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Abstract

A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the
simulation of polymer chains suspended in a solvent. SEDMD combines Event-Driven Molecular
Dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are
represented as chains of hard spheres tethered by square wells and interact with the solvent particles
with hard core potentials. The algorithm uses EDMD for the simulation of the polymer chain and
the interactions between the chain beads and the surrounding solvent particles. The interactions
between the solvent particles themselves are not treated deterministically as in EDMD, rather,
the momentum and energy exchange in the solvent is determined stochastically using DSMC. The
coupling between the solvent and the solute is consistently represented at the particle level retaining
hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations
of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The
SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer
chain tethered to a hard wall subjected to uniform shear. SEDMD closely reproduces results
obtained using traditional EDMD simulations with two orders of magnitude greater efficiency.

Results question the existence of periodic (cycling) motion of the polymer chain.



I. INTRODUCTION

Driven by nanoscience interests, it has become necessary to develop tools for hydrody-
namic calculations at the atomistic scale [1-5]. Of particular interest is the modeling of
polymers in a flowing “good” solvent for both biological (e.g., cell membranes) and engineer-
ing (e.g., micro-channel DNA arrays) applications [4, 6]. The most widely studied polymer
models are simple linear bead-spring; freely-jointed rods; or worm-like chains. Such models
have been parameterized for important biological and synthetic polymers. Much theoretical,
computational, and experimental knowledge about the behavior of these models has been
accumulated for various representations of the solvent. However, the multi-scale nature of
the problem for both time and length is still a challenge for simulations of reasonably large
systems over reasonably long times. Furthermore, the omission in these models of the ex-
plicit coupling between the solvent and the polymer chain(s) requires the introduction of
adjustable parameters (e.g., friction coefficients) to be determined empirically. The algo-
rithm presented here overcomes this deficiency for a linear polymer chain tethered to a hard
wall and subjected to a simple linear shear flow [7-11]. Of particular interest is the long-time
dynamics of the polymer chain [7, 9, 10, 12, 13] and any effects of the polymer motion on
the flow field.

Brownian dynamics is one of the standard methods for coupling the polymer chains to the
solvent [14, 15]. The solvent is only implicitly represented by a coupling between the poly-
mer beads and the solvent in the form of stochastic (white-noise) forcing and linear frictional
damping. The flow in the solvent is not explicitly simulated, but approximated as a small
perturbation based on the Oseen tensor. This approximation is only accurate at large sep-
arations of the beads and at sufficiently small Reynold’s numbers. Even algorithms that do
model the solvent explicitly via Lattice Boltzmann (LB) [16], incompressible (low Reynolds
number) CFD solvers [17-19], or multiparticle collision dynamics [20-23], typically involve
phenomenological coupling between the polymer chain and the flowing fluid in the form of
a linear friction term based on an effective viscosity. Furthermore, solvent fluctuations in
the force on the polymer beads are often approximated without fully accounting for spatial
and temporal correlations. Finally, the reverse coupling of the effect of the bead motion on
the fluid flow is either neglected or approximated with delta function forcing terms in the

continuum fluid solver [24]. More fundamentally, continuum descriptions of flow at micro



and nanoscales are known to have important deficiencies [1, 3] and therefore it is impor-
tant to develop an all-particle algorithm that is able to reach the long times necessary for
quantitative evaluation of approximate, but faster, algorithms.

The most detailed (and expensive) modeling of polymers in flow is explicit molecular dy-
namics (MD) simulation of both the polymer (solute) and the surrounding solvent [11, 25].
Multi-scale algorithms have been developed to couple the MD simulation to Navier-Stokes-
based computational fluid dynamics (CFD) calculations of the flow field [8]. However, the
calculation time still remains limited by the slow molecular dynamics component. Thus
the computational effort is wasted on simulating the structure and dynamics of the sol-
vent, particles, even though real interest lies in the polymer structure and dynamics, and
their coupling to the fluid flow. Our algorithm replaces the deterministic treatment of the
solvent-solvent interactions with a stochastic momentum exchange operation, thus signifi-
cantly lowering the computational cost of the algorithm, while preserving microscopic details
in the solvent-solute coupling.

Fluctuations drive the polymer motion and must be accurately represented in any model.
Considerable effort has been invested in recent years in including fluctuations directly into the
Navier-Stokes (NS) equations and the associated CEFD solvers [5, 17, 26]. Such fluctuating
hydrodynamics has been coupled to molecular dynamics simulations of polymer chains [19],
but with empirical coupling between the beads and the fluid as discussed above. To avoid
the empirical coupling, the solvent region could be enlarged by embedding the atomistic
simulations of the region around the polymer chain in a fluctuating hydrodynamics region.
The bidirectional coupling between the continuum and particle regions has to be constructed
with great care so that both fluxes and fluctuations are preserved [27]. A well-known problem
with such multiscale approaches is that the finest scale (atomistic simulation) can take up
the majority of computational time and thus slow down the whole simulation. By using
DSMC the cost of the particle region can be made comparable to that of the continuum
component.

The Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm presented here
combines Event-Driven Molecular Dynamics (EDMD) for the polymer particles with Direct
Simulation Monte Carlo (DSMC) for the solvent particles. Note that our algorithm is similar
to a recent algorithm developed for soft interaction potentials combining time-driven MD

with multiparticle collision dynamics [23]. In SEDMD, the polymers are represented as



chains of hard spheres tethered by square wells. The solvent particles are realistically smaller
than the beads and are considered as hard spheres that interact with the polymer beads
with the usual hard-core repulsion. The algorithm processes true (deterministic, exact)
binary collisions between the solvent particles and the beads, without any approximate
coupling or stochastic forcing. However, the solvent particles themselves do not directly
interact with each other, that is, they can freely pass through each other as for an ideal
gas. Deterministic collisions between the solvent particles are replaced with momentum-
and energy-conserving stochastic DSMC collisions between nearby solvent particles. This
gives realistic hydrodynamic behavior of the solvent similar to that of a true hard-sphere
liquid. However, the DSMC fluid cannot directly be compared to an EDMD fluid because
the two fluids are different. Notably, the internal structure and the associated non-ideal
equation of state (EOS) of the hard-sphere liquid is lost when using DSMC. We are currently
developing DSMC variants that produce more realistic fluid behavior, in particular, a non-
trivial structure factor and a thermodynamically-consistent EOS.

The fundamental ideas behind our algorithm are described next, and further details are
given in Section III. Section V gives results from the application of the algorithm to the

tethered polymer problem, and some concluding remarks are given in Section VI.

II. HYBRID COMPONENTS

In this section we briefly describe the two components of the SEDMD algorithm: The
stochastic handling of the solvent and the deterministic handling of the solute particles.
These two components are integrated (i.e., tightly coupled) into a single event-driven algo-

rithm in Section III.

A. Solvent DSMC Model

The validity of the incompressible Navier-Stokes continuum equations for modeling micro-
scopic flows has been well established down to length scales of 10 — 100nm [3]. However,
there are several issues present in microscopic flows that are difficult to account for in mod-
els relying on a purely PDE approximation. Firstly, it is not a prior: obvious how to treat

boundaries and interfaces well, so as account for the non-trivial (possibly non-linear) cou-



pling between the flow and the microgeometry. Furthermore, fluctuations are not typically
considered in Navier-Stokes solvers, and they can be very important at instabilities [28] or
in driving polymer dynamics. Finally, since the grid cell sizes needed to resolve complex
microscopic flows are small, a large computational effort (comparable to DSMC) is needed
even for continuum solvers. An alternative is to use particle-based methods, which are ex-
plicit and unconditionally stable and rather simple to implement. The solvent particles are
directly coupled to the microgeometry, for example, they directly interact with the beads of
a polymer. Fluctuations occur naturally with the correct spatio-temporal correlations.
Several particle methods have been described in the literature, such as MD [25], dissipative
particle dynamics (DPD) [29], and multi-particle collision dynamics (MPCD) [2, 23]. Our
method is similar to MPCD (also called stochastic rotation dynamics or the Malevanets-
Kapral method), and in fact, both are closely related to the Direct Simulation Monte Carlo
(DSMC) algorithm of Bird [30]. The key idea behind DSMC is to replace deterministic
interactions between the particles with stochastic momentum exchange (collisions) between

nearby particles. Time-driven (traditional) DSMC involves the following steps:

Advection Every particle i is propagated ballistically by a fixed time step At, r; « r; +
AtVZ‘.

Sorting Particles are sorted into cells, each containing a few (e.g., 2-10) particles.

Collision In each cell, a certain number N,,; = I' At of random pairs of particles are chosen
to undergo energy- and momentum-conserving stochastic collisions. The collision rate I'..

and the pairwise probability distributions are chosen based on kinetic theory.

Formally, DSMC can be seen as a method for solving the Boltzmann transport equation
for a low-density gas, however, it is not limited to gas flows [31-33]. Our purpose for using
DSMC is as a replacement for expensive MD, preserving the essential hydrodynamic “solvent”
properties: local momentum conservation, and linear momentum exchange on length scales
comparable to the particle size, and a similar fluctuation spectrum.

In the multiparticle collision variant of this algorithm originally proposed by Kapral, the
traditional DSMC collection of binary collisions is replaced by a multi-particle collision in
which the velocities of all particles in the cell are rotated by a random amount around the

average velocity [2, 23]. This change improves efficiency but at the cost of some artificial



effects such as loss of Galilean invariance. These problems can be corrected and the method
has been successfully used in modeling polymers in flow by including the beads, considered
as (massive) point particles, in the stochastic momentum exchange step [20, 22, 34].

It is important to note that the DSMC fluid is not a true hard-sphere liquid, as would
be simulated by using full MD. Notably, the DSMC fluid has no internal structure and has
an ideal gas equation of state (EOS), and is thus very compressible. For subsonic flows
this compressibility does not qualitatively affect the results as the DSMC fluid will behave
similarly to an incompressible liquid, however, the (Poisson) density fluctuations in DSMC
are significantly larger than those in realistic liquids. Furthermore, the speed of sound is
small (comparable to the average speed of the particles) and thus subsonic (Mach number
less than one) flows are limited to relatively small Reynolds numbers *. The Consistent
Boltzmann Algorithm (CBA) [32, 33|, as well as algorithms based on the Enskog equation
[35, 36], have demonstrated that DSMC fluids can have dense-fluid compressibility. A similar
algorithm was recently constructed for MPCD [37]. We are currently developing several
thermodynamically-consistent variants of DSMC that give fluids with a non-ideal EOS and

will report our findings in future work.

B. Polymer MD Model

Polymer chains in a solvent are often modeled using continuous pair potentials and time-
driven MD (TDMD), in which particles are synchronously propagated using a time step
At, integrating the equations of motion along the way. Typically the polymer is assumed
to be in a good solvent, that is, that the effective interaction between polymer beads is
repulsive and thus the polymer chain does not collapse to a globule but is extended. The
polymer beads are represented as spherical particles that interact with other beads and
solvent particles with short-range repulsive pair potentials, such as the positive part of the
Lennard-Jones potential. Additionally, beads are connected via finitely-extensible FENE or

worm-like springs in order to mimic chain connectivity and elasticity [25]. Finally, stochastic

! For a low-density gas the Reynolds number is Re = M /K, where M = v,y /c is the Mach number, and
the Knudsen number K = A/L is the ratio between the mean free path A and the typical obstacle length
L. This shows that subsonic flows can only achieve high Re flows for small Knudsen numbers, i.e., large
numbers of DSMC particles.



forces may be present to represent the solvent.

The time steps required for integration of the equations of motion in the presence of the
strongly repulsive forces is small and TDMD cannot reach long time scales even after paral-
lelization. An alternative is to use hard spheres instead of soft particles, allowing replacement
of the FENE springs with square-well tethers, thus avoiding the costly force evaluations in
traditional MD. Hard sphere MD is most efficiently performed using event-driven molecular
dynamics (EDMD) [38-41]. If the detailed structure and energetics of the liquid is not cru-
cial, such EDMD algorithms can be just as effective as TDMD ones but considerably faster.
The essential difference between EDMD and TDMD is that EDMD is asynchronous and
there is no time step, instead, collisions between hard particles are explicitly predicted and
processed at their exact (to numerical precision) time of occurrence. Since particles move
along simple trajectories (straight lines) between collisions, the algorithm does not waste
any time simulating motion in between events (collisions).

Hard-sphere models of polymer chains have been used in EDMD simulations for some time
[40, 42, 43]. These models typically involve, in addition to the usual hard-core exclusion,
additional square well interactions to model chain connectivity. The original work by Alder
et al. on EDMD developed the collisional rules needed to handle arbitrary square wells [38].
Infinitely high wells can model tethers between beads, and the tethers can be allowed to be
broken by making the square wells of finite height, modeling soft short-range attractions.
Recent studies have used square well attraction to model the effect of solvent quality [41].
Even more complex square well models have been developed for polymers with chemical
structure and it has been demonstrated that such models, despite their apparent simplicity,
can successfully reproduce the complex packing structures found in polymer aggregation
[42, 43]. Recent work on coupling a Kramer bead-rod polymer to a Navier Stokes solver has
found that using hard rods instead of soft interactions not only rigorously prevents rod-rod
crossing, but also achieves a larger time step, comparable to the time step of the continuum
solver [21].

This study is focused on the simplest model of a polymer chain, namely, a linear chain
of N, particles tethered by unbreakable bonds. This is similar to the commonly-used freely

jointed bead-spring FENE model model used in time-driven MD. The length of the tethers



has been chosen to be 1.1D,, where D, is the diameter of the beads 2. The implementation
of square-well potentials is based on the use of near-neighbor lists (NNLs) in EDMD, and
allows for the specification of square-well interactions for arbitrary pairs of near neighbors.
In particular, one can specify a minimal Ly > D, and maximal distance LJ"** > L
for arbitrary pairs of near neighbors. Here the maximal distance L;*** represents the tether
length between neighboring beads. A value L7 > D, can be used to emulate chain rigidity

(i.e., a finite persistence length) by using second nearest-neighbor interactions between chain

beads.

III. DETAILS OF HYBRID ALGORITHM

In this section the hybrid EDMD/DSMC algorithm, which we name Stochastic EDMD
(SEDMD), is described in detail. Only a brief review of the basic features of EDMD is
given and the focus is on the DSMC component of the algorithm and the associated changes
to the EDMD algorithm described in detail in Ref. [39]. A more general description of
asynchronous event-driven particle algorithms is given in Ref. [44].

Asynchronous event-driven (AED) algorithms process a sequence of events (e.g., collisions)
in order of increasing event time t.. The time of occurrence of events is predicted and the
event is scheduled to occur by placing it an event queue. The simulation iteratively processes
the event at the head of the event queue, possibly scheduling new events or invalidating old
events. One impending event per particle 7, 1 < i < N, is scheduled to occur at time ¢, with
partner p (e.g., another particle j). The particle position r; and velocity v; are only updated
when an event involving particle 7 is processed and the time of last update ¢; is recorded.
We will refer to this procedure as a particle update.

We note that traditional synchronous time-driven (STD) algorithms with a time step At
are a trivial variant of the more general AED class. In particular, in an STD algorithm
events occur at equispaced times and each event is a time step requiring an update of all of
the particles. Our SEDMD algorithm processes a mixture of events involving single particles
or pairs of particles with time steps that involve the simultaneous (synchronous) update of

a large collection of particles.

2 Note that the hard-sphere model rigorously prevents chain crossing if the tether length is less than 2D,

in two dimensions and \/§Db in three dimensions.



Every particle ¢ belongs to a certain specie s;. We focus on a system in which a large
fraction of the particles belong to a special specie spga¢ representing DSMC particles (e.g.,
solvent molecules). These DSMC particles do not interact with each other via hard-core
repulsion, but they do interact with particles of other species. We focus on the case when
the non-DSMC particles are localized in a fraction of the simulation volume, while the rest
of the volume is filled with DSMC particles. This will enable us to treat the majority of
DSMC particles sufficiently far away from non-DSMC particles more efficiently than those
that may collide with non-DSMC particles.

Before describing the SEDMD algorithm in detail, we discuss the important issue of effi-

ciently searching for nearby pairs of particles.

A. Near Neighbor Searches

When predicting the impending event of a given particle ¢, the time of potential collision
between the particle and each of its nearby neighbor particles is computed [39, 44]. The
DSMC algorithm also requires defining neighbor particles, that is, particles that may col-
lide stochastically during the DSMC collision step. For efficiency, geometric techniques are
needed to make the number of neighbors of a given particle O(1) instead of O(N).

In SEDMD we use the so-called linked list cell (LLC) method for neighbor searching in
both the EDMD and DSMC components. The simulation domain is partitioned into N
cells as close to cubical as possible. Each particle ¢ stores the cell ¢; to which its centroid
belongs, and each cell ¢ stores a list L. of all the particles it contains, as well as the total
number of particles N, in the cell. For a given interaction range, neighbors are found by
traversing the lists of as many neighboring cells as necessary to ensure that all particles
within that interaction range are covered. In traditional DSMC, only particles within the
same cell are considered neighbors and thus candidates for collision. There are also variants
of DSMC in which particles in nearby cells are included in order to achieve a non-ideal
equation of state [35, 36]. Such variants can be used in SEDMD without any changes to the
EDMD component of the algorithm.



1. Cell Bitmasks

In addition to the list of particles L., each cell ¢ stores a bitmask M. consisting of Ny 1o >
N + 4 bits (bitfields). These bits may be one (set) or zero (not set) to indicate certain
properties of the cell, specifically, what species of particles the cell contains, whether the cell
is event or time driven, and to specify boundary conditions. In order to distinguish the cells
that contain non-DSMC particles from those that contain only DSMC particles, bit « is set
if the cell may contain a particle of specie v. The bit is set whenever a particle of specie ~
is added to the cell, and all of the masks are reset and then re-built (refreshed) periodically.
When performing a neighbor search for a particle ¢, cells not containing particles of species
that interact with specie s; are easily found by OR’ing the cell masks with a specie mask, and
are simply skipped. This speeds up the processing of DSMC particles since cells containing
only DSMC particles will be skipped without traversing their lists of particles.

In SEDMD we will also need to distinguish those cells that are nearby non-DSMC particles,
that is, that contain particles within the interaction range of some non-DSMC particle. Such
cells will be treated using a fully event-driven (ED) scheme, while the remaining cells will be
treated using a time-driven or mixed approach. We use one of the bits in the bitmasks, bit
YED, to mark event-driven (ED) cells. Specifically, bit vgp is set for a given cell whenever
the cell is traversed during a neighbor search for a non-DSMC particle. This scheme correctly
masks the cells by only modifying the neighbor search routine (iterator) without changing
the rest of the algorithm, at the expense of a small overhead. We also mark the cells near
hard-wall boundaries as ED cells. Cell bitmasks should be cleared and rebuilt periodically
so as to prevent the fraction of ED cells from increasing. As will be seen shortly, it is
necessary to introduce at least one “sticky” bit v4 that has memory and is not cleared when

cell bitmasks are refreshed. This bit will mark unfilled cells, as explained in Section III C.

2. Near Neighbor Lists

The cell size should be tailored to the DSMC portion of the algorithm and can become
much smaller than the size of some of the non-DSMC particles. The LLC method becomes
inefficient when the interaction range becomes significantly larger than the cell size because

many cells need to be traversed. In this case the LLC method can be augmented with
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the near-neighbor list (NNL) method, and in particular, the bounding sphere complexes
(BSCs) method, as described in detail for nonspherical hard particles in Ref. [39]. We have
implemented the necessary changes to the algorithm to allow the use of NNLs and BSCs (in
addition to LLCs), and we used NNLs in our simulations of polymer chains in solution. The
use of BSCs is not necessary for efficient simulations of polymer solutions if the size of the
polymer bead is comparable to the size of the cells, which is the case for the simulations we
report. We do not describe the changes to the algorithm in detail; rather, we only briefly
mention the essential modifications.

For the purposes of DSMC it is important to maintain accurate particle lists L. for all cells
¢, so that it is known which particles are in the same cell at any point in time. Therefore,
transfers of particles between cells need to be predicted and processed even though this is
not done in the NNL algorithm described in Ref. [39]. Near-neighbor lists are only built and
maintained for DSMC particles that are in event-driven cells, essentially exactly as described
in Ref. [39]. For a DSMC particle ¢ that is not in an ED cell ¢; we consider the smallest
sphere enclosing cell ¢; to be the (bounding) neighborhood (see Ref. [44]) of particle ¢ and
only update the (position of the) neighborhood when the particle moves to another cell.
This ensures that neighbor searches using the NNLs are still exact without the overhead of

predicting and processing NNL update events for the majority of the DSMC particles.

B. The SEDMD Algorithm

We have developed an algorithm that combines time-driven DSMC with event-driven MD
by splitting the particles between ED particles and TD particles. Roughly speaking, only
the particles inside event-driven cells are treated asynchronously as in EDMD. The rest of
the particles are DSMC particles that are not even inserted into the event queue. Instead,
they are handled using a time-driven (TD) algorithm very similar to that used in traditional
DSMC.

It is important to note that the division of the DSMC particles between ED and TD
handling is dynamic and does not necessarily correspond to the partitioning of the cells into
ED and TD cells. As non-DSMC particles move, time-driven cells may be masked as event-
driven. This does not immediately make the DSMC particles in such cells event-driven.

Rather, time-driven DSMC particles are moved into the event queue only when a collision
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with a non-DSMC particle is scheduled for them, when they move into a TD cell following a
time step, or when restarting the event handling. Event-driven particles are removed from
the event queue when they undergo cell transfer events into time-driven cells.

It is also possible to implement DSMC as a fully asynchronous event-driven (AED) al-
gorithm and thus avoid the introduction of an external time scale through the time step
At. The fully asynchronous algorithm introduces a novel type of event we term stochastic
(DSMC) collisions, and it is discussed in more detail in Appendix A. Asynchronous process-
ing has a few advantages over the traditional (synchronous) time-driven approach, notably,
no errors due to time discretization [45] and improved efficiency at low collision rates. For
high densities the collision rate is high enough that the computational cost is dominated
by collision processing, and the asynchronous algorithm is actually less efficient due to the
overhead of event queue operations. Additionally, time-driven handling has certain impor-
tant advantages in addition to its simplicity, notably, the synchrony of the DSMC portion
of the algorithm allows for parallelization and easy incorporation of algorithmic alternatives

such as multi-particle or multi-cell collisions, adaptive open boundary conditions, etc.

1. FEvent Handling

The SEDMD algorithm handles events in order of increasing time of occurence, just as in

EDMD. The main types of events in the SEDMD algorithm are:

Update Move particle ¢ to the current simulation time ¢ if ¢; < t.

Transfer Move particle ¢ from one cell to another when it crosses the boundary between
two cells. This may also involve a translation by a multiple of the lattice vectors when

using periodic BCs.

Hard-core collision Collide a particle ¢ with a boundary such as a hard wall or another

particle j with which it interacts.

Tether collision Bouncing of a pair of tethered particles in a polymer chain when the tether

stretches. This collision is processed exactly like usual hard-particle collisions [38, 40].

Time step Move all of the time-driven particles by At and process stochastic collisions

between them.

12



The position r; and time t; as well as the impending event prediction of particle ¢ are updated
whenever an event involving the particle is processed.

Both the event-driven and the time-driven DSMC algorithms process stochastic binary
trial collisions. Processing a trial collision consists of randomly and uniformly selecting a
pair of DSMC particles ¢ and j that are in the same cell. For hard spheres in the low-density

limit, the probability of collision for a particular pair ij is proportional to the relative velocity

rel
ij

vfjel, and therefore the pair ij is accepted with probability v1 </ U;Iellax. If a pair is accepted
for collision than the velocities of ¢ and j are updated in a random fashion while preserving
energy and momentum [30]. If a particle ¢ that is in the event queue participates in an actual
stochastic collision, then that particle is updated to time trg, its previous event prediction
is invalidated and an immediate update event is scheduled for ¢. If particle ¢ had a previous
scheduled event with a third-party particle £, an immediate update should also be scheduled

for particle k.

2. Time Step Fvents

The hybrid ED/TD algorithm introduces a new kind of time step event. This event is
scheduled to occur at times trs = nAt, where n € Z is an integer. When such an event is
processed, all of the DSMC particles not in the event queue are moved ? to time 75 and are
then re-sorted into cells. Note that the ED particles are already correctly sorted into cells.
Particles that change from ED to TD cells and vice-versa are removed or inserted into the
event queue accordingly.

Next, in each cell I' At trial DSMC collisions are performed, where

Ne(Ne —1
Fc: C’( C’V )Uvmax (1)

is the DSMC collision rate. Here o = 47 R%4,,c in three dimensions and ¢ = 4Rpgyc in
two dimensions is the collisional cross-section, V. is the volume of the cell, and v,,,, is an

upper bound for the maximal particle velocity .

3 Note that this update may involve moving some particles by less than At since the time of the last update

for such particles does not have to be a time step event but could be, for example, a cell transfer.
4 More precisely, 2Umqz is an upper bound on the maximal relative velocity between a pair of particles.

In our implementation we maintain the maximal encountered particle velocity v,,q. and update it after

every collision and also reset it periodically.
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In order to ensure correctness of the AED algorithm, a TD particle must not move by more
than a certain distance Al,,,, when it undertakes a time step. Otherwise, it may overlap
with a non-DSMC particle that could not have anticipated this and scheduled a collision
accordingly. Specifically, recall that the event-driven cells are marked whenever a neighbor

search is performed for a non-DSMC particle. We use

Almax = (wEDLc - DDSMC>/27

where the masking width wgp is the minimal number of cells covered by any neighbor
search in any direction (typically one or two), L. is the (minimal) cell length, and Dpgpc
is the diameter of the DSMC particles. Any DSMC particle whose velocity exceeds v, =
Al /At is inserted into the event queue at the end of a time step, and similarly, any
particles that would have been removed from the event queue are left in the queue if their
velocity exceeds the maximum safe velocity. Typically, only a small (albeit non-zero) fraction
of the DSMC particles falls into this category and the majority of the particles that are not
in ED cells are not in the event queue. In fact, we choose the time step to be as large as
possible while still keeping the number of dangerously fast DSMC particles negligible. This
typically also ensures that DSMC particles do not jump over cells from one time step to the

next.

C. Adaptive Open Boundary Conditions

In three dimensions, a very large number of solvent particles is required to fill the simulation
domain. The majority of these particles are far from the polymer chain and they are unlikely
to significantly impact or be impacted by the motion of the polymer chain. It therefore
seems reasonable to approximate the behavior of the solvent particles sufficiently far away
from the region of interest with that of a quasi-equilibrium ensemble. In this ensemble the
positions of the particles are as in equilibrium and the velocities follow a local Maxwellian
distribution whose mean is the macroscopic local velocity. These particles do not need to be
simulated explicitly, rather, we can think of the polymer chain and the surrounding DSMC
fluid as being embedded into an infinite reservoir of DSMC particles which enter and leave
the simulation domain following the appropriate distributions.

Such open (Grand Canonical) boundary conditions (BC) are often used in multi-scale

14



(coupled) simulations. It is not trivial to implement them when coupling the “reservoir” to
an MD simulation, especially at higher densities. An example of an algorithm that achieves
such a coupling for soft-particle systems is USHER, [8]. It is also non-trivial to account
for the velocity distribution of the particles entering the simulation domain [46], as would
be needed in a purely event-driven algorithm in which particles are inserted at the surface
boundary of the domain. However, the combination of a partially time-driven algorithm
and an unstructured (ideal gas) DSMC fluid makes it very easy to implement open BCs by
inserting DSMC particles in the cells surrounding the simulation domain only at time-step

events, based on very simple distributions.

1. Cell Partitioning

For the purposes of implementing open BCs, we classify the cells as being interior, bound-
ary, and external cells. Our implementation uses bits in the cell bitmasks to mark a cell
as being event-driven (bit ygp), boundary (bit vp), or external (bit vp). The different

categories of cells are defined as:

Interior cells are those that are in the vicinity of non-DSMC particles, specifically, cells
that are within a window of half-width w;,; > wgp cells around the centroid of a non-
DSMC particle. The interior cells are divided into event-driven and time-driven and are

handled as described previously.

Boundary cells surround the interior cells with a layer of cells of thickness wg > 1 cells,
and they represent cells in which particles may be inserted during time step events. If
a boundary or external cell is marked as an event-driven cell due to motion of the non-
DSMC particles, then the simulation is aborted with an error. This ensures that particle

insertions cannot lead to overlaps with non-DSMC particles.

External cells are non-interior cells that are not explicitly simulated, rather, they provide
a boundary condition around the interior and boundary cells. This layer must be at least
wp cells thick, and the cells within a layer of wg cells around the boundary cells are
marked as both external and boundary cells. All of the remaining cells are purely external

cells and simply ignored by the simulation.
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Figure 1: The partitioning of the domain into interior (I) [either event-driven (ED) or time-driven
(TD)], boundary (B), and external (E) cells in two (left) and three (right) dimensions for a polymer
chain of 25 beads tethered to a hard wall. The cells are shaded in different shades of gray and
labeled in the two-dimensional illustration (wgp = 2, wine = 5, wp = 2). The DSMC particles are

also shown.

Note that a cell may be a combination of these three basic categories. In fact, the following
types of cells appear in our simulations: (1) event-driven interior (I-ED) cells near non-
DSMC particles or hard walls; (2) time-driven interior (I-TD) cells; (3) time-driven boundary
(B-TD) cells; (4) event-driven boundary (B-ED) cells, next to hard walls; (5) time-driven
boundary external (B4+E) cells; (6) external (E) cells not explicitly simulated.

Figure 1 provides an illustration of this division of the cells for the simulation of a tethered
polymer in two and three dimensions. Our implementation traverses each of the non-DSMC
particles in turn and masks the cells in a window of half-width w cells around the cell
containing the non-DSMC particle as interior if 0 < w < w;,;, as boundary if w;,; < w <
Wint +2wpg, and external if w > w;,; +wp. Here w;,; > wgp is a chosen extent that covers the
region where non-trivial flow occurs. Note that we do not require that the domains of interior
or non-external cells form a rectangular domain: The final shapes and even contiguity of
such domains depends on the positions of the non-DSMC particles. If this is not appropriate
one can always make the simulation regions be unions of disjoint rectangular domains simply

by padding with interior cells.
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The division of the cells into event-driven, interior, boundary and external cells is rebuilt
periodically during the simulation. This rebuilding may only happen at the beginning of
time steps, and requires a synchronization of all of the particles to the current simulation
time, a complete rebuilding of the cell bitmasks, and finally, a re-initialization of the event
processing. Importantly, particles that are in purely external cells are removed from the
simulation and those that are in event-driven cells are placed into the event queue scheduled
for an immediate update event. During the process of rebuilding the cell bitmasks cells that
are masked as purely external cells are also marked as unfilled with the sticky bit v4, which
is initially not set. This indicates that these cells need to be re-filled with particles later if
they enter the simulation domain again due to the motion of the non-DSMC particles. Once

the cell bitmasks are rebuilt, a time step event is executed as described next.

2. Time Step Fvents

When open BCs are used, a time step event consists of the following steps:

1. The time-driven DSMC particles are propagated by time At as usual. Those particles
that move into purely external cells are removed.

2. The cells that are both external and boundary, or unfilled interior cells, are traversed
in order. In each such cell, an appropriate number of trial reservoir particles are then

inserted and the bit 7, is reset if the cell was unfilled. For each trial particle:

(a) The trial particle is propagated by a time step At to the current simulation time.
(b) If the particle moves into a non-external boundary cell, then the trial particle is

converted into a real particle.
3. Stochastic collisions are processed in all cells as usual.

In step 2b above a count Ny, is kept of the number of trial particles that were not accepted
because they moved into a non-boundary cell. If positive, the count Ny, is reported at the
end of the time-step to aid in choosing wp sufficiently large so as to ensure that the tails of
the velocity distribution are not truncated. In our experience wp = 2 suffices for reasonable

choices of At.
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3. Boundary Conditions

In our current implementation the reservoir particles follow simple local-equilibrium ideal
gas distributions. The number of particles to insert in a given cell ¢ is chosen from a Poisson
distribution with the appropriate density, the positions are uniformly distributed inside
the cell, and the velocities are drawn from a biased (local) Maxwellian distribution. The
mean velocity vy, and temperature T), for the local Maxwellian are chosen according to the
specified boundary conditions, typically uniform linear gradients. For example, if a uniform
shear in the xy plane is to be applied, vy, = vy.z, where y. is the y position of the centroid
of the cell and ~ is the shear rate. Using such biased local insertions allows one to specify a
variety of boundary conditions. For example, a free polymer chain in unbounded shear flow
can be simulated without resorting to hard-wall boundaries or complicating Lee-Edwards
conditions.

It should be noted that in principle we should not use a local Maxwellian velocity distri-
bution for a system that is not in equilibrium. In particular, for small velocity, temperature,
and density gradients the Chapman-Enskog distribution is the appropriate one to use in or-
der to avoid artifacts near the open boundaries at length scales comparable to the mean free
path A [47]. We judge these effects to be insignificant in our simulations since our bound-
ary conditions are fixed externally and are thus not affected by the possible small artifacts
induced in the DSMC fluid flow, and since A is small.

In the future, we plan to replace the particle reservoir with a PDE-based (Navier-Stokes)
simulation coupled to the DSMC/MD one. Such a flux-preserving coupling has been im-
plemented in the past for coupled DSMC/Euler hydrodynamic simulations [47, 48]. It is
however important for the coupling to also correctly couple fluctuations. This requires the
use of fluctuating hydrodynamics in the coupled domain. Such solvers and associated cou-

pling techniques are only now being developed [26, 27].

D. Further Technical Details

In this section we discuss several technical details of the SEDMD algorithm such as hard-

wall boundary conditions and the choice of DSMC parameters.
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1. Slip and Stick Boundary Conditions

We have already discussed open boundary conditions and their use to specify a variety
of “far-field” flow patterns. Additionally, there can also be hard-wall boundaries, i.e., flat
impenetrable surfaces. These surfaces can have a velocity of their own and here we discuss
how particles reflect from such walls in the frame that moves with the hard wall. Regardless
of the details of particle reflections, the total change in linear momentum of all the particles
colliding with a hard wall can be used to estimate the friction (drag) force acting on the wall
due to the flow. This can give reliable and quick estimates of the viscosity of a DSMC fluid,
for example. For hard-wall surfaces, we want to mimic the classical no-slip BC. Molecular
simulations have found some slip; however, at length-scales significantly larger than the
mean free path and/or the typical surface roughness one may assume no-slip boundaries if
the hard-wall boundary position is corrected by a slip length Lg;, [3].

Our simulations of tethered polymers use thermal walls [30] kept at kT = 1 to implement
no-slip hard walls at the boundaries of the simulation cell. Following the collision of a particle
with such a wall, the particle velocity is completely randomized and drawn from a half
Maxwell-Boltzmann distribution. This automatically ensures a nearly zero mean velocity at
the wall boundary and also acts as a thermostat keeping the temperature constant even in
the presence of shear heating.

No-slip boundaries can also be implemented using (athermal) rough walls which reflect
incoming particles with velocity that is the exact opposite of the incoming velocity [49].
Similarly, slip boundary conditions, can be trivially implemented by using specular walls
that only reverse the normal component of the particle velocity. A mixture of the two can
be used to implement partially rough walls, for example, a roughness parameter 0 < r,, <1
can be used as the probability of randomly selecting a rough versus a specular collision.

Similar considerations apply to the boundary conditions at the interface of a hard particle
such as a polymer bead. Most particle-based methods developed for the simulation of particle
suspensions consider the solvent particles as point particles for simplicity, and only MD
or certain boundary discretization schemes [50] resolve the actual solvent-solute interface.
Specular BCs are typical of MD simulations and assume perfectly conservative (elastic)
collisions. However, if the polymer beads are themselves composed of many atoms, they will

act as a partially thermal and rough wall and energy will not be conserved exactly.
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In the simulations reported here we have used rough wall BCs for collisions between DSMC
and non-DSMC particles. This emulates a non-stick boundary condition at the surface of
the polymer beads. Using specular (slip) conditions lowers the friction coefficient °, but does

not appear to qualitatively affect the behavior of tethered polymers.

2. Constant Pressure Gradient Flows

We note briefly on our implementation of constant pressure gradient boundary conditions,
as used to simulate flow through open pipes. A constant pressure is typically emulated
in particle simulations via a constant acceleration a for the DSMC particles [51] together
with periodic BCs along the flow (acceleration) direction. In time-driven algorithms, one
simply increments the velocity of every particle by aAt and the position by aAt?/2 at each
time-step (before processing DSMC collisions). In SEDMD this is not easily implemented,
since the trajectory of the DSMC particles becomes parabolic instead of linear and exact
collision prediction between the DSMC and the non-DSMC particles is complicated. We
have opted to implement constant pressure BCs by using a periodic delta-function forcing
on the DSMC particles. Specifically, the velocities of all DSMC particles are incremented
at the beginning of each time step by aAt, and then stochastic collisions are processed. All
event-driven DSMC particles are scheduled for an immediate update event because their

velocities changed.

3. Choice of DSMC Collision Frequency

The viscosity of the DSMC fluid is determined by the choice of collision frequency I'.
and cell size L.. Classical DSMC wisdom [30] is that cell size should be smaller than the
mean free path, L. < A, but large enough to contain on the order of N, ~ 20 particles
(in three dimensions). It is obvious that both of these conditions cannot be satisfied for
denser liquids, where X is only a fraction of the particle size. It is now well-known that it
is not necessary to have many particles per cell, so long as in Eq. (1) we use N.(N. — 1)

instead of the traditional (but wrong) N2 6. Coupled with the Poisson distribution of N, this

5 The Stokes friction force has a coefficient of 47 for slip BCs instead of the well-known 67 for no-slip BCs.
6 Alternatively, self-collisions can be proposed and rejected.
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gives a constant average total collision rate. However, using very small cells leads to very
large variability of collision rates from cell to cell and thus spatial localization of momentum
transfer during each time step. Namely, very small cells rarely have two or more particles and
thus most of the collisions will occur in the few cells that happen to be densely populated.

We have aimed at trying to mimic what would happen in an MD simulation in the DSMC
one. In an MD simulation particles collide if their distance is equal to the particle diameter
D. Therefore, we have aimed at keeping the cell size at a couple of diameters, L. ~ 2D.
At typical hard-sphere liquid densities this leads to N, ~ 5 — 10, which seems appropriate
in that it allows enough collision partners for most of the particles but still localized the
momentum transfer sufficiently. For very small mean free paths DSMC does not distinguish
velocity gradients at length scales smaller than the cell size and, in a long-time average sense,
localizes the velocity gradients at cell interfaces [52]. We will assume that the structure of
the fluid and flow at length-scales comparable to D (and thus L.) is unimportant, and verify
this by explicit comparisons to MD.

When the cell size is chosen such that N. ~ 5 — 10 and the time step is reasonable,
At ~ (0.1 — 0.2)L./v, Eq. (1) gives collision frequencies that are sufficiently high so that
almost all particles suffer at least one collision every time step, and typically more than one
collision. The effect of such repeated collisions is to completely thermalize the flow to a local
equilibrium (Maxwellian). We have observed that further increasing the collision frequency
does not change the effective viscosity and merely wastes computation. We have chosen to
use the lowest collision rate that still achieves a viscosity that is as high as using a very
high collision rate. We find that this is typically achieved when each particle suffers about
half a collision or one collision each timestep [53]. Appendix B describes some multi-particle

collision variants that may be more appropriate under different conditions.

4. DSMC without Hydrodynamics

The solvent exerts three primary effects on polymers in flow: (1) stochastic forces due to
fluctuations in the fluid (leading to Brownian-like motion), (2) (local) frictional resistance
to bead motion, and (3) hydrodynamic interactions between the beads due to perturbations
of the flow field by the motion of the beads. Brownian dynamics, the most common method

for simulating the behavior of polymers in flow, typically assumes that the drag on the
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polymer beads follows Stokes law. Additionally, the first two effects are coordinated via the
fluctuation-dissipation theorem. Finally, the third effect is sometimes added via approxima-
tions based on the Oseen tensor, neglecting the possibility of large changes to the flow field
due to the moving beads.

By turning off local momentum conservation one can eliminate all hydrodynamic inter-
actions, and thus test the importance of the coupling between polymer motion and flow.
Yeoman'’s et al. [20, 34] have implemented a no-hydrodynamics variant of the MPCD algo-
rithm by randomly exchanging the velocities between all particles at each time step, thus
preserving momentum and energy globally, but not locally. In the presence of a background
flow, such as shear, only the components of the velocities relative to the background flow
are exchanged. We have implemented a no-hydrodynamics variant of DSMC by neglecting
momentum conservation in the usual stochastic binary collisions 7. Specifically, if particles
A and B collide, the post-collisional velocity of A is set to be the same magnitude as the
pre-collisional velocity of B but with a random orientation, and vice versa, conserving energy
but not momentum. If the boundary conditions specify a background flow such as a uniform
shear the flow velocity is evaluated at the center of the DSMC cell and the collisions are
performed in the frame moving with that velocity. This forces the average velocity profile
to be as specified by the boundary conditions, but does not allow for perturbations to that

profile due to hydrodynamic effects.

IV. PERFORMANCE IMPROVEMENT

It is, of course, expected that the SEDMD algorithm will give a performance improvement
over EDMD. However, to make an impact on real-world problems this performance gain
must be an order of magnitude or more improvement. Indeed, we find that SEDMD with
adaptive boundary conditions can be up to two orders of magnitude faster than EDMD
under certain conditions. Note also that it is well-known that EDMD is already significantly
faster than TDMD, although such a comparison is somewhat unfair since the hard-core
interaction potentials are very simple by design.

It is not really possible to directly compare SEDMD with EDMD since the two algorithms

7 In this implementation switching hydrodynamics off becomes an alternative branch localized in the binary

collision routine and the algorithm is otherwise unchanged.
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utilize different solvents. One is a DSMC solvent in which particles overlap and exchange
momentum stochastically, the other is a hard-sphere liquid in which particles do not overlap
and collide deterministically. The EDMD fluid is thus more realistic and a direct comparison
is somewhat unfair. This is unlike in simulations of equilibrium systems where MC and MD
are alternative methods for obtaining equilibrium averages.

The polymer chain is identical in both SEDMD and EDMD simulations, and therefore it
is somewhat meaningful to compare the two algorithms based on the total CPU time needed
to simulate a unit of simulated time for a single polymer chain in a still solvent. This is the
comparison we report here, although the numbers should be interpreted with caution. There
are other possibilities, for example, one could compare the CPU time needed to simulate a
single relaxation time for the polymer chain. The important point we wish to convey is that
SEDMD is one to two orders of magnitude faster than an EDMD simulation, rather than
claim exact speedups.

We do not consider or use any parallelization because the EDMD component is very dif-
ficult to parallelize scalably. However, because of the inherent simplicity and thus efficiency
of the SEDMD algorithm, it is possible to study time scales and system sizes as large or
larger than parallel simulations described in the literature so far. The combined time-driven
DSMC with event-driven MD algorithm can be parallelized using traditional techniques from
TDMD if proper domain partitioning can be constructed, so that each event-driven region

is processed by a single processor.

A. Tethered Polymer Chain

As model problem we study a tethered polymer in three dimensions. The solvent density
was chosen to be typical of a moderately dense hard-sphere liquid. The performance and
optimal choice of parameters depends heavily on the size of the beads relative to the size
of the solvent particles for both MD and the hybrid algorithm. Realistically, beads (meant
to represent a Kuhn segment) should be larger than the solvent molecules 8. This of course
dramatically increases the computational requirements due to the increase in the number

of solvent particles (and also makes neighbor searching more costly). For this reason, most

8 For example, in Ref. [19] an appropriate bead size for polyethylene is estimated at 1.5nm, and for DNA

(a much stiffer molecule with large persistence length) at 40nm.
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Standard BCs|Adaptive BCs

Large beads 35 180

Small beads 20 30

Table I: Performance gains of SEDMD relative to EDMD for a typical tethered polymer simulation
in three dimensions. The comparison is based on the CPU time needed to simulate a unit of
simulation time. As explained in the test, a direct comparison is not really fair or even possible,

and therefore these numbers should be interpreted with care.

MD simulations reported in the literature use solvent particles that are equivalent, except
for the chain connectivity, to the solute particles.

Our first test problem is for a chain of 25 large beads, each about 10 times larger than the
solvent particles in both volume and in mass, in a box of size 2 x 1.25 x 1.25 polymer lengths,
for a total of about N = 2.3 x 10° particles. For the SEDMD simulations, we did not use
bounding sphere complexes (BSCs) [39], and therefore the neighbor search had to include
next-nearest neighbor cells as well (i.e., wgp = 2). For the corresponding MD simulations,
BSCs were used. Under these conditions, SEDMD outperformed EDMD by a factor of 35.
If adaptive open BCs were used with w;,; = 5, giving about N = 3.2 x 10* particles, the
speedup was 180. While this may seem an unfair comparison, it is important to point out
that it is not clear how to implement an adaptive simulation domain in pure EDMD.

The second test problem was for a chain of 30 beads which were identical to the solvent
particles, except for the added chain tethers. The number of particles in the simulation cell
was thus much smaller, N = 4.8 x 10*, and wgp = 1. Adaptive BCs with w;,; = 5 reduce the
simulation domain to N = 2.2 x 10* particles. For these parameters SEDMD with adaptive
BCs was about 30 times faster than EDMD. Table I summarizes the large performance gains
of SEDMD relative to traditional EDMD.

One of the fundamental problems with multi-scale modeling is that typically the majority
of the simulation time is spent in the finest model since it is difficult to match the time scales
of the coupled components [24]. For example, MD simulations are so expensive that cou-
pling them to almost any meso- or macro-scopic solver leads to simulation times limited by
that of MD simulations, albeit of a much smaller system. By virtue of the fast microscopic

algorithm (EDMD instead of TDMD) and the efficient coupling, our method spends compa-
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rable amounts of computation on the solute and immediately surrounding solvent, and on
the solvent particles. For the DSMC run with adaptive open BCs and large beads, about
50% of the time was spent in manipulation of near neighbor lists. Most of the remaining
time was spent inside the routine that takes a DSMC timestep, and actual processing of
DSMC collisions (both trial and real) occupied about 20% of the total computation time.
For small beads, the majority of the time, 80%, was spent in the DSMC time-step routine,
and processing of DSMC binary collisions occupied about 35% of the total computation

time.

V. TETHERED POLYMER IN SHEAR FLOW

In this section results are presented for a tethered polymer chain in uniform shear in three
dimensions. The linear chain is in a good solvent and is attached at one end to a hard wall,
as represented by the plane y = 0. A linear velocity profile v = vy along the z axis is
imposed sufficiently far from the chain. This problem was first studied experimentally by
Doyle et al. [7] and since then numerous computational studies have investigated various
aspects of the problem [8-11, 13]. We will focus on the dynamics of the chain at low to
medium flow rates (i.e., small Weissenberg numbers) because we wanted to verify that our

polymer and solvent model can correctly reproduce non-trivial dynamics.

A. Background

The properties of a linear polymer in shear flow can be related to the dimensionless Weis-
senberg number Wi = y7y, where 79 = 7( = 0) is the relaxation time of the polymer chain
when there is no shear. When Wi < 1 the flow barely affects the polymer, contrary to when
Wi > 1. Different models have given similar properties for the same Weissenberg number.

The original experimental study of tethered polymers [7] observed what was termed “cyclic
dynamics” of the chains. Specifically, the following cycle was proposed. When the polymer
moves too far from the wall, presumably by an unusual fluctuation, it experiences a stronger
flow and is stretched. A torque develops that then pushes the chain closer to the wall,
where it can contract again due to the weaker flow near the wall. The cycle then repeats.

Experiments [7] did not identify clear periodicity of this motion. Subsequent computational
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studies have looked for such a characteristic period for this cycling motion.

The MD study in Ref. [9] examined the cross-correlation function Cx4(t), where X mea-
sures the extension of the polymer along the flow, and ¢ measures the angle of the chain
with respect to the hard wall. No exact definitions of X or ¢ were given even though there
are several possibilities. One can use the difference between the maximal and the minimal
bead positions as a measure of the extension along a given axes. Optionally, one can simply
use the maximal position, or one can use the position of the last bead. Similarly, the angle
of the polymer can be based on a linear fit to the shape of the chain, on the position of the
center of mass, the asymmetry of the gyration tensor [12], or the position of the last bead.
We have examined various choices and have found little qualitative difference between the
different choices. We have found the position of the end bead ry, = (z,y, 2) to be the best
option and will also measure the angle ¢ = tan™'(y/x).

The authors of Ref. [9] found that C,4(t) develops a peak at positive time ¢* for sufficiently
large Wi numbers (Wi > 10). This was interpreted as supporting the existence of a critical
Weissenberg number Wi where the flow effect on the polymer dynamics changes qualitatively.
It was also found that t* decreases with increasing Wi and the height of the peak increases. It
is important to note that t* was found to be comparable to the relaxation time of the polymer
To- Additionally, the internal relaxation time 7 was found to decrease with increasing Wi,
in agreement with theoretical predictions.

A subsequent study which used a hybrid MD/CFD model, and also a (free-draining)
Brownian dynamics model, claimed to observe periodic oscillations in the cross-correlation
function between the extensions along the flow and along the shear direction, Cy,(t) [10, 13].
However, the period of oscillation was found to be an order of magnitude larger than the
internal relaxation time, as revealed by a small peak in the power spectral density PSD,,(f)
of Cypy(t). A similar claim was made in Ref. [12] based on PSDy,; of the polymer angle
autocorrelation function ? Cy,(t) for both a free polymer in unbounded shear flow and a
tethered polymer in shear flow. No results for the short-time cross-correlation functions were
reported in either of these studies making it difficult to reconcile the results obtained from

PSDs with those in Ref. [9)].

9 The PSD is equivalent to the Fourier spectrum power of the angle trace ¢(t) based on the convolution

theorem.
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Most experimental and computational studies of the dynamics of polymers in shear flow
have been for free chains in unbounded flow [4]. In that problem, for Wi > 1, it is possible
to identify a well-defined “tumbling” event as the polymer rotates. The frequency of such
tumbling times can be measured by visual inspection and have been compared to the com-
puted location of the peak in the PSDs [12, 54]. The good match has thus been taken as an
indicator that PSDs peaks can be used to determine characteristic tumbling times and the
same methodology has been applied to a tethered polymer as well. However, for the case of
a tethered chain it is not easy to identify a periodic event such as a specific rare fluctuation.
Therefore, it is not surprising that we do not confirm the existence of a characteristic time
that is an order of magnitude larger than the internal relaxation time. One must here dis-
tinguish between “cyclic” (repetitive) events and periodic events. A Poisson time process of
rate I' has a well-defined time scale I'"!, however, the occurrence of such events is not peri-
odic; the delay between successive events is exponentially-distributed. In Ref. [54] such an
exponential distribution is proposed even for the delay between successive tumbling events
for a free chain in unbounded flow. The PSD of such a process is expected to be that of
white noise (i.e., flat) for frequencies small compared to I', and typically a power-law decay
for larger frequencies (gray noise). The occurrence and shape of any local maxima (peaks)
or frequencies comparable to I' depends on the exact nature of the correlations at that time

scale.

B. Model Parameters

As explained in IV, we have made several runs for different polymer lengths and also bead
sizes. One set of runs used either NV, = 25 or 50 large beads each about 10 times larger than
a solvent particle, using DSMC with or without hydrodynamics (see Section III D 4) for the
solvent. Another set of runs used either NV, = 30 or 60 small beads each identical to a solvent
particle, using DSMC or pure MD for the solvent. The beads were rough in the sense that
no-slip conditions were applied for the solvent-solute interface (see Section IIID 1).

All of the runs used open boundary conditions (see Section IIIC), and the typical half-
width of the interior region was w;,; = 5 or w;,; = 7 cells around the polymer chain.

The difference in the results, such as relaxation times, between these runs and runs using
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Wine = 10 or runs using periodic BCs were negligible for the chain sizes we studied °. The
solvent was a hard-sphere MD or DSMC fluid with volume fraction ¢ ~ 0.25 — 0.30, which
corresponds to a moderately dense liquid (the melting point is ¢,, ~ 0.49). The N, = 30
runs were run for 7" &~ 60007y with w;,; = 7, and such a run takes about 6 days on a
single 2.4GHz Dual-Core AMD Opteron processor. Even for such long runs the statistical
errors due to the strong fluctuations in the polymer conformations are large, especially for

correlation functions at long time lags t > 7.

C. Relaxation Times

The relazation time of the polymer 7 is well-defined only for linear models. It is often
measured by fitting an exponential to the autocorrelation function of the end-to-end vector
rend(t) = ry, — r1, where r; denotes the position of the i-th bead [6]. We will separately
consider the different components of the end-to-end vector r.,q = (x,¥, 2) and fit an expo-
nential to the Cy,, Cy, and C, auto-correlations functions to obtain the relaxation times 7,
7, and 7 as a function of Wi. The initial relaxation of the various auto-correlation functions
C'(t) is faster than exponential, and the statistical error at longer times is large even for long
runs. We therefore fit the exponentials to the portion of the curves at small times, when
0.2 < C(t) < 0.8. The fits are not perfect and there are large statistical errors depending on
the length of the run and the number of samples used to average C(t), and the relaxation
times and Weissenberg numbers we quote should be taken as approximate.

We find that 7, is always the largest, especially for large Wi (for Wi = 0, 7, = 7, by

1 even for Wi = 0, as

symmetry), and 7, is always smaller by at least a factor of two !
illustrated in the inset in Fig. 2. We take 70 = 7,,(Wi = 0) = 7,(Wi = 0) as the definition
of the polymer relaxation time. Figure 2 illustrates the dependence of 7,(Wi)/7,(Wi = 0)
on Wi, and similarly for the y and z directions. Quantitatively similar (but not identical)

results are observed independently of the details of the polymer model and even the existence

10Tt is expected that using a small w;,; would truncate the (long-ranged) hydrodynamic interactions and
thus increase the relaxation time. We observe such effects for the N, = 50 chains, however, the effect is

too small compared to the statistical errors to be accurately quantified.
11 This is because of the constraint that the polymer chain must be above the plane y = 0 at all times, which

reduces the available configuration space.
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Figure 2: Dependence of the relaxation times of the different components of the end-to-end dis-
placement vector on the Weissenberg number. The relaxation times have been renormalized to
equal unity for Wi = 0 for direct comparison. For each Wi, 7, is shown with circles, 7, with
squares, and 7, with diamonds. Different textures of the symbols are used for the different models,

as indicated in the legend. The inset shows 7, /7, and 7. /7, for the different runs.

of hydrodynamic interactions.

The relaxation times we observe for Wi = 0 are consistent with what is predicted from
theoretical considerations, 7 ~ 0.9nb* N}''¥ /KT, where 1 is the viscosity and b is the effective
bead radius. Direct measurements of the viscosity of the DSMC liquid show that it has
viscosity rather close to that of the corresponding MD liquid for the specific parameters we
use. Using the Enskog viscosity of the MD liquid and the tether length as b, we calculated
7 ~ 19 for the case of N, = 25 with large beads, to be compared to the numerical results
from DSMC 7 = 25 £ 5. The MD runs for the case of large beads are not long enough to
determine the relaxation time accurately. We expect that the difference between MD and
DSMC will become more pronounced for smaller beads, and indeed, for N, = 30 we obtain
TMD =~ 3Tpsmc-

Turning hydrodynamics off in DSMC extends the relaxation times (and also the collapse
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times for an initially stretched polymer) by a factor of 3 — 5, as already observed using
MPCD [20] and as predicted by Zimm theory. It is difficult to directly compare DSMC with
and without hydrodynamics since switching hydrodynamics off, in our model, affects the
friction force between the beads and the solvent. This is unlike the models were the friction

force is an added phenomenological term that has an adjustable coefficient.

D. Cyclic Dynamics

We now turn our attention to cross-correlations between polymer extensions in the x and
y directions. We have found that the cross-correlations lags are most visible in the x and
y positions of the last bead, Cy,(t). Our results for C,,(t) are shown in Fig. 3, along with
Cy4(t) as an inset. The results for Cpy(t) compare well with those in Ref. [9], although we
see the secondary peak developing at somewhat lower Wi. We do not see any evidence for
the existence of a critical Wi: There are peaks at both positive and negative time in Cy,(¢)
for all Wi. Some cross-correlations, such as Cy, (%), have a large positive or negative cusp at
the origin at Wi = 0 and it is this cusp that masks the peaks at non-zero lags for small Wi.

In Fig. 4 we compare C,,(t) at Wi & 2 for several different models '? and see a good
match, even for the DSMC runs ignoring hydrodynamics (momentum conservation). This
indicates that the dynamics of the chains is primarily driven by the competition between
the internal stochastic motion (entropy) and the external forcing due to the shear, and not
hydrodynamic interactions between the beads or the effect of the motion of the chain on the
flow.

We do not discuss the origin and locations of the peaks in the cross-correlation functions
in detail in this work. These peaks are indicative of the existence of a correlated motion in
the xy plane, but do not uniquely identify that motion. An important question to address
is the existence of a time scale other than the internal relaxation time 7(Wi). In Fig. 5 we

show a renormalized cross-correlation function

~ 1 t
o= 50 |

in an unsuccessful attempt to collapse the data for different Wi. While the match is not

12 The Weissenberg numbers were calculated after the runs were completed and therefore the different runs

are not at the exact same Wi number.
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Figure 3: Cross correlation function Cyy () for chains of N, = 30 small beads in a DSMC solvent
at different shear rates. The inset shows the corresponding Cy4(t) for comparison with the soft-
particle MD results in Ref. [9]. Peaks are visible in Cyy(t) at all Wi > 0, but are obscured in
Cz4(t) due to the large negative dip at the origin for Wi = 0. There are large statistical errors at

small Wi making it difficult to identify the peaks.

perfect the picture does not point to the existence of a time scale shorter than 7(Wi). We
also do not see any convincing evidence for coherent and reproducible correlations on time
scales significantly larger than 7, even in various power spectral densities. Our results do not
rule out the possibility of a repetitive motion of the chain with widely varying cyclic times
(e.g., exponential tail) but we have not observed any direct evidence for such cycling either.
We will report more detailed results on the dynamics of tethered polymer chains along with

comparisons with Brownian dynamics and Lattice-Boltzmann in future work.
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after the time axes has been normalized.
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Figure 5: Cross correlation function C’xy for N = 30 DSMC runs as in Fig. 3 but with time

renormalized by 7(Wi) and the correlation magnitude scaled by Wi.
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VI. CONCLUSIONS

We presented a stochastic event-driven molecular dynamics (SEDMD) algorithm that com-
bines hard-sphere event-driven molecular dynamics (EDMD) with direct simulation Monte
Carlo (DSMC), aimed at simulating flow in suspensions at the microscale. The overall al-
gorithm is still event-driven, however, the DSMC portion of the algorithm can be made
time-driven for increased efficiency. The fundamental idea is to replace the deterministic
(MD-like) interactions between particles of certain species with a stochastic (MC-like) colli-
sion process, thus preserving the phase space dynamics and conservation laws but ignoring
the liquid structure. The SEDMD methodology correctly reproduces hydrodynamic behavior
at the macroscale but also correctly represents fluctuations at the microscale. A similar al-
gorithm has been proposed using time-driven (soft-particle) MD and a multiparticle collision
variant of DSMC [23].

As an application of such a methodology we have considered the simulation of polymer
chains in a flowing solution, and in particular, a polymer tethered to a hard wall and subject
to shear flow. We have implemented open boundary conditions that adaptively adjust the
simulation domain to only focus on the region close to the polymer chain(s). The algorithm
is found to be efficient even though it is not parallelized, and it is found to reproduce results
obtained via molecular dynamics and other algorithms in the literature, after adjusting for
the correction to transport coefficients and compressibility of the DSMC fluid relative to the
MD fluid.

We studied the dynamics of a tethered polymer subject to pure shear and found consistent
results between EDMD and SEDMD and also previous TDMD studies. We find that neither
the size of the polymer beads relative to the solvent particles, nor the correct representation of
the hydrodynamic interactions in the fluid, qualitatively alter the results. This suggests that
fluctuations dominate the dynamic behavior of tethered polymers, consistent with previous
studies. Our results do not find periodic motion of the polymer and show that the cross-
correlation between the polymer extensions along the flow and shear directions shows a
double-peak structure with characteristic time that is comparable to the relaxation time of
the polymer. This is in contrast to other works that claim the existence of a new timescale
associated with the cyclic motion of the polymer. We will investigate these issues further

and compare with Brownian dynamics and Lattice-Boltzmann simulations in future work.
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We expect that this and related algorithms will find many applications in micro- and
nano-fluidics. In particular, the use of DSMC instead of expensive MD is suitable for prob-
lems where the detailed structure and chemical specificity of the solvent do not matter, and
more general hydrodynamic forces and internal fluctuations dominate. Using a continuum
approach such as Navier-Stokes (NS) equations for the solvent is questionable at very small
length scales. Furthermore, the handling of singularities and fluctuations is not natural in
such PDE methods and various approximations need to be evaluated using particle-based
methods. Since the meshes required by continuum solvers for microflows are very fine, it is
expected that the efficiency of particle methods will be comparable to PDE solvers. Nev-
ertheless, algorithms based on fluctuating hydrodynamics descriptions will be more efficient
when fluctuations matter. Comparisons and coupling of DSMC to fluctuating NS solvers is

the subject of current investigations [27].
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Appendix A: AED VARIANTS OF DSMC

In this Appendix we discuss a fully asynchronous event-driven (AED) implementation of
DSMC. The advantage of asynchronous algorithms is that they do not introduce any artifi-
cial time scales (such as a time step) into the problem [44]. We have validated that the AED
algorithm produces the same results as the time-driven one by comparing against published
DSMC results for plane Poiseuille flow of a rare gas [51]. We have also implemented tradi-
tional time-driven (TD) DSMC and find identical results when the time step is sufficiently
small. We find that the event-driven algorithm is almost an order of magnitude slower than
the time driven one at higher densities, and only becomes competitive at very low densities,
which is the traditional domain of interest for DSMC. The overhead of the AED algorithm
comes from the need to re-predict the next event and update the event queue whenever

a particle suffers a DSMC collision. This cost is in addition to the equivalent cost in the

34



time-driven algorithm, namely, moving the particles forward in time and colliding them.

The AED algorithm introduces a new type of event, a stochastic (trial) collision between
two DSMC particles that are in the same cell (see Section IIIB). These trial collisions
occur in a given cell ¢ as a Poisson process with a rate given by Eq. (1). There are
several approaches to scheduling and processing DSMC collisions directly borrowed from
algorithms for performing Kinetic Monte Carlo simulations, which are synchronous event-
driven algorithms [55]. The simplest, and in our experience, most efficient, approach to
AED DSMC is to use cell rejection to select a host cell for the stochastic collisions. The
rate of DSMC collisions is chosen according to the cell with maximal occupancy N[,
I' = Neeus 7. The randomly chosen cell ¢ of occupancy N, is accepted with probability
N.(N.—1)/[NM* (N —1)] and a random pair of particles i and j are chosen from L.
Since the DSMC fluid is perfectly compressible, the maximal cell occupancy can be quite
high for very large systems, and this leads to decreasing cell acceptance probability as the
size of the system increases.

One can avoid cell rejections altogether. The first option is to associate stochastic collisions
with cells and schedule one such collision-in-cell event per cell. The event time is easily
predicted at any point in time ¢ to occur at time ¢ — I, ' Inr , where r is a uniform random
deviate in (0,1). These event times are put in an event queue, which may be the same as the
EDMD event queue, or it may be separate queue then the two queues may be merged only
at the top. The collision-in-cell event times need to updated whenever a cell occupancy N,
changes, that is, whenever a cell transfer is processed. This makes this algorithm inefficient.
Another alternative is to recognize that the sum of a set of independent Poisson processes
is a Poisson process with a rate that is the sum of the individual rates, I' = ) _T'.. That is,
DSMC collisions occur in the system as a Poisson process with rate I'. When processing such
an event one has to first choose the cell with probability I'./T", which requires some additional
data structures to implement efficiently [55]. For example, the cells could be grouped in lists
based on their occupancy and then an occupancy chosen first with the appropriate weight,
followed by selection of a cell with that particular occupancy.

Finally, it is also possible to use a mixture of the asynchronous and time-driven variants of
DSMC. The asynchronous algorithm can be used for DSMC particles in event-driven cells,
and the time-driven one elsewhere. This may be useful in situations where the time-scale

of the event-driven component is significantly smaller than the time step At and thus time
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stepping would lead to discretization artifacts.

In the AED variant of DSMC constant pressure BCs (see Section IIID 2) can be imple-
mented by adding a new type of acceleration event. When such an event is processed, all
of the particles are brought to the same point in time (synchronized), the velocities of each
DSMC particle i is incremented by aAt;, where At; is the elapsed time since the last ac-
celeration event. Following an acceleration event, the event queue is reset because all of
the event predictions are invalidated by the change in particle velocities. The acceleration
events occur as a Poisson process with a suitably chosen rate, for example, ensuring that the
average or maximal change in velocity is a fraction of the average particle velocity. Note that
the choice of this acceleration rate introduces an artificial time constant in the algorithm

similar to the time step At in time-driven DSMC.

Appendix B: MULTI-PARTICLE COLLISIONS IN DSMC

Under dense liquid conditions, DSMC binary collisions are so numerous (see Section
IITD 3) that the velocities of the particles are effectively thermalized to the local Maxwell
distribution. We have implemented a variant DSMC algorithm in which at every time step
the velocities of all of the particles are redrawn from a local Maxwellian, preserving the
total linear momentum and energy in each cell [56]. We found that this variant of DSMC is
less efficient than and behaves similarly to the usual binary-collision DSMC. Reference [57]
describes a more general algorithm (TRMC) that combines binary collisions for a subset
of the particles with drawing from a local Maxwellian for the remainder of the particles,
and under dense liquid conditions this typically degenerates to complete randomization of
all of the velocities at every time step. Until a theoretical framework is established for the
behavior of DSMC-like algorithms at high densities the classical DSMC algorithm seems to
be the best alternative in terms of simplicity, efficiency, and theoretical foundation.

We mention that, strictly speaking, we should use as V. in Eq. (1) not the volume of
the cell, but the unoccupied cell volume, i.e., the portion of the cell not covered by non-

DSMC particles 3. It is however difficult to dynamically maintain an accurate estimate of

I3 Our implementation makes the additional approximation that non-DSMC particles are also counted in
N, in Eq. (1), instead of keeping a separate count of just the DSMC particles inside each cell. If the

polymer beads are larger than a cell than this approximation does not matter since no cell can contain
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the cell coverage, and the complication does not appear to be worth the implementation

complexity. In particular, an approximation is already made in neglecting the structure of

the solvation layer around a polymer bead. Furthermore, the majority of the cells that are

partially covered by a polymer bead will be entirely or almost entirely covered so that they

would at most contain a single DSMC particle, in which case the probability of a DSMC

collision would be very low anyway. Finally, as explained in Section ITII D 3, the exact collision

frequency does not really matter. In the context of multiparticle collision dynamics, Ref.

[49] proposes the use of virtual particles filling the partially-filled cells as a way to achieve

more accurate stick boundary conditions.
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