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Abstract

We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using
Brownian Dynamics, the Lattice Boltzmann Method, and a recent Stochastic Event-Driven Molec-
ular Dynamics (SEDMD) algorithm. We focus on the dynamics of the free end (last bead) of the
tethered chain and we examine the cross-correlation function (CCF) and power spectral density
(PSD) of the chain extensions in the flow and gradient directions as a function of chain length
N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-
dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as
previously claimed. We support our numerical findings with a simple analytical calculation for a

harmonic dimer in shear flow.



I. INTRODUCTION

The interaction of polymer molecules with fluid flow has been studied both theoretically!-?
and experimentally®” for several decades. The behavior of polymer chains in flow is deter-
mined by an intricate interplay between the flow gradients, chain elasticity, thermal fluctua-
tions, and the physical confinement®?. The dynamics of tethered polymer molecules (“poly-
mer brushes”) in shear flow has received considerable attention due to its relevance to diverse
important applications, such as colloidal stabilization, surface adhesion, and lubrication'®.

In contrast to previous work on the collective motion of polymer brushes'®!! Doyle et
al. studied the dynamics of a single tethered DNA in uniform shear flow using fluorescence
videomicroscopy!?. Enhanced temporal fluctuations in the chain extension were observed,
and were attributed to the coupling of advection in the flow direction and diffusion in the
gradient direction. A cyclic dynamics mechanism (Fig.1), closely related to the tumbling

713,14 was proposed based on results from

dynamics of a free polymer molecule in shear flow
Brownian dynamics simulations. No peaks were observed in the calculated power spectral
density (PSD) of the DNA extension in the flow direction, and the authors therefore sug-
gested that the cyclic dynamics of a tethered chain in shear flow is aperiodic. An important
physical question is whether there is a characteristic timescale associated with the cyclic
motion that is distinct from the internal relaxation time of the chain.

Several computational studies revisited the problem of a tethered chain in shear flow
by looking at different variables relating to both the flow and gradient directions, such
as extensions along both flow and gradient directions!®, polymer orientation angle defined
through the gyration tensor'*, and angle between the wall and the vector joining the tethering
point to the center-of-mass of the chain!. The cross-correlation functions for such variables
exhibit signatures of the proposed cyclic motion in the form of peaks at non-zero delay time.
Because of the particular choice of variables in Ref. [16], the lack of such peaks at small
Weissenberg numbers was attributed to the existence of a critical Weissenberg number; as
demonstrated in Ref. [17], choosing a different sets of variables shows that the signature
peaks exist even at small shear rates. In Ref. [16], the position of the peak in the studied
cross-correlation functions was interpreted as a characteristic cycling time, and it was found
to be a fraction of the relaxation time of the polymer chain. In Ref. [14] the tumbling motion

of a free polymer chain in shear flow was studied experimentally and computationally, and



wide peaks were found in the Fourier spectra of the time series of the angle of the chain
relative to the flow direction. These peaks were identified as evidence of periodic motion
of the tumbling molecule. The characteristic tumbling time (period) was extracted from
the position of the peak in the spectrum and was found to be in good agreement with the
experimentally-measured tumbling frequency. These finding for a free chain in shear flow
inspired similar studies of a tethered chain, and similar observations of periodic motion with
a characteristic period about an order of magnitude larger than the relaxation time were
reported!415® In several later studies of the tumbling emotion of a free polymer chain in

1920 all suggest that

shear flow, experimental results”, numerical simulation'®, and theory
the intervals between successive tumbling events are exponentially-distributed with a decay
constant equal to the relaxation time of the chain. Such an exponential tail implies that the
tumbling events occur as a Poisson-like process, which is aperiodic despite the existence of
a characteristic timescale (frequency of repetition). If the tumbling events of a free polymer
in shear flow is aperiodic, intuitively, adding of a wall to break the symmetry of the motion
should leave the dynamics of a tethered chain aperiodic.

Different authors use the terms “cyclic” (repetitive) and "periodic” with different mean-
ings, and it is therefore important to give our definitions. Periodicity is the quality of
occurring in regular time intervals (periods). Periodic motion has correlation functions that
are (possibly damped) oscillatory functions, and spectra that have sharp peaks. Noise (fluc-
tuations) and the associated dissipation will always broaden any peaks that are related to
underlying deterministic periodic motion (and consequently, exponentially dampen the os-
cillations in the real-space correlation functions). As an example, for a rigid spheroid in
shear flow, there is indeed periodic motion (Jeffery’s orbits) in pure shear flow. Adding fluc-
tuations, when they are small, is expected to preserve that but introduce some broadening
of the spectral peaks?!. In contrast, a cycle usually means a process that eventually returns
to its beginning and then repeats itself in the same sequence. The end-to-end tumbling
of a single polymer molecule in shear flow provides a relevant example. In this paper we
analytically calculate the power spectrum for a tethered dimer in shear flow, and find an
exponentially-decaying cross-correlation function that has the relaxation time as the only
characteristic timescale. More importantly, this analytical example shows that the power
spectrum can exhibit a wide peak at small frequencies without any underlying periodic mo-

tion, and that the location of a maximum in the PSD is not necessarily an indication of a



new timescale. The analytical results for a tethered dimer are consistent with our numerical
observations for longer tethered chains in shear flow. Therefore, our investigations do not
confirm the existence of periodic motion with a period distinct from the relaxation time of
the chain, as previously suggested in the literature!41518,

We apply three different solvent representations to the same problem of a tethered chain
in shear flow. The models are an implicit solvent (Brownian Dynamics??, BD), a contin-
uum solvent (Lattice-Boltzmann?®, 1LB), and a particle solvent (Direct Simulation Monte
Carlo!'”, DSMC). Such comparison between widely differing methods on the same problem
is important as a validation of their range of applicability. It is also important to com-
pare the computational performance of the different methods. In this work, different chain
representations and boundary conditions make a direct quantitative comparison impossible.
Specifically, the BD polymer is a worm-like chain representative of semi-flexible DNA, in
the LB simulations it is a flexible chain of repulsive spheres, and in the DSMC solvent it is
a flexible chain of hard spheres. However, we can access the importance of the details of the
chain model, and in particular, of chain elasticity, and thus test the widely used assumption
that the dynamics scales with the Weissenberg number Wi = 47, where 7 is the shear rate
and 7 the chain relaxation time, independent of the details of the model. For this particular
problem of a tethered chain in shear flow, we find good agreement between the different
methods.

A general discussion of the wide range of techniques for modeling the hydrodynamics of
polymer chains in solution is given in Section II. Further details about the three specific
techniques we use in this paper to study the tethered polymer problem are given in Section
III. In Section IV we present our results, and finally, in Section V we give some concluding

remarks.

II. DISCUSSION OF METHODS FOR HYDRODYNAMICS OF POLYMER SO-
LUTIONS

In this Section we give a brief overview of various methodologies for modeling hydro-
dynamics of soft matter systems, notably, polymer solutions (see also review by Duenweg
and Ladd?!). The various methods for computational hydrodynamics of polymer solutions

can be divided in two major categories. The first are purely continuum methods that use



constitutive equations for the polymer solution. These models only apply at macroscopic
scales, when the number of polymer chains in an elementary fluid flow volume is large, so
that statistical averages of the chain conformations can be used as parameters in consti-
tutive models of the time-dependent stress as a function of the strain rate history. The
construction of such constitutive models is ad hoc and rather difficult in situations where
conformations of the chains couple to an unsteady flow, as, for example, in the problem of
turbulent drag reduction. Additionally, such continuum methods do not apply to situations
where the dynamics of individual chains are of interest, such as a DNA molecule flowing
through a micro-channel or DNA translocation through a pore. The second major category
of methods explicitly simulates the motion of each polymer chain using some form of molec-
ular dynamics. The simplest chain model is a dumbbell. Multi-bead representations of the
chains are capable of complex chain conformations but require models for the bead-bead
interactions. Such details of the polymer model are important for both physical fidelity
and computational efficiency. For example, preventing chain-chain crossing can require stiff
interactions for excluded volume terms, which in turn can lead to small time steps. There
are also two major types of algorithms for dealing with the solvent. One represents the
solvent tmplicitly, and the others use an explicit solvent. An implicit solvent is most efficient
computationally, however, it can only be used if the fluid flow in the absence of the polymer
is known analytically or can easily be pre-computed numerically (e.g., stationary flow), and

if the polymer chains themselves do not alter the background flow.

A. Implicit Solvent: Brownian Dynamics

The most widely used implicit-solvent algorithm is Brownian dynamics??, described in
more detail in Section IIT A. The method involves solving first-order differential equations
of motion for the positions of the beads with additional forces due to the presence of the sol-
vent. These solvent forces can be separated into a deterministic portion, for which a (linear)
analytical approximation is used, and a stochastic portion, which is assumed to be white
noise. The fluctuation-dissipation theorem is used to set the magnitude of the stochastic
forcing. Brownian dynamics relies on several assumptions usually valid in microfluidic appli-
cations. The first assumption is that of small Reynolds number laminar (usually stationary)

flow adequately described by a linearized Navier-Stokes equation. The second assumption is



that hydrodynamic fields develop infinitely quickly relative to the rate at which the polymer
conformation changes, so that a quasi-stationary approximation can be used to describe the
perturbation of the flow field induced by the motion of the beads. This approximation leads
to Stokes friction on single beads, as well as hydrodynamic interaction pairwise terms approx-
imated with a long-range Oseen tensor as derived through an asymptotic (f — oo) analysis
for point particles. The free-draining approximation of Brownian dynamics neglects these
pairwise hydrodynamic interactions. The inclusion of pairwise hydrodynamic interactions
leads to a matrix formulation of the fluctuation-dissipation theorem and therefore factoriza-
tion of a matrix of the size of the number of beads is required at every time-step. Various
numerical tools have been devised to avoid dense factorization?>?°> 27, thereby reducing the
cost of a single time step in Brownian dynamics with hydrodynamic interactions.

Brownian Dynamics should be distinguished from Langevin dynamics, in which second-
order (Newton’s) equations of motion are used for the beads, that is, both the bead velocities
and positions are included as explicit degrees of freedom (but the solvent is still implicit)?.
This assumes that there is a large separation of time-scales between the fluid degrees of
freedom and the velocities of the beads, which is in fact only true if the beads are much
denser than the solvent. Furthermore, a much smaller timestep necessary to resolve the
faster dynamics (relaxation) of the bead velocities. Therefore, Langevin dynamics finds
its use only when the solvent is represented explicitly, so that calculating the friction and
stochastic forces no longer requires factorization of the mobility tensor.

An important advantage of Brownian dynamics is that it simulates the limit of zero
Reynolds number exactly. It can also often exactly account for simple boundary condi-
tions (e.g., flow in an infinite half plane) without resorting to approximations that truncate
the flow field to a finite domain, such as the commonly-used periodic boundary conditions.
Brownian dynamics is relatively easy to implement, however, complex boundary conditions,
such as indentations or bumps on walls, requires care so that analytical approximations
to the Oseen tensor that preserve the positive-definiteness of the diffusion tensor?®. While
the computational cost can rise rapidly as the number of beads is increased when direct
implementations are used, novel schemes can be used to truncate the long-range hydrody-
namic interactions and yield a linear dependence on system size, similarly to the handling

of electrostatic interactions in spectral?® and multipole methods?”.



B. Explicit Solvent: Continuum Methods

In order to capture the bi-directional coupling between the motion of the polymer and the
flow around it, it is necessary to explicitly represent the solvent. The first level of approx-
imation is to use a continuum description of the solvent assuming the applicability of the
Navier-Stokes (NS) PDEs at small length scales. Typically an incompressible assumption
is made, which is appropriate at sufficiently low Mach numbers if acoustic waves are not of
interest. Additional approximations such as linearization or an iso-thermal approximation
may be appropriate. The time-dependent (unsteady) NS equations can be solved by any of
the numerous existing CFD algorithms, including explicit, implicit, or semi-implicit algo-

30732 Ome of the advantages of the PDE formulation

rithms of varying level of complexity
over particle methods is the ability to use powerful adaptive mesh resolution techniques that
allow coarsening of the mesh away from the region of interest, here polymer chains. However,
the case of complex boundary conditions such as needed, for example, in the handling of
moving beads or flow through porous media, presents difficulties. An alternative to solving
the Navier-Stokes PDEs is to use the Lattice-Boltzmann (LB) method®?, as discussed in
Section IIIB. It requires small time steps limited by CFL-type conditions, however, each
of the time steps is efficient. Recently, so-called entropic LB schemes have been developed
that posses a discrete H-function, resulting in unconditional numerical stability even at high
Reynolds numbers®*. LB has been found competitive with NS solvers in many situations and
has the further advantage that it is based on kinetic theory and allows a more detailed level
of description than NS. An important advantage of LB solvers is also their ability to handle
complex boundary conditions. Recently, Chen et al. have provided a detailed comparison
between BD and LB simulations on a DNA model that shows that the LB method pro-

vides a reasonable description of the results of more precise BD simulations at low Reynolds

numbers®?.

1. Thermal Fluctuations

Most continuum fluid dynamics methods are deterministic and thus do not include in-
ternal fluctuations of the hydrodynamic fields. Fluctuations become more important the

smaller the length scale of interest, and are crucial for polymer flows. Including thermal



fluctuations in a continuum formulation has been carried out for both CFD and LB algo-
rithms. The Landau-Lifshitz Navier Stokes (LLNS) equations include thermal fluctuations
in the stress tensor but numerical schemes to solve them are not nearly as advanced as are
the standard CFD solvers3"26:37. Fluctuations have been included in LB and do not pose

any particular numerical problems3®

. Fluctuations have also been included in incompress-
ible solvers in conjunction with the Immersed Boundary Method?*3%. The ability to turn
fluctuations on or off is an important advantage of continuum-based methods over particle

methods.

2. Coupling with the Polymer Chains

Regardless of what continuum method is employed, it is necessary to couple that method
to the MD description of the polymer chains. The simplest and most commonly used coupling
scheme is to approximate the beads as points and assume for the solvent-induced force on
the polymer beads the Stokes-Langevin form F = —67Rynv +Fg, where vy is an estimate
of the local fluid velocity and Fg is an uncorrelated stochastic force whose magnitude obeys
the fluctuation-dissipation theorem?3!'*°. This approximation is similar to that in Brownian
dynamics, namely, Stokes law is only valid in quasi-static continuum situations, relying on
the separations of time and length scales which are usually only marginally separated in
realistic situations. Typically the strength of the coupling, Ry, is empirically tuned to
reproduce experimental measurements. The coupling can also be dealt with when the beads
occupy an actual volume, free of fluid. Then stick or slip boundary condition at the surface
of the beads are employed, as in both NS** and LB3? simulations of colloidal dispersions.
However, these methods are rarely used in polymer simulations due to the complexity when
many moving particles are involved, because, the grid size needs to be smaller than the bead
size and may need to be adaptively changed when the bead moves.

A different alternative is provided by the Immersed Boundary method3?, where the fluid
occupies the whole space and the particles, represented as immersed structures, move to-
gether with the fluid with a velocity that is a localized average of the fluid velocity. This
eliminates the bead inertia from the problem and the need to explicitly enforce boundary
conditions on the surface of the beads. The method can be seen as an alternative to Brownian

dynamics that correctly captures time-dependent momentum transport in the fluid by ex-



plicitly representing the fluid flow, and also includes thermodynamically-consistent thermal

fluctuations.

C. Explicit Solvent: Particle Methods

An alternative to continuum methods is to use a particle representation of the fluid. The
most detailed description is a MD simulation of both the fluid and the solvent. Unlike the
classical NS equations, MD automatically and correctly includes fluctuations, internal fluid
structure, diffusion, and non-linear transport. Particle methods are also typically simple
to implement and can easily accommodate complex boundary conditions.Typically a trun-
cated repulsive Lenard-Jones potential is used for the solvent-solvent interactions. However,
even with massive parallelization such MD simulations are limited to short total times and
therefore efforts have been made to coarse-grain the solvent to a mesoscopic representation.
There, the fluid particles are no longer representative of solvent molecules, but are larger
having different dynamics and interactions with each other. However, the viscosity and
the stress fluctuations in the solvent must be reproduced correctly. There are mesoscopic
particle solvents of progressively decreasing level of microscopic fidelity, and thus increasing
efficiency. The handling of the coupling between the solvent and the beads is a separate issue,
like for continuum solvents. A particle solvent may be coupled to a polymer chain by includ-
ing explicit short-ranged solvent-bead continuous?! or hard-spheres!'” interaction potentials.
Efficiency can further be gained by coarse graining the bead-solvent interactions as well,
typically using the same ideas as used to coarse grain the solvent-solvent interactions*?3.
Dissipative Particle Dynamics (DPD)* further coarsens the solvent molecules to obtain a
system of weakly-repulsive spheres interacting with a mixture of conservative, stochastic,
and dissipative forces. The conservative forces can be used to reproduce the solvent equa-
tion of state, while the dissipative forces model viscous friction. The stochastic forces act
as a thermostat that ensures detailed balance and correct thermal fluctuations in the DPD
fluid. The method has great flexibility and requires significantly less solvent particles and
larger time-steps than classical MD, however, it still requires costly integration of differen-
tial equations of motion for each of the solvent particles. Such integration of ODEs can
be avoided by using a kinetic Monte Carlo method, such as Direct Simulation Monte Carlo

(DSMC), to represent the solvent-solvent interactions. The idea is to use stochastic conser-



vative collisions between nearby solvent particles to represent the exchange of momentum

4243 and binary collisions!” have been used, as

and energy. Both multi-particle collisions
described in Section IITC. The computational efficiency comes at the cost of neglecting the
structure of the solvent, as in continuum methods. Recently a new Stochastic Hard-Sphere
Dynamics method has been proposed that also uses uncorrelated stochastic binary collisions
but still produces a non-trivial fluid structure and a thermodynamically-consistent non-ideal

equation of state, similar to those of a DPD fluid*’.

D. Coupled Methods

Methods that combine several of the techniques described above into a single concurrently
coupled simulation can take advantage of their region of validity. Such a simulation may
involve several levels each with a different level of microscopic detail. For example, molecular
dynamics with complete atomistic detail and realistic potentials may be used for the polymer
chain(s) and nearby solvent. The solvent can then be coarse grained to a mesoscopic particle
fluid sufficiently far from any chains. The particle method can then be coupled to an explicit
fluctuating hydrodynamic description with a fine grid, for example, LB or a fluctuating NS
solver. Finally, the hydro grid can be adaptively coarsened in regions even farther from the
chain, and a non-fluctuating continuum solver used. This last macroscopic level can use
a different method from the fluctuating hydrodynamics level, for example, it could be an
incompressible NS solver. Much remains to be done to enable a truly multiscale simulation

capable of bridging from microscopic to macroscopic length and time-scales*6:47,

III. SIMULATION METHODS

In this Section we describe in further technical detail the three different techniques we ap-
ply to the tethered polymer problem. The majority of the methodology has been previously

published so here we only summarize the essential points and cite the relevant works.
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A. Brownian Dynamics

Details of the DNA model and Brownian dynamics simulation method that we use can be
found in Refs.?>?°. We discretize a double-stranded DNA molecule into a bead-spring chain
composed of N, beads of radius R, = 77nm (the unit of length, 1 l.u. = 77nm) connected
by Ns = N, — 1 entropic springs. Each spring represents a DNA segment of 4850 base pairs,
so that NV, = 11 corresponds to a stained A-DNA, which has a contour length of 21 yum. In
Brownian dynamics, a force balance on this chain leads to a stochastic differential equation
for the dynamics of the chain®®,

D-F

%—T+ﬁ-D]At+¢§B-AW (1)

AR = [U +

where R is the vector containing bead positions, R = {ry,...,rx}, U is the unperturbed
velocity field at the bead centers, kg is Boltzmann constant, T' is absolute temperature, F
is the non-hydrodynamic and non-Brownian forces, and D = B - BT is the diffusion tensor.
The components of AW are obtained from a real-valued Gaussian distribution with mean
zero and variance dt. In a unbounded space, the hydrodynamic interactions (HI) enter the

chain dynamics through the diffusion tensor,
Dz’j == ]{?BT[(67TT]CL)_II(5¢J' + QZ]] (2)

where 7 is the viscosity of the solvent, a is the bead hydrodynamic radius, I is the unit
tensor, d;; is the Kronecker delta, and €2 is the HI (Stokeslet or Oseen) tensor.

Recent work has provided evidence of hydrodynamic coupling to the wall and experi-
mental validation of the use of point-particle (Stokeslet) hydrodynamic interactions (HI) to
describe the motion of Brownian particles near a surface*®. Therefore, it is essential to have
wall corrected HI in the simulation to capture the dynamics of a tethered chain correctly.

In a bounded space, like near a solid wall, the HI tensor is modified to,
Qi = (1 - 6;)Q°% (r; — ;) + Q" (r; — 1) (3)

where Q98 is the free-space diffusion tensor, and Q% is the correction which accounts for
the no-slip constraint on the wall. The solution for a Stokeslet above a flat plate given by
Blake allows us to calculate Q" exactly®. In a square channel or complex geometries, we

need to solve this problem numerically with a finite element method to determine Q" at
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a grid of points®. Based on this description of near-wall HI, Jendrejack et al.®' predicted
that the DNA molecules migrate away from the wall in shear flow, leading to the formation
of depletion layers in the near wall region. This prediction has been verified in recent
experiments of dilute DNA solutions undergoing pressure-driven flow in microchannels®®°3,
In different works, Delgado-Buscalioni used a hybrid particle-continuum model method to
describe HI'® and Schroeder et al. used unbounded space HI'* to study the motion of a
tethered chain.

We further assume that the chain is ideal (no self-excluded volume interactions between

different beads). The entropic springs connecting the beads obey a worm-like chain law

kT lr; — 1y
[(1—= (4)

2by, Ni sby,

where b, is the Kuhn length for DNA and Ny, is the number of Kuhn lengths per spring.

Adr; —ry|, r;—1;

s -2
F;, = )21+

Nk,sbk |I‘j — I‘i| ’

The physical confinement is taken into account through an empirical bead-wall repulsive
potential of the form

Uz‘wall = Awallblzlé;szz(hi - 5wall)3’ (5)
when h; < 0,a1, Where h; represents the perpendicular distance of bead ¢ from the wall, 0,41
is the cut-off distance. In this work, we choose Ao = 25kgT and 0,01 = ka,i’/SQ/Q =0.24
pum. All of the parameters {a, b, v} are the same as used in previous work, where it has been
shown to successfully reproduce the static and dynamic properties of DNA with contour

825 For each parameter set, the sample size is 30 chains unless

length 10pum — 126pum
otherwise specified. All results are presented for DNA at room temperature in a solvent
with a viscosity of 1 ¢P .

To study the dynamics of a tethered chain, beads are labeled from 1 to N, + 1, starting
from the tethered point, as illustrated in Fig. 1. The fluid velocity in the flow direction z
is a linear function of distance from the wall in the gradient direction z, v, = 4z, where
7 is the shear rate, and v, = 0 and v, = 0. Following common experimental practice, the
longest relaxation time is calculated by allowing a chain that is initially stretched using a

large shear rate to relax to equilibrium. Near equilibrium, the relaxation time is determined

by an exponential decay fit the chain extension along the stretch direction,
_ _ _ t _
(X7) = (X2(0) = (X?)eq) exp(=—) + (X7)eq. (6)

An exponential fit to the autocorrelation of the chain extension (relative to equilibrium)

parallel to the wall gives similar results. The relaxation time for our A-DNA is estimated to
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be 0.59s at room temperature, which is in good agreement with the experimental result of

0.51s'? after extrapolating the viscosity to 1 cP.

B. Lattice-Boltzmann

In addition to Brownian Dynamics, we examine the short time correlations of a tethered
polymer in a uniform shear flow using a hybrid Lattice Boltzmann (LB) and Molecular Dy-
namics (MD) code based on the method by Ahlrichs and Dunweg?. The Lattice Boltzmann
method is a mesoscopic approach to fluid flow calculation and is based on a discrete version
of the Boltzmann equation with enough detail to recover hydrodynamic behavior. The LB
equation describes the evolution of a single-particle distribution function, f; (x,t), which is
the mass density of particles moving with velocity e; at a time ¢ and position x on a cubic

lattice,

fi (x4 e At t + At) = fi (x,1) + Z Ay [f5 (1) — £ (x,1)] - (7)

The set of velocities e; is discrete and chosen such that x+e; At always remains a lattice site.
The last term describes the collision process in which the distribution function relaxes to a
local equilibrium, for which we utilize the BGK (Bhatnagar-Gross-Krook) approximation to
the collision operator, A;; = —7719;; , where 7 is a relaxation time. The macroscopic hy-
drodynamic quantities, density p, momentum j = pu, and momentum flux I, are computed

from moments of the particle distribution function,

p=> fii=) fie; andI=> fie;@e;. 8)
The equilibrium distribution depends on the macroscopic variables and its form is given by

(e; - u)’ u2]7

4 9.2
2ct 2cs

9)

e e, -u
L9 (x,t) = wip [1—1— = +

5
where the weights w; depend on the particle velocity discretization and are determined by
mass and momentum conservation. The lattice sound speed is ¢, = Ax/ V/3At, where Az is
the lattice spacing. In this work we solved the distribution function on the standard D3Q19
lattice® where the 19 particle velocity components consist of one rest particle, the 6 nearest
neighbors in a simple cubic lattice, and the 12 next nearest neighbors in the [110] directions.

The corresponding weights are 1/3, 1/18, and 1/36. The LB method avoids the additional
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mathematical complexities of Navier-Stokes PDE solvers and is straightforward to parallelize
efficiently. Using a Chapman-Enskog expansion, the lattice-Boltzmann equation can recover
the Navier-Stokes equations for small Mach and Knudsen numbers, and, within these limits
it is second-order accurate in space and time. Compared to the other two methods we apply
to the tethered polymer problem, BD and SEDMD, LB is less efficient in this case since it
solves for the solvent in the entire domain, even relatively far from the polymer chain.

In the LB calculations, the polymer is represented by 25 point particles joined by finitely
extendable nonlinear elastic (FENE) springs and interact through a repulsive Lennard-Jones
potential among each other and with the walls. Solvent fluctuations are incorporated by
adding a stochastic term to the right hand side of the LB equation. This term introduces
fluctuations into the momentum flux in a manner that satisfies the fluctuation-dissipation
theorem®. Coupling between the LB for the solvent and the MD for the solute is achieved
through Stokes drag forces and white-noise stochastic forces acting on the monomers. The
first monomer in the chain is tethered to the stationary lower wall in a domain having
36, 22, and 24 lattice sites in the streamwise, spanwise, and wall normal directions. The
streamwise and spanwise directions are periodic and the bounding upper wall moves with

constant velocity, providing the uniform shear.

C. Stochastic Event-Driven Molecular Dynamics

In addition to Brownian dynamics and Lattice-Boltzmann, we have also applied a purely
particle-based method to the tethered polymer problem. The Stochastic Event-Driven
Molecular Dynamics (SEDMD) algorithm introduced in Ref. [17] combines Event-Driven
Molecular Dynamics (EDMD) for the polymer particles with Direct Simulation Monte Carlo
(DSMC)?® for the solvent particles. In SEDMD, the polymers are represented as chains of
hard spheres tethered by square wells. The solvent particles are realistically smaller than
the beads and are considered as hard spheres that interact with the polymer beads with
the usual hard-core repulsion. The algorithm processes true (deterministic, exact) binary
collisions between the solvent particles and the beads, without any approximate coupling or
stochastic forcing. However, the solvent particles themselves do not directly interact with
each other, that is, they can freely pass through each other as for an ideal gas. Deterministic

collisions between the solvent particles are replaced with momentum- and energy-conserving
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stochastic collisions between nearby solvent particles. This gives realistic hydrodynamic be-
havior and fluctuations in the solvent, with tunable viscosity and thermal conductivity, but
without internal fluid structure. A recent modification of the DSMC algorithm can be used
to achieve a non-ideal equation of state for the stochastic solvent that is thermodynamically-
consistent with the density fluctuations®.

Hard-sphere models of polymer chains have been used in EDMD simulations for some
time®® 8. These models typically involve, in addition to the usual hard-core exclusion,
additional square well interactions to model chain connectivity. Recent studies have used
square well attraction to model the effect of solvent quality®. Even more complex square
well models have been developed for polymers with chemical structure and it has been
demonstrated that such models, despite their apparent simplicity, can successfully reproduce

5758 Here we use the simplest

the complex packing structures found in polymer aggregation
model of a polymer chain, namely, a linear chain of N, particles tethered by unbreakable
bonds. This is similar to the commonly-used freely jointed bead-spring FENE model model
used in time-driven MD. The length of the tethers has been chosen to be 1.1D,, where D,
is the diameter of the beads.

Several particle methods for hydrodynamics have been described in the literature, such

as MD® dissipative particle dynamics (DPD)*

, and multi-particle collision dynamics
(MPCD)#:61 Molecular dynamics is the most accurate model of the fluid structure and
dynamics, however, it is very computationally demanding due to the need to integrate equa-
tions of motion with small time steps At and calculate interparticle forces at every time step.
The key idea behind DSMC is to replace deterministic interactions between the particles with
stochastic momentum exchange (collisions) between nearby particles. The standard DSMC?®
algorithm starts with a time step where particles are propagated advectively, r; =r; +V;At,
and sorted into a grid of cells. Then, a certain number N, ~ I'.N.(N.— 1)At of stochastic
conservative collisions are executed between pairs of particles randomly chosen from the
N, particles inside the cell. For mean free paths comparable to the cell size, the grid of
cells should be shifted randomly before each collision step to ensure Galilean invariance.
The collision rate I'. and the pairwise probability distributions are chosen based on kinetic
theory.

In SEDMD the polymer chains and the bead-solvent interactions are handled using hard-

sphere event-driven molecular dynamics (EDMD)?6:596263 ingtead of the time-driven MD
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(TDMD) widely used for continuous potentials. The essential difference between EDMD
and TDMD is that EDMD is asynchronous and there is no time step, instead, collisions
between hard particles are explicitly predicted and processed at their exact (to numerical
precision) time of occurrence. Since particles move along simple trajectories (straight lines)
between collisions, the algorithm does not waste any time simulating motion in between
events (collisions). SEDMD combines time-driven DSMC with EDMD by splitting the par-
ticles between ED particles and TD particles. Roughly speaking, only the polymer beads
and the DSMC particles surrounding them are treated asynchronously as in EDMD. The
rest of the DSMC particles that are not even inserted into the event queue. Instead, they are
handled using a time-driven (TD) algorithm very similar to that used in traditional DSMC.

In three dimensions, a very large number of solvent particles is required to fill the sim-
ulation domain. The majority of these particles are far from the polymer chain and they
are unlikely to significantly impact or be impacted by the motion of the polymer chain. We
therefore approximate the behavior of the solvent particles sufficiently far away from any
polymer beads with that of a quasi-equilibrium ensemble. In this ensemble the positions of
the particles are as in equilibrium and the velocities follow a local Maxwellian distribution
whose mean is the macroscopic local velocity. These particles are not simulated explicitly,
rather, we can think of the polymer chain and the surrounding DSMC fluid as being embed-
ded into an infinite reservoir of DSMC particles which enter and leave the simulation domain
following the appropriate distributions. Using such open or stochastic boundary conditions
dramatically improves the speed, at the cost of small errors due to truncation of hydrody-
namic fields. This truncation can be avoided by coupling DSMC to a continuum fluctuating
hydrodynamic solver.

We have made several runs for different polymer lengths and also bead sizes. One set
of runs used either N, = 25 or 50 large beads each about 10 times larger than a solvent
particle. Another set of runs used either IV, = 30 or 60 small beads each identical to a solvent
particle, with faster execution but nearly identical results. In the simulations reported here
we have used rough wall BCs for collisions between DSMC and non-DSMC particles'”. This
emulates a non-stick boundary condition at the surface of the polymer beads. Using specular
(slip) conditions lowers the friction coefficient, but does not qualitatively affect the behavior
of tethered polymers. All of the runs used open boundary conditions, where about 153

DSMC cells around each bead were explicitly simulated. Note that for (partially) collapsed
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polymer chains the total number of explicitly simulated cells is much smaller than 153Nj.
The N, = 30 runs were run for about 60007, relaxation times, and such a run takes about
6 days on a single 2.4GHz Dual-Core AMD Opteron processor. Even for such long runs
the statistical errors due to the strong fluctuations in the polymer conformations are large,

especially for correlation functions at long time lags ¢t > 7.

IV. RESULTS

The main goal of our paper is to reinvestigate the tethered chain problem through exten-
sive long time simulations (thousands of longest relaxation time of the tethered polymer, 7)
involving different representations of polymer and solvent, including Brownian dynamics??
(BD), the Lattice Boltzmann method®® (LBM), and a recent Stochastic Event-Driven Molec-
ular Dynamics'” (SEDMD) algorithm. In this section we present comparison results from
our simulations. More extensive results for the tethered polymer problem obtained using the
SEDMD algorithm are presented in Ref. [17]. Since the three different methods that we use
give similar results and Brownian Dynamics is the fastest methodology, the majority of the
results we present will be from BD simulations with N, = 11 (N; = 10), unless otherwise
indicated. Of the three methods used here, LB is the slowest and thus the LB results are
of more limited duration. We emphasize that direct computational comparison between the
methods is unfair. Most significantly, the LB runs use periodic boundary conditions and
have to fill the whole simulation domain with explicit solvent (lattice points). By contrast,
the SEDMD runs use open boundaries and thus use much less explicit solvent, whereas the
Brownian dynamics does not use an explicit solvent at all.

Doyle et al. proposed a cyclic dynamics mechanism for a tethered polymer chain in shear
flow (Fig. 1) based on Brownian dynamics simulation results'?. According to this scenario,
when thermal fluctuations cause motion in the gradient direction z (from state 1 to state
2), the chain is driven away from the wall and experiences higher hydrodynamic drag. This
leads to further stretching and an increase of the extension in the flow direction z (state
3). Due to the finite extensibility of the chain, the extension in the z direction is finite and
depends on the shear rate and chain properties. After stretching, the coupled torque of the
hydrodynamic drag and spring forces will rotate the chain towards the wall (state 4). As

the chain get closer to the wall, the flow velocity decreases and entropic recoiling becomes
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dominant, resulting in a decrease of the z extension (state 1). The tethered chain could
take other dynamical paths than following the one described above, such as restretching or
recoiling after state 2 by random motion in —x and —z direction, respectively.

In Fig. 2 we show the probability distribution function (pdf) p(z, ) of the end bead in the
z—ux plane at Wi =0 and Wi = 2 for the three different methods. The results are presented
in dimensionless units by normalizing the unit of length by the average radius of gyration
in the x direction at Wi = 0. Here, again, we want to emphasize that we are not expecting
perfect match between methods. In particular, the different methods implement different
effective boundary conditions at the wall surface. In Brownian dynamics, an essentially
reflective boundary condition appears, while in the case of a hard-sphere chain a perfectly
reflective boundary condition is appropriate. For the LB runs an intermediate case appears,
where the repulsion from the wall is stronger than hard spheres but still finite-ranged. These
boundary effects are clearly visible in the results in Fig. 2, where the BD results show a
depletion layer near the wall where as the SEDMD and LB results show the bead spending
more time near the wall.

In Fig. 3 we compare the dependence of the relaxation times 7,/,,. along the three dif-
ferent axes on the flow rate among the three different methods. The figure shows reasonable
agreement, between the different techniques, especially considering the large errors inherent
in determining relaxation times. We calculate the relaxation times by fitting an exponential
decay to the intermediate portion of the autocorrelation function 0.2 < C(t) < 0.8 of the
position of the end bead along the three coordinate axes. The LB calculations use periodic
boundaries with a narrower box in the spanwise (y) direction than in the streamwise (x)
direction, which makes the relaxation times 7,(Wi = 0) and 7,( Wi = 0) unequal, as they
must be by symmetry. We have scaled 7,(Wi) (the shorter axes) in the LB results by a
constant factor so as to correct this strong boundary effect at Wi = 0. Among the three
relaxation times, the relaxation in the direction perpendicular to the wall 7, is the shortest,
even for no flow. Note than in this work, following Ref. [17], the relaxation time along the
flow direction 7, is used to define the internal relaxation time and thus Wi when comparing
among the different methods. Note also that it is 7, that seems to get most strongly reduced
as Wi increases.

To study the time scale associated with the fluctuating process (cycle) quantitatively and

to find the correlation between different chain segments, we calculated the cross-correlation
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functions (CCF) of beads’ positions. We also calculated the power spectral density (PSD) in
search of periodicity. The CCF and PSD are the natural tools for examining the relationship
between two time dependent random variables in the time and frequency domain respectively.
The mean-removed CCF of two time series a(t) and [(t) is defined as

El(e(t +T) — a)(8(t) — )]

04003

Cap(T) = (10)

where @ = E(a) is the mean, 02 = F(a?) — [E(«a)]? is the standard deviation, and T is
the time lag. A significant peak in the CCF at lag T indicates that «(t) is correlated to
B(t) when delayed by time T'. In the frequency domain, the PSD is the norm of the Fourier
transform of the CCF,

Sus(v) = H /_ : CQB(T)exp(—Qz'ﬁyT)dTH (11)

Note that this is the standard definition used in the engineering literature, and here the fre-
quency v = 1/T is actual frequency (inverse period) rather than angular frequency w = 27v.
To produce a PSD with accurate sampling around interesting frequencies, long simulation
times and a high sampling frequency are essential. We examined various choices of variables
to represent the motion of the chain and have found little qualitative difference between
them. We have chosen the position of the end bead ry, = (z,y, z) as be the best option'”.
Extensive computational efforts have been undertaken to determine the CCF and PSD of
the end bead coordinates as function of chain length N and shear flow parameter Wi.

The CCF C,,(t) of the end bead at various Wi is shown in Fig. 4(a). The shape of the
CCF is consistent with the cyclic dynamics mechanism proposed by Doyle. Clearly, in the
absence of flow, Wi = 0, the movements in the z and z directions are uncorrelated on all
time scales. When shear flow is introduced, the movements in flow direction and gradient
direction are coupled together due to the nature of the flow and the finite extensibility of
the chain, as reflected in the rise of a prominent peak in the CCF. When thermal motion
in +z direction occurs, the chain will be stretched with an increase in 4z, which leads to
a positive correlation. Similarly, when motion in —z direction is introduced, the chain will
recoil in the —z direction as the drag decreases, which also leads to a positive correlation. As
expected, the larger the shear rate, the greater the correlation. There’s only one significant
peak in the long time correlation function, shown in the inlet of Fig. 4(a), which suggests

that all correlations are short-lived and not periodic.
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Turning attention to the correlation between different chain segments, Fig. 5 shows the
CCFs of several beads along the chain at Wi = 2. One striking feature is that for beads
sufficiently far from the tether all curves pass the time axis at the same time lag. The fact
that all CCFs have the same shape indicates that a common movement pattern exists for
the whole chain. The inset in Fig. 5(a) shows the CCFs of the = coordinates of different
beads. Although the correlation decays as the distance along the chain increases, it confirms
that all beads move in a cooperative manner, indicated by the fact that the peak positions
are all at zero time lag. The CCF for the end bead for various chain lengths are compared in
Fig. 5(b), to show that there is no fundamental difference between different chain lengths,
ranging from 20 um (Ng = 10) to 80 um (Ns = 40). We have also established that these
results are insensitive to the cut-off distance and the magnitude of the repulsive potential
between the wall and chain segments.

In Fig. 6 we compare the cross-correlation function C,,(t) at Wi = 2 among the three
different methods: Brownian Dynamics, Lattice-Boltzmann, and Stochastic Event-Driven
Molecular Dynamics. In particular, our goal is to verify the pervasive assumption that the
dynamics of polymer chains in shear flow is essentially universally quantitatively determined
by Wi for a wide range of flexible chains. Furthermore, it is important to cross-validate the
different methods against each other, given that each of them makes certain assumptions and
has somewhat different range of applicability. The results in Fig. 6 indeed show reasonable
agreement between the different methods. Perfect agreement is not expected because the
polymer models are different among the different methods.

The cross-correlations we measure are not consistent with periodic motion. The PSD
calculation does not show discernible peaks either, as shown in Fig. 4(b). All that we can
reliably extract from the results is that the response of the chain to a large thermal fluctuation
(the “cycle”) is reproducible for short times, and we find no evidence of sustained correlations
(oscillations) at times longer than the internal relaxation time of the chain. For a free chain
in shear flow, where rotations of the chain are possible, one can count the number of tumbling
events per unit time and define that as a cycling time. The distribution of the delays between
successive tumbling events is itself important. If this distribution is sharply peaked, that
would be consistent with a periodic motion with a well-defined period. If the distribution
is exponential, this would indicate a Poisson-like tumbling process. Several recent works

have proposed an exponential distribution for the delay between successive tumblings” 1929,
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Furthermore, the tumbling time was found to be related to the internal relaxation time of
the chain'®?°. For tethered chains, we cannot even identify and count a unique event such
as tumbling and thus we cannot extract a repetition frequency for the “cycle”.

In Appendix A, we analytically calculate the CCF for a Brownian particle tethered to
the origin with a harmonic spring and subjected to shear flow. This simple dimer model
qualitatively reproduces the features we see in the CCF for the tethered chains, namely, a
single peak at t ~ 7 of width ~ 7 and height ~ Wi. Better quantitative agreement is obtained
when a nonlinear spring and a hard wall surface are also included (without hydrodynamics).
The PSD for the dimer model shows no peaks and there is only a single time-scale in the
dynamics, namely, the intrinsic relaxation time 7. Furthermore, the analytical form of the
CCF shows that by a slight modification of a tunable parameter one can obtain a CCF
fully-consistent with our numerical results for longer chains. This analytical CCF has an
analytical PSD that does show a broad peak at small frequencies v7 ~ 0.1, very similar to the
previously reported peaks used to justify the claims to periodicity in the chain motion!415:18,
This peak is weak and broad even when plotted on a logarithmic axes and its exact shape
and maximum will vary depending on the particular model, variables used in calculating the
PSD, Wi, the definition used for calculating 7 and Wi, etc. We therefore believe that its
interpretation as evidence of periodic motion is not justified.

The calculations in Appendix A for a dimer in shear flow also demonstrate that a qual-
itatively similar behavior is observed even without hydrodynamic interactions. Our results
from Brownian Dynamics simulations in the free-draining limit confirm this and show that
the HI do not affect the results significantly, so long as the relaxation time is recalculated
when computing Wi. In the tethered case, we believe that the competition between fric-
tional and elastic restoring forcing dominates and the hydrodynamic interactions are a weak
perturbation. Therefore, it is not surprising that the proper inclusion of hydrodynamic in-
teractions is not essential for the tethered polymer problem, as reasoned theoretically for a

free chain in shear flow in Ref. [20].

V. CONCLUSIONS

We studied the dynamics of a polymer molecule tethered to a hard wall and subjected to

a shear flow. We found consistent results among three methods utilizing different represen-
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tations of the solvent, Brownian Dynamics (BD), Lattice-Boltzmann (LB), and Stochastic
Event-Driven Molecular Dynamics (SEDMD). Specifically, BD implicitly represents the sol-
vent, LB explicitly represents the solvent flow on a discrete lattice, and SEDMD utilizes a
particle-based solvent. The three methods also utilized different polymer chains, namely,
the BD simulations used a worm-like chain, the LB simulations used a FENE-LJ chain, and
for SEDMD we used a tethered chain of hard spheres.

The correlation functions of the position of the end bead question the existence of peri-
odic motion, as previously suggested. The cross-correlation function between the bead posi-
tions along the flow and gradient directions shows a single peak indicative of a fluctuation-
dissipation cycle of duration comparable to the relaxation time of the polymer. The corre-
sponding Fourier representation, the power-spectral density, shows no peaks. We find that
neither the chain length of the polymer N, nor the dimensionless shear rate Wi, qualitatively
alter the results, and in the Appendix we give some calculations for a very simple model
of a dimer in shear flow that reproduces the essential features of the observed peak in the
cross-correlation function.

While our conclusions are rather different from other authors, our results are statistically
consistent with those presented in the literature. Specifically, the shape and position of the
peaks in the cross-correlation functions are very similar to reported results, however, we
did not observe large oscillations in the CCF's previously identified as signatures of periodic
motion®. We believe that this is due to the requirement of very long simulation times
to obtain good statistics for the time-correlation functions at long time lags, as necessary
to establish periodicity. Not all previous studies have been able to reach sufficiently long
simulation times. Another important point we clarified is that maxima in the power-spectral
density does not necessarily indicates a periodic motion, which we demonstrate in Appendix
A using an analytic dimer model. Namely, an analytical shape is suggested by the dimer
calculations that can exhibit peaks very similar to those reported in the literature through
small adjustments of a tunable parameter, whose appropriate value likely depends on details
of the model used and the exact variables used in the calculations of the power spectrum.
Furthermore, different if not conflicting ways have been used to define and calculate the
“cycling time”, without properly distinguishing between the duration of a cycle and the
interval between cycles. Even more importantly, the very concept of a cycle in the chain

motion as a well-defined countable event, analogous to the case of a free chain in shear
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flow, should be questioned. Our results are consistent with a simple traditional picture of
continuous thermal fluctuations dissipated by deterministic friction, leading to exponentially-

decaying correlation functions.
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Appendix A: DIMER IN SHEAR FLOW

In this Appendix we analytically and numerically consider the case of a Brownian particle
attached to the origin with a harmonic spring with stiffness k£ = x(, where ( is the friction
coefficient, subject to shear flow, v, = ¥y. If additionally we include a hard wall at y = 0
such that the random walk is restricted to the upper half-space, y > 0, we are essentially
considering a tethered polymer chain composed of two beads. Note that this problem is
essentially two-dimensional.

The overdamped Langevin equations for the particle coordinates are

i = Ay —kr+F,

y = _Hy—{_Fy?

where F' denotes the random forcing. After performing a Fourier transform in time, we get

the solution in Fourier space

4 (iv + k) Fy + A F,
(v + K)?

A

F,

Yy
(iv + k)’

>

from which we can obtain all cross-correlation functions using the identities <Fx*ﬁ’z> =

<Fy*ﬁy> = « and <Fx*ﬁ’y> = 0. In particular, we obtain the monotonically-decreasing
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non-normalized PSD

Suy() = |G|l = 05 = -2

Cay (V2 4 K2)3/2°

and, after an inverse Fourier transform, the non-normalized CCF

afe 2kt +1)/(4k?) for t > 0

éﬂc (t) =
! aer /(4k?) for t < 0

In the case of no shear flow, 4 = 0, we obtain that C,,(t) = ae "I /(2x), showing that the
relaxation time is 7 = k! and thus Wi = 7/k. For the harmonic spring dimer the relaxation

time does not depend on Wi. The cross-correlation function shows a single peak at t,,,, =

(2k)~! = 7/2, and after proper normalization, Cy,(t) = é’xy(t)/\/é'm(t = 0)Cy,(t = 0), the
height of the peak in the CCF is found to be
V2e V2 Wi

V2 + Wi

This analytically-solvable dimer model, even without a hard wall, reproduces the character-

Coy* = Cay(7/2) = (A1)

istics of the CCF that we observe for tethered polymer chains in shear flow. Specifically,
Cyy(t) has an asymmetric peak of width ~ 7 centered at ¢t = 7/2 and height ~ Wi. There is
no periodicity in the motion of the dimer and no “cycling” time-scale other than the intrinsic
relaxation time 7.

The dimer problem can no longer be solved analytically if a hard wall is present or if
the spring is non-linear (e.g., FENE or worm-like). We can, however, study the dimer
with a non-linear spring and/or in the presence of a hard wall numerically using Brownian
Dynamics (without hydrodynamics). Some results for Wi = 2 are given in Fig. 7, where we
also show the analytical solution for the harmonic dimer and the results for longer tethered
chains. When a hard wall is present, the numerical results show that the position of the
peak in the CCF shifts to smaller times and reduces in height. For the non-linear springs,
the position of the peak moves to smaller times as Wi increases, exactly as we observe for
the tethered chains. The height of the peak is several times larger for a dimer than for a
chain with N > 1 beads, which is not unexpected.

Even after including non-linearity and the hard wall, the dimer model fails to reproduce
the smaller but still substantial negative peak at t < 0 that we observe in the CCFs for the

longer tethered chains at small Wi. An analytical calculation for a harmonic chain tethered
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to a point and subjected to shear flow might reproduce that feature as well. We can mimic
such a peak by constructing an artificial CCF,

~

Cay(t) = Cay(t) — aCuy(—1), (A2)

where 0 < o < 1 controls the depth of the negative peak, and C,, is the analytical CCF for
the harmonic dimer . As illustrated in Fig. 7, such an empirical fit matches the numerical

results quite well. The Fourier transform of Eq. (A2) gives an empirical PSD of the form

. B A1+ a?)(1+Q2) —2a(1 — 02)
S2rv =Q/1) ~ Wi T ToEeT ;

which for @ > 1/3 exhibits a wide maximum at frequencies Q = 277/T ~ 0.5, i.e., at a
period T' ~ 107. As illustrated in Fig. 7, the maximum in this PSD is very reminiscent of
the “peaks” in the PSD observed in Refs.!#!518 where they were attributed to the existence
of a periodic motion with period of about 107. The analytical shape of the PSD only involves
7 as a relevant timescale, and the cross-correlation function has an exponential decay at large
times ~ exp(—t/7), just like the autocorrelation function for the end-to-end vector used to
define relaxation times. Such an exponential decay is inconsistent with periodic motion, but
is consistent with some recent theoretical models that suggest similar correlations for a free
chain in shear flow!'>?°. In summary, as seen from this simple analytical example of a dimer
in a flow, a maximum in the PSD does not imply any periodic motion and the claim of an
existence of a new physical timescale other than the internal relaxation time of the polymer

is not justified.
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Figure Captions

1 Snapshots taken from a simulation run with Wi = 5 to show tethered DNA
dynamics. The beads are labeled from 1 to 11 as shown. Cyclic motion mech-
anism proposed by Doyle et al. is composed of four stages: 1) (Re)coiling; 2)
initiating; 3) stretching; 4) rotating!?

2 Probability distribution of the end bead of the tethered DNA molecule in a
dimensionless x — 2z plane at Wi = 0 and Wi = 2. The visible differences
can likely be attributed to the differences in the boundary conditions between
the different methods, as well as the different elasticity of the chains. (Left)
Brownian dynamics. (Middle) Stochastic Event-Driven Molecular Dynamics.
(Right) Lattice Boltzmann Method.

3 Dependence of the dimensionless relaxation time 7(Wi)/7(Wi = 0) of the
tethered chain along the three coordinate axes as a function of dimensionless
flow rate Wi. The inset shows the ratios of the different relaxation times as
a function of Wi.

4 (a) Normalized cross-correlation functions (CCF) C,,(t) of the end bead’s
coordinates in flow direction z and gradient direction x as a function of non-
dimensional time, at various Wi for Ny = 10. The inset shows longer time
lags. (b) Power spectral density (PSD) S..(v) of the end bead’s coordinates
as a function of non-dimensional frequency. The results are averaged over 30
runs for a total simulation time is 1037, and 10*r for Wi = 5.

5  (a). CCFs of end beads’ coordinates at Wi = 2 for a chain with Ny = 10 and
simulation time is 1000 7. The number in the legend is the bead label as shown
in Fig. 1. The inset shows the CCFs for x coordinates of different beads to
study the correlation of the dynamics between different beads (similar results
are obtained for the y axes). (b) CCFs of end bead as function of chain length
at Wi = 5. The number in the legend is the number of springs N; in the chain.

The inset shows longer time lags.
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Comparison of the cross-correlation function C.,(t) at Wi = 2 among the
three different methods: Brownian Dynamics (30 runs about ~ 10007 long),
Lattice-Boltzmann (run is ~ 6007 long), and Stochastic Event-Driven Molec-
ular Dynamics (10 runs about ~ 10007 long).

The left panel shows the cross-correlation function for a dimer (dumbbell)
tethered to a hard wall and subjected to shear flow, for a harmonic, FENE
and a worm-like spring. We also show a rescaled form of the analytical solution
for a harmonic dimer in shear flow (without a hard wall). The height of the
peak diminishes by a factor of about 2 when a hard wall is present, so we
have rescaled the analytical solution for the harmonic dumbbell accordingly.
The position of the peak shifts to smaller times when a hard wall is present
as well, and we have thus rescaled the time for the analytical solution. The
CCF for a wormlike chain of N = 20 beads, as obtained from Brownian
Dynamics simulations, is also shown for qualitative comparison after scaling
by a factor of 3 to bring its height in agreement with the dimer case. We
also show an empirical fit to the Brownian Dynamics simulations of the form
proposed in Eq. (A2), for which the PSD can be analytically calculated and
shows a maximum at period T" ~ 107, depending on the value of the tunable

parameter «, as illustrated in the right panel.
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