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We present, in a unifying way, the main components of three asynchronous event-driven algo-
rithms for simulating physical systems of interacting particles. The first example, hard-particle
molecular dynamics, is well-known. We also present a recently-developed diffusion kinetic Monte
Carlo algorithm, as well as a novel stochastic molecular-dynamics algorithm that builds on the Di-
rect Simulation Monte Carlo. We explain how to effectively combine asynchronous event-driven with
classical time-driven or with synchronous event-driven handling. Finally, we discuss some promises
and challenges for event-driven simulation of realistic physical systems.
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I. INTRODUCTION

There is a wide range of particle systems from compu-
tational science problems that can be efficiently and accu-
rately simulated using asynchronous event-driven (AED)
algorithms. Two prominent examples are molecular dy-
namics (MD) [1] for systems of hard particles such as
disordered granular packings [2], polymers [3], colloids
[4], particle-laden flows [5], and others, as well as ki-
netic Monte Carlo (KMC) [6] for diffusion-limited reac-
tions [7], epitaxial growth [8], quantum systems [9], bio-
chemical reaction networks [10], self-assembly [11], and
many others. As of yet unexplored are multi-scale and
multi-physics algorithms such as event-driven dislocation
dynamics, phase separation/precipitation, combined flow
and diffusion with (bio)chemical reactions, etc.

In this work we will focus on a class of particle-based
problems that are very common in computational ma-
terials science and are well-suited for AED simulation.
Specifically, we will focus on the simulation of large sys-
tems of mobile particles interacting with short-range pair-
wise (two-body) potentials (forces). Our goal will be
to reveal the common building blocks of these simula-
tions (e.g., event queues, neighbor searches), but also to
highlight the components that are problem specific (e.g.,
event prediction and processing). We will present these
components in some detail for three specific examples:
event-driven molecular dynamics (EDMD), first-passage
kinetic Monte Carlo (FPKMC), and stochastic EDMD
(SEDMD). Through the discussion of these examples we
will demonstrate the undeniable advantages of AED algo-
rithms, but we will also reveal the difficulties with using
AED algorithms for realistic models.

A. Background

We consider the simulation of the time evolution of
a collection of IV interacting particles in d-dimensions,
starting from some initial condition. At any point in
time, the system Q = (Q, B) is characterized by the con-

figuration Q = (qi,-..,qn), containing at least the cen-
troid positions r; for every particle ¢, and the additional
global information B, which may involve variables such
as boundary conditions or external fields. The number of
particles N may itself vary with time. For each particle ¢
we may consider an arbitrary number of attributes a; in
addition to the position of the centroid r;, q; = (r;, a;),
for example, a; may also contain the linear and/or angu-
lar velocity, the orientation and/or the chemical species
(shape, charge, mass, internal composition) of particle .
Typically a; will at least contain an integer that identi-
fies its species 1 < s; < Ny, and some information will be
shared among all particles belonging to the same species
(ex., the charge or mass). In particular, the symmetric
interaction table Znp stores Ng(Ns+1)/2 logical (true or
false) entries that specify whether species o and 3 inter-
act or not.

Two particles ¢ and j are overlapping only if a certain
(generalized) distance between them d;;(q;,q;) > 0 is
less than some cutoff distance or diameter D;;. Over-
lapping particles react with each other in an application
specific manner. Typically the type of reaction and d;;
depend only on the species of the two particles, but there
may also be dependencies on time or some other exter-
nal field parameters. For example, for (additive) hard
spheres d;; = |lr; — rj||L2 is the Ly norm of r;; = r; —r;,
and D;; = (D;+ D;)/2 and the type of reaction is (hard-
core) repulsion. For a non-interacting pair of particles
one may set D;; < 0. Particles may also overlap with
boundaries of the simulation domain, such as hard walls
or reactive surfaces, however, typically the majority of in-
teractions are among particles. Our assumption of short-
range interactions implies that all D;;’s are much smaller
than the system size. If there are long range interac-
tions present (e.g., electrostatic forces in plasmas), it may
sometimes be possible to split them into a short-range
part and a long-range part and treat the long-range part
separately (e.g., multipole or cell-based FFT methods)
as part of the “boundary” handling.

We will assume that the time evolution (motion) of the
system is mostly smooth with the exception of certain dis-
crete events, which lead to discontinuous changes in the



configuration of a certain collection of particles. Events
may involve a single particle 4, such as the change of the
internal state of the particle (e.g., decay reactions, spin
flips, sudden changes in the particle velocity). Events
may also involve pairs of particles, for example, the col-
lision (exchange of momentum) between two particles ¢
and j, or a chemical reaction between two overlapping
particles ¢ and j leading to the creation and/or destruc-
tion of particles. For now we will ignore events involving
more than two particles. Some events may also involve
global variables in B and thus implicitly affect all of the
particles. Here we will assume events are instantaneous,
i.e., they have no duration. Events that have a duration
(e.g., particles overlapping for a certain time interval)
can be treated as a pair of events, one for the start of the
event and one for the end of the event. In a more general
framework one may consider all events as having a finite
duration, as in process-oriented simulations [12] (in such
a framework collisions would be a special degenerate case
of a more general “overlap” event).

We will refer to simulations as event-driven (also called
discrete event simulations [13]) if the state of the sys-
tem is evolved discontinuously in time from one event
to another, predicting the time of the next event when-
ever an event is processed. This is in contrast with the
more common time-driven simulations, where the state
changes continuously in time and is evolved over a se-
quence of small time steps At, discovering and process-
ing events at the end of the time step. Time-driven al-
gorithms are inaccurate when the time step is large, and
they become asymptotically accurate as At — 0. There-
fore, the time step must be smaller than the estimated
fastest time scales in the problem. This leads to large in-
efficiencies when there are multiple dynamically-changing
time scales. On the other hand, event-driven algorithms
automatically adjust the time step.

We will focus on asynchronous event-driven (AED) al-
gorithms. In asynchronous algorithms, there is a global
simulation time t, typically the time when the last pro-
cessed event occurred, and each particle is at a different
point in time ¢; < ¢, typically the last time it participated
in an event. This is to be contrasted to synchronous
event-driven algorithms, where all of the particles are at
the same time ¢t. One of the most important examples
of a synchronous event-driven algorithm in materials sci-
ence is the n-fold (BKL) algorithm for performing kinetic
(dynamic) Monte Carlo simulations [6]. The exactness
and efficiency of the n-fold algorithm hinge on the fact
that the state of the system does not change in-between
events, as is common in lattice models where the posi-
tions of the particles are discrete. For example, atoms
may stay in the immediate vicinity of the crystal lattice
sites and only sometimes hop to nearby sites. In the types
of problems that we will consider, the positions of the
particles will be continuous and continuously changing
even in-between events. Therefore, synchronous KMC
algorithms will be approximate and can be viewed as the
equivalent of time stepping, where the time step At is

not constant. It is important to point out that even
in cases where the evolution of the system consists en-
tirely of discrete jumps (e.g., Markov chain transitions),
asynchronous algorithms may be more efficient than syn-
chronous ones [11]. It is possible to combine the two
algorithms by using the more general asynchronous algo-
rithm at the top level but treating a subset of the par-
ticles synchronously, as if they are a super-particle with
complex internal structure.

B. Model Examples

Atomistic or molecular-level modeling is one of the
foundations of computational materials science. The two
most popular types of algorithms used in the simulation
of materials are molecular dynamics (MD) and Monte
Carlo (MC) algorithms. Monte Carlo algorithms are of-
ten used to study static equilibrium properties of systems,
however, here we focus on dynamic or kinetic Monte
Carlo, where the time evolution of a system is modeled
just like in MD. For our purposes, the only important
difference between the two is that MD is a deterministic
algorithm, in which deterministic equations of motions
are solved, and Monte Carlo is a stochastic procedure in
which sample paths from an ensemble of weighted paths
are generated. In both cases one typically averages over
multiple trajectories, starting with different initial condi-
tions and/or using a different random number seed. From
the perspective of AED algorithms, this means that ran-
dom number generators (RNGs) are involved in the de-
termination of the time certain events occur as well as in
the actual processing of those events.

The very first molecular dynamics (MD) calculations
simulated a system of hard disks and hard spheres and
used an AED algorithm [1]. Event-driven MD (EDMD)
algorithms for hard particles are discussed in considerable
detail in Ref. [2] and elsewhere, here we only present the
essential components. The hard-sphere system is a col-
lection of non-overlapping spheres (or disks), contained
within a bounded region, each moving with a certain ve-
locity v; = r;. Pairs of spheres collide and the collid-
ing particles bounce off elastically, preserving both lin-
ear momentum and energy. Many generalizations can be
considered, for example, the spheres may be growing in
size and/or the particles may be nonspherical [14], the
collisions may not be perfectly elastic [15], some of the
particles may be tethered to each other to form structures
such as polymer chains [3], etc. The general features are
that particles move ballistically along simple determinis-
tic paths (such as straight lines) in-between binary col-
lisions. The primary type of event are binary collisions,
which have no duration and involve deterministic changes
of the velocities of the colliding particles. The ballistic
motion of the particles is described by Newton’s equa-
tions of motion (i.e., deterministic ODEs), mv; = F,,
where F is an external forcing (e.g., gravity).

Direct simulation Monte Carlo (DSMC) [16] is an MC



algorithm that tries to mimic MD for fluids. We will con-
sider DSMC as a fast alternative to MD, even though it
can also be viewed as a particle-based MC method for
solving the Boltzmann equation in dilute fluids. From
our perspective, DSMC is an approximate variant of MD
in which the particle collisions are not processed exactly,
rather, particle collisions are stochastic and (attempt to)
follow the same probability distributions as would have
exact MD. Specifically, nearby particles are randomly
chosen to undergo stochastic collisions and exchange mo-
mentum and energy, thus leading to local conservation
laws and hydrodynamic behavior. DSMC is applicable
in cases when the structure of the fluid and the detailed
motions of all of the particles do not matter, as is the
case with solvent molecules (e.g., water) in fluid flow
problems or large-scale granular flows [15]. Tradition-
ally DSMC has been implemented using a time-driven
approach, in which at each time step particles are first
propagated in a ballistic (convective) fashion, and then
a certain number of stochastic particle collisions among
nearby particles are processed. Here we describe a novel
AED algorithm for DSMC, and demonstrate how it can
be integrated with EDMD in order to replace the expen-
sive MD with cheaper DSMC for some of the particle
species (e.g., solvent molecules). We term the resulting
algorithm Stochastic EDMD (SEDMD).

The motion of the particles in-between events is not
always deterministic. In particular, an important class
of problems concerns diffusing particles, that is, particles
whose velocity changes randomly very frequently (i..e,
they make many small steps in random directions). The
motion of the particles is probabilistic, in the sense that
the probability c(r, ¢+ At) of finding a particle at a given
position r at a certain time ¢+ At, assuming it started at
the (space and time) origin, is the solution to the time-
dependent diffusion equation 8;¢ = DV?¢ (a determinis-
tic partial differential equation), where D is the particle
diffusion coefficient (generally a tensor). A variety of re-
actions may occur when a pair of particles collides, for ex-
ample, particles may repel each other (colloids [4]), they
may stick or begin merging together (paint suspensions),
or they may undergo a chemical reaction that consumes
the reacting particles and produces zero, one, two, or
possibly more new particles (a wide range of diffusion-
limited reactions in materials [7, 17] and biological sys-
tems [17]). Several approzimate event-driven KMC algo-
rithms have been used in the past for this problem [17].
Here we will describe a recently-developed First-Passage
Kinetic Monte Carlo (FPKMC) ezact AED algorithm for
simulating a collection of diffusing hard particles [7]. It
is worth pointing out that one may also consider par-
ticles whose trajectories are a combination of ballistic
and diffusive motion, that is, motion that is described by
Langevin’s equations (or other stochastic ODEs or even
PDEs). In that sense, we will see that both the MD and
MC algorithms share many common features.

II. A GENERAL AED PARTICLE ALGORITHM

In this work we focus on systems where particles only
interact with nearby particles. We will formalize this by
defining a geometric hierarchy of regions around a given
particle. These particle proximity hierarchies are at the
core of geometry-specific (GS) aspects of AED simulation,
which can be reused for different application-specific (AS)
rules for moving and interacting the particles. We will
assign a hard core C; to each particle such that a parti-
cle may overlap with another particle only if their cores
overlap. For (additive) hard spheres, the core is nothing
more than the particle itself. Next, we protect particle
1 against other particles by enclosing it inside a protec-
tive region P;, C; C P;, that is typically disjoint from
the majority of other protective regions. Finally, we as-
sume that every protective region ¢ is contained within a
neighborhood region N;, P; C N;. The set of neighbors of
1 consists of the particles j whose neighborhood regions
intersect N;, N; N Nj # 0, and which are of a species
interacting with the species of particle 4, i.e., Z,,s, = 7.

We will assume that when a particle does not interact
with other particles we can easily follow its time evo-
lution (motion), that is, given the current configuration
q;(t), we can probabilistically determine the position at
a later time q;(t + At). This is a single-particle problem
and can typically be solved analytically. For example, in
MD the particle trajectory is a unique (i.e., deterministic)
straight path, r;(t+ At) = r;(t) +v;At, while in diffusion
problems it is the solution to a (stochastic) Langevin or
diffusion equation. Event-driven algorithms are efficient
because they use such analytic solutions to quickly prop-
agate particles over potentially large time steps as long
as they are far enough from other (interacting) particles.
We will also assume that one can solve two-body prob-
lems for the case when two particles are isolated from
other particles but may interact with each other. These
two-body problems are typically much more difficult to
solve (quasi) analytically. Specific examples will be given
later.

A. The Event Loop

An AED algorithm consists of processing a sequence
of time-ordered events. Each particle i must store some
basic information needed to predict and process events
associated with it. The particle time t; specifies the last
time the configuration of particle ¢ was updated, t; < t,
where t is the current simulation time. Some particles
may be time-driven and thus not have their own event
prediction. The rest of the particles are event-driven and
each such particle stores a prediction for its impending
event (t.,p,v), specified via the predicted time of oc-
currence t. (a floating point number), the event partner
p (an integer), and the event qualifier (type of event)
v (also an integer). The partner p could be some pre-
specified invalid value to identify time-driven particles.



Note that the event schedules must be kept symmetric
at all times, that is, if particle ¢ has an impending event
with j, then particle j must have an impending event
with 4. A particle may store multiple event predictions,
in order to avoid re-predicting events if the impending
event is invalidated, however, we will not explicitly han-
dle this possibility due to the complications it introduces.
The exact interpretation of p and v, for a given particle
i, is application- and geometry-specific. Some common
types of events can be pre-specified by reserving certain
values of the event partner p, for example, we have used
the following list for the set of models presented here:

p =0 An update of the event prediction for i, not re-
quiring an update of q;. The value ¥ = 0 means
that q; has not changed since the last prediction for
i (thus allowing stored information from previous
predictions to be reused if needed), v = 1 means
that an event occurred which did not alter the ge-
ometry (for example, the position of 4 is the same
but its velocity changed), while ¥ = —1 means that
this particle was just inserted into the system and
a geometry update is necessary as well.

p =1 > 0 A single-particle event that requires an update
of q;. The special value v = 0 denotes a simple time
advance of ¢ without any additional event process-
ing, ¥ < 0 denotes an event that does not change
the geometry (for example, only the velocity of a
particle changes), and v > 0 is used for additional
AS events that may also change the geometry (e.g.,
particle decay).

1<p< N and p#i An unprocessed binary reaction
between particles ¢ and j = p, with additional AS
information about the type of reaction stored in
v, for example, elastic collision, a certain chemical
reaction, etc.

p =00 A “boundary” event requiring the update of the
particle geometry. If v = 0 then only the protective
region P; needs to be updated, if v = —1 then
the neighborhood N; needs to be updated (collision
with a virtual boundary), v < —1 denotes collisions
with pre-specified boundaries (such as hard walls),
and v > 0 specify AS boundary events (such as
collisions with reactive surfaces).

p = —oo Denotes an invalid event, meaning that this par-
ticle is not in the event queue and is handled sepa-
rately, for example, it is time-driven.

It is important to point out that we are not suggesting
that an actual implementation needs to use integers to
identify different types of events. In an object-oriented
framework events may be represented as objects that in-
herit from a base event class and have methods to handle
them, with the base implementation providing handlers
for certain pre-defined (single, pair, and boundary) types

of events. We do not discuss here the possible ways to or-
ganize an inheritance hierarchy of classes for AED simu-
lations, since such a hierarchy involves multiple complex
components, notably a module for handling boundary
conditions in static and dynamic environments, a module
for handling static and dynamic particle geometry (over-
lap, neighborhoods, neighbor searches, etc.), an event-
dispatcher, a visualization module, application-specific
modules for event scheduling and handling, etc.
Algorithm 1 represents the main event loop in the
AED algorithm, which processes events one after the
other in the order they occur and advances the global
time ¢ accordingly. It uses a collection of other auxiliary
geometry-specific (GS) or application-specific (AS) steps,
as marked in the algorithm outline. Specific examples of
various GS and AS steps are given in the next section.

Algorithm 1: Process the next event in the event
queue.

1. Find (query) the top of the event queue (usually a heap)
to find the next particle 7 to have an event with p at t..
Note that steps marked as (AS+C) below may reorder
the queue and/or cycle back to this step.

2. Find the next “external” event to happen at time tc,,
possibly using an additional event queue (AS).

3. If tep < te then process the external event (AS) and
cycle back to step 1.

4. Remove 7 from the event queue and advance the global
simulation time t <« te.

5. If p= 0 and v = —1 then build a new A; and then check
if ¢ overlaps with any of its new neighbors (GS). If it
does, process the associated reactions (AS+C), other-
wise build a new P; as in step 8a.

6. Else if p = i then update the configuration of particle
i to time ¢ using a single-particle propagator (AS), and
set t; < t. If v # 0 then process the single-particle
event (AS+C). If v > 0 then search for overlaps as in
step 5.

7. Else if 1 < p < N then update the configuration of
particles ¢ and j = p using a two-particle propagator
(AS), set t; « t and t; « t, and then process the binary
reaction between i and j (AS+C). This may involve
inserting particle j back into the queue with t. = ¢,
p=0,v=0.

8. Else if p = oo, then update q; and t; as in step 6.
If v > 0 then process the boundary event (AS+C),
otherwise

(a) If v = 0 then update P; (AS+GS), typically in-
volving an iteration over the neighbors of 3.

(b) Else if v = —1 then update N; and identify the
new neighbors of particle ¢ (GS).

(c¢) Else if v < —1 process the geometry-induced
boundary event (GS+AS).

9. Predict a new t., p, and v for particle i by finding the
minimal time among the possible events listed below.
Each successive search needs to only extend up to the



current minimum event time, and may return an incom-
plete prediction t. > t, p = 0, v = 0, where t. provides
a lower bound on the actual event time.

(a) When particle i leaves P; or N; (AS).

(b) When particle ¢ undergoes a single-particle event

(AS).

(c) When particle 4 first reacts with a neighbor j
(AS), as found by searching over all neighbors j
whose protective region P; intersects P; (GS). If a
particle j gives the current minimum event time,
remove it from the event queue. If such a parti-
cle j has an event partner that is another parti-
cle (third party) k # 4, update the positions of
7 and k using the two-particle propagator as in
step 7, invalidate k’s event prediction by setting
its te < t, p < 0, v < 0, and update its position
in the event queue (alternatively, one may use lazy
invalidation strategies).

10. Insert particle ¢ back into the event heap with key t.
and go back to step 1.

1. Non-Particle Events

In a variety of applications the majority of events can
be associated with a specific particle, and one can sched-
ule one event per particle in the event queue. However,
sometimes there may be events that are associated with
a (possible large) group of particles, or events that are
not specifically associated with a particle. We consider
these non-particle events as application-specific “exter-
nal” events in Algorithm 1.

An important example of such an event are time step
events. Namely, some group of particles may not be
propagated asynchronously using the event queue, in-
stead, the particles in the group may be updated syn-
chronously, for example, in regular time intervals At.
There may in fact be multiple such groups each with
their own timestep, for example, each species might have
its own time step. Alternatively, all or some of the parti-
cles may be updated in a time-stepped manner and addi-
tional asynchronous events may be processed in-between
the time step events. An example is molecular dynamics
in which time-driven handling is combined with event-
driven handling for the hard-core collisions [5, 18]. The
time step events should also be ordered in time and the
next one chosen as the external event in Step 2 in Al-
gorithm 1. A separate priority queue may be used for
ordering the external events. In general, there may be
an event queue of events associated with particles, with
cells, with species, etc. These may be separate queues
that are joined at the top or they can be merged into a
single heap.

B. Near-Neighbor Search

All large-scale particle-based algorithms use various ge-
ometric techniques to make the number of neighbors of a
given particle O(1) instead of O(N). Reference [2] pro-
vides extensive details (and illustrations) of these tech-
niques for hard spheres and ellipsoids; here we summarize
only the essential components.

1. Linked List Cell (LLC) Method

The most basic technique is the so-called linked list cell
(LLC) method. The simulation domain, typically an or-
thogonal box, is partitioned into N, cells, typically cubes.
Each particle ¢ stores the cell ¢; to which its centroid be-
longs, and each cell ¢ stores a list L. of all the particles it
contains (usually we also store the total number of par-
ticles in the cell). Given a particle and a range of inter-
action, the lists of potential neighbors is determined by
scanning through the neighboring cells. For maximal ef-
ficiency the cell should be larger than the largest range of
interaction so that only the nearest-neighbor cells need
to be searched. There are more sophisticated neighbor
search methods developed in the computational geom-
etry community, such as using (colored) quad/oct-trees,
however, we are not aware of their use in AED implemen-
tations, likely because of the implementation complexity.
This is an important subject for future research.

It is important to point out that in certain applications
the cells themselves play a crucial role in the algorithm,
typically as a means to provide mesoscopic averages of
physical variables (averaged over the particles in a given
cell) used to switch from a particle-based model to a
continuum description. For example, in PIC (particle-
in-cell) algorithms for plasma simulation, the cells are
used to solve for background electric fields using FFT
transforms [19]. In DSMC, the algorithm stochastically
collides pairs of particles that are in the same cell. In
some applications, events may be associated with the
cells themselves, instead of or in addition to the events
associated with particles [20]. Usually the same cells are
used for both neighbor searches and averaging for sim-
plicity, however, this may not be the optimal choice in
terms of efficiency.

For a method that only uses the LLC method for neigh-
bor searches, the neighborhood region N; is composed of
the (typically 3¢, where d is the dimensionality) cells that
neighbor ¢;, including ¢; itself. The protection region P;
may be a simple geometric region like a sphere inscribed
in V; (sphere of diameter smaller than the cell size), it
may be that P; = ¢; + C;, or maybe P; = N;.

2. Near-Neighbor List (NNL) Method

Another neighbor search method is the near-neighbor
list (NNL) method, which is described for hard particles



in Ref. [2]. The idea is to use as N; a region that (when
it is created) is just an enlargement of the particle by
a certain scaling factor g > 1. When N; is created the
method also creates a (linked) list of all the neighbor-
hoods that intersect it, to form NNL(7) (hard walls or
other boundaries may also be near neighbors). This list
of (potential) interactions can then be reused until the
particle core C; protrudes outside of AV;. This reuse leads
to great savings in situations where particles are fairly
localized.

Note that the LLC method is still used in order to
create NV; and NNL(7) even if NNLs are used, in order
to keep the maximal cost of pairwise searches at O(N)
instead of O(N?). In some situations (such as mixed
MD/DSMC simulations as we describe later) one may
use NNLs only for a subset of the particles and use the
more traditional LLCs for others. In this case one can
use P; = N; N (¢; + C;) in order to ensure that both the
NNLs (for those particles that have them) and the LLCs
(for all particles) are valid neighbor search methods.

3. Cell Bitmasks

Efficient handling of spatial information is an essential
component of realistic AED algorithms. For example,
further improvements to the basic LLC method may be
required for certain applications in order to maximize the
efficiency of neighbor searches. The handling of boundary
conditions or domain-decomposition is an application-
specific component that is in some sense disjoint from
the basic AED framework presented here, however, it is
often very important in practice. In this section, which
may be skipped at first reading, we describe an enhance-
ment to the basic LLC method that we have found very
useful in handling spatial information.

In our implementation, in addition to the list of par-
ticles L., each cell ¢ stores a bitmask M, consisting of
Npjitg > N bits (bitfields), where Ny is the number of
species. These bits may be one (set) or zero (not set) to
indicate certain properties of the cell, specifically, what
species of particles the cell contains, whether the cell is
event or time driven, and to specify boundary conditions.
Bit v in the bitmask M. is set if the cell ¢ contained a
particle of species 7 in the near past and may still con-
tain a particle of that species. The bit is set whenever a
particle of species v is added to the cell, and it should be
cleared periodically if the cell no longer contains parti-
cles of that species. When performing a neighbor search
for a particle 4, cells not containing particles of species
that interact with species s; are easily found (by OR’ing
the cell masks with the s;’th row of Isisj) and are sim-
ply skipped. This can significantly speed up the neighbor
searches in cases where not all particles interact with all
other particles.

For the purposes of a combined event-driven with time-
driven algorithm one may also need to distinguish those
cells where particles are treated using a fully event-driven

(ED) scheme. We use one of the bits in the bitmasks, bit
YED, to mark event-driven (ED) cells, and the choice
of such cells is in general application specific. For ex-
ample, for diffusion problems, cells with a high density
may be treated more efficiently using time-driven (small
hopping) techniques while areas of low density may be
treated more efficiently using the asynchronous event-
driven algorithm. In our combined MD with DSMC algo-
rithm cells that contain or that are near non-DSMC par-
ticles are event-driven while those containing only DSMC
particles are treated as time-driven cells. Note that all of
the cell bitmasks should be reset and then re-built (i.e.,
refreshed) periodically.

The cell masks can also be used to specify partitionings
of the simulation domain. This is very useful in specify-
ing more general boundary conditions in situations when
the event-driven simulation is embedded inside a larger
domain that is not simulated explicitly. For example, a
molecular dynamics simulation may be embedded in a
multiscale solver where the surrounding space is treated
using a continuum method (finite element or finite vol-
ume, for example) coupled to the particle region through
an intermediary boundary layer. Similar considerations
apply in parallelization via domain decomposition, where
the simulation domain simulated by a single processing
element (PE) or logical process (LP) is embedded inside a
larger region where other domains are simulated by other
PEs/LPs.

We classify the cells as being interior, boundary, and
external cells (a specific illustrative example is given in
Fig. 1). Our implementation uses bits in the cell bit-
masks to mark a cell as being boundary (bit ~g), or
external (bit vg), the rest are interior. Interior cells
are those for which complete boundary conditions are
specified and that cannot be directly affected by events
occurring outside of the simulation domain (the interior
cells are divided into event-driven and time-driven as dis-
cussed earlier). Boundary cells surround the interior cells
with a layer of cells of thickness wk > 1 cells (typically
wh =1 or wh = 2) and they represent cells that are
affected by external events (i.e., events not simulated
directly). External cells are non-interior cells that are
not explicitly simulated, rather, they provide a bound-
ary condition/padding around the interior and boundary
cells. This layer must be at least w& cells thick, and the
cells within a layer of w& cells around the simulation do-
main (interior together with boundary cells) are marked
as both external and boundary cells (e.g., these could be
ghost cells in parallel simulation). It is often the case that
wh = wE = wp. All of the remaining cells are purely
external cells and simply ignored by the simulation.

III. MODEL EXAMPLES

In this section we present the handling of the various
AS and GS steps in Algorithm 1 for three specific model
applications.



A. Event-Driven Molecular Dynamics (EDMD)

Hard-particle molecular dynamics is one of the first
applications of AED algorithms in computational science,
and is discussed in more detail in Ref. [2] and references
therein. Hard-sphere MD has been used extensively in
simulations of physical systems over the past decades and
is also one of the few particle AED algorithm that has
been studied in the discrete-event simulation community,
as the billiards problem. Because of this rich history
and extensive literature we only briefly discuss EDMD
focusing on how it fits our general framework.

The basic type of event in EDMD are binary colli-
sions, which alter the momenta of two touching (and ap-
proaching) particles, typically based elastic collision laws
(conservation of momentum and energy). Collisions are
assumed to have no duration and (very unlikely) triple
collisions are broken up into a sequence of binary ones.
In-between collisions particles move ballistically along
simple trajectories such as straight lines (force-free mo-
tion) or parabolas (constant-acceleration motion). For
hard spheres, event time predictions are based on (alge-
braic) methods for finding the first root of a polynomial
equation (linear, quadratic or quartic [18]). For parti-
cle shapes that include orientational degrees of freedom,
such as ellipsoids, numerical root finding techniques need
to be used [2].

1.  AED Implementation of EDMD

When LLCs are used, the main type of boundary event
are cell transfers, which occur when the centroid of a par-
ticle ¢ collides with the boundary of the cell ¢;. If the cell
is at the boundary, a unit cell change occurs for periodic
boundaries (i.e., wrapping around the torus), and hard-
wall collisions occur for hard-wall boundaries. When
NNLs are used, cell transfers do not have to be processed
(i.e., one can set P; = N;), unless it is important to have
accurate LLCs [as in DSMC, where P; = N; N (¢; + C;)]-

The main AS steps in Algorithm 1 for (classical) MD
simulations are:

e Step 6 consists of updating the particle position,
and possibly also velocity, ballistically.

e Step 7 consists of updating the positions of each
of the particles separately, as in step 6, and then
updating their velocities taking into account the
collisional exchange of momentum.

e For collisions with hard walls in Step 8, the particle
velocity is updated accordingly. Cell transfers in
step 8c consist of updating the LLCs by removing
the particle from its current cell and inserting it
into its new cell (found based on the direction of
motion of the centroid). If the new cell is across
a periodic boundary, the centroid is translated by
the appropriate lattice cell vector (if NNLs are used,

this may require updating information relating to
periodic boundaries for each interaction).

e Step 9 is the most involved and time consuming;:

— In step 9a, the time of the next cell transfer
is predicted based on the centroid velocity. If
NNLs are used, then the time of (virtual) col-
lision of the core C; with the interior wall of
N is also calculated.

— In step 9c, predictions are made for binary
collisions between particle i and each of the
particles in neighboring cells, or between ¢ and
each of the particles in NNL(3).

B. Stochastic Event-Driven Molecular Dynamics
(SEDMD)

We have recently developed a novel AED algorithm
for simulating hydrodynamics at the molecular level that
combines DSMC, which is a method for simulating hy-
drodynamic transport, with event-driven molecular dy-
namics (EDMD). The algorithm replaces some of the de-
terministic collisions in EDMD with stochastic collisions
and we term it Stochastic EDMD (SEDMD). The algo-
rithm is described in more detail in Ref. [21].

First we describe how to transform the traditional
time-driven DSMC algorithm [16] into an event-driven
algorithm, and then combine this algorithm with EDMD.
Finally, we explain how to achieve higher efficiency by re-
verting the DSMC component to time-driven handling.

1. DSMC for Hydrodynamics

The DSMC algorithm can be viewed as an approxi-
mation to molecular dynamics in cases when the internal
structure of the fluid, including the true equation of state,
is not important. In particular, this is the case when sim-
ulating a solvent in applications such as the simulation of
large polymer chains in solution. The exact trajectories
of the solvent particles do not really matter, and what
really matters are the (long time and long range) hydro-
dynamic interactions that arise because of local energy
and momentum exchange (viscosity) and conservation
(Navier-Stokes equations). Any method that simulates
the correct momentum transfer localized at a sufficiently
small scale is a good replacement for full-scale MD, and
can lead to great computational savings when a large
number of solvent molecules needs to be simulated.

DSMC [16] achieves local momentum exchange and
conservation by performing a certain number of stochas-
tic collisions between randomly chosen pairs of particles
that are inside the same cell. The collision rate inside a
cell containing Ny, particles is proportional to N, (Ny,—1)
with a pre-factor that can be based on theory or fitted to
mimic that of the full MD simulation. For hard spheres,



the probability of choosing a particular pair ij is pro-

portional to the relative velocity v¢l

i » and typically a re-
jection technique (null-method technique) is used when
choosing pairs. Specifically, the collision rate is made pro-
portional to the maximal possible relative velocity U;Ic}lax,
and a randomly chosen pair ij is rejected or accepted

rel Jymhax
©j 1 “rel
small calculation and a random number generation and is
thus rather inexpensive, as long as the acceptance prob-
ability is not too small, which can typically easily be
achieved by a judicious (but still rigorous) choice for
U;nax. Alternative rules for selection of collision part-
ners and for the choice of the post-collisional velocities
can give thermodynamically-consistent non-ideal DSMC
fluids [22].

Traditionally DSMC is performed using a time-driven
approach: The particles are first propagated ballistically
by a certain time step At and then sorted into cells ac-
cordingly, and then an appropriate number of stochastic
collisions are carried out in each cell. Furthermore, the
existence of a finite step leads to errors in the transport
coefficients (such as shear viscosity) of order At? [23], in
addition to the errors inherent in DSMC that are of or-
der Az? [24], where A is the size of the cells. Therefore,
in traditional DSMC At should be small enough so that
particles move only a fraction of the cell size and a frac-
tion of the mean free path during one step [23, 24]. As
a consequence, only a fraction (10-25%) of the particles
actually undergo a collision, and the rest of the parti-
cles are propagated needlessly. We note, however, that
DSMC can be extended into the dense-fluid regime in
which case the collisional frequency is high and thus most
particles undergo a stochastic collision at every time-step
[22].

with probability v . A pair rejection involves a

2. AED Implementation of DSMC

An alternative event-driven implementation of DSMC
explicitly predicts and process cell transfers, just as in
EDMD algorithm. Particles positions are thus only up-
dated when needed, and there is no time step error since
it is easy to obtain and numerically evaluate closed-form
expressions for the time of the cell crossings. The DSMC
particles are represented as a species § for which par-
ticles do not interact with other DSMC particles (i.e.,
Iss = F), so that the MD algorithm does not predict bi-
nary collisions for the DSMC particles. Instead, stochas-
tic binary collisions are added as an external Poisson
event of the appropriate rate. One approach is to main-
tain a global time-of-next-DSMC-collision ¢4, to deter-
mine when a stochastic collision is attempted, and to
use cell rejection to select a host cell for the collision.
The rate of DSMC collisions is chosen according to the
cell with maximal occupancy NP'X  and a randomly
chosen cell of occupancy Ny, is accepted with probabil-
ity Np(Np — 1)/ [NPaX(NRaX _1)]. Tt is possible to

avoid cell rejections altogether, using any of the multiple
“rejection-free” techniques common to KMC simulations
[6]. For example, the cells could be grouped in lists based
on their occupancy and then an occupancy chosen first
(with the appropriate weight), followed by selection of a
cell with that particular occupancy.

Most of the AS steps in Algorithm 1 for DSMC are
shared with MD. The different steps are associated with
the processing of stochastic collisions:

e In Step 2 t., is the time of the the next DSMC
collision. If a rejection-free technique is used the
cell at the top of the cell event queue is chosen,
otherwise, a cell is selected randomly and accepted
or rejected based on its occupancy. If the cell is
rejected, no collisions are processed.

e In Step 3 a pair of particles ¢ and j is randomly se-
lected from the previously-chosen cell, and accepted
or rejected for collision based on the relative veloc-
ity. If accepted, a randomly-chosen amount of mo-
mentum and energy is exchanged among the par-
ticles and they are moved to the top of the event
queue with t, =¢, p=0, and v = 1.

We have validated our event-driven DSMC algorithm by
comparing against published results for plane Poiseuille
flow of a rare gas obtained using traditional time-driven
DSMC [25].

3. Stochastic Event-Driven Molecular Dynamics (SEDMD)

The event-driven DSMC algorithm has few advantages
over a time-driven approach, which are outweighed by the
(implementation and run-time) cost of the increased algo-
rithmic complexity. However, the AED variant of DSMC
is very similar to EDMD, and therefore it is relatively
simple to combine DSMC with EDMD in an event-driven
framework. This enables the simulation of systems such
as colloids or hard-sphere bead-chain polymers [3] in so-
lution, where the solute particles are treated using MD,
and the less-important solvent particles are treated ap-
proximately using DSMC. The solvent-solute interaction
is still treated with MD. Similar studies have already been
carried out using time-driven MD for the solute parti-
cles and a simplified variant of DSMC that approximates
the solute particles as point particles and employs multi-
particle stochastic collisions [26].

We have designed and implemented such a com-
bined algorithm, which we term Stochastic Event-Driven
Molecular Dynamics (SEDMD) [21]. The implementa-
tion is almost identical to classical hard-sphere MD, with
the addition of a new DSMC species § for which parti-
cles do not interact with particles of the same species
(i.e., Zss = F). That is, the DSMC “hard spheres” freely
interpenetrate each other, but collide as usual with other
species. An external stochastic collision event occurring
as a Poisson process of the appropriate rate is used to



collide randomly chosen pairs of nearby DSMC particles,
as described in the previous section.

The algorithm is much more efficient than EDMD be-
cause of the replacement of deterministic collisions with
stochastic ones; however, it is still not as efficient as
classical time-driven DSMC, especially at higher colli-
sion rates. The two main causes of this are the over-
head of the event queue operations in the AED variant
of DSMC (note that the queue needs to be updated after
every stochastic collision), and also the cost of neighbor
searches. Namely, for each DSMC particle the nearby
cells need to be searched in Step 9c¢ to make sure they do
not contain any solute particles (recall that cell bitmasks
are used to efficiently implement this). In cases when
most of the cells contain only DSMC particles, this can
introduce significant overheads.

This inefficiency can be corrected by combining time-
driven with event-driven handling. Specifically, only
those those cells that neighbor cells that contain non-
DSMC particles are marked as event-driven (ED), the
rest are time-driven (TD). DSMC particles outside the
marked region are treated more efficiently, using time-
stepping and without any neighbor searches, while the
DSMC and MD particles inside the marked region are
treated as in MD (with the addition of stochastic colli-
sions among DSMC particles). In cases when the solute
particles are much larger than the solvent particles, NNLs
are used with a special technique called bounded sphere-
complexes [2] to handle neighbor searches for the large
particles. Whenever DSMC particles transfer from a TD
to an ED cell they are inserted into the event queue with
an immediate update event, and if needed their neigh-
borhood region and NNL is constructed. Similarly, when
DSMC particles transfers from an ED to a TD cell they
are removed from the event queue and their neighbor-
hood region and NNL is destroyed.

The time-driven particles are updated together with a
fixed time step At. These time step events are treated
as a special external event and thus processed in correct
time order with the events scheduled for the particles in
the combined MD/DSMC region. Stochastic collisions
are only processed at time step events, exactly as in tra-
ditional DSMC algorithms.

4. Open Boundary Conditions

In simulations of polymer chains in solution in three
dimensions, a very large number of solvent particles is
required to fill the simulation domain. The majority of
these particles are far from the polymer chain and they
are unlikely to significantly impact or be impacted by the
motion of the polymer chain. These particles do not need
to be simulated explicitly, rather, we can think of the
polymer chain and the surrounding DSMC fluid as be-
ing embedded in an infinite reservoir of DSMC particles
which enter and leave the simulation domain following
the appropriate distributions.

Such open (Grand Canonical) boundary conditions
(BCs) are often used in multi-scale (coupled) simulations.
The combination of a partially time-driven algorithm and
an unstructured (ideal gas) DSMC fluid makes it very
easy to implement open BCs by inserting DSMC parti-
cles in the cells surrounding the simulation domain only
at time-step events, based on very simple distributions.
At the beginning of a time step event, after possibly re-
building the cell masks, the time-driven DSMC particles
are propagated as usual. If there are external cells, (trial)
reservoir particles are then inserted into the cells that
are both external and boundary. The trial particles are
thought to be at a time ¢ — At, and are propagated by a
time step At to the current simulation time. Only those
particles that move into a non-external cell are accepted
and converted into real particles. Following the insertion
of reservoir particles stochastic collisions are processed in
each cell as usual.

Figure 1 provides an illustration of the division (mask-
ing) of the cells for the simulation of a tethered polymer
in two and three dimensions. The division of the cells
into event-driven, interior, boundary and external cells is
rebuilt periodically during the simulation. This rebuild-
ing may only happen at the beginning of time steps, and
requires a synchronization of all of the particles to the
current simulation time, a complete rebuilding of the cell
bitmasks, and finally, a re-initialization of the event pro-
cessing. Importantly, particles that are in purely external
cells are removed from the simulation and those that are
in event-driven cells are re-inserted into the event queue
scheduled for an immediate update event.

C. First-Passage Kinetic Monte Carlo (FPKMC)

An exact AED algorithm for kinetic Monte Carlo
(KMC) simulation of a collection of diffusing particles
was recently proposed in Ref. [7]. The main difference
with MD is that the equation of motion of the particles
is not a deterministic but rather a stochastic ordinary
differential equations (ODE). Additionally, reactions be-
tween particles lead to new types of events such as par-
ticles changing species, appearing or disappearing. This
complicates the implementation but is conceptually sim-
ple to incorporate into the basic AED algorithmic frame-
work.

Assuming that all of the required propagators can be
obtained in closed form and evaluated to within numer-
ical precision, the FPKMC algorithm is exact in the
sense that it simulates a trajectory that is sampled from
the correct probability distribution. For pure diffusion
with transport coefficient D, the probability ¢(Ar, At)
of finding an isolated point particle at a displacement
Ar at time At is the Green’s function for the (time-
dependent) diffusion equation, d;c = DV?¢, with no ad-
ditional boundary conditions. In three dimensions

Ar?
4DAJ '

c¢(Ar, At) = (47rAt)71/2 exp [—
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Figure 1: The partitioning of the domain into interior (I) [either event-driven (ED) or time-driven (TD)], boundary (B), and
external (E) cells in two (left) and three (right) dimensions for a polymer chain of 25 beads tethered to a hard wall. The cells
are shaded in different shades of gray and labeled in the two-dimensional illustration. The DSMC particles are also shown.

Particles that have a finite extent, such as spheres and
cubes, are easily handled by considering their centroids as
the diffusing point particles. Particles with orientational
degrees of freedom are more difficult to handle and for
now we focus on the sphere case.

Assume that the protective region P; is disjoint from
all other protective regions and the core C; is restricted to
remain within P;. For point particles, one can show that
the probability ¢(Ar, At), conditional on the fact that the
particle never leaves the interior of P;, is again a Green’s
function for the diffusion equation but with the addi-
tional boundary condition that ¢ vanish on the boundary
of P;. A single-particle propagator consists of sampling
from such a probability distribution ¢;. For simple pro-
tective regions such as cubes or spheres relatively simple
closed-form solutions for ¢; exist. The probability dis-
tribution c¢; is only valid under the assumption that a
given particle ¢ remains inside P;. From ¢; (specifically,
the flux Ve; on the boundary of P;) one can also find
the probability distribution that a particle first leaves P;
for the first time at a time ¢ and at position T, i.e., the
first-passage probability J;(f,T). This distribution can
be used to sample a time at which particle i is propa-
gated to the surface of P;, and then P; is updated.

The basic idea of the First-Passage Kinetic Monte
Carlo (FPKMC) algorithm is to protect the particles
with disjoint protective regions (an unprotected parti-
cle has P; = C;) and then use single-particle propagators
to evolve the system. Typically the protective regions
would have the same position and shape as the particle
itself but be enlarged by a certain scaling factor up > 1.
At some point in time, however, two particles i and j
will collide and thus cannot be protected with disjoint
regions. Such nearly-colliding pairs are protected by a
pair protection region P;; (e.g., two intersecting spheres,
each centered around one of the particles). A pair prop-

agator co(Ar;, Ar;, At) is used to either find the first-
passage time, that is, the time when one of the parti-
cles leaves P;;, or to propagate the pair conditional on
the fact that both particles remain inside P;;. Analyti-
cal solutions can be found by splitting the problem into
independent diffusion problems for the center of (diffu-

sional) mass rng) = (Ar; + Ar;)/2 and for the dif-
ference rgf)) = Ar; — Ar; walker (with some additional
weighting factors for unequal particles). This makes the

pair propagator cg = CéD)CéCM) a combination of two
independent propagators, céD) and CéCM),WhiCh are sim-
pler to solve for analytically. The difference-propagator
is typically more difficult to obtain analytically because
the condition for collision d;; = D;; forms an addi-
tional absorbing boundary for the difference walker, i.e.,
a collision occurs whenever the first-passage propagator
JQ(D)(f‘EJD),tN(D)) samples a point on that boundary. For
repulsive particles [4] the boundary d;; = D;; would be
reflective (zero-flux) instead of absorbing.

If the particles are cubes closed-form solutions can eas-
ily be found for the pair propagators [7], however, in gen-
eral, two-body propagators are considerably more com-
plex (and thus costly) than single-body ones. One can
in fact use approximate numerical propagators in which
the difference walker takes small hops until it gets ab-
sorbed at one of the boundaries of its protection. This
is similar to how one numerically predicts pair collisions
between non-spherical particles in MD simulations using
time-stepping for just a single pair of particles [2]. We
have implemented hopping pair propagators for spheres.
The only difference with the analytical propagators is
that the hopping trajectory may need to be reversed later
if a third particle forces a destruction of the pair protec-
tion before the scheduled pair event. We have used a
state-saving mechanism in which the state of the random



number generator at the beginning of the pair event is
saved and later restored if the predicted event is canceled.
If the predicted event does in fact occur we avoid the cost
of repeating the same hopping trajectory by saving the
final state of the walk (i.e., the position of the difference
walker) when predicting pair events.

1. AED Implementation of FPKMC

Geometric near-neighbor searches are an essential com-
ponent of the FPKMC algorithm, and the same methods
(LLCs and NNLs) as in MD are used. Cell transfers are
not explicitly predicted or processed in this algorithm,
rather, whenever the position of a particle is updated the
LLCs need to be updated accordingly. When NNLs are
used, the collision of C; with N; may be sampled exactly,
or, alternatively, the neighborhood A; may be updated
whenever C; is very close to the inner wall of N;. We say
that a particle i is protected against particle j or pair jk if
P; is disjoint from P; or Pj, similarly for pairs of parti-
cles. The goal of neighbor searches is to protect a particle
i against other particles and pairs with the largest possi-
ble P;. There is a balance between rebuilding protective
and neighborhood regions too often and propagating the
particles over smaller steps, and some experimentation
is needed to optimize the algorithm and minimize the
number of neighbor searches that need to be performed.
Whenever a protection P; is destroyed, particle 7 should
be inserted back into the event queue with t. = ¢, p = oo,
v = 0, so that it is protected again right away.

The main AS steps in Algorithm 1 for FPKMC simu-
lations are:

e Steps 2 and 3 may involve the processing of particle
birth processes, where a particle of a given species is
introduced into the system to model external fluxes.
These are typically assumed to occur as a Poisson
process and therefore the time to the next birth is
simply an exponentially distributed number, with
the total birth rate given as the sum of the birth
rates for each of the species. The birth process may
be spatially homogeneous or the rate may depend
on the cell in which the birth occurs. The newborn
particles are inserted into the queue with p = 0,
v=—1.

e Step 6 consists of sampling r; from ¢; or J; and typ-
ically also rebuilding P; as in step 8a. For v > 0, a
particle decay reaction may be processed, i.e., parti-
cle ¢ may disappear to produce zero or more “prod-
uct” particles, which are inserted into the queue
with p=0, v = —1.

e Step 7 consists of sampling positions r; and r; from
the appropriate distribution:

— If the event is the decay of 7 or j, then ch)
and céCM) are sampled, and then the decay

reaction is processed.
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— If the event is the collision of ¢ and j, then

ASCM and J{P) are sampled, and the appro-

priate reaction (e.g., annihilation, coalescence,
chemical reaction, etc.) is processed. This
may destroy ¢ and/or j and/or create new
particles to be inserted into the queue (with
p=0,v=-1).

— If the event is the dissolution of the pair 77,

then either chM) and JQ(D)7 or céD) and J2(CM)
are sampled, particle j is inserted back into
the queue with p = 0, v = 0, and P; is updated
as in step 8a (this may protect the particles 4
and j as a pair again).

e Step 8a is the primary type of event in step 8 and
consists of updating P;. The processing of such
“virtual” collisions with P; consists of searching for
the nearest protection region P; or P;, among the
neighbors of particle ¢ (either using LLCs or NNLs).
Particle 7 is then protected against that nearest
neighbor. If this makes P; too small then parti-
cle j or pair jk is propagated to time ¢ and P; or
Pji. destroyed. Finally, P;, P;; or Py, is constructed
again, depending on the exact local geometry.

e Step 9 consists of sampling event times from the
appropriate distributions:

— In step 9a J; is sampled.

— In step 9b an exponentially distributed time is
generated based on the decay rates for species
S;-

— In step 9c¢ Jo is sampled, as well as a decay
time for each of the two particles, and the ear-
liest of the three times is selected.

2. Time-Driven Handling

Under certain conditions event-driven handling of dif-
fusion may become inefficient or cumbersome. For exam-
ple, since all protections are either of single particles or
pairs of particles, very small protective regions need to be
used in very dense clusters of particles where there may
be many nearly colliding triplets of particles. The hops
taken by the asynchronous algorithm will then become
just as small as what a time-driven (approximate) algo-
rithm would use, and it will therefore be more efficient
to use time-stepping for those particles (and thus avoid
the cost of event queue operations and also simplify over-
lap search). Additionally, some particles or boundaries
(e.g., grain boundaries) may have complex shapes and
thus their diffusion or interactions with other particles
may be difficult to treat analytically (even for spherical
particles it has proven that exact pair propagators are dif-
ficult to implement). As another example, tightly-bound



collections of particles (clusters) may act as a single par-
ticle that has complex internal structure and dynamics
(relaxation).

Just as for the SEDMD algorithm, one can add a time-
driven component to the asynchronous event-driven FP-
KMC algorithm. Particles that are time-driven do not
need to be protected against each other, instead, they
may be unprotected or they can be protected only against
event-driven particles. Time-driven particles whose pro-
tective regions overlap form a cluster and should be
treated using a synchronous algorithm (this cluster may
include all time-driven particles). In diffusion problems
it is often the case that different species have widely dif-
fering diffusion coefficients and therefore very different
time-steps will be appropriate for different species. To
solve this problem, one can use the n-fold (BKL) syn-
chronous event-driven algorithm inside each cluster. In
this algorithm, at each event (hop) only particles of a
single species hop by a small but non-negligible distance
and the rest remain in place, and more mobile particles
are hopped more frequently (with the correct relative fre-
quency) than the less mobile ones.

Note that a cluster may freely take hops up to the
time of the next event in the queue without stopping
and modifying the event queue, since it is known that
those hops will not be pre-emptied by another event. In
some situations this may improve efficiency by reducing
the number of heap operations and also increasing the
locality of the code by focusing multiple events on the
same (cached) small group of particles.

IV. DISCUSSION

In this section we focus on some of the difficulties in
deploying AED algorithms in the simulation of realistic
systems. The best-known difficulty is the parallelization
of AED algorithms [13], which we do not discuss here
due to space limitations. Instead, we will focus on the
difficulties that make even serial simulations challenging.
It is important to point out that for problems involving
hard particles, that is, particles interacting with discon-
tinuous potentials, event-driven approaches are the only
exact algorithm. Time-driven algorithms always make
an error due to the finite size of the time step At, and
typically At must be much smaller than the actual time
step between events in order to guarantee that no events
are missed.

The most involved aspect of implementing an AED al-
gorithm for a particular problem is the need for analytic
solutions for various one- and two-body propagators or
event predictions. For EDMD, the difficulty is with pre-
dicting the time of collision of two moving hard particles.
For hard spheres, this can be done analytically relatively
easily (but numerical care must be taken [18]). When
orientational degrees of freedom are involved, however, a
time stepped ODE-like methodology is needed since an-
alytical solutions are difficult to obtain [2]. This makes
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collision prediction much more difficult to implement in
a numerically-stable way and also much more costly. In
FPKMC, there is a need to analytically construct the
probability distributions ¢y, cs, J; and Jy, or at least
to find a way to efficiently sample from them. These
distributions are Green’s functions for a time-dependent
diffusion equation inside regions such as spheres, cubes,
spherical shells, intersection of two spheres, or intersec-
tion of a cone and a sphere. For time-independent prob-
lems such solutions can be constructed more easily, but
for time-dependent problems even the simple diffusion
equation poses difficulties (analytical solutions are typ-
ically infinite series of special functions in the Laplace
domain). Different boundary conditions such as reac-
tive surfaces require even more analytical solutions and
tailor-made propagators. The handling of more complex
equations of motion such as the full Langevin equation
(which combines convection and diffusion) has not even
been attempted yet.

This makes designing a more general-purpose AED
program virtually impossible. This is to be contrasted
to, for example, time-driven MD where different interac-
tion potentials can used with the same time integrator.
In general, time stepped approaches are the only known
way to solve problems for which analytical solutions do
not exist, including two-body problems in the case of
EDMD or FPKMC. The algorithm used in Ref. [2] to
predict the time of collision for pairs of hard ellipsoids
combines a time-driven approach with the event-driven
one. It does this without trying to combine them in an
intelligent way to avoid wasted computation (such as re-
peated trial updates of the position of a given particle
as each of its neighbors is processed). We believe that
such an intelligent combination will not only provide a
more general AED algorithm, but also make the algo-
rithm more robust numerically.

More generally, combining event-driven with time-
driven algorithms is important for efficiency (at a certain
sacrifice in accuracy). When the time step is large enough
so that many events occur within one time step one can
use the event-driven algorithm in-between the updates in
the time-driven approach [5, 18, 27]. When the time step
is small, however, events occur sparingly only in some of
the time steps, and a different methodology is needed.
We proposed to add a new kind of time step event that
indicates propagation over a small time step (e.g., for the
set of particles in pure DSMC cells). The essential ad-
vantage of event-driven algorithms is that they automat-
ically adjust to the time scale at hand, that is, that they
take the appropriate time step without any additional
input. The real challenge is to use time stepping in an
event-driven framework in which the time step is adjusted
accordingly to not waste computation, while still keeping
the approximations controlled. We have described such
a framework for the SEDMD and FPKMC algorithms.
The merging of discrete-event and continuous-time mod-
els has also been formalized in a rather general simulation
framework [28].



Another unexplored or barely explored area is that
of using controlled approximations in AED algorithms.
Approximate event-driven algorithms have been used to
handle a variety of processes, however, these often use un-
controlled approximations. The approximate algorithms
may reproduce the required (macroscopic) physical av-
erages just as well as the exact algorithm would, how-
ever, controls are necessary to validate the simulations.
Examples of approximations that may be useful include
ignoring unlikely interactions between certain particles,
approximate solutions instead of exact propagators (such
as expansions around the mean behavior), etc.

Almost all of the AED particle algorithms to date have
focused on single-particle or pair events. This is possible
to do for hard particles because exact triple collisions are
extremely unlikely to occur. However, for more realistic
models, or when approximations are made, events involv-
ing clusters of particles may need to be considered. For
example, a cluster of particles may evolve as a strongly-
coupled (e.g., chemically bonded) unit while interacting
with other (e.g., freely diffusing) single particles or clus-
ters. An additional assumption in most AED particle
algorithms is that events affect only one or two particles,
so that the event predictions of the majority of particles
remain valid after processing an event. In some situa-
tions, however, there may be global degrees of freedom
and associated events that affect all of the particles. For
example, in MD there may be a macroscopic strain rate
that affects all of the particles, since all of the event pre-
dictions are invalidated when the strain rate changes. In
principle the strain rate is coupled back to each of the
particles, so that every particle collision also changes the
strain rate (albeit by a small amount). In time-driven
MD this is no problem since the evolution of the sys-
tem is synchronous and the strain rate evolves together
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with the particles, however, in event-driven MD such cou-
pling between all of the particles makes it impossible to
schedule events efficiently. In this work we restricted our
attention to problems with only short-range interactions
between the particles. However, many problems of inter-
est include long-range (e.g., electrostatic) interactions as
well, and these interactions effectively couple the motions
of all of the particles.

Finally, multi-algorithm and/or multi-scale combina-
tions including an AED component have not been ex-
plored to our knowledge. As an example, consider
the simulation of nano-structures during epitaxial film
growth [8]. At the smallest scales, time-driven (first-
principles or classical) MD is needed in order to study
the attachment, detachment, or hopping of individual
particles or clusters. Once the rates for these processes
are known, lattice-based KMC can be used to evolve the
structure more quickly without simulating the detailed
(vibrational) motion of each atom. At larger scales, the
continuum-based FPKMC algorithm we described can be
used to propagate atoms over large distances in lower-
density regions (across flat parts of the surface). Fi-
nally, a time-driven continuum diffusion partial differ-
ential equation solver can be used to model processes at
macroscopic length scales. Such ambitious investigations
are a challenge for the future.
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