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Abstract

We present a new efficient method for Monte Carlo simulations of diffusion-reaction processes.
First introduced by us in [Phys. Rev. Lett., 97:230602, 2006], the new algorithm skips the tra-
ditional small diffusion hops and propagates the diffusing particles over long distances through a
sequence of super-hops, one particle at a time. By partitioning the simulation space into non-
overlapping protecting domains each containing only one or two particles, the algorithm factorizes
the N-body problem of collisions among multiple Brownian particles into a set of much simpler
single-body and two-body problems. Efficient propagation of particles inside their protective do-
mains is enabled through the use of time-dependent Green’s functions (propagators) obtained as
solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm
is event-driven and asynchronous; each Brownian particle propagates inside its own protective
domain and on its own time clock. The algorithm reproduces the statistics of the underlying
Monte-Carlo model exactly. Extensive numerical examples demonstrate that for an important
class of diffusion-reaction models the new algorithm is efficient at low particle densities, where

other existing algorithms slow down severely.



I. INTRODUCTION

Models in which the overall dynamics is represented by random walks are widely applied
in science, engineering, medicine and finance. Probably the simplest example of a random
walk is a sequence of steps taken randomly in two directions — left or right — along a line in
one dimension. The object whose displacements follow such a sequence is referred to as a
random walker or, simply, a walker. Of particular interest are diffusion-reaction systems in
which multiple walkers walk simultaneously and independently and some significant events
take place when two or more walkers find each other in space, or collide. Examples include
formation and growth of aggregates of colloidal particles in suspensions, kinetics of aerosols
in meteorology, diffusive phase transformations in solids [1], surface diffusion during crystal
growth from vapor [2, 3|, defect evolution in solids [4, 5], multi-particle diffusion-limited
aggregation in physics, diffusion-controlled reactions in chemistry and biochemistry [6-8],
population dynamics, quantum physics [9], and risk assessment and pricing models in finance
to name a few. Numerical simulations of such processes often utilize various flavors of the
Monte Carlo method.

Kinetic Monte Carlo (KMC) is a simple and robust computational approach for simula-
tions of systems evolving through random walks. Mathematically, KMC derives from the
theory of Markov processes in which the model evolves from state to state through a sequence
of stochastic transitions whose rates depend on the current state alone. Random walks are
typically simulated as sequences of hops, either from one lattice site to a neighboring one
for discrete walks, or through finite displacements for continuum walks. When the system
dynamics is defined by collisions among the walkers, the hops themselves are trivial changes
of the system’s state while significant events take place only when the walkers collide. A
serious computational bottleneck is presented for the KMC method by situations when the
density of walkers is low. Consider a system of randomly distributed walkers. It takes on
average o< L3 hops for a walker to collide with another in 3d space (Here, L is the average
spacing between the walkers expressed in the units of the lattice spacing or, in the continuum
case, in the units of particle diameter). When L is large, it can take a great number of KMC
cycles to evolve the model to a meaningful event, a collision. This is a serious drawback
limiting applicability of the KMC method to diffusion-reaction simulations.

Several attempts have been made so far to overcome this notorious inefficiency in KMC



simulations. In [7], the equivalence between continuous random walks and diffusion is ex-
ploited by using the fundamental solution for the single particle diffusion to propagate the
walkers over large distances. The JERK method [10] uses a known solution for the statis-
tics of binary collisions between two diffusing particles to decide which of the N(N —1)/2
pairs of walkers should collide over the next time step !. These and similar methods achieve
improvements in the efficiency of KMC simulations but at a cost of their accuracy. The fun-
damental difficulty that none of the mentioned methods can fully address is that statistics
of collisions in the system of N walkers is an N-body problem. That is, the probability of
collisions between, say, walkers 1 and 2, depends on all other N — 2 walkers in the system.
It is only in the limit of very small hops (in [7]) or vanishing time steps (in [10]) that such
approximate methods become asymptotically exact. Unfortunately, in this same limit the
mentioned methods lose their numerical efficiency.

Here we present a novel approach for KMC simulations that is both efficient and exact
for a wide class of models involving collisions among multiple Brownian particles. Based on
exact solutions for the first passage statistics of random walks, the new method is referred
to as First Passage Kinetic Monte Carlo (FPKMC) in the following. In the new algorithm,
rather than propagating the particles to collisions by small diffusional hops, the particles
are propagated over long distances while each walker (particle) is protected within its own
spatial region. The N regions are non-overlapping and partition the space into disjoint
spatial domains in which the enclosed walkers are propagated individually. The use of
first-passage statistics for walker propagation permits an elegant factorization of the N-
body problem into a product of N single-body problems. Efficient implementation of the
new method leads to an asynchronous event-driven algorithm [11] in which every walker
propagates within its personal space and from its own time origin. The resulting speedup is
most impressive when the density of diffusing particles is low and particle collisions are rare.

In this paper we introduce the basic theory of the FPKMC method and present a few sim-
ple but representative simulation tests on the method’s accuracy and efficiency. The paper
is organized as follows. The next section introduces the basic ideas behind the new method

using one-dimensional continuous random walks as a simple example. Section 3 describes

I Tt was in fact the JERK method and its applications to modeling irradiated materials that inspired the
key idea of the new algorithm presented in this paper.



the overall algorithm. In section 4 we focus on propagators, i.e., elementary solutions for
first-passage statistics required for efficient propagation of multiple walkers to collisions, and
describe extensions of the FPKMC algorithm to higher dimensions. Section 5 presents sev-
eral computational experiments validating the new method’s accuracy and efficiency. The
results are summarized in Section 6. Appendix A describes a rejection sampling proce-
dure used in the FPKMC algorithm and Appendix B contains a concise derivation of the
propagators. Appendix C gives a more formal mathematical justification for the FPKMC

algorithm.

II. FIRST PASSAGE PROPAGATION IN 1d

In this section we introduce the FPKMC algorithm using one-dimensional (1d) continuous
time - continuous space random walks (diffusion) as an illustrative example. An extension
to diffusion in dimensions higher than one will be described in section IV D. The defini-
tions and the algorithms to be presented here remain essentially the same for discrete walks,
but for discrete-valued space x and/or time t the integrals appearing in the discussion be-
low correspond to sums over appropriate discrete values. We defer to a future publication

algorithmic details specific to discrete random walks.

A. Single walker

To define the probability distributions to be employed in the FPKMC algorithm, let us
first consider a single continuous random walk in one dimension (1d). Let zy and ¢y = 0 be
the position and time origins of the walk and a be some other (barrier) position on the line
—o0 < x < 0o. Through a sequence of random displacements the walker can at some future
time reach the barrier position a for the first time. Similarly, for a closed interval [a, b] such
that a < x¢o < b, a first passage event occurs when the walker reaches either one of two
barriers a or b. The theory of first passage processes [12] concerns itself with finding the
probability that the walker will reach one of two barriers for the first time within time interval
[t,t + dt). The relevant statistical distribution is the probability density c(zox,t) to find
the walker surviving at time ¢ (having not reached either end of [a, b]) within infinitesimal

interval [z, z + dz| inside [a,b]. By its definition, the integral S(xg,t) = fab dx'c(xo 2’ t) is



the total probability for the walker to survive by time ¢ regardless of its end position x.
The splitting probability j(a,t) is defined as the conditional probability that, given that the
first-passage event occurs at time ¢, the walker reaches barrier a rather than b. For a random
walk in 1d, j(a,t)+ j(b,t) = 1 at all times. When the walk origin z; is exactly in the center
of interval [a, b], the splitting probabilities are equal j(a,t) = j(b,t) = % and independent
of the first passage time ¢t. Finally, the no-passage (NP) PDF is defined as the conditional
probability to find the walker at position x at time ¢, provided the first-passage event has
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not yet occurred, g(zo, x,t) = SEOR

We defer to section IV the derivation of the probability distributions introduced above.
For now let us simply assume that the functions S(zo,t), j(a,t) and g(x,, z,t) are available
and proceed to describe how they can be used to obtain statistical samples of random walks
in various situations.

First consider the statistics of continuous random walks on the line —oco < < oo with
no barriers. Assuming that the walks start at position xqg = 0 and time ty = 0, the PDF of
walker positions at time ¢t > 0 is given by the fundamental solution of the diffusion equation
Coo(x,t) = ﬁ exp(—ﬁ—j), where the effective diffusion coefficient is assumed to be unity.
The same statistics can be obtained by randomly sampling from the first-passage (FP) and
no-passage (NP) distribution functions as follows. Define an interval of length L; centered
on the initial walker position zy = 0. Draw a random number ¢ uniformly distributed on
[0,1] and solve S(Ly,t1) = & to sample the exit time ¢; out of interval [—%, %] It >t
use the NP distribution gz, (z,t) to sample the walker position inside the interval. If t; < ¢,
use another random number to sample at which end of interval L; the walker exits at time
t;. Define a new interval of length Ly centered on the new walker position and sample a
new time ty of first-passage out of interval Ly using the survival probability distribution
S(Ly,t). Continue until the sum of first-passage times Ty, = S7_ #; exceeds t. Use the
NP propagator gr, (x,t —Ti_1) to sample the end position of the walker. Proceeding in this
manner, a random sample of the walker position for any time t is obtained through a sequence
of k£ > 0 first-passage propagations ending in a single no-passage propagation. Repeating
such stochastic sampling sequences many times, statistics of the end walker positions can
be used to reproduce the fundamental solution c.(z,t) to any desired accuracy. The length

L of the propagation intervals defines how many FP steps on average will be used to reach

time ¢ but otherwise has no bearing on the resulting statistics.



The above example illustrates the use of NP and FP distributions for sampling random
walks on —oo < z < oo. The resulting samples are statistically equivalent to the known
distribution ¢ (x,t). While not necessary in this particularly simple case, the same sampling
procedure based on the first-passage statistics can be effectively employed in considerably
more complex situations, such as the one described below where the simple fundamental

solution c,, no longer applies.

B. Multiple walkers

Consider now multiple objects moving randomly and simultaneously on a properly defined
space and time. The walkers are assumed to walk independently of each other until two of
them find themselves at a distance equal to or smaller than some interaction radius r (in 1d
the interaction radius can be set to zero). As was discussed in the introduction, models of
this kind represent a plethora of situations of practical interest. For our discussion here it
is not necessary to define what specifically happens when the walkers reach the interaction
radius; let us just assume that collisions somehow affect propagation statistics of two (or
more) walkers involved in a collision.

The most straightforward numerical approach to modeling such systems is to use random
numbers to move the walkers over space by small hops, one walker and one hop at a time,
and checking after each such hop if any of the walkers have collided. Although widely used,
this simple method is known to become less and less efficient with the decreasing density
of walkers [13]. The idea of the method presented in this section is to circumvent the need
for the numerous small hops by using the solutions for the first passage statistics of a single
walker to efficiently bring the walkers to collisions.

Consider two simultaneous walks with the same time origin ¢ = 0 but different position
origins x7 and x5 in one dimension, such that —oco < z; < 9 < oo. Is it possible to
obtain statistics of collisions between two walkers using a sampling procedure similar to the
sequence of FP and NP propagations described in the previous section? At a first glance, the
answer should be negative because, in principle, a collision between the walkers can occur
at any time (at least in the case of continuum diffusion), thus altering the statistics of both
walkers. Hence, the simple solutions for first passage statistics of a single walker should no

longer apply. Fortunately, the trick of spatial protection enables the use of single-walker



propagations.

Let us, at ¢ = 0, surround the walkers by two non-overlapping segments L; and Lo
centered on the walk origins x; and z5. For example, make the ends of two segments coincide
at the mid-point between z; and x5, as shown in Fig. 1. The key observation that enables
the use of single-walker propagators is that, for as long as both walks remain inside their
protective segments, there can be no interaction between the walkers. Hence, up until the
time one of the walkers exits its protective segment, the statistics of the two walks remains
independent of each other and the single walker propagators can be used. Let us now use the
survival probabilities S(L;,t;) and S(Ls,ts) to randomly sample the first-passage times ¢;
and to and find their minimum ¢,,;, = min{ty,t3}. Say, t,;, = t; which means that at time
t = t; walker 1 reaches one of the ends of its protective segment L, while walker 2 remains
inside its protective segment L,. Let us randomly select to which end of its protective
segment walker 1 propagates and advance the time clock by t;, t. := t;. Since walker 2 has
not exited its protective segment L, , its new position can be obtained by sampling from
the NP distribution gr,(x2,t.). Now the walkers find themselves in new positions x; and z,
at time t., and the propagation cycle can be repeated: new protective segments L; and Lo
are defined around the new walker positions, two FP times are sampled and compared, the
time clock is advanced and new walker positions are sampled from appropriate FP and NP
distributions. As was first proposed in Ref. [9], such propagation cycles can be continued
until two walkers collide.

Extension from two to N walkers is straightforward. Omne starts by defining non-
overlapping protective segments Ly, Lo, ..., Ly centered on each walker and sampling first
passage times for every walker, {t1,1s,...,ty}. For as long as all walkers remain inside their
protective segments, no walker can affect the statistics of any other walker. Therefore, the
use of single walker propagators guarantees correct sampling of random walks at least until
the next scheduled propagation at time t,,;, = min{ty, to, ..., txy }. At this time, walker i with
the shortest exit time t; = t,,;, is FP-propagated to one of the ends of its protective segment
and positions of all other N — 1 walkers are sampled from appropriate NP distributions (
see Appendix C for additional details).

The sampling procedure described above allows a seemingly small but important modifi-
cation: rather than canceling all exit times larger than t,, and NP-sampling new positions

for the corresponding N — 1 walkers, all or almost all of these N — 1 walkers can be left
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Figure 1: Simultaneous propagation of two walkers using first-passage and no-passage distributions.
The filled circles are walker positions at different stages of propagation. (a) The walkers are initially
at positions x1 and x9 at time ¢t = 0. (b) The walkers are protected by two non-overlapping intervals
L; and Ly centered on the walker positions. (¢) Random samples of two first passage times t; and
to are obtained and compared. Because t; < ta, walker 1 is moved from its initial position (open
circle) to one of the ends of its protective segment. At the same time, new position of walker 2
inside its segment Lo is sampled from the NP distribution. Time advances to t. := t1. (d) A new
propagation cycle begins by constructing non-overlapping protective segments around new walker
positions. Although after the cycle illustrated by the (a)-(b)-(c) sequence the walkers find each

other slightly farther apart, the next cycle is just as likely to bring them closer together.

alone, protected inside their old segments and scheduled for propagation at their previously
sampled exit times. First, the exit times sampled for all NV walkers are arranged in a priority
queue t; < tg... < t,,. Second, walker ¢ with the shortest exit time is FP propagated to one
of the ends of its protective segment L;. The NP propagation is only necessary if and when
the segment end where walker 7 exits is also shared by a neighboring protective segment L.

When this happens, independence of two affected walks at later times is no longer assured



because walker ¢ now intrudes in the protective segment of walker j. The impasse is resolved
by sampling a new position for walker j at time t,,;, using the NP distribution. Now that
current positions of walkers ¢ and j are decided, the time advances to t. and walkers ¢ and
7 are protected again in the space left available for them by all other N — 2 protective seg-
ments. Two new exit times are sampled for walkers ¢ and j, added to the current time and
inserted in the queue. Preceding in this way, every cycle entails exactly one FP propagation
and at most one NP propagation, rather than N — 1 NP propagations as in the algorithm
proposed in Ref. [9].

That it it is unnecessary to sample new exit times at t = t,,;, for the walkers whose
protective segments remain unaffected, follows directly from the basic property of the random
walk as a memory-less stochastic process. In particular, for any ¢; < t and = € [a,b] the

Chapman-Kolmogorov-Smoluchowski identity holds

b
c(xg, x,t) = /dm’c(xo,x’,tl)c(x’,x,t —t1).

a

Dividing both parts of the above equality by S(zg,%1) = fab dxc(xg, z,t) we obtain

b
= /dm’g(mo,x’,tl)c(x’,x,t —11).

a

c(xg, x,t)

S(xo, t1)
The expression on the left hand side is the probability density at time ¢ of walks that started
at t = 0 and are known to have survived at time ¢;. The expression on the right hand side
defines the probability density of walks at time ¢ that have survived to time t;, when their
positions z’ inside the interval were sampled from the NP distribution g(xg,2’,t;), and the
walk was then restarted from the new position origin 2’ and time origin ¢;. Integration of
both sides of the above equality over f; dx yields the corresponding equality for the survival

probabilities

b

= /dx'g(xo, ' t)S (2t —t).

a

S(Io, t)

S (ZL’Q, tl)
The expression on the right is the probability to survive at time ¢ for a walk that has survived
at t; and whose new position z’ inside the interval was sampled from the NP distribution

g(xo,2’,t1). The expression on the left is the probability to survive at time ¢ for a walk that



started at ¢ = 0 and survived at t;. The last two equalities mean that for all walkers whose
protective intervals are unaffected by the FP propagation at ¢;, there is no need to sample
new positions and new exit times because the resulting distributions will be identical to the
pre-sampled statistics. Thus, the two sampling procedures - one used in Ref. [9] and one
proposed here - are statistically equivalent. Obviously, the new procedure is much preferred
since the cost of its sampling cycle is not higher than the cost of the queue update, i.e.,
O(log N), whereas the cost of every sampling cycle in Ref. [9] is O(N).

Just as in Ref. [9], in the new algorithm all N walks are initially protected and start from
the same time origin ¢ty = 0. The walker with the shortest exit time t,,;, is FP-propagated
and, perhaps, another neighboring walker is NP-propagated to new positions. The global
time clock advances to t,,, and the affected walkers are protected by new segments. One
or two new FP times are sampled, added to the new global time and inserted in the time
queue. Over subsequent cycles, the time origins of the N protected walkers will gradually
become desynchronized. Notwithstanding, statistical independence of protected walkers is
guaranteed up to the shortest exit time in the current time queue. The resulting first-passage
kinetic Monte Carlo (FPKMC) algorithm is asynchronous: every walker propagates within
its personal space (protective segment) and from its own position and time origins. Sooner
or later, a series of FP and NP propagations executed in this manner should bring a pair of
walkers close to their interaction radius. Barring any inaccuracies in the propagators, the
new algorithm is as exact as a Monte Carlo algorithm can be: for any number of walkers
N, the statistics of simultaneous random walks with collisions is correctly reproduced in the
limit of large number of independent Monte Carlo simulations.

Additional justification for the FPKMC algorithm is given in Appendix C.

III. THE FPKMC ALGORITHM

Here we give a brief description of the algorithmic components necessary for an FPKMC
implementation.

First, one has to obtain first-passage (FP) and no-passage (NP) propagators. The NP
propagators are needed when a walker propagates right on or close to the boundary of a
neighboring protective segment. In such a case, the new protective segment for the just

propagated walker will have very small (or even zero) length. Consequently, the new time

10



for FP propagation of the “squeezed” walker is likely to be so short that the same walker will
be selected for the very next propagation again. Because its protection is tightly constrained
by the protective segments of its neighbor walkers, the squeezed walker would continue to
perform a series of very short FP propagations resulting in little and, eventually, no advance
of the global clock. The solution to this inefficiency of the Achilles and Turtle type is to
identify which neighbor (or neighbors) limit the space available for protection of the squeezed
walker. Then, NP propagation of the constraining inactive neighbor walker(s) typically
results in more equitable partitioning of space with the squeezed walker. This is achieved
at the cost of canceling the earlier scheduled FP propagation of the constraining walker(s)
and propagating it (them) using the NP propagator to the current time. Proceeding in this
manner, every Monte Carlo cycle entails one FP propagation and, possibly, one or few NP
propagation, while all other N —1 or N — 2 walkers stay inactive, scheduled for propagations
at their own times in the future. Calculation and efficient use of FP and NP propagators
are discussed in the next section and, in more detail, in the Appendices.

In FPKMC, FP and NP propagations replace numerous short diffusive hops. At the
same time, much of the computational effort is shifted to maintaining efficient space par-
titioning among the protective domains of the walkers. It is useful to observe that for the
FPKMC method to work, space can be partitioned in an arbitrary manner for as long as
the protective domains remain non-overlapping. One can use this freedom to simplify imple-
mentation and to maximize computational efficiency. To minimize implementation effort, we
use particularly simple protective domains, i.e. centered segments (in 1d) and hyper-cubes
(in dimensions d > 2).

Generally, one would want to partition space for maximum computational efficiency, for
example to maximize the expectation time of the next FP propagation event. Globally
optimal space partitioning for arbitrary positions of the N walkers is possible and can be
accomplished in O(N) operations - we do it only sparingly, such as in the beginning of
each simulation run. During the run, the conditions of space sharing are inspected only
for the walkers that were just propagated, and their neighbors. Definition of optimal space
partitioning depends on the relative mobilities of the walkers. In this paper we only consider
models in which all N walkers have exactly the same mobility properties, i.e., the same
diffusion coefficient for the case of continuum random walks or the same hopping rates for

the case of discrete walks. Cases when some walkers are more mobile than others will be
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considered in a future publication.

The FPKMC algorithm allows exact and efficient treatment of particle collisions, by
protecting and propagating groups of walkers, e.g. pairs. As we show in the next section,
multi-particle propagators needed for such an extension are particularly simple in 1d and for
hypercube-shaped walkers for d > 2. The evolution of various diffusion-reaction models is
defined by what actually happens to colliding walkers - annihilation, coalescence, reflection,
etc. - and how the collisions are handled. The same details will obviously affect the efficiency
of FPKMC simulations but, in our view, the ultimate purpose of the FPKMC method is to
enable efficient propagation of walkers to collisions whereas handling of collisions events is
outside of the method’s main scope. Thus, FPKMC can be viewed as a universal accelerator
for particle diffusion or random walks by which the particles or walkers are brought to or
close to collisions. We leave it for the method’s users to define collision outcomes and to
develop accurate and efficient methods for collision handling. To keep it simple, in this paper
we consider only annihilation and coalescence reactions leaving more complicated collision
scenarios for future publications.

In summary, the FPKMC algorithm entails the following steps:

1. Set the global time clock to zero. Construct non-overlapping protective domains
around all walkers - use individual protection for single walkers and group protec-

tion for close pairs, as seems most efficient.

2. Sample an exit time for each domain (in the case of protected pairs this can mean a
scheduled collision). Put the sampled event times in an event queue (e.g., implemented

as a heap), so that the shortest time can be efficiently found.

3. Find the shortest exit time and identify the corresponding walker and domain. Sample
the exit position for the selected walker. If the new position corresponds to a collision,

take appropriate action.

4. Check if any of the existing protective domains are close to the new position of the
particle. If necessary to make more space available for protection of the propagated
particle, use no-passage propagators to sample new locations for the particles in the

neighboring domains.
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5. Construct new protective domains for all particles that changed their positions in steps

(3) or (4).
6. Sample new event times for the particle(s) protected in step (5), as in step (2).

7. Insert the new event time(s) into the event queue. Go to step (3).

IV. THE PROPAGATORS

The FPKMC algorithm relies on the first-passage (FP) and no-passage (NP) propagators
to skip the numerous small steps and to propagate the walkers to collisions. For the new
algorithm to be efficient, Monte Carlo sampling from these propagators should not entail
significant computational overhead. In this section, the elementary mathematical theory
behind the propagators is presented along with explicit propagator formulas for the case
of continuous diffusion in 1d. We also discuss two methods appropriate for Monte Carlo
sampling from the FP and NP propagators. Propagators suitable for efficient FPKMC

simulations of N simultaneous random walkers on lattices will be given in future publications.

A. Continuous space - continuous time

The problem we consider here is to find when and where a particle performing a random
walk exits a specified domain. Figure 2 shows a schematic of the setting.

Statistics of continuum random walks is equivalent to diffusion. Consider a very large
ensemble of non-interacting random walkers starting simultaneously from the same origin.
The concentration of walkers in this ensemble is the solution to the diffusion equation with

a delta function at the walk origin as the initial condition

Oc(z,t)
ot
Here, D is the diffusion coefficient, ¢(z,t) is the probability density of finding the diffusing

DAc(z,t) = c(0,t) =0, ¢(z,0) =0T — To).

particle in an infinitesimal volume around Z at time ¢ given that it started at xy at time
t=0.

The survival probability S(t) is defined as the probability that at time ¢ the particle
has still not crossed the boundary of 2. S(t) can be found by integrating ¢ over €, or by

13



Figure 2: Consider a random walk and a domain 2 enclosing the walk origin. The walk can be
thought to consist of two parts: the part shown in red that is entirely contained inside €2, and the

rest of the walk shown in black.

integrating the probability flux (Ve -n) out of €,

S() :/Qc(:z,t)djzl—/ot /m Ve(z,7) - h|dS|dr,

where dS is the element of the surface area of 9€). Conversely, the exit probability per unit

time (exit current) is:

p(t) = —/m Ve(z, 1) - #]dS| —%/Qc(j,t)d:a (1)

The above boundary and volume integral expressions are equal by the Gauss’s theorem and
the diffusion equation. The probability density for the exit location on 0€, i.e. the splitting

probability is:

VC(,’E, t) . ﬁj
—p(t)

The first-passage (FP) propagation consists of sampling from the exit-time probability p(t)

Jj(z,t) = z € 09. (2)

and the splitting probability j(z,t). The no-passage (NP) propagation entails sampling from
the probability density to find the particle near z at time ¢ under the condition that the
particle has not exited 2 by time ¢:

9(z,1) = : (3)
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B. Propagators on a segment in 1d

In 1d, each protective domain is a line segment of length L. After translation and ex-
pressing the particle position in the units of L and expressing time in the units of L?/D,

particle diffusion on segment [a, b] is described by the following equation on [0, 1]:

¢ Oc

ox? Ot
with the boundary conditions ¢(0,¢) = ¢(1,t) = 0 and the initial condition ¢(x, 0) = d(z—xy),
where x( is the initial position of the particle. The solution can be written as the eigen-

function expansion,

c(z,t) =2 Z sin(krz) sin(krzg)e F L, (4)

k=1
This series converges quickly for ¢ 2> # An alternative is to take advantage of the fun-
damental solution (Gaussian) and express ¢(Z,t) as a sum of properly shifted images with

alternating positive and negative signs, as shown in Fig. 3,

& [ — (k+ 3+ (=1%o — 1))
C(x’t)_@k; (—l)kexp{— o } (5)

which can also be derived from Eq. (4) through the Poisson summation formula.

—00

This expression converges quickly when ¢ < i. The needed FP and NP propagators can
be now obtained by substituting either of these two solutions into Egs. (1), (2) and (3).
Further technical details can be found in Appendix B.

C. Pair propagators in 1d

In order to make the FPKMC algorithm more efficient and to enable exact sampling of
particle collisions, it is necessary to be able to protect particle in pairs. Appropriate FP
and NP propagators for the protected pairs should allow correct sampling of the collision
time and particle positions. Consider two particles at = and y on a unit segment [0, 1] so

that 0 < z < y < 1. To obtain the propagators one can solve the following two-dimensional
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Figure 3: The solution for the probability density c(z,t) is obtained by summing the images of the
fundamental (Gaussian) solution placed at appropriate positions along the = axis. The individual

images are shown as dashed lines and the solid line is the resulting solution.
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Figure 4: Two particles on a line protected by a single domain [0, 1]. The edges on the triangle are
Dirichlet boundaries for the diffusion problem, and correspond to the three possible event outcomes:

x exits to the left, y exits to the right, and x and y collide.

with the boundary conditions c¢(t,z = 0,y) = c(t,z,y = 1) = ¢(t,z,x) = 0 and the initial
condition ¢(0,x,y) = d(z — zo,y — yo). This diffusion equation has to be solved on the
triangle shown in Fig. 4. Absorption of the pair at the boundary x = y corresponds to a
collision between the two particles.

Rather than solving this two-dimensional problem, we note that there is a simpler diffusion
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problem whose solution may allow us to propagate the pair almost as efficiently. Namely,
we can use the solution of the same equation on any domain that is entirely contained inside
the triangle. To retain the ability to sample collisions, a finite fraction of the z = y line
should be included in the new domain boundary. With this in mind, let us introduce new
variables for the center of mass u = %(z + y) and the difference v = %(y — x) and define
the new domain as the maximal rectangle that can be inscribed in the triangle so that one
of its sides coincides with the collision line v = 0 (that is z = y). In these new coordinates,
the two-dimensional diffusion problem on the rectangle separates into two 1d problems, one
for u and one for v, with the absorbing boundary conditions on all rectangle sides. This is
convenient since one can use the FP and NP propagators already derived for a unit segment
in 1d. First, one samples two exit times, one for “walker” v and another for “walker” v. The
exit time out of the inscribed rectangle is the shorter of the two. The exit coordinates are
sampled using the splitting FP probability j for the “walker” whose exit time is shorter and
using the NP propagator for the other “walker”. The two particles collide when “walker” v
exits to v = 0. All other outcomes correspond to pair propagation. Note that this algorithm
preserves exact statistics of diffusive propagation and collisions of the protected pair. The
sampled time increments are somewhat smaller on average than could be achieved by using

the full triangular domain, which is an acceptable cost to pay for eliminating the need to

compute and sample from the more complicated 2d propagators on the triangular domain.

D. Generalization to higher dimensions

For the case of isotropic diffusion in any number of dimensions m, the use of hyper-
rectangles or hyper-cubes for protecting the particles is convenient because the diffusion
equation separates into m one-dimensional diffusion equations, one for each Cartesian direc-
tion. The same holds for anisotropic diffusion provided the edges of the protective hyper-
rectangles are oriented along the principal axes of the diffusion tensor. In both cases the FP
and NP probability distributions for m dimensions are the products of m one-dimensional
distributions. Therefore, one can use the one-dimensional propagators to sample time and
location of exit out of the protective hyper-rectangle. To do this, m exit times are sampled
from the corresponding m one-dimensional FP propagators and the shortest of them, say t,

is taken as a sample of the exit time. Then the splitting probability function j(¢,) is used
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to sample the exit location for the Cartesian direction k and the NP distributions at ¢, are
sampled to obtain the walker exit position for the remaining m — 1 Cartesian directions.

A similar method can be used to propagate protected pairs and possibly larger groups
of particles. For example, for the case of a pair of square-shaped particles protected by
a square in 2d, the change of variables is used to transform the problem to diffusion on
two rectangles, one for each Cartesian coordinate. Accordingly, four one-dimensional FP
propagators are used to sample an exit time ¢, and an exit dimension £ in the transformed
coordinates. Then, three NP propagators are used to sample particle positions at the exit
time ¢, in the three other dimensions. Using the splitting probability function j(t,) one
decides if the sampled exit indicates a collision along one of the two Cartesian directions.
If so, whether or not the pair has actually collided is determined by the particle separation
along the other Cartesian direction. For a collision to occur, the latter should be smaller

than the sum of the half-widths of the square-shaped particles.

E. Sampling

Given a random number r uniformly distributed on r € [0, 1), a sample first passage time
t, is obtained by solving S(t,) = r or simply as ¢, = S~'(r), where S(t) is the survival
probability function on domain 2. A exit location sample z € 62 can be obtained from the
splitting probability density j(x,t,). Splitting probabilities for exit to the ends of a segment
in 1d are given by two numbers j; (t,) and j2(t,), j1(t,)+72(t,) = 1. When the initial position
of the walker is at the center of a protective segment, the splitting probabilities are equal
and independent of the first passage time, j; = jy = % Thus, using protective segments
(or hyper-rectangles) concentric with the initial particle positions is particularly convenient.
Given a NP probability density function g(x,t), a sample of the no-passage position z,, at
time ' can be obtained by solving G(zy,;t') = r, or G™'(r;t') = x,,, where r is a random
number uniformly distributed on r € [0,1), G(zyp; t') = f:”’ g(x,t')dx is the cumulative NP
distribution function at time ¢'.

Even for the simple case of diffusion on a 7d segment with two absorbing ends, no closed
form solution exist and the FP and NP propagators are available only in the form of series

expansions. We have implemented and tested two techniques for sampling FP and NP

propagators, both taking advantage of the fast convergence of the expansion series. The
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first technique uses pre-tabulated propagators or, rather, appropriate inverse functions for
fast lookup and interpolation. This method is particularly simple for the case of continuous
diffusion on a segment in 1d because the propagators can be stored as one-dimensional (FP)
or two-dimensional (NP) tables (the time and position variables in the propagator tables are
stored in the units of L?/D and L, respectively).

The second technique is rejection sampling that relies on a converging series of upper and
lower bounds to exactly sample from the FP and NP distribution density functions at a the
cost of an occasional rejection. The needed series of bounds is obtained by integrating the
series expressions (4) and (5) and observing that the terms in the resulting series solutions for
the propagators have alternating signs and absolute values that monotonically decrease with
the increasing term order. Thus, subsequent partial sums of the alternating series present
an alternating sequence of increasingly tight upper and lower bounds. Taking advantage
of particularly fast convergence of series (5) and (4) for short (¢t < 1) and long (t 2 )
times, respectively, it is possible to construct very tight bounds to the exact distribution
functions. As a result, rejection sampling is efficient because rejections are infrequent and it
rarely takes more than two bound evaluations to accept or reject a sample. This sampling
technique is especially useful when it is difficult or impossible to evaluate and/or invert the
cumulative probability distribution functions. However, when the inverse distributions are
available, such as in the form of look-up tables, we found both table lookup and rejection
techniques similarly efficient.

Further technical details on computing and sampling the 1d propagators are given in the

Appendices.

V. COMPUTATIONAL TESTS ON ACCURACY AND EFFICIENCY

In this section we apply the FPKMC algorithm to several simple problems as a way to
validate the method and compare its efficiency to traditional algorithms. The first test is for
one-species coalescence on a discrete lattice in 1d, the second for one species annihilation in

3d, and the last is for two-species annihilation in 3d.
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A. Irreversible coalescence on a 1d lattice

Our first test of the FPKMC algorithm is simulation of a diffusion-controlled reaction of
irreversible coalescence A + A = A on a discrete lattice in 1d. On every MC step every
particle hops to the right or to the left with probability % and, whenever two particles are
found to occupy the same lattice site, one of them is eliminated. To obtain the needed FP
and NP propagators for this discrete space-discrete time model it is necessary to solve for the
PDF of a simple unbiased random walk of length n on an interval with two absorbing ends
(barriers) at positions 0 and [ (here n and [ are positive integers). Similar to the continuous
case discussed in the preceding section, the PDF for the random walk can be obtained as an
expansion over appropriate eigen-functions or as a sum over image solutions. In the limit
of n,l — oo, the PDF and the propagators asymptotically converge to the solutions for the
continuum diffusion in 1d 2.

We performed this simulation in two different ways: (1) using standard hopping [14] and
(2) using the FPKMC algorithm in which on every MC step only one particle is advanced
to the boundary of its protective domain (a segment in 1d). In both series of simulations
periodic boundary conditions were applied. Plotted in Fig. 5 are the simulated kinetics of
this diffusion-controlled reaction averaged over 70 independent realizations. The two kinetics
agree within small statistical errors. At the same time, in each simulation using single hops
it takes on average 5 - 10° particle hops to reach the end of this reaction (i.e., annihilation of
all but one particles) whereas the new algorithm accomplishes the same in just 4 - 10* steps

(on average).

B. Annihilation in 3d continuum space

The next test is a simulation of a diffusion-controlled reaction of particle annihilation A+
A = 0 but this time in continuous space and continuous time in 3d. Figure 6 compares the
annihilation kinetics simulated using the FPKMC method and a standard KMC algorithm
in which the particles are propagated by small hops [4, 5, 15]. Each simulation starts with

8000 cube-shaped particles occupying initially a volume fraction of 0.004 of the simulation

2 The FP and NP propagators for discrete random walks on lattices in 1d and in higher dimensions will be

presented in future publications.
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cube volume with periodic boundary conditions applied in all 3 dimensions. The two kinetics

are seen to be identical within small statistical errors.

The greater efficiency of the FPKMC method allows simulations of very large numbers of

diffusing and reacting particles at a modest computational effort. An example is shown in

Fig. 7 for the same annihilation reaction in 3d but starting with 125 million particles. The

reaction completes in 45 CPU hours on a modest workstation. By comparison, we estimate
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Figure 7: Simulated kinetics of A + A — 0 reactions in 3d. The initial number of particles is

125 - 10% and the reaction completes in 45 CPU hours.

that it would take tens of CPU years on the same workstation to complete this simulation
using the standard KMC algorithm 3.

Each step of the FPKMC algorithm requires more calculations than one step of the
standard KMC algorithm. The obvious overhead due to the need to sample from the more
complicated distributions is relatively minor whereas more serious amount of computational
effort in FPKMC is spent on keeping track of near neighbor particles, space partitioning and
other tasks associated with particle protection, as well as on maintaining the event queue
after every event. Note that all of these elements appear in other KMC algorithms in one
form or another, and therefore standard techniques can be used. FPKMC codes used for
simulations presented in this paper have not been extensively optimized although some of
the more obvious inefficiencies have been addressed. Nevertheless, it should be of interest to

compare the net efficiency of the FPKMC simulations to that of the standard KMC method

3 The code we refer to here as “standard KMC algorithm” is BigMac [4] that has been extensively used
for simulations of various diffusion-reaction processes. BigMac has not been specifically optimized for

conditions of low particle density.
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in the units of CPU time per particle collision.

A relevant comparison is given in Fig. 8, where the number of particle collisions (annihi-
lation) per second of CPU time is plotted as a function of particle density for two series of
simulations of A + A = 0 annihilation reaction in 3d using the FPKMC and the standard
KMC algorithms. Each of the two series consists of three simulations starting from the same
high initial volume fraction of particles of 0.05 and ending at a much lower volume density
1075 (the simulations proceed from right to left). Because in the beginning some of the
particles are very close to each other, it is necessary to use very small hop sizes in order to
ensure that collision sequences are properly resolved. In the course of the simulation the
nearest neighbor particle pairs progressively annihilate and the time step gradually increases.
Eventually, as the average particle spacing gradually increases due to continued annihila-
tion, the average number of hops between any two collisions also increases and efficiency of
the standard method deteriorates inversely proportionally to the particle volume fraction
(density) p. At the same time, FPKMC automatically selects the propagation step size to
meet the local geometrical requirements, achieving an exact solution without any tuning.
Efficiency of the FPKMC algorithm is proportional to p_% throughout the whole range of
simulated particle densities. Thus, while FPKMC is competitive with the standard method
even at high particle densities, at a sufficiently low density the new algorithm is certain to
outperform the standard method.

Exactly how the new method’s efficiency compares to traditional hop-by-hop KMC with
varying particle density depends on dimensionality and, possibly, on whether or not the
walks are continuous or discrete. For the case of continuous diffusion in 1d, simulation
efficiency is manifestly independent of particle separation. In higher dimensions, efficiency
of the FPKMC method diminishes with decreasing density. Luckily, the need for efficient and
accurate simulations of diffusion-reaction processes is limited to dimensions d < 4 because
for d > 4 the effect of correlations can be neglected and the mean field kinetics becomes
accurate [16].

Efficiency of Monte Carlo simulations of diffusion-controlled annihilation or coalescence
reactions can be further enhanced by periodic replication. Although not directly related to
the methods discussed in this paper, periodic replication is especially efficient when used
in combination with the FPKMC method. In has been noted in the past [17] that in the

reactive systems where the number of particles steadily decreases, the simulated kinetics of
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Figure 8: Computational performance as a function of particle density measured in six independent
realizations of A + A — 0 annihilation reaction in 3d performed on a single CPU workstation
using the standard KMC calculations with a finite hop distance (lower symbols) and the FPKMC
algorithm (upper symbols). The dashed and dotted lines are theoretical estimates with slope 1 for

the standard KMC calculations and slope % for the new algorithm.

the late stages of the reaction are not representative of the kinetics of interest. This is due
to an inevitable growth of correlations among particles remaining in the box as the simula-
tion progresses. In annihilation and coalescence reactions, correlations develop because the
surviving particles are less likely to have reacting neighbors in close proximity. This “cor-
relation hole” effect spaces the particles more evenly than in a random configuration, thus
affecting the distribution of times of particle collisions. If and when the growing correlation
length becomes comparable to the simulation box size, the kinetics becomes distorted, as a
finite size effect. Reduction in the number of surviving particles compounds the difficulties
making the tail kinetics noisy. For these reasons, the last 2-3 decades of simulated kinetics
are typically discarded [17]. On the other hand, the first few decades of the simulated ki-
netics are often discarded because they reflect more the initial particle distribution (usually
random) rather than the reaction kinetics of interest. Combined with the usual limit on the
number of particles (typically 10°), these unwanted behaviors limit to 4-6 decades the useful
time interval over which one can observe and quantify diffusion-reaction kinetics.

Periodic replication works as follows [18]. First, the simulation starts from its initial
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Figure 9: Schematic of the periodic replication procedure.

configuration in a periodic box and proceeds as usual. Then, once the correlation length
grows comparable to the box size, the particles are synchronized to the current point in time
and 2¢ neighboring periodic replicas are combined in a new box double the linear size of
the old box, see Fig. 9. The simulation restarts in the new box in which the particles that
were previously periodic image slaves of each other are now treated independently. Such box
doubling should be repeated whenever the correlation length approaches half of the current
box size. Given that correlations propagate by diffusion, we estimate that the correlation
length should grow as ~ /Dt where D is the diffusion coefficient. Thus, the volume should
be replicated whenever v/ Dt grows to become an appreciable fraction of the linear box size
L. Hence, the physical time ¢ elapsed between replications should at least quadruple with
each replication. Assuming that in the interval between two box replications the number of
surviving particles decreases as t~, each replication increases the number of particles by a
factor 2472,

Remarkably, for A+ A = 0 and A+ A = A reactions in 1d, o = § [19] and the doubling
in the number of particles caused by each replication is compensated by the reduction by

half caused by annihilation or coalescence taking place between two replications. Thus, in

25



these particular cases replications do not cause the number of particles to grow and can
continue indefinitely. Combined with the fact that FPKMC efficiency does not depend on
particles density in 1d, we can simulate such processes to an arbitrarily long physical time,
as shown in Fig. 10.

In other cases when d —2a > 0, periodic replications will result in increases in the number
of particles. For example, for the case d = 2, a = %, the number of particles is expected
to double after two replications, whereas for the case d = 3, a = 1, the number of particles
will double after each replication. Therefore, sooner or later the number of particles will
grow too large to continue. Thus, rather than follow the common practice to start from
a maximum size that fits into memory and then simulate the reaction to the end, it may
be better to start from a small number of particles and let the system grow by replications
to a maximum size afforded by the computer memory. Assuming that with FPKMC we

can handle simulations with at most 10° particles and that is is safe to start with just 103

10°

particles in the box, this allows as many as log,(7g5z) ~ 20 replications for the d = 3, a = 1

case and 40 replications for the d = 2, a = % case. Thus, replications should allow extension
of the useful time horizon of such reaction-diffusion simulations to 4% (12 decades of time)
and 40 (24 decades of time), respectively. Obviously, this recipe also eliminates the earlier
mentioned tail effects since correlations are never allowed to catch up with the growing box

size and the number of particles in the end of the simulation is large.

C. Two-species annihilation in continuum 3d

The last computational test we report in this paper is a simulation of A + B = 0
annihilation reaction in 3d. In this reaction, particles do not interact with particles of its
own kind but annihilate on collisions with unlike particles. As has been first observed in Refs.
[16, 20], when the numbers of A and B particles are close to the stoichiometry (50:50), this
reaction does not follow the mean field asymptotic kinetics ¢~ but rather 1 (most other
diffusion-reaction systems follow the mean field behavior for d > 2). This peculiar scaling
was attributed to the emergence and growth of alternating A-rich and B-rich domains that
effectively limit the annihilation reactions to inter-domain boundaries.

An important physical realization of such a situation is recombination of vacancies and

interstitials produced in crystal by neutron, ion or electron irradiation [5]. Here we limit our
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Figure 10: Kinetics of A + A — 0 annihilation reaction in 1d, using replication. The inset is
the logarithmic derivative of the kinetic curve taken over the same time interval reproducing the

theoretical exponent o = 0.5 for this reaction.

study to a model system in which particles A and B are cubes with the same size and diffusion
coefficients and react only with particles of the opposite species. The slow-down caused by
domain growth combined with steadily decreasing particle density makes standard KMC
simulations particularly inefficient which has so far prevented quantitative investigations
of reaction kinetics and domain geometry in such systems, especially in 3d. The FPKMC
method handles this reaction with relative ease in arbitrary dimensions. Figure 11 shows the
geometry of a thin slice through the domain configuration produced in a FPKMC simulation

of A+ B = 0 reaction in 3d starting with 10° particles (no replication).

VI. SUMMARY

We have developed the method of First-Passage Kinetic Monte Carlo (FPKMC) for sim-
ulations of diffusion-reaction processes. By partitioning the space into non-overlapping pro-

tective domains around each particle and/or particle pair, the N-body problem of collisions
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Figure 11: A thin slice through the domain structure formed in a simulation of A+ B — 0 reaction
in 8d. The boundaries of the A-rich (red) and B-rich (blue) domains are identified with the sides
of Voronoi polyhedra shared by unlike particles. The two domains are complementary and fill the

space when brought together.

among N Brownian particles or random walkers is factorized into N single-body problems
or, alternatively, K; single body and K, two-body problems, K; + 2K5 = N. Rather than
performing small diffusional hops, exact solutions for first-passage and no-passage statistics
are used to propagate the particles inside the domains. On each Monte Carlo cycle a single
particle or a single particle pair is propagated to the boundary of its protective domain.
This is sometimes followed by a no-passage propagation of one or few neighboring particles
or pairs.

The resulting algorithm is event-driven and asynchronous: each protected particle or pair
propagates in its own spatial domain, from its own spatial and time origin and following its
own propagation time clock. The new method remains efficient at low densities because only
one or a few particles are propagated on every cycle over distances close to the inter-particle
spacing. The FPKMC method is exact for a wide class of diffusion-reaction models in which
Brownian particles or random walkers do not interact until they collide (hard-core models).
The accuracy and efficiency of the new method is demonstrated in simulations of several

well-studied diffusion-reaction models that have previously presented serious computational
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challenges for Monte Carlo simulations.

We would like to emphasize that the FPKMC method focuses on bringing the particles
close to collisions leaving aside the nature of reactions taking place on collisions. Thus,
although statistics of first passage processes finds its uses in efficient handling of the reaction
events [21], such issues are outside the scope of this paper in which we consider only the
simplest collision outcomes - annihilation and coalescence. Extension of the FPKMC method
to simulations of more complicated reaction kinetics in which diffusional propagation takes

place simultaneously with other competing stochastic processes will be presented elsewhere.
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VIII. APPENDICES
Appendix A: SAMPLING FROM SERIES EXPANSIONS

The distributions sampled in FPKMC are given in the form of series expansions. This
appendix describes a general rejection technique and its application to sampling from such
series expansions. In the following appendix B, first-passage (FP) and no-passage (NP)
propagators suitable for this technique are derived for the case of continuous diffusion. FP
and NP propagators for discrete random walks on lattices will be presented in forthcoming
publications.

Here by a distribution ¢(z) we mean a function that is non-negative everywhere and
whose integral is bounded, i.e. ¢(x) > 0 and [ c¢(x)dr < oco. Sampling from c(z) means
drawing random numbers z distributed according to the probability density ¢(x)/ [ c(z')dz’.
Rejection sampling is often used when it is difficult to invert the cumulative distribution,

e.g. to solve & = [T c¢(a’)da’ for x, and, at the same time, a majoring distribution C(z)
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exists such that it is easy to sample and C(z) > ¢(z) for all z. Rejection sampling proceeds

as follows:
1. Let 4,4 be a sample of C'.
2. Pick a uniformly distributed random number 0 < y < C(Zia1)-
3. If y < c(xypiar), accept Ty as a sample of ¢, otherwise reject 4.4, and go to step 1.

If [7°C(t)dt/ [;° c(t)dt — 1 is small, rejection is infrequent and the resulting sampling is
efficient while still exact in the sense of sampling from the true distribution ¢(z,t).

When the distribution ¢ is available in the form of a converging series expansion, the
partial sums of the series can be used in the acceptance/rejection test in step 2 of the
rejection sampling algorithm above. Suppose c(z) = > 2, ck(x), define the partial sums
Sm = Y peo k() and assume that upper and lower bounds U,, and L,, of the remainder
term are available, so that L,, < c¢(x) — S,, < U, and both bounds become tighter with
each added term. Then, in step 3 above, if y < S,, + L,, the sample is accepted without
evaluating any terms beyond m. Conversely, if y > S,, + U,, the sample is rejected. If
however S,, + L,, <y < S,, + U,, no decision can be made and the next order terms have
to be calculated in order to repeat the test with the same sample y but using Sp,11, Unit
and L,, 1. Especially simple is the case when the sign of the remainder term c(z) — S, is
known; the sample is accepted if y < .5, and the remainder is positive and rejected if y > .5,
and the remainder is negative. Our experience with the FPKMC algorithm suggests that
the rejection procedure requires computing only two terms on average before the sample is

accepted or rejected.

Appendix B: PROPAGATORS FOR CONTINUOUS DIFFUSION

Here we derive the first passage and no passage propagators suitable for rejection sampling
on one dimensional line segments for the case of continuous diffusion.
1. First-passage propagator

Assume c(x,t) is the solution to the diffusion equation given in section IV. From Eq. (1)

it follows that the exit probability per unit time is p(¢t) = 25(0,¢) — 2(1,¢). Taking the
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Figure 12: Comparison of one-term expansions versus full probability density. The inset shows the

relative error of using only the proposed majoring function without subsequent rejection sampling.

solution in the form of the image series suitable for short times [c.f. Eq. (5)] we obtain:

p(t) = \/i%g i (—1) { <j + %) e (i+3) /4t _ <j _ %) e—(j—;)2/4t} _

j=—o0

Retaining the two most significant terms in this series yields an approximate expression

accurate for short times
47

v/ 47rt3

Similarly, retaining the first term in the long time expansion (4)

__L
e 16t

ps(t) =

p(t) = Z 2k sin(kmaxo)[1 — (_1)k]€—k27r2t7

and using xo = 1/2, we obtain an approximation that is accurate for long times,
p(t) = dme ™

In turns out that p, > p and p; > p for all times ¢ and, furthermore, p, and p; intersect at
To =~ 0.0796. Thus, min(ps, p;) is a tight majoring function for the true distribution p that
it is accurate to within 0.6% for all ¢, as shown in Fig. 12.

Defining the integrals



a sample of the exit time t;,;,; from the majoring distribution is

1

6 [erf! (1—12)]"

s

tm’al - F_l(r) -
' 1

if r < Fy(79), and

T — FS(T())

ttrial = F’l_l(r - FS(TO)) =T0 — 7T—2 IOg E(T )
0

otherwise. Here, r is a random number uniformly distributed on the segment 0 < r <
Fy(10) + Fi(79). Using this trial value of the exit time, it is now straightforward to employ
the rejection sampling technique described in appendix A. For the short time series, the
terms of the series alternate in sign and decrease in magnitude with increasing m so that the
partial sums 5, provide an alternating sequence of upper and lower bounds. The same holds
for the long time series, provided 7y, > 18% ~ 0.0056. Depending on the value of t;,;,, one
or the other series converges faster. It is possible to choose among the two alternatives by
comparing t;.,; to 79. However, it is more efficient to use a different switchover time t,,;scp
that optimizes the computational cost of the sampling routine. For our implementation

tswiten =~ 0.033 turned out to be optimal.

2. No-passage propagator

The no-passage propagator is the distribution density of particle positions at time ¢
conditioned on the fact that the particle has not reached the boundary of its protective
domain by that time. As is the case for the FP propagator described above, sampling from
the NP distribution is most efficiently done using two different expansion series at short times
and at long times. Using the sampling procedure described below, rejections are infrequent
(less than 1%) requiring on average less than two terms in the series expansions to accept
or reject the sample.

For short times, the probability density c(x,t) is best represented by the image sum [c.f.
Eq. (5)]. The m = 0 term of this expansion is the fundamental solution C(z,t) for diffusion
on —oo < x < 0o. C(x,t) is a simple over-estimator C(z,t) > c¢(z,t) that can be used to
obtain a trial sample for the particle position . on (0,1). Since C(x,t) is a Gaussian, a
trial position can be obtained by scaling and translation of a normally distributed random

number 7, Tyia = (1 + 7,V/8t)/2 [Z44a can occasionally fall outside (0,1) in which case
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it is discarded]. With a trial position so selected, the partial sums S, of the image series
for concentration c¢(z,t) are used as an alternating sequence of increasingly tight upper and
lower bounds convenient for rejection sampling, as described in appendix A.

At long times, as an approximation for the particle position distribution it seems reason-
able to take the first term of the eigenfunction expansion [c.f. Eq. 4], &(x,t) = sin(knz)e ™"
Although this function is smaller than the full solution c¢(z,t) for some z, it is still possible
to use it to construct a tight majoring function C'(z,t) > ¢(x,t) by multiplying ¢ with a

factor 1+ g(t), so that C(x,t) = [1 + g(t)] é(x,t) > ¢(x,t), for all . One possible choice for
g(t) is

o8t
9= T
This particular factor was derived by taking the absolute value of every term in the eigen-
function series expansion, noting that |sinz| < 1 and that 2? > x for x > 1, and replacing
the square in the exponential by a linear function. The resulting sum is a geometric sum
and can be evaluated analytically.

Sampling 2., from the majoring distribution is then performed by picking a uniformly
distributed random number —1 < r < 1, and setting %y = % + % arccosr. In addition
to Ty We also need an estimate for the remainder of the long-time series. Following a
derivation similar to that of g, we find that the function

6—7r2t(2m+3)2

n = 24—

bounds the series remainder so that ¢,,(z,t) — d,, < ¢(x,t) < ¢pn(x,t) + d,y. The so defined
C(z,t) and d,, can be employed for rejection sampling. To reduce the cost, when it is
necessary to compute the higher order terms of the series expansion for ¢(z,t), we re-use the
already calculated time exponentials which requires a few multiplications for each iteration.
The time tgien for switchover from the short time series to the long time series can be
selected to optimize the cost of rejection sampling, similar to the FP propagators described
in the preceding section.

We note in passing that still tighter bounding functions ¢ and d,, can be derived by re-
placing the infinite sum in ¢(z, t) with a majoring integral. However the resulting expressions

contain the error function, erf(x), which can be expensive to numerically evaluate.
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Appendix C: JUSTIFICATION FOR THE ALGORITHM

The goal of the FPKMC algorithm is to generate a stochastic trajectory of the simu-
lated system of N Brownian particles with the correct probability. To achieve this goal
the FPKMC algorithm samples the system’s configuration R = {ry,...,ry} at time ¢ from
the Green’s function of the Master equation. In the considered case of particle diffusion,
the Master equation is a diffusion equation in the d/N-dimensional space for the probability
density G(R,t; Rp) to find the system in configuration R at time ¢, starting from Ry at time
to =0,

oG

e D - V3G in Q, where G(R,0) = 6(R — Ry) and G(9€,t) = 0,

where D = {Dy,..., Dy} is a (block-diagonal) diffusion tensor. Here €2 denotes the region
of phase space bounded by the non-overlap conditions between the hard particles. As soon
as the configuration leaves region 2 through the bounding surface 0€) a hard-sphere collision
occurs 4.

What needs to be demonstrated is that the FPKMC algorithm correctly samples from
G(R,t;Ry) even if the latter Green’s function is unknown. More specifically, the algorithm
should correctly sample the time ¢ < ¢ and configuration R € 9 when the first collision
occurs or, alternatively, sample a configuration R given that no collision has occurred by
time ¢.

Rather than trying to solve for the exact Green’s function G(R,t;Ry) - a difficult task
indeed given the complicated shape of the collision boundary 02 - the FPKMC algorithm

relies on a much simpler Green’s function obtained for an auxiliary sub-problem in which

the particles are spatially protected against each other,

% =D - V3G in Qy where Go(R,0) = 6(R — Rg) and G (9, t) = 0,

where now 0y C €2 is a Cartesian product of subspaces, each of which is a domain only of
the coordinates of a single particle, ) = P; ® Py ® --- ® Py. This sub-problem is fully
separable into corresponding sub-problems for the Green’s function g;(r, t;r?) for each of the
independent particles

09

5 = D;V?g; in P; where g;(r,0) = 6(r —r¥) and g;(0P;,t) = 0,

4 Exactly how the particles react on collisions is outside the scope of the FPKMC algorithm.
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to give Go(R, t; Ry) = Hf\il gi(rs, t;r?).

As elaborated in Ref. [9], using Green’s theorem it can be shown that
t
G(R.tRa) = Go(R.tiRa) + [ [ 3, (RER)G(R.t - RIS,
Redo Ji=0

where Jn(f{, t;Rg) = —D - VnGO(f{, t;Rg) denotes the normal component of the current
at the auxiliary surface 0€)y. The probablistic meaning of the above equation is that the
system’s configuration at time t can be sampled by first sampling an exit time ¢ and location
R € 0, on the auxiliary boundary. Then, if the time of interest is shorter than the
sampled exit time, ¢ < £, the exit location is discarded and the system’s configuration is
sampled from (the normalized form of) Go(R,t; Rg). Otherwise one recursively repeats the
process by constructing a new )y and samples an exit location and time starting from the
new time origin, until the walk hits 0€)y (this requires at least one pair protection). In this
case, the exit location on the first-passage boundary 90€), serves as a source for subsequent
propagation since the random walk is a memory-less Markov process that can continue from
the last sampled point forgetting the past.

Owing to the separability of the protected walkers, the current is expressed as [9]

J.(RERy) =) (H a(ry, T r?)> [~V G (Fm, £ 10,)]

m l#m

where now m denotes the walker that first leaves its protection through t,, € 9P, at time t.
The probabilistic meaning is as follows: first select a walker m and the associated ¢ = ¢,,, with
the correct probability, and then sample positions for all other walkers from (the normalized
forms of) single particle distributions g;’s. It is shown in Ref. [9] that m and the associated ¢
can be sampled by simply choosing the minimum among independently sampled exit times,
one time for each walker.

Numerical efficiency of the FPKMC algorithm, however, derives from an important ad-
ditional observation not used in Ref. [9]: it is not necessary to sample g; for N — 1 walkers
that have not exited their protections. One can of course sample N —1 new positions r; € P,
at time ¢, and then sample N — 1 new exit times from g;(r,t —t;r;). However, as discussed
in Section IIB, the new exit times and locations have exactly the same distributions as
those sampled originally. Therefore, those particles that have not exited their protections

can be left in the queue or updated to the current point in time at will. For computational
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efficiency, the first-passage predictions for walkers are updated only when this becomes nec-

essary, namely, for the walker m with the shortest exit time in the queue and, perhaps, for

one or few other walkers whose protective regions need to be modified.
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