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Abstract

We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using

Brownian Dynamics, the Lattice Boltzmann Method, and a recent Stochastic Event-Driven Molec-

ular Dynamics (SEDMD) algorithm. We focus on the dynamics of the free end (last bead) of the

tethered chain and we examine the cross-correlation function (CCF) and power spectral density

(PSD) of the chain extensions in the flow and gradient directions as a function of chain length

N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-

dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as

previously claimed. We support our numerical findings with a simple analytical calculation for a

harmonic dimer in shear flow.
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I. INTRODUCTION

The interaction of polymer molecules with fluid flow has been studied both theoretically1,2

and experimentally3–7 for several decades. The behavior of polymer chains in flow is deter-

mined by an intricate interplay between the flow gradients, chain elasticity, thermal fluctua-

tions, and the physical confinement8,9. The dynamics of tethered polymer molecules (“poly-

mer brushes”) in shear flow has received considerable attention due to its relevance to diverse

important applications, such as colloidal stabilization, surface adhesion, and lubrication10.

In contrast to previous work on the collective motion of polymer brushes10,11, Doyle et

al. studied the dynamics of a single tethered DNA in uniform shear flow using fluorescence

videomicroscopy12. Enhanced temporal fluctuations in the chain extension were observed,

and were attributed to the coupling of advection in the flow direction and diffusion in the

gradient direction. A cyclic dynamics mechanism (Fig.1), closely related to the tumbling

dynamics of a free polymer molecule in shear flow7,13,14, was proposed based on results from

Brownian dynamics simulations. No peaks were observed in the calculated power spectral

density (PSD) of the DNA extension in the flow direction, and the authors therefore sug-

gested that the cyclic dynamics of a tethered chain in shear flow is aperiodic. An important

physical question is whether there is a characteristic timescale associated with the cyclic

motion that is distinct from the internal relaxation time of the chain.

Several computational studies revisited the problem of a tethered chain in shear flow

by looking at different variables relating to both the flow and gradient directions, such

as extensions along both flow and gradient directions15, polymer orientation angle defined

through the gyration tensor14, and angle between the wall and the vector joining the tethering

point to the center-of-mass of the chain16. The cross-correlation functions for such variables

exhibit signatures of the proposed cyclic motion in the form of peaks at non-zero delay time.

Because of the particular choice of variables in Ref. [16], the lack of such peaks at small

Weissenberg numbers was attributed to the existence of a critical Weissenberg number; as

demonstrated in Ref. [17], choosing a different sets of variables shows that the signature

peaks exist even at small shear rates. In Ref. [16], the position of the peak in the studied

cross-correlation functions was interpreted as a characteristic cycling time, and it was found

to be a fraction of the relaxation time of the polymer chain. In Ref. [14] the tumbling motion

of a free polymer chain in shear flow was studied experimentally and computationally, and
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wide peaks were found in the Fourier spectra of the time series of the angle of the chain

relative to the flow direction. These peaks were identified as evidence of periodic motion

of the tumbling molecule. The characteristic tumbling time (period) was extracted from

the position of the peak in the spectrum and was found to be in good agreement with the

experimentally-measured tumbling frequency. These finding for a free chain in shear flow

inspired similar studies of a tethered chain, and similar observations of periodic motion with

a characteristic period about an order of magnitude larger than the relaxation time were

reported14,15,18. In several later studies of the tumbling emotion of a free polymer chain in

shear flow, experimental results7, numerical simulation13, and theory19,20 all suggest that

the intervals between successive tumbling events are exponentially-distributed with a decay

constant equal to the relaxation time of the chain. Such an exponential tail implies that the

tumbling events occur as a Poisson-like process, which is aperiodic despite the existence of

a characteristic timescale (frequency of repetition). If the tumbling events of a free polymer

in shear flow is aperiodic, intuitively, adding of a wall to break the symmetry of the motion

should leave the dynamics of a tethered chain aperiodic.

Different authors use the terms ”cyclic” (repetitive) and ”periodic” with different mean-

ings, and it is therefore important to give our definitions. Periodicity is the quality of

occurring in regular time intervals (periods). Periodic motion has correlation functions that

are (possibly damped) oscillatory functions, and spectra that have sharp peaks. Noise (fluc-

tuations) and the associated dissipation will always broaden any peaks that are related to

underlying deterministic periodic motion (and consequently, exponentially dampen the os-

cillations in the real-space correlation functions). As an example, for a rigid spheroid in

shear flow, there is indeed periodic motion (Jeffery’s orbits) in pure shear flow. Adding fluc-

tuations, when they are small, is expected to preserve that but introduce some broadening

of the spectral peaks21. In contrast, a cycle usually means a process that eventually returns

to its beginning and then repeats itself in the same sequence. The end-to-end tumbling

of a single polymer molecule in shear flow provides a relevant example. In this paper we

analytically calculate the power spectrum for a tethered dimer in shear flow, and find an

exponentially-decaying cross-correlation function that has the relaxation time as the only

characteristic timescale. More importantly, this analytical example shows that the power

spectrum can exhibit a wide peak at small frequencies without any underlying periodic mo-

tion, and that the location of a maximum in the PSD is not necessarily an indication of a
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new timescale. The analytical results for a tethered dimer are consistent with our numerical

observations for longer tethered chains in shear flow. Therefore, our investigations do not

confirm the existence of periodic motion with a period distinct from the relaxation time of

the chain, as previously suggested in the literature14,15,18.

We apply three different solvent representations to the same problem of a tethered chain

in shear flow. The models are an implicit solvent (Brownian Dynamics22, BD), a contin-

uum solvent (Lattice-Boltzmann23, LB), and a particle solvent (Direct Simulation Monte

Carlo17, DSMC). Such comparison between widely differing methods on the same problem

is important as a validation of their range of applicability. It is also important to com-

pare the computational performance of the different methods. In this work, different chain

representations and boundary conditions make a direct quantitative comparison impossible.

Specifically, the BD polymer is a worm-like chain representative of semi-flexible DNA, in

the LB simulations it is a flexible chain of repulsive spheres, and in the DSMC solvent it is

a flexible chain of hard spheres. However, we can access the importance of the details of the

chain model, and in particular, of chain elasticity, and thus test the widely used assumption

that the dynamics scales with the Weissenberg number Wi = γ̇τ , where γ̇ is the shear rate

and τ the chain relaxation time, independent of the details of the model. For this particular

problem of a tethered chain in shear flow, we find good agreement between the different

methods.

A general discussion of the wide range of techniques for modeling the hydrodynamics of

polymer chains in solution is given in Section II. Further details about the three specific

techniques we use in this paper to study the tethered polymer problem are given in Section

III. In Section IV we present our results, and finally, in Section V we give some concluding

remarks.

II. DISCUSSION OF METHODS FOR HYDRODYNAMICS OF POLYMER SO-

LUTIONS

In this Section we give a brief overview of various methodologies for modeling hydro-

dynamics of soft matter systems, notably, polymer solutions (see also review by Duenweg

and Ladd24). The various methods for computational hydrodynamics of polymer solutions

can be divided in two major categories. The first are purely continuum methods that use
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constitutive equations for the polymer solution. These models only apply at macroscopic

scales, when the number of polymer chains in an elementary fluid flow volume is large, so

that statistical averages of the chain conformations can be used as parameters in consti-

tutive models of the time-dependent stress as a function of the strain rate history. The

construction of such constitutive models is ad hoc and rather difficult in situations where

conformations of the chains couple to an unsteady flow, as, for example, in the problem of

turbulent drag reduction. Additionally, such continuum methods do not apply to situations

where the dynamics of individual chains are of interest, such as a DNA molecule flowing

through a micro-channel or DNA translocation through a pore. The second major category

of methods explicitly simulates the motion of each polymer chain using some form of molec-

ular dynamics. The simplest chain model is a dumbbell. Multi-bead representations of the

chains are capable of complex chain conformations but require models for the bead-bead

interactions. Such details of the polymer model are important for both physical fidelity

and computational efficiency. For example, preventing chain-chain crossing can require stiff

interactions for excluded volume terms, which in turn can lead to small time steps. There

are also two major types of algorithms for dealing with the solvent. One represents the

solvent implicitly, and the others use an explicit solvent. An implicit solvent is most efficient

computationally, however, it can only be used if the fluid flow in the absence of the polymer

is known analytically or can easily be pre-computed numerically (e.g., stationary flow), and

if the polymer chains themselves do not alter the background flow.

A. Implicit Solvent: Brownian Dynamics

The most widely used implicit-solvent algorithm is Brownian dynamics22, described in

more detail in Section IIIA. The method involves solving first-order differential equations

of motion for the positions of the beads with additional forces due to the presence of the sol-

vent. These solvent forces can be separated into a deterministic portion, for which a (linear)

analytical approximation is used, and a stochastic portion, which is assumed to be white

noise. The fluctuation-dissipation theorem is used to set the magnitude of the stochastic

forcing. Brownian dynamics relies on several assumptions usually valid in microfluidic appli-

cations. The first assumption is that of small Reynolds number laminar (usually stationary)

flow adequately described by a linearized Navier-Stokes equation. The second assumption is
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that hydrodynamic fields develop infinitely quickly relative to the rate at which the polymer

conformation changes, so that a quasi-stationary approximation can be used to describe the

perturbation of the flow field induced by the motion of the beads. This approximation leads

to Stokes friction on single beads, as well as hydrodynamic interaction pairwise terms approx-

imated with a long-range Oseen tensor as derived through an asymptotic (t →∞) analysis

for point particles. The free-draining approximation of Brownian dynamics neglects these

pairwise hydrodynamic interactions. The inclusion of pairwise hydrodynamic interactions

leads to a matrix formulation of the fluctuation-dissipation theorem and therefore factoriza-

tion of a matrix of the size of the number of beads is required at every time-step. Various

numerical tools have been devised to avoid dense factorization22,25–27, thereby reducing the

cost of a single time step in Brownian dynamics with hydrodynamic interactions.

Brownian Dynamics should be distinguished from Langevin dynamics, in which second-

order (Newton’s) equations of motion are used for the beads, that is, both the bead velocities

and positions are included as explicit degrees of freedom (but the solvent is still implicit)28.

This assumes that there is a large separation of time-scales between the fluid degrees of

freedom and the velocities of the beads, which is in fact only true if the beads are much

denser than the solvent. Furthermore, a much smaller timestep necessary to resolve the

faster dynamics (relaxation) of the bead velocities. Therefore, Langevin dynamics finds

its use only when the solvent is represented explicitly, so that calculating the friction and

stochastic forces no longer requires factorization of the mobility tensor.

An important advantage of Brownian dynamics is that it simulates the limit of zero

Reynolds number exactly. It can also often exactly account for simple boundary condi-

tions (e.g., flow in an infinite half plane) without resorting to approximations that truncate

the flow field to a finite domain, such as the commonly-used periodic boundary conditions.

Brownian dynamics is relatively easy to implement, however, complex boundary conditions,

such as indentations or bumps on walls, requires care so that analytical approximations

to the Oseen tensor that preserve the positive-definiteness of the diffusion tensor29. While

the computational cost can rise rapidly as the number of beads is increased when direct

implementations are used, novel schemes can be used to truncate the long-range hydrody-

namic interactions and yield a linear dependence on system size, similarly to the handling

of electrostatic interactions in spectral26 and multipole methods27.
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B. Explicit Solvent: Continuum Methods

In order to capture the bi-directional coupling between the motion of the polymer and the

flow around it, it is necessary to explicitly represent the solvent. The first level of approx-

imation is to use a continuum description of the solvent assuming the applicability of the

Navier-Stokes (NS) PDEs at small length scales. Typically an incompressible assumption

is made, which is appropriate at sufficiently low Mach numbers if acoustic waves are not of

interest. Additional approximations such as linearization or an iso-thermal approximation

may be appropriate. The time-dependent (unsteady) NS equations can be solved by any of

the numerous existing CFD algorithms, including explicit, implicit, or semi-implicit algo-

rithms of varying level of complexity30–32. One of the advantages of the PDE formulation

over particle methods is the ability to use powerful adaptive mesh resolution techniques that

allow coarsening of the mesh away from the region of interest, here polymer chains. However,

the case of complex boundary conditions such as needed, for example, in the handling of

moving beads or flow through porous media, presents difficulties. An alternative to solving

the Navier-Stokes PDEs is to use the Lattice-Boltzmann (LB) method33, as discussed in

Section III B. It requires small time steps limited by CFL-type conditions, however, each

of the time steps is efficient. Recently, so-called entropic LB schemes have been developed

that posses a discrete H-function, resulting in unconditional numerical stability even at high

Reynolds numbers34. LB has been found competitive with NS solvers in many situations and

has the further advantage that it is based on kinetic theory and allows a more detailed level

of description than NS. An important advantage of LB solvers is also their ability to handle

complex boundary conditions. Recently, Chen et al. have provided a detailed comparison

between BD and LB simulations on a DNA model that shows that the LB method pro-

vides a reasonable description of the results of more precise BD simulations at low Reynolds

numbers35.

1. Thermal Fluctuations

Most continuum fluid dynamics methods are deterministic and thus do not include in-

ternal fluctuations of the hydrodynamic fields. Fluctuations become more important the

smaller the length scale of interest, and are crucial for polymer flows. Including thermal
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fluctuations in a continuum formulation has been carried out for both CFD and LB algo-

rithms. The Landau-Lifshitz Navier Stokes (LLNS) equations include thermal fluctuations

in the stress tensor but numerical schemes to solve them are not nearly as advanced as are

the standard CFD solvers30,36,37. Fluctuations have been included in LB and do not pose

any particular numerical problems38. Fluctuations have also been included in incompress-

ible solvers in conjunction with the Immersed Boundary Method32,39. The ability to turn

fluctuations on or off is an important advantage of continuum-based methods over particle

methods.

2. Coupling with the Polymer Chains

Regardless of what continuum method is employed, it is necessary to couple that method

to the MD description of the polymer chains. The simplest and most commonly used coupling

scheme is to approximate the beads as points and assume for the solvent-induced force on

the polymer beads the Stokes-Langevin form F = −6πRHηvf +FS, where vf is an estimate

of the local fluid velocity and FS is an uncorrelated stochastic force whose magnitude obeys

the fluctuation-dissipation theorem31,40. This approximation is similar to that in Brownian

dynamics, namely, Stokes law is only valid in quasi-static continuum situations, relying on

the separations of time and length scales which are usually only marginally separated in

realistic situations. Typically the strength of the coupling, RH , is empirically tuned to

reproduce experimental measurements. The coupling can also be dealt with when the beads

occupy an actual volume, free of fluid. Then stick or slip boundary condition at the surface

of the beads are employed, as in both NS30 and LB33 simulations of colloidal dispersions.

However, these methods are rarely used in polymer simulations due to the complexity when

many moving particles are involved, because, the grid size needs to be smaller than the bead

size and may need to be adaptively changed when the bead moves.

A different alternative is provided by the Immersed Boundary method32, where the fluid

occupies the whole space and the particles, represented as immersed structures, move to-

gether with the fluid with a velocity that is a localized average of the fluid velocity. This

eliminates the bead inertia from the problem and the need to explicitly enforce boundary

conditions on the surface of the beads. The method can be seen as an alternative to Brownian

dynamics that correctly captures time-dependent momentum transport in the fluid by ex-
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plicitly representing the fluid flow, and also includes thermodynamically-consistent thermal

fluctuations39.

C. Explicit Solvent: Particle Methods

An alternative to continuum methods is to use a particle representation of the fluid. The

most detailed description is a MD simulation of both the fluid and the solvent. Unlike the

classical NS equations, MD automatically and correctly includes fluctuations, internal fluid

structure, diffusion, and non-linear transport. Particle methods are also typically simple

to implement and can easily accommodate complex boundary conditions.Typically a trun-

cated repulsive Lenard-Jones potential is used for the solvent-solvent interactions. However,

even with massive parallelization such MD simulations are limited to short total times and

therefore efforts have been made to coarse-grain the solvent to a mesoscopic representation.

There, the fluid particles are no longer representative of solvent molecules, but are larger

having different dynamics and interactions with each other. However, the viscosity and

the stress fluctuations in the solvent must be reproduced correctly. There are mesoscopic

particle solvents of progressively decreasing level of microscopic fidelity, and thus increasing

efficiency. The handling of the coupling between the solvent and the beads is a separate issue,

like for continuum solvents. A particle solvent may be coupled to a polymer chain by includ-

ing explicit short-ranged solvent-bead continuous41 or hard-spheres17 interaction potentials.

Efficiency can further be gained by coarse graining the bead-solvent interactions as well,

typically using the same ideas as used to coarse grain the solvent-solvent interactions42,43.

Dissipative Particle Dynamics (DPD)44 further coarsens the solvent molecules to obtain a

system of weakly-repulsive spheres interacting with a mixture of conservative, stochastic,

and dissipative forces. The conservative forces can be used to reproduce the solvent equa-

tion of state, while the dissipative forces model viscous friction. The stochastic forces act

as a thermostat that ensures detailed balance and correct thermal fluctuations in the DPD

fluid. The method has great flexibility and requires significantly less solvent particles and

larger time-steps than classical MD, however, it still requires costly integration of differen-

tial equations of motion for each of the solvent particles. Such integration of ODEs can

be avoided by using a kinetic Monte Carlo method, such as Direct Simulation Monte Carlo

(DSMC), to represent the solvent-solvent interactions. The idea is to use stochastic conser-
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vative collisions between nearby solvent particles to represent the exchange of momentum

and energy. Both multi-particle collisions42,43 and binary collisions17 have been used, as

described in Section III C. The computational efficiency comes at the cost of neglecting the

structure of the solvent, as in continuum methods. Recently a new Stochastic Hard-Sphere

Dynamics method has been proposed that also uses uncorrelated stochastic binary collisions

but still produces a non-trivial fluid structure and a thermodynamically-consistent non-ideal

equation of state, similar to those of a DPD fluid45.

D. Coupled Methods

Methods that combine several of the techniques described above into a single concurrently

coupled simulation can take advantage of their region of validity. Such a simulation may

involve several levels each with a different level of microscopic detail. For example, molecular

dynamics with complete atomistic detail and realistic potentials may be used for the polymer

chain(s) and nearby solvent. The solvent can then be coarse grained to a mesoscopic particle

fluid sufficiently far from any chains. The particle method can then be coupled to an explicit

fluctuating hydrodynamic description with a fine grid, for example, LB or a fluctuating NS

solver. Finally, the hydro grid can be adaptively coarsened in regions even farther from the

chain, and a non-fluctuating continuum solver used. This last macroscopic level can use

a different method from the fluctuating hydrodynamics level, for example, it could be an

incompressible NS solver. Much remains to be done to enable a truly multiscale simulation

capable of bridging from microscopic to macroscopic length and time-scales46,47.

III. SIMULATION METHODS

In this Section we describe in further technical detail the three different techniques we ap-

ply to the tethered polymer problem. The majority of the methodology has been previously

published so here we only summarize the essential points and cite the relevant works.

10



A. Brownian Dynamics

Details of the DNA model and Brownian dynamics simulation method that we use can be

found in Refs.22,25. We discretize a double-stranded DNA molecule into a bead-spring chain

composed of Nb beads of radius Rb = 77nm (the unit of length, 1 l.u. = 77nm) connected

by Ns = Nb− 1 entropic springs. Each spring represents a DNA segment of 4850 base pairs,

so that Nb = 11 corresponds to a stained λ-DNA, which has a contour length of 21 µm. In

Brownian dynamics, a force balance on this chain leads to a stochastic differential equation

for the dynamics of the chain48,

∆R = [U +
D · F
kBT

+
∂

∂R
·D]∆t +

√
2B ·∆W (1)

where R is the vector containing bead positions, R = {r1, ..., rN}, U is the unperturbed

velocity field at the bead centers, kB is Boltzmann constant, T is absolute temperature, F

is the non-hydrodynamic and non-Brownian forces, and D = B ·BT is the diffusion tensor.

The components of ∆W are obtained from a real-valued Gaussian distribution with mean

zero and variance dt. In a unbounded space, the hydrodynamic interactions (HI) enter the

chain dynamics through the diffusion tensor,

Dij = kBT [(6πηa)−1Iδij + Ωij] (2)

where η is the viscosity of the solvent, a is the bead hydrodynamic radius, I is the unit

tensor, δij is the Kronecker delta, and Ω is the HI (Stokeslet or Oseen) tensor.

Recent work has provided evidence of hydrodynamic coupling to the wall and experi-

mental validation of the use of point-particle (Stokeslet) hydrodynamic interactions (HI) to

describe the motion of Brownian particles near a surface49. Therefore, it is essential to have

wall corrected HI in the simulation to capture the dynamics of a tethered chain correctly.

In a bounded space, like near a solid wall, the HI tensor is modified to,

Ωij = (1− δij)Ω
OB(ri − rj) + ΩW (ri − rj) (3)

where ΩOB is the free-space diffusion tensor, and ΩW is the correction which accounts for

the no-slip constraint on the wall. The solution for a Stokeslet above a flat plate given by

Blake allows us to calculate ΩW exactly50. In a square channel or complex geometries, we

need to solve this problem numerically with a finite element method to determine ΩW at
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a grid of points8. Based on this description of near-wall HI, Jendrejack et al.51 predicted

that the DNA molecules migrate away from the wall in shear flow, leading to the formation

of depletion layers in the near wall region. This prediction has been verified in recent

experiments of dilute DNA solutions undergoing pressure-driven flow in microchannels52,53.

In different works, Delgado-Buscalioni used a hybrid particle-continuum model method to

describe HI15 and Schroeder et al. used unbounded space HI14 to study the motion of a

tethered chain.

We further assume that the chain is ideal (no self-excluded volume interactions between

different beads). The entropic springs connecting the beads obey a worm-like chain law

Fs
ij =

kBT

2bk

[(1− |rj − ri|
Nk,sbk

)−2 − 1 +
4|rj − ri|
Nk,sbk

]
rj − ri

|rj − ri| , (4)

where bk is the Kuhn length for DNA and Nk,s is the number of Kuhn lengths per spring.

The physical confinement is taken into account through an empirical bead-wall repulsive

potential of the form

Uwall
i = Awallb

−1
k δ−2

wall(hi − δwall)
3, (5)

when hi < δwall, where hi represents the perpendicular distance of bead i from the wall, δwall

is the cut-off distance. In this work, we choose Awall = 25kBT and δwall = bkN
1/2
k,s /2 = 0.24

µm. All of the parameters {a, bk, ν} are the same as used in previous work, where it has been

shown to successfully reproduce the static and dynamic properties of DNA with contour

length 10µm − 126µm8,25. For each parameter set, the sample size is 30 chains unless

otherwise specified. All results are presented for DNA at room temperature in a solvent

with a viscosity of 1 cP .

To study the dynamics of a tethered chain, beads are labeled from 1 to Nb + 1, starting

from the tethered point, as illustrated in Fig. 1. The fluid velocity in the flow direction z

is a linear function of distance from the wall in the gradient direction x, vz = γ̇x, where

γ̇ is the shear rate, and vx = 0 and vy = 0. Following common experimental practice, the

longest relaxation time is calculated by allowing a chain that is initially stretched using a

large shear rate to relax to equilibrium. Near equilibrium, the relaxation time is determined

by an exponential decay fit the chain extension along the stretch direction,

〈X̄2〉 = (X̄2(0)− 〈X̄2〉eq) exp(− t

τ
) + 〈X̄2〉eq. (6)

An exponential fit to the autocorrelation of the chain extension (relative to equilibrium)

parallel to the wall gives similar results. The relaxation time for our λ-DNA is estimated to
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be 0.59s at room temperature, which is in good agreement with the experimental result of

0.51s12 after extrapolating the viscosity to 1 cP .

B. Lattice-Boltzmann

In addition to Brownian Dynamics, we examine the short time correlations of a tethered

polymer in a uniform shear flow using a hybrid Lattice Boltzmann (LB) and Molecular Dy-

namics (MD) code based on the method by Ahlrichs and Dunweg23. The Lattice Boltzmann

method is a mesoscopic approach to fluid flow calculation and is based on a discrete version

of the Boltzmann equation with enough detail to recover hydrodynamic behavior. The LB

equation describes the evolution of a single-particle distribution function, fi (x, t), which is

the mass density of particles moving with velocity ei at a time t and position x on a cubic

lattice,

fi (x + ei∆t, t + ∆t) = fi (x, t) +
∑

j

Aij

[
fj (x, t)− f eq

j (x, t)
]
. (7)

The set of velocities ei is discrete and chosen such that x+ei∆t always remains a lattice site.

The last term describes the collision process in which the distribution function relaxes to a

local equilibrium, for which we utilize the BGK (Bhatnagar-Gross-Krook) approximation to

the collision operator, Aij = −τ−1δij , where τ is a relaxation time. The macroscopic hy-

drodynamic quantities, density ρ, momentum j = ρu, and momentum flux Π, are computed

from moments of the particle distribution function,

ρ =
∑

i

fi, j =
∑

i

fiei, and Π =
∑

i

fiei ⊗ ei. (8)

The equilibrium distribution depends on the macroscopic variables and its form is given by

f eq
i (x, t) = wiρ

[
1 +

ei · u
c2
s

+
(ei · u)2

2c4
s

− u2

2c2
s

]
, (9)

where the weights wi depend on the particle velocity discretization and are determined by

mass and momentum conservation. The lattice sound speed is cs = ∆x/
√

3∆t, where ∆x is

the lattice spacing. In this work we solved the distribution function on the standard D3Q19

lattice54 where the 19 particle velocity components consist of one rest particle, the 6 nearest

neighbors in a simple cubic lattice, and the 12 next nearest neighbors in the [110] directions.

The corresponding weights are 1/3, 1/18, and 1/36. The LB method avoids the additional
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mathematical complexities of Navier-Stokes PDE solvers and is straightforward to parallelize

efficiently. Using a Chapman-Enskog expansion, the lattice-Boltzmann equation can recover

the Navier-Stokes equations for small Mach and Knudsen numbers, and, within these limits

it is second-order accurate in space and time. Compared to the other two methods we apply

to the tethered polymer problem, BD and SEDMD, LB is less efficient in this case since it

solves for the solvent in the entire domain, even relatively far from the polymer chain.

In the LB calculations, the polymer is represented by 25 point particles joined by finitely

extendable nonlinear elastic (FENE) springs and interact through a repulsive Lennard-Jones

potential among each other and with the walls. Solvent fluctuations are incorporated by

adding a stochastic term to the right hand side of the LB equation. This term introduces

fluctuations into the momentum flux in a manner that satisfies the fluctuation-dissipation

theorem54. Coupling between the LB for the solvent and the MD for the solute is achieved

through Stokes drag forces and white-noise stochastic forces acting on the monomers. The

first monomer in the chain is tethered to the stationary lower wall in a domain having

36, 22, and 24 lattice sites in the streamwise, spanwise, and wall normal directions. The

streamwise and spanwise directions are periodic and the bounding upper wall moves with

constant velocity, providing the uniform shear.

C. Stochastic Event-Driven Molecular Dynamics

In addition to Brownian dynamics and Lattice-Boltzmann, we have also applied a purely

particle-based method to the tethered polymer problem. The Stochastic Event-Driven

Molecular Dynamics (SEDMD) algorithm introduced in Ref. [17] combines Event-Driven

Molecular Dynamics (EDMD) for the polymer particles with Direct Simulation Monte Carlo

(DSMC)55 for the solvent particles. In SEDMD, the polymers are represented as chains of

hard spheres tethered by square wells. The solvent particles are realistically smaller than

the beads and are considered as hard spheres that interact with the polymer beads with

the usual hard-core repulsion. The algorithm processes true (deterministic, exact) binary

collisions between the solvent particles and the beads, without any approximate coupling or

stochastic forcing. However, the solvent particles themselves do not directly interact with

each other, that is, they can freely pass through each other as for an ideal gas. Deterministic

collisions between the solvent particles are replaced with momentum- and energy-conserving
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stochastic collisions between nearby solvent particles. This gives realistic hydrodynamic be-

havior and fluctuations in the solvent, with tunable viscosity and thermal conductivity, but

without internal fluid structure. A recent modification of the DSMC algorithm can be used

to achieve a non-ideal equation of state for the stochastic solvent that is thermodynamically-

consistent with the density fluctuations45.

Hard-sphere models of polymer chains have been used in EDMD simulations for some

time56–58. These models typically involve, in addition to the usual hard-core exclusion,

additional square well interactions to model chain connectivity. Recent studies have used

square well attraction to model the effect of solvent quality59. Even more complex square

well models have been developed for polymers with chemical structure and it has been

demonstrated that such models, despite their apparent simplicity, can successfully reproduce

the complex packing structures found in polymer aggregation57,58. Here we use the simplest

model of a polymer chain, namely, a linear chain of Nb particles tethered by unbreakable

bonds. This is similar to the commonly-used freely jointed bead-spring FENE model model

used in time-driven MD. The length of the tethers has been chosen to be 1.1Db, where Db

is the diameter of the beads.

Several particle methods for hydrodynamics have been described in the literature, such

as MD60, dissipative particle dynamics (DPD)44, and multi-particle collision dynamics

(MPCD)41,61. Molecular dynamics is the most accurate model of the fluid structure and

dynamics, however, it is very computationally demanding due to the need to integrate equa-

tions of motion with small time steps ∆t and calculate interparticle forces at every time step.

The key idea behind DSMC is to replace deterministic interactions between the particles with

stochastic momentum exchange (collisions) between nearby particles. The standard DSMC55

algorithm starts with a time step where particles are propagated advectively, r
′
i = ri +vi∆t,

and sorted into a grid of cells. Then, a certain number Ncoll ∼ ΓcNc(Nc− 1)∆t of stochastic

conservative collisions are executed between pairs of particles randomly chosen from the

Nc particles inside the cell. For mean free paths comparable to the cell size, the grid of

cells should be shifted randomly before each collision step to ensure Galilean invariance.

The collision rate Γc and the pairwise probability distributions are chosen based on kinetic

theory.

In SEDMD the polymer chains and the bead-solvent interactions are handled using hard-

sphere event-driven molecular dynamics (EDMD)56,59,62,63 instead of the time-driven MD
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(TDMD) widely used for continuous potentials. The essential difference between EDMD

and TDMD is that EDMD is asynchronous and there is no time step, instead, collisions

between hard particles are explicitly predicted and processed at their exact (to numerical

precision) time of occurrence. Since particles move along simple trajectories (straight lines)

between collisions, the algorithm does not waste any time simulating motion in between

events (collisions). SEDMD combines time-driven DSMC with EDMD by splitting the par-

ticles between ED particles and TD particles. Roughly speaking, only the polymer beads

and the DSMC particles surrounding them are treated asynchronously as in EDMD. The

rest of the DSMC particles that are not even inserted into the event queue. Instead, they are

handled using a time-driven (TD) algorithm very similar to that used in traditional DSMC.

In three dimensions, a very large number of solvent particles is required to fill the sim-

ulation domain. The majority of these particles are far from the polymer chain and they

are unlikely to significantly impact or be impacted by the motion of the polymer chain. We

therefore approximate the behavior of the solvent particles sufficiently far away from any

polymer beads with that of a quasi-equilibrium ensemble. In this ensemble the positions of

the particles are as in equilibrium and the velocities follow a local Maxwellian distribution

whose mean is the macroscopic local velocity. These particles are not simulated explicitly,

rather, we can think of the polymer chain and the surrounding DSMC fluid as being embed-

ded into an infinite reservoir of DSMC particles which enter and leave the simulation domain

following the appropriate distributions. Using such open or stochastic boundary conditions

dramatically improves the speed, at the cost of small errors due to truncation of hydrody-

namic fields. This truncation can be avoided by coupling DSMC to a continuum fluctuating

hydrodynamic solver46.

We have made several runs for different polymer lengths and also bead sizes. One set

of runs used either Nb = 25 or 50 large beads each about 10 times larger than a solvent

particle. Another set of runs used either Nb = 30 or 60 small beads each identical to a solvent

particle, with faster execution but nearly identical results. In the simulations reported here

we have used rough wall BCs for collisions between DSMC and non-DSMC particles17. This

emulates a non-stick boundary condition at the surface of the polymer beads. Using specular

(slip) conditions lowers the friction coefficient, but does not qualitatively affect the behavior

of tethered polymers. All of the runs used open boundary conditions, where about 153

DSMC cells around each bead were explicitly simulated. Note that for (partially) collapsed
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polymer chains the total number of explicitly simulated cells is much smaller than 153Nb.

The Nb = 30 runs were run for about 6000τ0 relaxation times, and such a run takes about

6 days on a single 2.4GHz Dual-Core AMD Opteron processor. Even for such long runs

the statistical errors due to the strong fluctuations in the polymer conformations are large,

especially for correlation functions at long time lags t > τ .

IV. RESULTS

The main goal of our paper is to reinvestigate the tethered chain problem through exten-

sive long time simulations (thousands of longest relaxation time of the tethered polymer, τ)

involving different representations of polymer and solvent, including Brownian dynamics22

(BD), the Lattice Boltzmann method23 (LBM), and a recent Stochastic Event-Driven Molec-

ular Dynamics17 (SEDMD) algorithm. In this section we present comparison results from

our simulations. More extensive results for the tethered polymer problem obtained using the

SEDMD algorithm are presented in Ref. [17]. Since the three different methods that we use

give similar results and Brownian Dynamics is the fastest methodology, the majority of the

results we present will be from BD simulations with Nb = 11 (Ns = 10), unless otherwise

indicated. Of the three methods used here, LB is the slowest and thus the LB results are

of more limited duration. We emphasize that direct computational comparison between the

methods is unfair. Most significantly, the LB runs use periodic boundary conditions and

have to fill the whole simulation domain with explicit solvent (lattice points). By contrast,

the SEDMD runs use open boundaries and thus use much less explicit solvent, whereas the

Brownian dynamics does not use an explicit solvent at all.

Doyle et al. proposed a cyclic dynamics mechanism for a tethered polymer chain in shear

flow (Fig. 1) based on Brownian dynamics simulation results12. According to this scenario,

when thermal fluctuations cause motion in the gradient direction x (from state 1 to state

2), the chain is driven away from the wall and experiences higher hydrodynamic drag. This

leads to further stretching and an increase of the extension in the flow direction z (state

3). Due to the finite extensibility of the chain, the extension in the z direction is finite and

depends on the shear rate and chain properties. After stretching, the coupled torque of the

hydrodynamic drag and spring forces will rotate the chain towards the wall (state 4). As

the chain get closer to the wall, the flow velocity decreases and entropic recoiling becomes
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dominant, resulting in a decrease of the z extension (state 1). The tethered chain could

take other dynamical paths than following the one described above, such as restretching or

recoiling after state 2 by random motion in −x and −z direction, respectively.

In Fig. 2 we show the probability distribution function (pdf) ρ(z, x) of the end bead in the

z−x plane at Wi = 0 and Wi = 2 for the three different methods. The results are presented

in dimensionless units by normalizing the unit of length by the average radius of gyration

in the x direction at Wi = 0. Here, again, we want to emphasize that we are not expecting

perfect match between methods. In particular, the different methods implement different

effective boundary conditions at the wall surface. In Brownian dynamics, an essentially

reflective boundary condition appears, while in the case of a hard-sphere chain a perfectly

reflective boundary condition is appropriate. For the LB runs an intermediate case appears,

where the repulsion from the wall is stronger than hard spheres but still finite-ranged. These

boundary effects are clearly visible in the results in Fig. 2, where the BD results show a

depletion layer near the wall where as the SEDMD and LB results show the bead spending

more time near the wall.

In Fig. 3 we compare the dependence of the relaxation times τx/y/z along the three dif-

ferent axes on the flow rate among the three different methods. The figure shows reasonable

agreement between the different techniques, especially considering the large errors inherent

in determining relaxation times. We calculate the relaxation times by fitting an exponential

decay to the intermediate portion of the autocorrelation function 0.2 < C(t) < 0.8 of the

position of the end bead along the three coordinate axes. The LB calculations use periodic

boundaries with a narrower box in the spanwise (y) direction than in the streamwise (x)

direction, which makes the relaxation times τx(Wi = 0) and τy(Wi = 0) unequal, as they

must be by symmetry. We have scaled τy(Wi) (the shorter axes) in the LB results by a

constant factor so as to correct this strong boundary effect at Wi = 0. Among the three

relaxation times, the relaxation in the direction perpendicular to the wall τz is the shortest,

even for no flow. Note than in this work, following Ref. [17], the relaxation time along the

flow direction τx is used to define the internal relaxation time and thus Wi when comparing

among the different methods. Note also that it is τx that seems to get most strongly reduced

as Wi increases.

To study the time scale associated with the fluctuating process (cycle) quantitatively and

to find the correlation between different chain segments, we calculated the cross-correlation
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functions (CCF) of beads’ positions. We also calculated the power spectral density (PSD) in

search of periodicity. The CCF and PSD are the natural tools for examining the relationship

between two time dependent random variables in the time and frequency domain respectively.

The mean-removed CCF of two time series α(t) and β(t) is defined as

Cαβ(T ) =
E[(α(t + T )− ᾱ)(β(t)− β̄)]

σασβ

(10)

where ᾱ = E(α) is the mean, σ2
α = E(α2) − [E(α)]2 is the standard deviation, and T is

the time lag. A significant peak in the CCF at lag T indicates that α(t) is correlated to

β(t) when delayed by time T . In the frequency domain, the PSD is the norm of the Fourier

transform of the CCF,

Sαβ(ν) =

∥∥∥∥
∫ ∞

−∞
Cαβ(T )exp(−2iπνT )dT

∥∥∥∥ (11)

Note that this is the standard definition used in the engineering literature, and here the fre-

quency ν = 1/T is actual frequency (inverse period) rather than angular frequency ω = 2πν.

To produce a PSD with accurate sampling around interesting frequencies, long simulation

times and a high sampling frequency are essential. We examined various choices of variables

to represent the motion of the chain and have found little qualitative difference between

them. We have chosen the position of the end bead rNb
= (x, y, z) as be the best option17.

Extensive computational efforts have been undertaken to determine the CCF and PSD of

the end bead coordinates as function of chain length N and shear flow parameter Wi.

The CCF Czx(t) of the end bead at various Wi is shown in Fig. 4(a). The shape of the

CCF is consistent with the cyclic dynamics mechanism proposed by Doyle. Clearly, in the

absence of flow, Wi = 0, the movements in the x and z directions are uncorrelated on all

time scales. When shear flow is introduced, the movements in flow direction and gradient

direction are coupled together due to the nature of the flow and the finite extensibility of

the chain, as reflected in the rise of a prominent peak in the CCF. When thermal motion

in +x direction occurs, the chain will be stretched with an increase in +z, which leads to

a positive correlation. Similarly, when motion in −x direction is introduced, the chain will

recoil in the −z direction as the drag decreases, which also leads to a positive correlation. As

expected, the larger the shear rate, the greater the correlation. There’s only one significant

peak in the long time correlation function, shown in the inlet of Fig. 4(a), which suggests

that all correlations are short-lived and not periodic.
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Turning attention to the correlation between different chain segments, Fig. 5 shows the

CCFs of several beads along the chain at Wi = 2. One striking feature is that for beads

sufficiently far from the tether all curves pass the time axis at the same time lag. The fact

that all CCFs have the same shape indicates that a common movement pattern exists for

the whole chain. The inset in Fig. 5(a) shows the CCFs of the x coordinates of different

beads. Although the correlation decays as the distance along the chain increases, it confirms

that all beads move in a cooperative manner, indicated by the fact that the peak positions

are all at zero time lag. The CCF for the end bead for various chain lengths are compared in

Fig. 5(b), to show that there is no fundamental difference between different chain lengths,

ranging from 20 µm (Ns = 10) to 80 µm (Ns = 40). We have also established that these

results are insensitive to the cut-off distance and the magnitude of the repulsive potential

between the wall and chain segments.

In Fig. 6 we compare the cross-correlation function Czx(t) at Wi = 2 among the three

different methods: Brownian Dynamics, Lattice-Boltzmann, and Stochastic Event-Driven

Molecular Dynamics. In particular, our goal is to verify the pervasive assumption that the

dynamics of polymer chains in shear flow is essentially universally quantitatively determined

by Wi for a wide range of flexible chains. Furthermore, it is important to cross-validate the

different methods against each other, given that each of them makes certain assumptions and

has somewhat different range of applicability. The results in Fig. 6 indeed show reasonable

agreement between the different methods. Perfect agreement is not expected because the

polymer models are different among the different methods.

The cross-correlations we measure are not consistent with periodic motion. The PSD

calculation does not show discernible peaks either, as shown in Fig. 4(b). All that we can

reliably extract from the results is that the response of the chain to a large thermal fluctuation

(the“cycle”) is reproducible for short times, and we find no evidence of sustained correlations

(oscillations) at times longer than the internal relaxation time of the chain. For a free chain

in shear flow, where rotations of the chain are possible, one can count the number of tumbling

events per unit time and define that as a cycling time. The distribution of the delays between

successive tumbling events is itself important. If this distribution is sharply peaked, that

would be consistent with a periodic motion with a well-defined period. If the distribution

is exponential, this would indicate a Poisson-like tumbling process. Several recent works

have proposed an exponential distribution for the delay between successive tumblings7,19,20.
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Furthermore, the tumbling time was found to be related to the internal relaxation time of

the chain19,20. For tethered chains, we cannot even identify and count a unique event such

as tumbling and thus we cannot extract a repetition frequency for the “cycle”.

In Appendix A, we analytically calculate the CCF for a Brownian particle tethered to

the origin with a harmonic spring and subjected to shear flow. This simple dimer model

qualitatively reproduces the features we see in the CCF for the tethered chains, namely, a

single peak at t ∼ τ of width∼ τ and height∼ Wi. Better quantitative agreement is obtained

when a nonlinear spring and a hard wall surface are also included (without hydrodynamics).

The PSD for the dimer model shows no peaks and there is only a single time-scale in the

dynamics, namely, the intrinsic relaxation time τ . Furthermore, the analytical form of the

CCF shows that by a slight modification of a tunable parameter one can obtain a CCF

fully-consistent with our numerical results for longer chains. This analytical CCF has an

analytical PSD that does show a broad peak at small frequencies ντ ∼ 0.1, very similar to the

previously reported peaks used to justify the claims to periodicity in the chain motion14,15,18.

This peak is weak and broad even when plotted on a logarithmic axes and its exact shape

and maximum will vary depending on the particular model, variables used in calculating the

PSD, Wi, the definition used for calculating τ and Wi, etc. We therefore believe that its

interpretation as evidence of periodic motion is not justified.

The calculations in Appendix A for a dimer in shear flow also demonstrate that a qual-

itatively similar behavior is observed even without hydrodynamic interactions. Our results

from Brownian Dynamics simulations in the free-draining limit confirm this and show that

the HI do not affect the results significantly, so long as the relaxation time is recalculated

when computing Wi. In the tethered case, we believe that the competition between fric-

tional and elastic restoring forcing dominates and the hydrodynamic interactions are a weak

perturbation. Therefore, it is not surprising that the proper inclusion of hydrodynamic in-

teractions is not essential for the tethered polymer problem, as reasoned theoretically for a

free chain in shear flow in Ref. [20].

V. CONCLUSIONS

We studied the dynamics of a polymer molecule tethered to a hard wall and subjected to

a shear flow. We found consistent results among three methods utilizing different represen-
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tations of the solvent, Brownian Dynamics (BD), Lattice-Boltzmann (LB), and Stochastic

Event-Driven Molecular Dynamics (SEDMD). Specifically, BD implicitly represents the sol-

vent, LB explicitly represents the solvent flow on a discrete lattice, and SEDMD utilizes a

particle-based solvent. The three methods also utilized different polymer chains, namely,

the BD simulations used a worm-like chain, the LB simulations used a FENE-LJ chain, and

for SEDMD we used a tethered chain of hard spheres.

The correlation functions of the position of the end bead question the existence of peri-

odic motion, as previously suggested. The cross-correlation function between the bead posi-

tions along the flow and gradient directions shows a single peak indicative of a fluctuation-

dissipation cycle of duration comparable to the relaxation time of the polymer. The corre-

sponding Fourier representation, the power-spectral density, shows no peaks. We find that

neither the chain length of the polymer N , nor the dimensionless shear rate Wi, qualitatively

alter the results, and in the Appendix we give some calculations for a very simple model

of a dimer in shear flow that reproduces the essential features of the observed peak in the

cross-correlation function.

While our conclusions are rather different from other authors, our results are statistically

consistent with those presented in the literature. Specifically, the shape and position of the

peaks in the cross-correlation functions are very similar to reported results, however, we

did not observe large oscillations in the CCFs previously identified as signatures of periodic

motion15. We believe that this is due to the requirement of very long simulation times

to obtain good statistics for the time-correlation functions at long time lags, as necessary

to establish periodicity. Not all previous studies have been able to reach sufficiently long

simulation times. Another important point we clarified is that maxima in the power-spectral

density does not necessarily indicates a periodic motion, which we demonstrate in Appendix

A using an analytic dimer model. Namely, an analytical shape is suggested by the dimer

calculations that can exhibit peaks very similar to those reported in the literature through

small adjustments of a tunable parameter, whose appropriate value likely depends on details

of the model used and the exact variables used in the calculations of the power spectrum.

Furthermore, different if not conflicting ways have been used to define and calculate the

“cycling time”, without properly distinguishing between the duration of a cycle and the

interval between cycles. Even more importantly, the very concept of a cycle in the chain

motion as a well-defined countable event, analogous to the case of a free chain in shear
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flow, should be questioned. Our results are consistent with a simple traditional picture of

continuous thermal fluctuations dissipated by deterministic friction, leading to exponentially-

decaying correlation functions.
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Appendix A: DIMER IN SHEAR FLOW

In this Appendix we analytically and numerically consider the case of a Brownian particle

attached to the origin with a harmonic spring with stiffness k = κζ, where ζ is the friction

coefficient, subject to shear flow, vx = γ̇y. If additionally we include a hard wall at y = 0

such that the random walk is restricted to the upper half-space, y > 0, we are essentially

considering a tethered polymer chain composed of two beads. Note that this problem is

essentially two-dimensional.

The overdamped Langevin equations for the particle coordinates are

ẋ = γ̇y − κx + Fx

ẏ = −κy + Fy,

where F denotes the random forcing. After performing a Fourier transform in time, we get

the solution in Fourier space

x̂ =
(iν + κ)F̂x + γ̇F̂y

(iν + κ)2

ŷ =
F̂y

(iν + κ)
,

from which we can obtain all cross-correlation functions using the identities
〈
F̂x

?
F̂x

〉
=〈

F̂y

?
F̂y

〉
= α and

〈
F̂x

?
F̂y

〉
= 0. In particular, we obtain the monotonically-decreasing
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non-normalized PSD

S̃xy(ν) =
∥∥∥Ĉxy

∥∥∥ = ‖〈x̂?ŷ〉‖ =
αγ̇

(ν2 + κ2)3/2
,

and, after an inverse Fourier transform, the non-normalized CCF

C̃xy(t) =





αγ̇e−κt(2κt + 1)/(4κ2) for t ≥ 0

αγ̇eκt/(4κ2) for t < 0
.

In the case of no shear flow, γ̇ = 0, we obtain that C̃xx(t) = αe−κ|t|/(2κ), showing that the

relaxation time is τ = κ−1 and thus Wi = γ̇/κ. For the harmonic spring dimer the relaxation

time does not depend on Wi. The cross-correlation function shows a single peak at tmax =

(2κ)−1 = τ/2, and after proper normalization, Cxy(t) = C̃xy(t)/
√

C̃xx(t = 0)C̃yy(t = 0), the

height of the peak in the CCF is found to be

Cmax
xy = Cxy(τ/2) =

√
2e−1/2Wi√
2 + Wi2

. (A1)

This analytically-solvable dimer model, even without a hard wall, reproduces the character-

istics of the CCF that we observe for tethered polymer chains in shear flow. Specifically,

Cxy(t) has an asymmetric peak of width ∼ τ centered at t = τ/2 and height ∼ Wi. There is

no periodicity in the motion of the dimer and no“cycling” time-scale other than the intrinsic

relaxation time τ .

The dimer problem can no longer be solved analytically if a hard wall is present or if

the spring is non-linear (e.g., FENE or worm-like). We can, however, study the dimer

with a non-linear spring and/or in the presence of a hard wall numerically using Brownian

Dynamics (without hydrodynamics). Some results for Wi = 2 are given in Fig. 7, where we

also show the analytical solution for the harmonic dimer and the results for longer tethered

chains. When a hard wall is present, the numerical results show that the position of the

peak in the CCF shifts to smaller times and reduces in height. For the non-linear springs,

the position of the peak moves to smaller times as Wi increases, exactly as we observe for

the tethered chains. The height of the peak is several times larger for a dimer than for a

chain with N À 1 beads, which is not unexpected.

Even after including non-linearity and the hard wall, the dimer model fails to reproduce

the smaller but still substantial negative peak at t < 0 that we observe in the CCFs for the

longer tethered chains at small Wi. An analytical calculation for a harmonic chain tethered
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to a point and subjected to shear flow might reproduce that feature as well. We can mimic

such a peak by constructing an artificial CCF,

Ĉxy(t) = Cxy(t)− αCxy(−t), (A2)

where 0 < α < 1 controls the depth of the negative peak, and Cxy is the analytical CCF for

the harmonic dimer . As illustrated in Fig. 7, such an empirical fit matches the numerical

results quite well. The Fourier transform of Eq. (A2) gives an empirical PSD of the form

Ŝ(2πν = Ω/τ) ∼ Wi

√
(1 + α2)(1 + Ω2)− 2α(1− Ω2)

1 + 2Ω2 + Ω4
,

which for α > 1/3 exhibits a wide maximum at frequencies Ω = 2πτ/T ∼ 0.5, i.e., at a

period T ∼ 10τ . As illustrated in Fig. 7, the maximum in this PSD is very reminiscent of

the “peaks” in the PSD observed in Refs.14,15,18, where they were attributed to the existence

of a periodic motion with period of about 10τ . The analytical shape of the PSD only involves

τ as a relevant timescale, and the cross-correlation function has an exponential decay at large

times ∼ exp(−t/τ), just like the autocorrelation function for the end-to-end vector used to

define relaxation times. Such an exponential decay is inconsistent with periodic motion, but

is consistent with some recent theoretical models that suggest similar correlations for a free

chain in shear flow19,20. In summary, as seen from this simple analytical example of a dimer

in a flow, a maximum in the PSD does not imply any periodic motion and the claim of an

existence of a new physical timescale other than the internal relaxation time of the polymer

is not justified.
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Figure Captions

1 Snapshots taken from a simulation run with Wi = 5 to show tethered DNA

dynamics. The beads are labeled from 1 to 11 as shown. Cyclic motion mech-

anism proposed by Doyle et al. is composed of four stages: 1) (Re)coiling; 2)

initiating; 3) stretching; 4) rotating12

2 Probability distribution of the end bead of the tethered DNA molecule in a

dimensionless x − z plane at Wi = 0 and Wi = 2. The visible differences

can likely be attributed to the differences in the boundary conditions between

the different methods, as well as the different elasticity of the chains. (Left)

Brownian dynamics. (Middle) Stochastic Event-Driven Molecular Dynamics.

(Right) Lattice Boltzmann Method.

3 Dependence of the dimensionless relaxation time τ(Wi)/τ(Wi = 0) of the

tethered chain along the three coordinate axes as a function of dimensionless

flow rate Wi. The inset shows the ratios of the different relaxation times as

a function of Wi.

4 (a) Normalized cross-correlation functions (CCF) Czx(t) of the end bead’s

coordinates in flow direction z and gradient direction x as a function of non-

dimensional time, at various Wi for Ns = 10. The inset shows longer time

lags. (b) Power spectral density (PSD) Szx(ν) of the end bead’s coordinates

as a function of non-dimensional frequency. The results are averaged over 30

runs for a total simulation time is 103τ , and 104τ for Wi = 5.

5 (a). CCFs of end beads’ coordinates at Wi = 2 for a chain with Ns = 10 and

simulation time is 1000 τ . The number in the legend is the bead label as shown

in Fig. 1. The inset shows the CCFs for x coordinates of different beads to

study the correlation of the dynamics between different beads (similar results

are obtained for the y axes). (b) CCFs of end bead as function of chain length

at Wi = 5. The number in the legend is the number of springs Ns in the chain.

The inset shows longer time lags.
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6 Comparison of the cross-correlation function Czx(t) at Wi = 2 among the

three different methods: Brownian Dynamics (30 runs about ∼ 1000τ long),

Lattice-Boltzmann (run is ∼ 600τ long), and Stochastic Event-Driven Molec-

ular Dynamics (10 runs about ∼ 1000τ long).

7 The left panel shows the cross-correlation function for a dimer (dumbbell)

tethered to a hard wall and subjected to shear flow, for a harmonic, FENE

and a worm-like spring. We also show a rescaled form of the analytical solution

for a harmonic dimer in shear flow (without a hard wall). The height of the

peak diminishes by a factor of about 2 when a hard wall is present, so we

have rescaled the analytical solution for the harmonic dumbbell accordingly.

The position of the peak shifts to smaller times when a hard wall is present

as well, and we have thus rescaled the time for the analytical solution. The

CCF for a wormlike chain of N = 20 beads, as obtained from Brownian

Dynamics simulations, is also shown for qualitative comparison after scaling

by a factor of 3 to bring its height in agreement with the dimer case. We

also show an empirical fit to the Brownian Dynamics simulations of the form

proposed in Eq. (A2), for which the PSD can be analytically calculated and

shows a maximum at period T ∼ 10τ , depending on the value of the tunable

parameter α, as illustrated in the right panel.
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