) = G(x,y; h).

The velocity induced by the front line “2” at a point (x1(y),y) on the back line “1” is

given by the functionals

VD (24(y), y) = / G (21(y) — 22(y), y — ¥') p2(v)dy’ (3)
=
VD @a(0)o) = [ Gy (1o = /)~ o) pals) (4)

where ps(y') = p(z2(y),y'). In Viy" the first superscript “17 indicates the line considered
and the second superscript “I” stands for “induced” by the other line. The self-induced

velocity, “S”, is given by

VS (24(y), y) = / G (21(y) — 2105y — ') pr ()l (5)
VIS (24(y), y) = / Gy (e1(y) — 21 ()5 — o) pr () (6)
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x2(y) = d + dxa(y)
(a)

FIG. 2: (a) Sketch of the two infinite lines. The rotlet densities are rotating with a

constant torque, T}, about the y-axis and interact hydrodynamically in the xy-plane at a

height h above the floor. (b) Flow field around a rotating sphere in the xy-plane of rotation

at a distance h above a no-slip surface [21]. The arrow indicates the axis of the applied

torque 7T},. The colors, from red to yellow, represent the magnitude of the in-plane velocity.

Similar terms are derived for line 2. The governing equations for the two lines, in the

limit of small deviations from a straight line, are the equations of motion in the direction

perpendicular to the lines

Oz (y, t)

b)) 4oy an

ai A

022(y.1) _ pes) L e
ot c s

and mass conservation coming from the motion parallel to the lines,

apy,ty 9 oaly.t) (Vi + v

ot Oy ;
Ipa(y, 1) 0 [pQ(%t) (%(2’5) i %(2,1))}
o o 5 |

(10)

These four nonlinear, nonlocal, coupled equations (7)-(10) can be linearized about the

homogeneous state.



B. Linear stability analysis

We perturb the z positions of each line about their initial position

z1(y,t) = 0+ 0xq(y, t) (11)

$2(y7t) = d+5$2<y7t)7 (12)

where dz1, 0xy < min(d, h), and their rotlet densities about a constant value py,

p1(y,t) = po + op1(y,t) (13)
p2(y,t) = po + dpa(y, 1), (14)

where dp1,dps <K po. After Taylor expanding the functionals in Egs. (7)-(10) we obtain the

linearized governing equations

a9
a:ttl = p0g05x1 + p(]gl * 5132 + g:r(o - d> ) * 5p2 (15)
a0
an = —pogo(sxz — pog1 * 6$1 + g:v(o - d7 ) * 6p1 (16)
00y _ 0 [(poGa * 01 + poGs * 6xa + G, (0 — d, ) * Ipa)] (17)
o1 po By
dopa 0 [(poGa * 02 + poGs * 0x1 — G, (0 — d, ) * 0p1)]

where we have used the symmetries of G, and G,. The star “4” denotes the one dimensional

convolution product. The interaction kernels are given by

“+oo
0 n B Sd(al2 — 4h2)
go—a—:E1 /gw(xl—d,y—y)dy —Shma
—00 r1=0
0G,(0 — xo,y — 1/ 3d? = 2[(y — v')? + 4h?
O o= [d2 + (y — )2 + 4h?]
/ ag (O_xlyy_y/) / (y_y,)2+4h2
Goly — = Y = —Sh(y — ,
2(1! Yy ) Oty o (y Y ) [(y — )2+ 4h2]7/2
, 0G,(0 — z9,y — 1/ , 4d? — (y — /)% — 4h?
gg(y_y): y( 2,Y y) :Sh(y—y) (y y) 7
0z w2=d [d? + (y — /') + 417]

Note that G, is a constant which depends only on the geometric parameters of the problem
d, h, and on S. Its physical meaning will be explained below.

Looking for periodic solutions of Eqgs. (15)-(18) of the form

= (3.5, G Gp) = 5 1
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where the wavenumber k& = 27/ and
U = (6%, 69, 6p1,0p2),

we obtain the following eigenvalue problem

At = ou (19)
where i i
Pogo Pogl 0 gaz(—d, /f)
—poG1  — Jo(—d, k 0
A— /)ogl~ /)ogo~ g ( ) i ‘ (20)
—ikp392 —ikpgg3 0 —ikpogy(—CL k)
L _ka(%9~3 _ka(Q)gQ ka()gy(_dv k) 0 _

The complete expression for the entries of A can be found in Appendix A. Note that a
model with one line of rotlets would be linearly stable since all self-induced terms are at

least quadratic in the magnitude of the perturbations.

1. Structure of the instability

Due to the particular structure of A, Eq. (19) can be solved analytically. The four
solutions oy (k), .., 04(k) are written in Appendix A. The first two eigenvalues are real and of
opposite sign o1 = —oy. The two other are imaginary and conjugate o3 = g4. All eigenvalues
depend linearly on S oc T),. Figure 3a shows the real eigenvalues oy 5 for d = 10h. First, one
can see that the eigenvalues exhibit a well defined peak at A = )\,,, meaning that the two-
line model selects a fastest growing mode, which is characteristic of a fingering instability.
Second, all modes, except the zero mode, are unstable and a clear plateau is visible for short
wavelengths. The value of this plateau is exactly poGy, which is the only constant entry in
the matrix A. To better understand the presence of the plateau, we study the structure of
the amplified eigenmode u;, associated to the real positive eigenvalue oy, in Fig. 3c. For
this eigenmode, the density and position disturbances of the front line, g, and dZs, vanish
for A &= A, where \. is a critical value, while the back line disturbances, dp; and dx;, are
nonzero for all \’s.

This difference in behavior between the two lines can be understood by looking at the

flow induced by one line on the other. Fig. 3d shows that a straight line of rotlets at x =0
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(the back line), with uniform density po, damps the disturbances of the other line at = = d,
regardless of their wavelength A. Conversely, a straight line at x = d (the front line) increases
the disturbances of the line at z = 0 for all A. This phenomenon can be explained with
a simple analogy: consider a force that dies off quickly with distance from a line. Take a
parallel line a distance away and introduce a distortion so that parts are closer and others
further away from the driving force. If the forces are attractive then the closer parts are
drawn faster than the further parts and the distortion is amplified. If the forces are repulsive
the closer parts are pushed away faster than the far ones and the distortion is reduced. For
two lines of rollers the leading line advects the trailing one toward it while the tailing line
pushes the leader away (Fig. 3d). Thus, the front line is stable while the rear goes unstable.
The term which relates a straight line with density py and a line with perturbed position is
precisely poGo (see Eqgs. (15)-(16)). Thus the presence of the plateau is due to the growth of
each mode on the back line. The term pyGy is compensated by poGi (k) when k — 0. Indeed

. ~ 2_1p2
limy_,0 poG1(k) = —POSh% = —poYo-

2. Comparison with nonlinear simulations

We simulate the two-line system with discrete rotlet simulations. Each line is discretized
with 2000 rotlets interacting in the xy plane. The two initially straight lines are perturbed
by adding a small random increment to the particle positions. The hydroynamic interactions
are calculated using Egs. (1)-(2), and pseudo-periodic boundary conditions are used [23].
Positions are updated with an Adams-Bashforth-Moulton predictor-corrector scheme (see
Methods section in [21]). The full development of the fingering instability in the simulations
is shown in Fig. 4a. To characterize the instability, we measure the position disturbance of
each line 0z 2(y,t) that we bin along the y direction with 1024 points. The resulting two
vectors are Fourier transformed to obtain the power spectra for each line shown in Fig. 4b
at two different times. At £ = 8.65 s, both lines have a uniformly distributed spectrum. At
t = 21.15 s, both spectra exhibit a clear peak at long wavelengths. The front line (light
blue) has damped all the modes with short wavelength while the back line (dark blue) has
amplified all modes. The time evolution of three Fourier modes A\ = 20,91, 146 pm is shown
in Fig. 4c. One can see that the shortest wavelength, A = 20 um, decreases for the front line

and grows for the back line. We use an exponential fit 0Z(t) ~ exp(ct) (see inset) to extract
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FIG. 3: (a)-(b): Growth rate vs. A™! for h = 3.94 ym and d = 10h. Red lines: real
eigenvalues oy (solid) and oy (dashed) from the two-line model (Eq. (19)). Filled circles:
growth rate obtained from simulation results averaged over 10 realizations. (¢) Modulus of
the entries in the amplified eigenmode u; corresponding to the real positive eigenvalue oy
of the two-line model. (d) Velocity induced by a line of rotlets (red) on a perturbed passive
line (black). The red curved arrow indicates the direction of rotation. Left: active line
damps all modes of the passive line in front of it at a rate —pyGy. Right: active line

amplifies all modes of the passive line in the back of it at a rate pyGy.
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FIG. 4: Development of the instability in the nonlinear simulations with discrete rotlets for
h =3.94 pm and d = 10h. Dark blue: back line. Light blue: front line (a) The time
evolution of the two lines in real space at times t = 0 — 48 s. (b) Fourier spectrum of the z
disturbances for each line at ¢ = 8.65 s (top) and ¢ = 21.15 s (bottom). The dotted vertical
lines indicate the modes plotted in (c). (¢) Time evolution of the power of three Fourier
modes A = 20,91, 146 pm for each line. Symbols: simulation data. Lines: exponential fits

starting at ¢ = 8 s. Inset: same data with a logarithmic scale on the y axis.

the growth rate o of each mode for each line at the onset of the instability.

Fig. 3a-b compares the extracted growth rate, o(k), of each line, averaged over 10 sim-
ulations, to the theoretical predictions, with no adjustable parameters. The theory is in
excellent agreement with the particle simulations, demonstrating that the linear stability
analysis correctly captures the early-time dynamics of the fingering instability. Consistently
with the theoretical predictions in Fig. 3¢, all modes of the back line are unstable (o > 0),

while short wavelength disturbances on the front line are damped at a rate —pyGy when A

11



25

T T T [ T
<%-h =1 pym
-=h =3.25 pm

h =5.5 ym
-4A-h =7.75 pm
o-h =10 pym

24

20

15

Am/h

10

\‘\‘\\\\‘\\\\‘\

e}
¢
[\) —
N -
O\ -
m —
_ L
o

FIG. 5: A\,n/h = f(d/h) vs. d/h for various heights h = 1 — 10 pum. Solid line: numerical
solution. Dashed line: linear fit f(d/h) ~ 2.02(d/h) + 2.85 for d/h > 5.

is below the critical value ..

3. Dependence on the control parameters

The fastest growing mode of the two line model )\, is controlled by two geometric param-
eters: the height h and the distance between the two lines d. Since o1 = Sf(h,d, k = 27/))
has a complex analytic form (see Eq. (AT7)), it is not possible to express A, as a function of
h and d explicitly. Instead we use numerical evaluations to determine \,, as a function of A
and d. Figure 5 shows the graph of \,,/h vs. d/h for various heights h = 1 — 10 ym. The
collapse of the curves show that A, depends linearly on the height h: A, = hf(d/h), where
f(d/h) is a function of d/h. As shown in this Figure, f(d/h), becomes approximately linear
when d/h > 5: f(d/h) =~ 2.02(d/h) + 2.85.

III. COMPARISON WITH LARGE SCALE SIMULATIONS AND EXPERIMENTS

In this section we compare the two-line continuum model with numerical simulations and

experimental measurements. We want to evaluate how relevant our model is to the more
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realistic microroller system.

The quasi-2D large scale simulations are performed with the method described in [21].
From the particle positions at a given time ¢ we can compute the empirical number density
n(x,y,t) in the zy-plane. We compute the Fourier transform of n(z,y,t) at k, = 0, i.e., the
Fourier transform n(k, = 27/, t) of the number density along the direction of the front.
We only use particles in the shock front, specifically, we only include the 70% of the particles
with the largest z-coordinates. This ensures that the Fourier modes are not affected by the
particles left behind the shock front. We have confirmed that essentially the same results

are obtained when including between 50% and 90% of the particles.

Figure 6a compares the growth rate of the two line model with our quasi-2D particle
simulations, where the microrollers are restricted to the xy-plane [21], at several heights
h =197 —4.92 ym. Two parameters must be adjusted in the two-line model to match
these simulations: the distance between the two lines d to match A,,, and the strength
S (or pg) to match the magnitude of the maximum growth rate o,,. Setting d/h = 9.5
matches A, quantitatively for all the simulated heights, which shows that the instability
wavelength depends linearly on h. It also suggest that, as shown by our previous work on
the shock front [24], the width of the front is proportional to the height above the wall. The
experimental stability diagrams in Fig. 6b are qualitatively similar: they have a well-defined

fastest growing mode \,, which increases with the particle height.

Thus the two-line model contains the essential physical ingredients to capture the finger-
ing instability observed in the simulations and in the experiments. Its simplicity allows us to
study the physical meaning of each term in the governing equations in order to understand

the mechanisms at play.

IV. MODE SELECTION BY TRANSVERSE FLOWS

In this section we examine the role of each term from the matrix A (Eq. (20)) that
appear in the full expression of the real positive eigenvalue oy (k) in Eq. (A7). We find that

the location and the shape of the peak around A = A,, in o; are mainly controlled by the

13



04—

03F

02F

U e

'

0.1

o (571

&

(=3
o

0.1F

3 ) S S SRR )]
0 0.02 0.04 0.06 0

At (pm™t)

(a) (b)

FIG. 6: (a) Stability diagram. Symbols: quasi-2D simulations for h = 1.97 — 4.92 um.
Solid lines: theoretical predictions from the two-line model for the growth rate oy for
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different heights h = 1.97,3.94 um. (b) Experimental stability diagram for gravitational
heights hy = a + kT /mg = 1,2.5 pm. The pictures on the right show snapshots of the
fingering instability.

following term in Eq. (A7)

~ - 1/2
(14141431)1/2 = (—kpg%(k?)gx(—d, k’)) (21>
1/2
2 hK,(2hk) Ky (v d? + 4h2%k
= %smkw ( 1 ip i( o )> = (22)

where K, (z) is the modified Bessel function of the second kind. Without this term there is
no peak and therefore no lengthscale selection. The product Gy (k)G,(—d, k) indicates that
both terms G, and G, must be nonzero to generate the fingering instability. G, corresponds
to the displacement of one line dx; induced by the density perturbations of the other line
dpj. Gy corresponds to the transverse velocity in the y direction that drives the density
perturbations dp; on each line due to the displacement on that line dz;. A sketch of these
mechanisms is shown in Figure 7. The physical meaning of this product is that both advec-
tion by the other line and self-induced transverse motion must be present to generate the
fingering instability. We therefore conclude that the transverse instability is due to both the
advective and transverse flows induced by a particle rotating parallel to a no-slip boundary

(see Fig. 2b). Without both these advective and transverse flows, we would not observe this
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FIG. 7: Sketch of the main mechanisms of the fingering instability. The light blue arrows
represent the advection induced by the other line, corresponding to the term G, in Eq. (1).
The dark blue arrows indicate the self-induced transverse motion, corresponding to the

term Gy in Eq. (19). The red curved arrows represent the direction of rotation.

type of linear fingering instability.

To demonstrate this we now consider a flat stress-free surface, i.e. a free-slip boundary
such as an air-water interface with small curvature. The image system of a rotlet near a flat
slip surface is a counter rotating rotlet with the same magnitude [28], which ensures zero

tangential stress at the interface. The corresponding velocity kernels replacing (1)-(2) are

UﬂU (.CL’, y7 h) = H1<x - xlvy - y/7 h)
1
__Sh s (23)
3 [(x— a2+ (y — )2 + 4h?)Y
vy (z,y;h) = Hy(x — 2’y —y'sh) = 0. (24)

The absence of transverse flow in (24) leads to the absence of peak in the growth rate, i.e.
no fastest growing mode, and thus no clear lengthscale selection for the two-line model, see
Appendix B for a detailed analysis. Therefore, microrollers near a slip surface should not

be subject to a linear fingering instability with a well-defined finger width.

15



V. CONCLUSIONS AND DISCUSSION

We derived the simplest possible model that can capture the fingering instability observed
both experimentally and numerically in suspensions of microrollers above a floor. Our model
directly accounts for the nonlocal hydrodynamic interactions between the particles. Our
analytic linear stability analysis confirmed that the fingering instability is linear, that it
happens in the plane parallel to the floor, and is purely hydrodynamic in origin [29]. Our
comparisons with quasi-2D particle simulations showed quantitative agreement for a range
of heights by adjusting only the distance between the two lines as a function of the height to
d = 9.5h. These results showed that the instability wavelength and the front width depend
linearly on h. Thanks to the simplicity of the model, we identified each term separately and
showed that the transverse flows due to the nearby no-slip surface are responsible for the
lengthscale selection. In particular, for a free-slip bottom wall, there are no transverse flows
and there is no linear instability. The two-line model and the linear stability analysis have
improved our understanding of the fingering instability and shed more light on the genesis

of the autonomous motile colloidal structures called “critters”.

Our two-line model considers only far-field hydrodynamic interactions and does not ac-
count for finite particle size effects. One can test the effect of near-field hydrodynamics on
the qualitative behaviour of the system with numerical simulations. In the case of the micro-
roller fingering instability, we found that far-field hydrodynamics alone achieved qualitative

agreement with the experiments.

More importantly, our two-line model is not limited to rotating particles and finds inter-
esting applications in other particulate systems. It could be used to study the sedimenta-
tion of particles parallel to a wall or to a slip surface, but also to investigate the formation
of phonons in microfluidic systems of confined driven particles (e.g. droplets [30] or mi-
croswimmers [31]). Indeed, both kind of particles generate transverse flows that destabilize
the systems and could be analyzed within the same framework. One would only have to
change the velocity kernels (and regularize them when necessary): stokeslets and their image
system for sedimenting particles [27], source dipoles for confined driven particles [18, 32].
Surprisingly, the sedimentation of particles adjacent to a single wall has received little at-
tention in the literature. Our preliminary large scale particle simulations suggest that the

parallel wall selects a characteristic wavelength in the unstable sedimenting suspensions. We
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will study this phenomenon experimentally, numerically and theoretically in more detail in

a near future.
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Appendix A: Entries and eigenvalues of the matrix A

The matrix A contains only six distinct coefficients listed below:

All = _A22
= poYo
8d(d* — 4h?)
A12 = _A21
= Pogl(k)

= po / G1(y) exp(—iky)dy

2d [ —3d2 +8h2 N

G (1172, 00.00.2), /2, @ + 412)8 )| (42)
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where K, (x) is the modified Bessel function of the second kind, and MG is the Meijer

G-function.
A14 == A23

= gac(_ )

2d?
=Sh——— kK, (V& + 4h2k
=) 2 (VT 1I7%)

A31 == A42

= —ikﬂgg}( )

= p05h6h KK, (2hk)
A32 = A41

= —ikpyGs(k)

2 [ 4d? — 4h?
= piSh— {(d—hk‘% (\/d2 n 4h2k>

d? + 4h2)3/2
4

e g MG ({001 (072372, 0} @ + ar)i2) | (5)

Agy = — Ay
= _ikpﬂgy(_ )

2 g, (mk)

= oS

(A6)

The structure of the matrix A permits an analytic calculation of the eigenvalues:

1
o1234(k) = i§ [QA% - QAfQ +4A390A14 —

243,

1/2
_414%214141432 — 2A%2A§4 + 8A19A14A30 A4 + 4A%4A§1 4A14A32A54 1 A4 )1/2] .

(A7)

Appendix B: Microrollers above a free-slip surface

Figure 8a shows the flow field around a particle above a slip surface. Note that the

streamlines in the plane of rotation are parallel, and that the induced translational velocity
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is in the opposite direction to the no-slip case (see Fig. 2b). After carrying the same linear

stability analysis we obtain the following matrix:

poHo  poHa 0 Ho(—d, k)

—Pof}'zl —poHo f}:[m<_d7 /f) 0

slip — 0 0 0 0
0 0 0 0
where
4 d
= —— h—
Ho=—35 (& + 4h2)?’
.9 d
— SSh—— KK, (V2 + 4h2k
and

.2 k
— _Zoh—"  K(VA + 4R2k).
Ha = —55h gy K1 (VP 412)

The nonzero eigenvalues of the new matrix Aslip are

o 2] t?
o12(k) = £po [7‘[0 - %1] ,

and

lim 0'1’2(]{?) = :l:po%o,

k—o0

(B1)

(B2)

Figure 8b compares the stability diagram between a slip and a no-slip surface for h =

1.97—4.92 um. The peak around A, disappears in the absence of transverse flows, meaning

that there is no clear lengthscale selection above a slip surface. The constant term poHy in

the matrix Aslip

19

plays the same role as pyGy, as shown by the plateaus at short wavelengths.
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FIG. 8: (a) Flow field around a rotlet in the plane of rotation above a slip surface. The

arrow indicates the direction of the applied torque 7). The colors, from red to yellow,

represent the magnitude of the in-plane velocity. (b) Growth rate oy vs. A7! for the two

line model at various height h = 1.97 — 4.92 ym and d/h = 10. Dashed line: above a

no-slip surface. Solid line: above a slip surface.
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