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Abstract

We develop an asynchronous event-driven First-Passage Kinetic Monte Carlo (FPKMC) algo-
rithm for continuous time and space systems involving multiple diffusing and reacting species of
spherical particles in two and three dimensions. The FPKMC algorithm presented here is based
on the method introduced in [Phys. Rev. Lett., 97:230602, 2006] and is implemented in a robust
and flexible framework. Unlike standard KMC algorithms such as the n-fold algorithm, FPKMC
is most efficient at low densities where it replaces the many small hops needed for reactants to find
each other with large first-passage hops sampled from exact time-dependent Green’s functions,
without sacrificing accuracy. We describe in detail the key components of the algorithm, including
the event-loop and the sampling of first-passage probability distributions, and demonstrate the
accuracy of the new method. We apply the FPKMC algorithm to the challenging problem of simu-
lation of long-term irradiation of metals, relevant to the performance and aging of nuclear materials
in current and future nuclear power plants. The problem of radiation damage spans many decades
of time-scales, from picosecond spikes caused by primary cascades, to years of slow damage anneal-
ing and microstructure evolution. Our implementation of the FPKMC algorithm has been able to
simulate the irradiation of a metal sample for durations that are orders of magnitude longer than

any previous simulations using the standard Object KMC or more recent asynchronous algorithms.



I. INTRODUCTION

Models involving random walks are widely applied in science, engineering, medicine and
finance. Of particular interest are diffusion-reaction systems in which multiple walkers walk
simultaneously and independently and some significant events take place when two or more
walkers find each other in space, or collide. Examples include formation and growth of
aggregates of colloidal particles in suspensions, kinetics of aerosols in meteorology, diffusive
phase transformations in solids [1], surface diffusion during crystal growth from vapor |2,
3], defect evolution in solids [4, 5], multi-particle diffusion-limited aggregation in physics,
diffusion-controlled reactions in chemistry and biochemistry [6-8], population dynamics,
quantum physics [9], and risk assessment and pricing models in finance, to name a few.
Numerical simulations of such processes often utilize various flavors of the Monte Carlo
method.

A novel diffusion Kinetic Monte Carlo (KMC) algorithm for simulating diffusion-reaction
systems in one, two, and three dimensions was first proposed in Ref. [10] and described
in detail in Ref. [11]. The algorithm cures the notorious inefficiency of standard KMC
algorithms [4] at low densities of the reacting and diffusing particles: when diffusion is
simulated via a sequence of small hops, many such hops are needed to bring reactants
together and the standard algorithms are unable to progress over sufficiently long time
scales. The essential idea behind the new First Passage Kinetic Monte Carlo (FPKMC)
algorithm is to replace the long sequences of small hops with large super-hops sampled from
an exact Green’s function derived for a simpler auxiliary problem in which the diffusing
particles are spatially isolated (protected) from each other and thus diffuse independently.
The resulting algorithm is not only fast even at low densities, but it is also exact (modulo
numerical precision) and does not, in principle, introduce approximations employed in other
accelerated algorithms, such as discretizing continuum diffusion into a sequence of hops [4]
or neglecting less-probable reactions [7, 12].

Reference [11] focuses on the basic ideas behind the new FPKMC method and illustrates
its application in the context of simple models in which identical or nearly identical cube-
shaped particles randomly walk on a lattice or in the continuum. Here we extend the
method to more general and complex diffusion-reaction systems, such as multiple species

with different sizes and diffusion coefficients, competing reaction mechanisms, e.g. particle



conversion, death and insertion, absorbing boundary conditions, focusing on the case of
continuum isotropic diffusion without advection. We give a general and formal presentation
of the FPKMC method as an event-driven asynchronous algorithm implemented for the case
of additive hard spheres in two and three dimensions. We also present algorithmic details,
including pseudo-codes, for a flexible yet efficient implementation of the FPKMC method
capable of handling a variety of problems of interest, including radiation damage in metals [5,
12, 13], dopant implantation [4], surface reactions [2, 3], coarsening [1], (bio)chemical reaction
networks [6-8], and others. We validate the new algorithm by comparing our simulation
results against the Object KMC BIGMAC code [4] for several non-trivial test problems. We
then apply the new algorithm to simulations of irradiation damage accumulation in iron
and validate the new method by comparing to results obtained using the existing object
KMC code LAKIMOCA [5]. Finally, we demonstrate that the new FPKMC algorithm
allows extending the time horizon of radiation damage simulations well beyond current
computational limits and to reach, for the first time, the long time-scales of material life in
a nuclear reactor (section V B 3).

In the remainder of this section we specify our diffusion-reaction model and briefly discuss
asynchronous event-driven algorithms. In Section II we describe the core of the FPKMC
algorithm, namely, the use of exact time-dependent Green’s functions for a suitably-defined
separable sub-problem. The new method is rather general and extends to a variety of prob-
lems where diffusion plays a role, including also discrete (lattice) systems and more general
types of diffusion. In Section IIT we discuss numerical evaluation of the time-dependent
Green’s functions for the case of hard spheres. Section IV gives further details, including
detailed pseudocodes for key components of the FPKMC algorithm. In Section V we present
numerical validation of the algorithm along with some performance figures, and finally, in

Section VI we offer a few concluding remarks.

A. Model Representation

Consider a simulation of the time evolution of a collection of N diffusing reactive particles
in d-dimensions. For simplicity, we will focus on the case of hard spheres of fixed radius
diffusing in a homogeneous medium. In the absence of reactions or surfaces and assuming

a particle started in some specific point g at time 0, the probability ¢(r,t) of finding the



same particle in position 7 at time t is the solution to the time-dependent diffusion equation
d,c = DV?c and ¢(r,0) = 6(r — 7y), (1)

where D is the particle diffusion coefficient.

At any point in time, the state of the system is characterized by its configuration Q =
(qy,---,qy).- The number of particles N may itself vary with time. Each particle i can
possess an arbitrary number of attributes a; in addition to the position of its centroid 7r;,
q; = (7ri,a;). These attributes include a species 1 < s; < N;, a radius R;, a diffusion
coefficient D;, as well as other problem-specific attributes such as charge, mass, etc. Some
attributes may be shared by all particles of a given species, for example, all particles of a
given species may have the same diffusion coefficient.

The symmetric reaction table R,p of size Ns(NNs + 1)/2 specifies the type of two-particle
reaction that occurs when particles A and B of species a and (3 collide. In particular, R,z can
specify that particles of species a and 3 do not interact with each other. Examples of possible
reactions are annihilation A+ B — 0, chemical reaction A+ B — (', including the special
case of absorption A+ B — A, coalescence A+ B — AB, and reflection A+ B — A+ B.
The decay table Dy specifies an arbitrary number N of possible single-particle reactions
for particles of species a, assumed to occur as a Poisson process with rates I'¢ = (72)7 1.
Examples of decay reactions are splitting A — B+ C', including the special case of emission
A — A+ B, transmutation A — B, death A — 0, and jump (kick) A — A. The positions of
any products of the single- or two-particle reactions are assigned depending on the positions
and attributes of the reactants, sometimes with additional random displacements. If hard-
wall boundaries are present, particles colliding with a hard wall k they may be absorbed or
reflected with certain pre-specified probabilities.

The insertion rates B, specify the rate of insertion (birth) for particles of species «
per unit time per unit volume. Typically particles are inserted randomly and uniformly
inside the simulation volume. Note that in some applications it can be necessary to insert a
whole collection of particles rather than a single particle. For example, irradiation by heavy
particles - ions or neutrons - creates large displacement cascades that quickly anneal into a

whole collection of point defects and clusters.



B. Asynchronous Event-Driven Algorithms

The First-Passage Kinetic Monte Carlo (FPKMC) algorithm belongs to the category
of asynchronous event-driven (AED) algorithms [14]. The algorithm is similar to the well-
known event-driven molecular dynamics (EDMD) algorithm [15], with the essential difference
that in FPKMC particle dynamics is stochastic rather than deterministic [16]. Just like the
hard-sphere Molecular Dynamics, FPKMC is an ezact algorithm (within numerical preci-
sion) because the two-particle problem in FPKMC can be solved exactly. By its exactness
we mean that FPKMC samples evolution trajectories of N random walkers from the correct
probability distribution, as given by the exact solution of an appropriate Master equation.

Event-driven algorithms evolve the state of the system by updating it only when certain
non-trivial events occur, skipping the time elapsed between such events as uninteresting,
e.g., unchanged or analytically solvable. In the asynchronous algorithms, there is a global
simulation time ¢, typically the time when the last processed event occurred, and each
particle ¢ is associated with a point in time t; < ¢, typically the last time it participated in
an event. This is to be contrasted to synchronous event-driven algorithms, where all of the
particles are at the same time ¢, such as the n-fold (BKL) algorithm for performing kinetic
(dynamic) Monte Carlo simulations [17]. The classical n-fold algorithm hinges on the fact
that the state of the system does not change between the events, as is common in lattice
models where particle positions are discrete. For example, the atoms may vibrate around
the lattice sites and occasionally hop to nearby sites. In the model considered here, however,
the positions of the particles are continuous and continuously changing even between events.

An asynchronous simulation progresses by processing the event at the head of the queue,
scheduling new events for any affected particles, and then updating the event queue. The
main types of events in FPKMC and their scheduling and processing will be described in
detail in the next section. Each particle i stores the time it was last updated ¢; along with a
prediction for its impending event (t$,p;,v;), specified via the predicted time of occurrence
(timestamp) t¢, the event partner p;, and the event qualifier (type of event) v;. When it is
clear what particle we are referring to, we will omit the subscript ¢ for simplicity. If several
different events are possible for a given particle then the first event scheduled to occur (i.e.,
the one with the smallest ¢.) is chosen. The event times for all particles and event times for

any ezternal events are stored in a priority queue (e.g., a heap) called the event queue. If



the partner p = j is another particle, then event prediction for the partner particle j is not

stored in the event queue to avoid sorting duplicate events with equal timestamps.

II. THE FIRST-PASSAGE KINETIC MONTE CARLO ALGORITHM

A detailed description of the FPKMC algorithm, including pseudo-codes, is given in
Section IV. Here we only briefly discuss the most important components of the algorithm.
Although this description is intended to be self-contained, the reader is referred to Ref. [11]
for a more intuitive introduction.

The essential idea behind the FPKMC algorithm is to break the N-body problem into
a collection of independent one-body or two-body (pair) problems that can be solved ana-
lytically. This is achieved by protecting each particle ¢ with a protective region P;, C; C P;,
where the hard core of particle 7 is denoted by C;. An unprotected particle has P; = C;. In

the case of hard spheres ', C; = {r| ||r — ;|| < R;}, the protective regions themselves are
(

spheres of radius REP) > R; centered at rip). Thus, a spherical particle of radius R; can be

thought of as a point particle contained inside a protective sphere of radius RZ(P) — R;, ie.
’ (P) _

b 7Y, however, making the
protective sphere concentric with the particle simplifies implementation.

< R(P) — R;. In general it is not required that r

()

TEP) — ’I“Z"

A. First-Passage Probability Densities

If the protective region P; of a particle ¢ is disjoint from the protective regions of other
particles, then the diffusive motion of the particle is independent of the motion of other
particles, as long as the particle is still inside its protection. The motion of the particle
inside its protection is a one-body diffusion problem that can often be solved analytically.
The FPKMC algorithm entails sampling from the following two probability distribution
functions (PDFs) for a particle initially at 7o = 0 at time ¢ = 0:

1. The first-passage probability distribution Jy(t,7) that the particle first leaves its pro-

tective region at time £, when it is at position #. We call the time ¢ the exit time

! The cube-shaped particles and protections described in Ref. [11] can be thought of as spheres but with

an L, distance metric function |Ar| = max;<p<q Arg, instead of the Ly Euclidean distance ||Ar| =

VZZ:1 Ar? characteristic of spheres.



and the position 7 the exit location. For a point particle, 7 is on the surface of the

protection, © € OP;.

2. The conditional no-passage probability distribution ci(r;t) that the particle is at po-
sition r € P; \ OP; at a given time ¢, given that it has not left its protection by time
t.

These two probability distributions are the basic elements of the theory of first-passage
processes [18] and are termed hereafter the first-passage and no-passage propagators, respec-
tively. Single-particle propagators for spherical particles inside spherical protection regions

are discussed in Section IIT A.

1. Pair Propagators

In the FPKMC algorithm, the particles are protected by disjoint protective regions al-
lowing the use of single-particle propagators to evolve the system. At some point in time,
however, two particles 7 and 7 will collide and thus cannot be protected with disjoint regions.
For efficient handling of collision events, nearly-colliding pairs are associated (partnered) and
protected by a pair protection region P;;. We will focus on the case when P;; = P; UP;
consists of intersecting protections around each of the two particles, P; N P; # 0. If either
one of the particles leaves its protective region the pair disassociates.

Note that, for the case of additive hard spheres that we consider here, triple collisions
never happen. Thus, it will always be possible to protect two colliding particles ¢ and j
as a pair even if there is a third particle k nearby. As the simulation time approaches the
collision time, eventually ¢« and j will be much closer to each other than to k£ and can thus
be pair-protected with protective region P;; disjoint from Pj. For non-additive hard spheres
or other types of collision rules pair protection may not be sufficient and in such cases the
approximate handling of interactions discussed in Section IV G will be useful.

For an associated pair of particles, in general, the FPKMC algorithm requires sampling

from the following two distributions:

1. The first-passage probability distribution Js (£, 7, ;) that at time t, when the particles
are at positions 7; and 7; respectively, one of two particles of the pair leaves its

protection for the first time, or particles ¢ and j collide and react for the first time.
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2. The conditional no-passage probability distribution cy(r;, 7;;t) for the positions of the
particles at a given time ¢, given that neither ¢ nor j has left its protection, nor a

collision has occurred.

We term these two distributions two-particle or pair propagators. As discussed in part I of
this series, the pair propagators allow further factorization into two single-body propagators.

The first propagator is for the difference walker 'rz(.f) = Ar; — Ar;, where the condition

5

(@)

= R; + R; corresponds to a collision. The second propagator is for the center walker
= w;Ar; + w;Ar;, where w; and w; are appropriately-chosen weights. The protections

and the propagators for the difference and center walkers are discussed in further detail in

Section III B.

2. Hard-Wall Propagators

In some situations periodic boundary conditions may not be appropriate and instead hard-
wall boundaries could be used along certain directions of the simulation box. Furthermore,
additional absorbing or reflecting surfaces may need to be inserted in the simulation volume,
for example, to represent grain boundaries in a polycrystalline material. Particle and pair
protections should be disjoint from any hard-wall surfaces or boundaries W in order to
ensure that single-particle and pair propagators can be used. However, some particle ¢ will
eventually collide with W and, thus, can not remain protected from W forever. Therefore,
particles near a wall W are associated (paired) with the wall itself and protected with a
hard-wall protection P; that is disjoint from all other single-particle and pair protections
but intersects wall W, P; N W = 9P}¥ # ). For such particles, we will use of the following

hard-wall propagators:

1. The first-passage probability distribution Jgy (%, 7) that the particle exits its protective

region or collides with the hard wall at time ¢, when it is at position 7.

2. The conditional no-passage probability distribution cyw (r;t) that the particle is at
position r € P; \ IP; at a given time ¢, given that it has not left its protection or
collided with the wall by time ¢.



B.

As

Summary of the FPKMC Algorithm

already discussed in Section I B, the FPKMC algorithm processes a sequence of events

in the increasing time order in an event loop. Each event has a qualifier (type of event)

and is associated with a primary particle, which may have an event partner p;. In the

implementation of the algorithm described here the particles can only have one partner,

either another particle forming a pair, or a hard wall. In general one can have multi-particle

events and treat a group of particles together. We discuss this modification again in Section

IV G and will report on its implementation details in future publications.

Following Refs. [10, 11], the core of the FPKMC algorithm entails the following generic

steps:

Construct initial protective regions around all particles, either single-particle protec-
tions not overlapping with other protections or boundaries, pair protections for pairs
of particles much closer to each other than to other particles, or hard-wall protections

for particles much closer to a boundary than to other particles.

Sample an exit time for each particle or pair (in the case of pairs this can mean a
collision) from the corresponding first-passage probability distribution, and make an

event queue with all of the scheduled events.

Using the event queue, find the shortest event time and identify the corresponding par-
ticle(s). Sample the exit position(s) from the corresponding first-passage probability

distribution. If a collision occurs, take appropriate action.

Construct new protections for the particles propagated in Step 3. If necessary to make
more space available for protection of the propagated particle(s), sample new locations
for nearby particles from the corresponding no-passage probability distribution, and

re-protect those particles as well.

Sample new event times for the particle(s) protected in step 4, and update the corre-

sponding events in the event queue. Go back to step 3.

Further details on the main event loop are given in Section IV.

In

FPKMC, the most important and frequent events are first-passage propagations in

which a particle or a pair reaches the boundary of its protective region or collides. Such events



are scheduled and processed by sampling from appropriate first-passage distributions, and
then processing any reactions, as appropriate. For a given set of particle starting positions,
one can choose to build protections to maximize the expectation value of the next simulated
time increment. To achive this, N particles should be protected in such a way that the
expectation value for the minimal first-passage time is maximized:
max  E[min{ty,to, ..., tn}].
Protections
Finding the optimal space partitioning that maximizes the above expectation value is a
non-trivial problem of constrained non-linear optimization. It is especially difficult to solve
in the course of an asynchronous FPKMC simulation where computational cost of space
re-partitioning should be balanced with the resulting benefit to the time increment. Finding
the optimal space partitioning is further complicated in a dynamic context, when FPKMC
propagation events compete with other stochastic processes such as particles creation, emis-
sion, destruction, etc. In the current FPKMC impementation, we use a simpler optimality
condition in which the minimum of N expected first-passage times is maximized:
max  min{E(t1), E(ts), ..., E(ty)}-
Protections

Obviously, the protections have to be as large as possible, with more space given to particles
with higher diffusion rates. To better quantify this requirement, let us first consider just
two particles and protect them by two concentric non-overlapping protection domains §2;
and ()5. The expectation of the earliest of two exit times is maximal when domains {2,
and €2y touch each other and their linear dimensions are proportional to the square roots of
two diffusion coefficients /D; and v/D,. In this case the expected first passage times for
both particles are equal. Let us now use this maximal expected exit time as a measure of
distance between any two unprotected particles. If all particles are unprotected, solving for
the optimal protection amounts to finding, using the so-defined distance metric, the nearest
neighbors in the whole system. If possible, one protects the nearest neighbors as a pair,
otherwise, they are protected individually by non-overlapping (touching) protective regions.

The above method, however, only optimizes protections over a single first-passage event
(locally-optimal protections) and does not necessarily maximize the expected time per event
over a long sequence of events (globally-optimal protections). Specifically, following a single

event, an optimal re-partitioning of the space into protective regions could be constructed,
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however, this would require destroying multiple existing protections and thus cause multiple
propagations and new event predictions. Obviously, it is necessary to find a reasonable
trade-off between re-building too many protections and giving all of the particles sufficient
room to move over sufficient distances compared to other particles.

Following the processing of an event, typically one or two particles are unprotected. We
try to protect those particles, always starting from a chosen seed particle, with locally-
optimal protections, without disturbing any other protected particles. Specifically, in our
algorithm, one first finds the largest possible protection for the seed particle by performing
a neighbor search over all nearby protected or unprotected particles. If the limiting neighbor
is protected, one can simply protect the particle with a protection that touches the limiting
protection 2. Otherwise, one recursively applies the same procedure to the unprotected
limiting neighbor. If two particles are both unprotected and are found to be mutually
limiting neighbors, we attempt to protect them as a pair provided they are sufficiently close.
Detailed pseudocode for this procedure is given in Section IV E.

If the size of the single protection of the seed particle is too small, we make room for a
larger protection by destroying third-party protections. That is, if an unprotected particle
gets too close to the protective region of another particle or pair, that particle or pair is
brought to the current point in time using the appropriate no-passage propagator. Similarly,
if the seed particle is nearly colliding with another particle but the two particles cannot be
protected as a pair, we destroy any other protections blocking pair protection. Following the
destruction of other protections, we repeat the process starting from protection of the seed
particle. Instead of keeping a list of all unprotected particles we simply schedule immediate
re-protection events (i.e., place them at the head of the event queue) for any particles whose
protections were destroyed.

Our implementation relies on a number of input tolerances and heuristics to manage

particle and pair protections. In particular, the following decisions need to be made by the

algorithm and can be controlled with various input tolerances:

e When should a pair of unprotected nearest-neighbor particles be selected for pair

protection, beyond the necessary conditions for pair protection discussed in Section

2 Other choices are possible here, for example, one may look at the expected or scheduled first-passage time

for the limiting neighbor.
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IIIB? The computationally-optimal choice here depends on the relative cost of the
single and pair propagations. We favor single protections because of their lower cost
and build pair protections only when two particles get closer to each other than some

fraction of their size.

When is it justified to unprotect a protected particle or a protected pair in order to
make room for protecting an unprotected single particle or a pair candidate? One
may use a hard cutoff here, however, this introduces an artificial length-scale and the
algorithm looses some of its ability to adopt to the variations in particle density (and
thus typical sizes of the protective regions). We prefer to always destroy the most

limiting protection following a first-passage propagation.

If two unprotected nearest-neighbor particles are not a pair candidate, how should the
available space be divided among their single protections? As described above, we
split the space proportionally to the square root of the diffusion coefficients of the two

particles.

Should the size of the protective region of a single particle be limited even if there
is more room available for its protection (note that a large protection is more likely
to block future protections of other particles)? We control this through an input
parameter that set the time limit At,,,, after which the protection is almost certainly

going to be destroyed before the first-passage event actually occurs, and limit the size

of 731 by \V DiAtmax-

Once it is determined that two nearby particles can be protected as a pair, how large
should their pair protection be (of course, respecting the minimal required size dis-
cussed in Section III B and the maximal size allowed by other neighbors)? We control

this through an input target range for the parameter « defined in Section I1I B.

Intuitively, the algorithm’s performance will be optimized by giving more protective space to

the particle or a small subset of particles that dominate(s) the event queue, up to the point

when giving more room to these fast particles no longer increases the average time interval

between subsequent events (or actually makes efficiency worse by squeezing the other slow

particles too much). In Section IV F we will describe a self-tuning strategy we applied in

several specific situations encountered in FPKMC simulations. While some of our strategies

12



are relatively general, understanding of the problem at hand helps considerably in optimizing
the algorithm performance.

We conclude this section with a few additional notes on the components of the FPKMC al-
gorithm. Whenever an event creates new particles, a check is made to determine whether the
newly inserted particle overlaps with any existing particles. If it does, appropriate reactions
are immediately processed and the overlap check is repeated until no overlap is detected.
Additionally, unlikely the mobile particles, the immobile particles remain unprotected and
have no partners, but other particles can have them as partners. This is particularly useful
when there are large immobile particles (e.g. clusters of monomers) that are surrounded
by a dense pool of small mobile particles (e.g., monomers). The mobile particles do not
affect each other for as long as their protections do not overlap, even if they share the same
immobile cluster as a partner. However, when an event changes the configuration of the
immobile cluster (e.g., it absorbs a monomer), all its partner particles are brought to the

current time and re-protected.

III. SINGLE PARTICLE AND PAIR PROPAGATORS

In this section we describe first-passage and no-passage propagators for spherical particles.
The propagators for single particles are similar to the ones described in Ref. [11] for cube-
shaped particles and are discussed here only briefly. However, the pair propagators for
two spherical particles are considerably different than those for cubical particles and are

presented in more detail.

A. Single Particle Propagators

The FPKMC algorithm requires first-passage and no-passage propagators for a single
spherical particle A of radius R, with diffusion coefficient D,, starting from an initial
position 7Y at the center of a protective sphere P4 of radius R%, > R, concentric with the
particle. This reduces to finding the propagators for a point Brownian particle starting at
time ¢ = 0 from the center of sphere with radius RS = R, — R4. Due to the full rotational
symmetry, the first-passage PDF J;(f) is a function of time only, and the exit location on the

protective sphere P4 can be sampled from a uniform distribution. Similarly, the no-passage

13



PDF ¢(r;t) becomes a function of time and radial distance only, as the actual position r
can be sampled from a uniform distribution on the sphere of radius r.

Expressing the distances and time in reduced units, the propagators can be obtained by
solving the diffusion problem for a point Brownian particle with diffusion coefficient D = 1

inside a sphere of unit radius RS = 1,

dlre(r,t)] 02 [re(r, t)]

ot or?

with the boundary condition ¢(1,¢) = 0 and the initial condition ¢(r,0) = 6(r). The proba-

bility to survive up to time t, i.e. the survival probability, is

1
S(t) :/ 4rr2e(r, t)dr.
r=0

The probability distribution for the exit time, i.e. the exit probability, is

p(t>0) = —ag—ff), (2)

and is used to sample the exit time ¢. The no-passage probability distribution is

c(r,t)

alr<1;t) =

Series solutions for the various probability distribution functions for the case of a point walker
in a cube-shaped region were presented in Ref. [11]. For the case of spherical particles inside
spherical protection regions we focus on two useful series expansions of the solution, one

that converges quickly at short times (¢t < 1/4),

- 2m (r +2m)?
t) = (4nt)"3 14+ _Temy 4
o) = s 3 (4 2 | ()
and another that converges quickly at long times (t > 1/7?),
c(r,t) = 1 i msin(mar)e ™ (5)
’ 2r £~ '

The first-passage and no-passage distributions can be sampled numerically in various
ways. We use rejection sampling as proposed in Ref. [11] and detailed in Appendix A. How-
ever, we emphasize that rejection sampling is not the only nor necessarily the most efficient
method for sampling the required distributions, especially if one is willing to accept some

error (which can be controlled). For example, direct tabulation and the use of lookup tables

14



may be simpler and more efficient in certain cases, especially when there is high symme-
try in the shape of the particles and protective domains. Such implementation details are,
however, orthogonal to the development of the event-driven algorithm and can be improved

upon separately.

B. Pair Propagators

In this section we discuss particle protection and propagators used to enable collisions
of pairs of particles. Consider two spherical Brownian particles A and B of radii R4 and
Rp and diffusion coefficients D4 and Dpg. Each of the particles is protected by a sphere of
radii R, /g > Rayp concentric with the initial particle positions % /5~ When two protective
spheres overlap, i.e., R} + RE > rap = ||ra — r3||, the particles can collide while diffusing
within their individual protections. Sampling of particle collisions is enabled by transforming
the two-particle diffusion problem into two single-particle problems, one for the difference
walker rp = r4 — ry and the other for the center walker rc = war4 + wprg. A collision
occurs when the difference walker reaches the collision radius rp = ||[74 — 7| = Ra+Rp. It

2

can be shown that, with the choice ws D4 = wgDp, the cross term in the Laplacian

_02
drcorp
operator vanishes which means that the six-dimensional PDF for the pair factorizes into
a product of two three-dimensional PDFs, one for each walker. The resulting center and
difference walkers diffuse independently with diffusion coefficients Dp = Dy + Dp and
Do = wiDA + w%DA.

There is considerable freedom for choosing weights w, and wg and protections for the
center and difference walkers. To simplify the implementation, the center and difference
walkers are each protected by spheres of radii R}, and RZ centered around their initial
positions. It turns out that choosing R, = RI maximizes the use of space within the
overlapping protective spheres of the two original particles. Furthermore, by setting Do =
Dp the expectation values for the exit times for the difference and center walkers become

similar and nearly maximal. This leads to the following optimal choice for the coordinate

transformation

re = &r+ &r
c—\/DAA \/DBB-



Finally, the condition that a collision should be possible requires that RS > §, where ¢ =

rap — (R% + RY) is the initial inter-particle gap. We take
RF = R7 = (2 + )9,

where @ > —1 is a parameter in the algorithm. We find that o = 1 or RE = 24 is a reasonable
choice but, when there is more room available, one can increase a up to a maximal value a4,
specified in the code. It can be shown that, as the difference and center walkers propagate
inside their own protections, each of the two original particles remains within a sphere of

radius

vVDa+ D
RZ/B = RA/B + (2 + @)5\/DA/B#-
Dj+ Dg

This defines the size of the protective region around each original particle that is minimally
necessary to allow pair protection, i.e., the minimal distance to the next-nearest neighbors

of particles A and B which allows for pair protection.

1. The Difference and Center Propagators

With the above coordinate transformation, the first-passage problem for the pair of origi-
nal particles separates into two independent first-passage problems for the center walker and
the difference walker. The overall first-passage time ¢ is the smaller of the two first-passage

times. Thus, the possible first-passage events for the pair are:

Collision when the difference walker reaches the surface rp = ||r4 — rg|| = Ra + R5p.

Dissolution when the difference walker reaches the surface rp = R7. The center walker
has not yet left Po and can be updated using the single-point no-passage propagator

c1(Arg;t).

Displacement when the center walker reaches the surface rc = RE. The difference walker
has not yet left Pp and can be updated using a special single-point no-passage prop-

agator cp(Arp;t) (see the next section).

Because the center walker is restricted inside a spherical protection P¢ of radius RE, the
same FP and NP propagators described earlier in Section III Afor single particles can be

used for this walker.
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overlap

o = —— =

R,+Rp

Figure 1: Protective region Pp for the difference walker in the case of two hard disks in two
dimensions. In this case Pp is a cut disk (blue) and the propagator cp(rp;t) is analytically

complex.

Unlike the case of cube-shaped protections considered in Ref. [11], protection region of the
difference walker for a pair of spherical particles cannot be a sphere. Among several choices
considered, in our current implementation we opt to protect the difference walker with a
cut sphere, i.e. Pp = {rp|||Arp|| < R}, and ||rp|| > Ra+ Rp}, where Arp =rp — 19,
Lacking the spherical symmetry and having more complex geometry of the first-passage
surface (see Fig. 1), finding a usable analytical solution for the propagators in this protective
volume is more involved than for the cubes. Various approximations for the distribution of
exit times and locations Jp(f,7p) for cut spheres have been considered in the context of
diffusion Monte Carlo [19, 20]. However, the previous work used only time-averaged solutions
but not the full time-dependent Green’s function cp(rp;t). In the next section we describe
a practical alternative to the full analytical solution of the first-passage problem inside the

cut sphere.

2. Hopping-Based Propagators

Rather than trying to solve for the exact propagators for the center walker in a cut sphere,
we resort to generating a random walk through a sequence of small displacements in ran-
domly chosen directions. In principle, restricting the hops to sufficiently small displacements,
such discrete walks can approximate the samples from the exact continuum distributions to

any desired accuracy. In practice, we use random walks only for particle pairs that have been
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brought close to collisions through the use of exact continuum single-particle propagators.
For such pairs, the walks are typically short and do not entail high computational cost.

The time when the trajectory brings the difference walker to the boundary dPp of the
cut sphere Pp is taken as an approximation for the first-passage time ¢ and the location
where the sampled walk hits the surface OPp is an approximation to 7p. At every hop a
constant increment At;, = Ar?/(2Dp) is added to the running time and the displacements
along each dimension are sampled independently from a one-dimensional Gaussian proba-
bility distribution with the standard deviation Ar7. Alternatively, the magnitudes of walker
displacements can be kept equal to Ar;, while the time increments can be sampled from the
first-passage distribution .J; for the sphere of radius Ar,. In the limit of small displacement
length both methods should reproduce the required first-passage probability distributions in
the cut sphere.

As a practical matter, one must ensure that the path makes some progress, that is at
least one hop is taken. Therefore Ar, should be smaller than some fraction (e.g., half
or one third) of the inter-particle gap §. Furthermore, to ensure reasonable accuracy the
displacement Ar;, should be smaller than the relevant length-scales of the cut sphere Pp.
We set Arj, = e, min(d, R4 + Rp), where 0 is the initial inter-particle gap and ¢, < 1is a
fractional hop length parameter. The walk terminates when a collision or pair dissolution
occurs, or when time exceeds a specified upper bound on #, t,... Occasionally, the first
displacement has to be truncated in order to ensure that the difference walker does not
leave Pp after only one hop: we simply re-sample the hop again if the initial displacement
is too large. In cases when the particles reflect on collisions, we simply reject the last hop
leading to collision. In cases when the particles react on collisions, we take the full length of
the last hop but truncate the last time increment. If instead of collision a pair dissolution
event occurs, we reject the last hop rather than trying to truncate it more accurately (and
expensively). In all cases, exit time fp = ¢ and location 7p are recorded for possible future
use. If the time t exceeds t,,q., the last time increment is set to At/h =t — tyee and the
length of the last hop is scaled by factor \/m .

If and when the previously scheduled first-passage event actually occurs, we simply move
the difference walker to the pre-sampled exit location 7p = 7p. However, when the scheduled
first-passage event is preempted by some other event, e.g. intrusion of a third party particle,

a no-passage propagation is required instead. In such instances, rather than storing the
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entire walk generated during pre-sampling, we opt to repeat the same trajectory starting
from the same seed for the pseudo-random number generator. For this purpose we store the
random seed for each protected pair when its next first-passage event is scheduled, and use

this seed should it become necessary to repeat the previously sampled walk.

IV. IMPLEMENTATION OF THE FPKMC ALGORITHM

In this section we give details of various components of the FPKMC algorithm, as we
have implemented and tested them. It is important to note that there are alternative im-
plementation choices, some of which we point to. First, we briefly discuss computational
techniques for searching for near neighbors. We then explain the types of events that are
scheduled and processed by the FPKMC algorithm, and give a pseudocode for the core
of the algorithm, the main event loop. The components used in the event loop are then
briefly described. Finally, we discuss optimization of the efficiency of the algorithm and an

important direction for future improvement.

A. Near-Neighbor Search

Efficient particle-based algorithms use various geometric techniques to reduce to O(1)
the cost of searching for the neighbors of a given particle. Reference [21] provides extensive
details and illustrations of these techniques for hard spheres and ellipsoids; here we briefly
summarize the basic linked list cell (LLC) method and describe the more involved near-
neighbor list (NNL) method in Appendix B. In a certain sense the details of these geometric
techniques are orthogonal to the FPKMC algorithm, however, efficient neighbor search plays
a very important role in determining the efficiency of the algorithm. Therefore, it is impor-
tant to keep in mind how this search is actually performed, especially when constructing
protective regions.

The most basic technique is the so-called linked list cell (LLC) method. The simulation
domain, typically an orthogonal box, is partitioned into N, cells, typically cubes. Each
particle i stores the cell ¢; to which its centroid belongs, and each cell ¢ stores a list L. of all
the particles it contains. Given a particle and a search range, the lists of potential neighbors

is determined by scanning through the neighboring cells. Typically, for maximal efficiency

19



the cell should be larger than the largest search range, that is, larger than the largest
protective region P;. If some particle grows too large, e.g. due to coalescence reactions,
one can enlarge the cells and re-build the associated linked lists. In Section IV F we discuss
the impact of cell size on efficiency as well as methods for choosing the optimal cell size in
simulations of radiation damage.

In our FPKMC implementation, in addition to the list of particles L., each cell ¢ stores a
bitmask M consisting of at least N bits (N is the number of species). Bit v in the bitmask
M. is set if cell ¢ contains a particle of species «v. The bit is set whenever a particle of species
v is added to the cell, and all bitmasks are cleared periodically. When performing a neighbor
search for particle 7, cells not containing particles of species that interact with species s; are
easily found and are simply skipped. This can significantly speed up the neighbor searches
in cases where not all particles interact with all other particles, for example in simulations
of two species diffusion-limited annihilation A+ B — 0 where particles of like species do not

interact.

B. Types of Events

The following types of events, as identified by the event partner p and event type v (which
we arbitrarily represent with an integer here), are scheduled and processed in the FPKMC

algorithm for a given particle i of species a:

Particle protection identified by p = 0, v = 1. Such events are scheduled at the be-
ginning for all particles and immediate updates are scheduled for any particles whose
protections are destroyed before the scheduled first-passage time. Processing consists

of protecting the particle with a new protective region P; (see Section IV E).

Particle update identified by p = 0, v = 0. A protected particle needs a new event

prediction.

Particle insertion identified by p = 0, ¥ = —1. Processing requires checking whether the
newly inserted particle overlaps with any existing particles. If it does, the correspond-

ing reactions are processed, otherwise, the particle is protected.

First-passage hop identified by p = 4, v < 0. Scheduling consists of sampling an exit time

t and an exit location 7 from .J;. Processing consists of moving the particle, t; « t; +t,

20



r; < r; + 7, destroying the old protection, and then protecting the particle again.
Additional information, such as the surface of P; with which the particle collides, can

be recorded in v.

Particle decay identified by p = i, v > 0. The particle decays via the reaction D¢ before
leaving its protection. Scheduling consists of sampling an exponentially-distributed
random number with mean (Zk '?)~! and then choosing one of the reactions v with
probability I';/ >~ T (here the sum is over all single particle decay reactions available
for particle 7). Processing consists of sampling from c¢;(r;¢) and moving the particle,
t; < t; +1t, r; < r; +r, destroying the protection P;, and then executing the selected

decay reaction Dy .

Hard-wall update identified by p = —w, v = 0, where w is the identifier of the hard wall.

A particle-wall pair needs a new event prediction after it has been protected.

Hard-wall escape identified by p = —w, v < —1. This event is similar to a first-passage
hop, however, Jyy is sampled instead of J;. Additional information such as the surface

of P; with which the particle collides could be recorded in v.

Hard-wall collision identified by p = —w, v = —1. This event is similar to the hard-wall
escape, however, the outcome is a collision of the particle with the hard wall resulting

in annihilation of the particle (a reflection is never explicitly scheduled).

Hard-wall decay identified by p = —w, v > 0. The particle decays via the reaction Dy

before colliding with its protection or the hard wall.

Pair update identified by p = j, v = 0. A pair needs a new event prediction after it has

been protected.

Pair disassociation identified by p = j, ¥ < —1, where j is the partner particle. Schedul-
ing consists of sampling from Jy(f, 7;, 7). Processing consists of moving both particles
ti —t;+t, r; —r;+7;, and tj 1t +1, T; < 7; +T;, destroying both protections P;
and P;, scheduling an immediate protection event for particle j, and then protecting
particle ¢ again. The specific meaning of the disassociation event could be recorded in

v, e.g. that particle j left its protection or that the center walker left its protection.
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Pair collision identified by p = j, v = —1. Scheduling consists of sampling from
Jo(t, r;,7;). Processing consists of executing reaction R,s3, where [ is the species

of partner particle j.

Pair decay identified by p = j, v > 0. Particle ¢ decays before the pair disassociates or
collides. Processing consists of sampling co(7;, ;) and moving both particles accord-
ingly, destroying both protections, scheduling an immediate protection for particle j,

and then processing the decay reaction D¢ for particle i.

C. Main Event Loop

The core of the FPKMC algorithm is the event loop described in Algorithm 1. We
have already discussed the general framework and give here additional technical details to
facilitate other implementations of the FPKMC algorithm. For pairs ij, we only insert one of
the particles into the event queue (heap), specifically, min(z, j) if both are mobile or just the
mobile particle otherwise. Note that whenever the position of a particle is updated, its time

is updated as well, t; < t, and also the LLCs and/or NNLs need to updated accordingly.

Algorithm 1: FPKMC event loop. Here £ denotes a uniform random number 0 < £ < 1.
Initially the time of the next particle insertion ¢tz = —1, and all particles are put in the

event queue witht, =0, p=0, v = 1.

1. Find (query) the top of the event heap to find the next particle i to have an event with p at

to.

2. If tp < 0, set tg = —In(&) /', where 'y = Zgil B, is the total insertion rate of all particle

types.

3. If tg < te, set t «— tp, tg «— —1, choose which particle species « is to be inserted with
probability B, /I's (using linear or binary (tree) search), insert the new particle into the

system, and cycle back to step 1.

4. Remove particle ¢ from the event queue, store the time increment At = t§ — t;, the event
partner p = p;, event type v = v;, and particle species o = s;. Advance the simulation time

b 15.
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5. Insertion: If p = 0, v = —1, check if the newly inserted particle overlaps with any existing

particle and if so, process the corresponding reactions. If the particle still exists after the

check, set its event to be a regular protection, p «— 0, v «+ 1. Otherwise, cycle back to step

1.

6. Single-particle event: If p =i and v # 0, update particle i:

(a)

(b)

First passage hop: If v < 0, propagate i to its first-passage location, r; «— r; + 7, and
destroy its protection P;. For spherical particles, one can sample 7 at this point instead

of pre-computing it when scheduling first-passage hops (see Section IITA).

Decay: Else if v > 0, sample r from c(r; At), set r; < 7r; + r, destroy P;, process the

decay reaction D{ and cycle back to step 1.

7. Hard-wall event: Else if p = —w < 0 and v # 0, update the particle-wall pair p — w:

(a)

8. Pair

First-passage event: If v < 0, propagate particle ¢ to its first-passage time, and update
r; and v; if needed. Collision: If v « v; = —1, delete particle ¢ and cycle back to step

1.

Decay: Else if v > 0, sample r from cgyw (r; At), set r; < r; + r, destroy P;, process

the decay reaction Dy and cycle back to step 1.

event: Else if p > 0 and p # 7 and v # 0, update the particle pair ij, j = p, 8 = s;.

Test whether the partner is a mobile particle, i.e., whether p; = 1.

(a)

(b)

Disassociation: If v < 0, propagate the pair to its first passage time (see Section 111 B),

update r; and, if needed, r; and v;. Destroy protections P; and P;.

Collision: 1f v «— v; = —1, process the particle-particle collision. If j is immobile,
find and un-protect all of its other partners k (see Section IV D). Process reaction
Rap, scheduling immediate particle insertion events for any remaining or newly created

particles, and cycle back to step 1.

Disassociation: Else if v < 0, schedule an immediate protection for the partner, p; < 0,

v; < 1, and insert j into the event queue.
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(d) Decay: Else if v > 0, sample ca(r4,rp; At), set r; < r; + r4 and destroy P;. If j is
mobile, set r; < r;+7rpg, destroy P;, schedule an immediate protection for the partner,
pj <+ 0, vj < 1, and insert j into the event queue. Process the decay reaction D;; and

cycle back to step 1.

9. If particle i is mobile, build a new protection P; and find the neighbor k that is limiting the

size of the protection.

10. If v # 0 and k is a protected particle, and P; is too small (see the discussion in Section IIB),

then try to enlarge P; by making more room for it:

(a) Destroy P; and un-protect k.
(b) Build a new protection P; and find the new limiting neighbor &'.

(¢) Set k « K’ and cycle back to step 10.

11. Let p = p; (this may have changed during the previous step). If p = i or p = 0 then schedule

a new single-particle event for i:

(a) If Ng > 0 then sample the time of next decay t; = —In(r)/I'y, where I'y = > T},
and find reaction v for which Z:;l ry <rl'g < Z:zl 'Y using linear or binary search.

Otherwise let t4 = oo.

(b) If i is protected, sample an exit time £ and (optionally) an exit location # from J; using

tq as an upper bound. Otherwise set ¢ = oco.

(c) Choose the smaller of ty and ¢ and insert i in the event queue with the appropriate

event prediction.

12. Else if p > 0 and p # 1, schedule a new pair event for ij, j = p, 8 = s;. If j is mobile, i.e., if

pj = i, then set k = min(i, j), otherwise set k = 1.

(a) Sample a new decay time for particle ¢, t;-i and sample t;-l if j is mobile. Set ¢} to the
time of the first decay reaction, set v to the selected decay reaction and set kg = i or

kq = j to indicate the decaying particle.
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(b) Sample an exit time and location for the pair from J(t, 74, 7;) using tf as an upper
bound. If £ < t¢, change Ly t and change v}, appropriately. If needed, store the exit

location.
(¢) If v, > 0, insert kg into the event queue with the appropriate decay event prediction.

If kq # k, delete k from the event queue.

13. Else if p = —w < 0 then schedule a new event for the particle-wall pair similarly to the case

of an immobile partner in step 12.

14. Cycle back to step 1.

D. Steps in the Algorithm

There are several recurring operations in the FPKMC algorithm that are implemented as
separate subroutines in our Fortran 95 code for which we do not give detailed pseudocodes

but list them below with brief notes:

e Inserting a mew particle of a given species «. First the position of the particle is
sampled from a problem-dependent distribution, and the new particle is inserted into
the corresponding cells and/or neighbor lists. The particle is marked as unprotected

and an immediate insertion event (t. < ¢, p = 0, v = —1) is scheduled for it.

e Protecting a given unprotected particle i. This step is one of the most complex but also
critical to the performance of the algorithm and is discussed in more detail in Section

IVE.

o Un-protecting particle i. The particle ¢ and, potentially, its mobile partner j are
brought to the current time using one of the propagators c;, co or cyy, depending
on partner type p,. The LLCs are updated accordingly, P; and potentially P; are
destroyed, and immediate protection events scheduled for particle ¢ and potentially its

partner j.

o Un-protecting all partners of an immobile particle. This is necessary when the state of

an immobile particle changes (e.g., it decays). Immobile particles may have multiple
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partners, which are not stored explicitly, therefore, the partners of the immobile par-
ticle are first identified by performing a neighbor search for any protective regions P;
that might overlap with C; and checking if p; = 7. These partners are then unprotected
and immediately scheduled for re-protection. Note that the neighbor search here relies

on the LLCs and it is not necessarily safe to modify LLCs until the search completes.

o Scheduling and processing of pair events. The implementation depends on the particle
shapes and the types of reactions considered. Section III discusses pair propagators

for hard spheres.

e Processing a collision between two particles. This step is very application-specific
because of the different types of reactions that may occur. Typically the processing

involves deleting some particles and then possibly inserting others.

e Processing a decay reaction. This is also application-specific and consists of deleting

the decaying particle and then inserting the reaction products at desired positions.

o Resetting the time counter to t = 0. This step is useful for minimizing round-off
errors, especially before an event generating other events with very small timestamps
occurs. For example, insertions of cascades of defects creates dense lumps of particles
that evolve at time scales At comparable to numerical precision (107!6) relative to
the time scales of the majority of events, and thus ¢ + At &~ ¢ due to round-off. This
can be avoided by setting ¢ = 0 after subtracting the current ¢ from all time counters,

including the particle times ¢; and the event predictions ¢.

e Synchronizing all particles. 1t is occasionally useful to bring the whole system to the
current point in time for analysis, saving the configuration to a file, etc. This requires
un-protecting all particles. This is a good occasion to reset the current time ¢ < 0 to

avoid the round-off problems.

E. Particle Protection

For better performance, one can try to use the freedom afforded by the FPKMC algo-
rithm to select particle protection so as to delay as far as possible the very next event in the

queue. However, finding an optimal space partitioning is a difficult problem of non-linear
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optimization, especially since events other than the first-passage and no-passage propaga-
tions are taking place concurrently during the simulation. As described in Section II B,
Algorithm 1 takes the strategy of first trying to protect a given seed particle ¢ with the
largest possible protection without disturbing other, protected, particles. Then, some of
those other particles may be unprotected to make room and the process is repeated. In this
section we describe our procedure for protecting an unprotected particle. Note that when
this procedure is invoked, there can be an arbitrary number of other unprotected particles.

Our algorithm for protecting a given particle ¢ finds the nearest pair of unprotected
particles whose protection affects the protection of 7. It is recursive and rather complex in
its details; here we try to give a more intuitive and brief verbal explanation that can be
used to design alternative implementations. The algorithm starts from the particle ¢ and
finds the maximal possible size of its protective region by examining all of the neighboring
objects limiting the protection and finding the “nearest” (most-limiting) neighbor and also
the “next-nearest” (next-limiting) neighbor. These neighbors could be other protected and
unprotected particles, nearby hard walls, the cells used to build the LLCs/NNLs, etc. For
each of these cases one can calculate the maximal allowed size of the protection P; afforded
by the neighboring object. Specifically, if the neighboring object is itself an unprotected
particle it is assumed that the particles would be protected with touching protections whose
sizes are proportional to the square roots of the diffusion coefficients. If the limiting neighbor
is an unprotected particle, the algorithm recurses by repeating the process with that particle
replacing particle . The recursion continues until a neighbor is found whose own limiting
neighbor is the particle ¢, that is, a pair of mutual nearest neighbors 7 and j is found.
If 7 and j are sufficiently close and the next-nearest neighbors of ¢ and j allow for pair
protection (see Section IIIB), the particles ¢ and j are protected as a pair. Otherwise, they
are protected with touching single-particle protections. The recursion trail is then reversed
and all the particles visited during the forward recursion are protected with the maximal
allowed protection, accounting for the protection of their nearest neighbor during the forward
pass of the recursion and also reusing the previously-identified next-nearest neighbor. At
the end of the process, the particle ¢ and possibly a number of other particles are protected

and the neighbor limiting the size of P; has been identified.
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F. Optimizing Runtime Parameters for Efficiency

The most important parameter defining the performance of the FPKMC algorithm is the
size of the cells used for neighbor searches. The common wisdom for a homogeneous system
of identical particles is that, optimally, there should be about one particle per cell which
balances the cost of neighbor searches with the cost of updating the LLCs and moving
particles between the cells. However, this prescription does not necessarily apply to the
often heterogeneous (in both time and space) systems encountered, for example, in radiation
damage simulations. Some clusters of defects can grow to sizes more than then times larger
than monomer defects. Additionally, the system’s evolution can entail disparate timescales
differing by many orders of magnitude, from fast relaxation on the scale of picoseconds
during initial cascade insertion to slow annealing on the scale of years.

For simplicity, the following discussion focuses on LLCs, without NNLs. Furthermore,
we assume that among several particle species present in the system there is a single highly
mobile species «,,, such as interstitials in radiation damage modeling. In such cases, the bulk
of computational effort is spent on protecting and propagating particles of the fast species.
Generally, it is a good idea to assign as large protection as possible for the fast particle(s)
without, however, having to search for too many neighbors while building a protective region.

In our algorithm the protection size is limited by the smaller of the following:

1. The range for the neighbor search R, = min(nsL./2,nsL. — Ryaz), Where ng, =
[(Rpmaz + Rp)/L.| is the number of neighboring cells to be searched in each direc-
tion, L. is the linear dimension of the (cubic) cells, R, is the radius of particle species
O, and Rqp > R, is the current maximum size of protection in the entire system

(typically an immobile cluster).

2. The distance R, to nearby neighbors against which pair protection is not possible (due
to third particles blocking it or the neighbor being too far away to make pair protection

advantageous). This is a measure of the void size around the fastest particles.

The optimal performance is achieved when the two bounds are approximately equal,
R, ~ R,, i.e., the number of searched neighbors is just enough to find the largest possi-
ble protection, no more, no less. The void size R, can be measured for a given configuration

by gradually enlarging the cells until the average size of protective domains stops increasing,
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becoming close to R,. Numerical tests have confirmed that indeed the choice of L, such that
ns = 1 and Ry = R, is optimal.

In an actual simulation it is too expensive to estimate R, at every step but it is still
possible to use an adaptive method for selecting a cell size. Specifically, we monitor how
many protections for particles of species «,, have been limited by cell size (i.e., by Rs) and
how many have been limited by nearby particles (i.e., R,). We observe that it is best to
keep the former a small but nonzero fraction of the latter. If the runtime statistics show
that too many protections are blocked by the cell size, the cells are enlarged by reducing the
number of cells by one along each dimension of the simulation volume. Conversely, the cell
count is increased by one if the statistics show that too few protections are blocked by the
cells. The cell size strongly affects the performance of the code. If too small, the protections
will be small too leading to shorter scheduled propagation times and, thus, slower time
evolution. If the cells grow too large, there will be many neighbors to examine during each
protection, slowing down the calculations. The use of NNLs and, in particular, BSCs (see
Section B), becomes advantageous when very large clusters are present, so that ny = 1, i.e.,
L. > Ryaz + R, and the cells contain many smaller particles at sufficiently high monomer
densities. In the simulations of irradiated materials reported in section V B, we focus on
low particle densities and find that the use of NNLs is not necessary to achieve an optimal
performance.

Note that computational cost is not always dominated by a single ultra-fast species.
As an example, consider the case of modeling radiation damage inflicted in the form of
defect pairs consisting of a very mobile interstitial and a much less mobile vacancy. At
first, the interstitial propagation events will dominate the event loop and the interstitials
will quickly diffuse to absorbing sinks, such as hard-wall boundaries or nearby vacancies,
and disappear. This will leave behind the slower vacancies that will continue their random
motion until the next defect pair is inserted. If the insertion rate is low, the vacancies
can move significantly between successive insertions and after the fast interstitials all died
out. During such intervals the computational cost is dominated by vacancy propagations
and protections. In such conditions, the focus of particle protection will have to shift from
interstitials to vacancies and back to interstitials. In general, the choice of optimal cells and
protection sizes is complex and problem-dependent. Our implementation of the FPKMC

algorithm collects statistics that can be used to make runtime adjustments and improve the
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simulation performance.

G. Mixing Time-Driven with Event-Driven propagations

Under certain conditions the exact event-driven handling of particle diffusion may become
inefficient and/or cumbersome. For example, in a dense group of closely spaced particles,
protection of single particles and pairs is severely limited by the third particles in close
proximity. In such conditions, particle displacements can become too small to deserve asyn-
chronous event-driven handling. Time-stepping avoids the cost of event queue operations
and simplifies overlap detection. Therefore, it can be more efficient to use time-stepping for
dense groups of particles, similar to the time-driven hopping algorithm presented in Section
ITIB 2 that avoids the use of complex pair propagators for spheres. Use of small hops is
also advantageous when particles or surfaces (e.g., grain boundaries) have complex shapes
making analytical treatment of particle diffusion and collisions difficult or impossible. Yet
another example when simple time stepping is useful is tightly-bound collections of particles
(clusters) that may act as a single particle and have complex internal structure and dynamics
(relaxation). Adding a time-driven component to the asynchronous event-driven FPKMC
algorithm allows to retain the overall algorithm efficiency even in such difficult conditions.

The particles which cannot be protected by a sufficiently large protection are marked as
time-driven particles and are not inserted into the event queue. A special type of event,
a time step event, is introduced and always scheduled to occur at equal time intervals At.
When a time-step event is processed, all time-driven particles are moved simultaneously,
followed by overlap checks and reactions, if any are detected. Particles that are time-driven
are not protected against each other, instead, they can stay unprotected or are protected only
against the event-driven particles. Time-driven particles whose protections overlap form a
cluster and are propagated synchronously with the same time step At tailored to the fastest
particle in the cluster. For simplicity, all time-driven particles may be treated as one cluster
with a single global At. However, it is often the case that different species have widely
differing diffusion coefficients and therefore very different time-steps will be appropriate for
different species. To solve this problem, one can use the n-fold (BKL) [17] synchronous
event-driven algorithm inside each cluster and replace the time step events with BKL hop

events. At each hop event all particles of a single species move by a small but non-negligible
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distance while all other particles remain in place. This way, the more mobile particles move
more frequently (with correct relative frequencies) than the less mobile ones.

Note that the particles in such a time-driven cluster can take hops up to the time of
the next event in the queue, since it is known that the hops can not be preempted by
another event. In some situations this may improve efficiency by reducing the number of
heap operations and also increasing the memory access locality of the code by focusing
multiple events on the same (cached) small group of particles. We are currently developing
an implementation of a mixed event-driven (first-passage) with time-driven (n-fold KMC)

algorithm and will report additional details and results in a future publication.

V. VALIDATION AND RESULTS

In this section we apply the FPKMC algorithm to several diffusion-reaction problems
of increasing complexity. To validate the new algorithm and to demonstrate its efficiency,
we compare our simulations to results obtained using two different object KMC (OKMC)
codes developed earlier for simulations of continuum diffusion (BIGMAC code [4]) and for
simulations of random walks on a lattice (LAKIMOCA code [5]). Presented in Section V A,
the first two test problems are relatively simple validation studies for the case of two-species
annihilation, A+ B — 0, when the two species have different diffusion coefficients. FPKMC
simulations for this model are compared against results obtained with the BIGMAC code.
In Section VB 1, we apply FPKMC to a more challenging test problem of damage accumula-
tion in a metal thin film subjected to electron irradiation. We base our FPKMC simulations
on a well known model of a-iron studied earlier using three different methods, including
cluster dynamics, lattice OKMC, and the approximate continuum OKMC algorithm JERK
[13]. Here we compare our results for this model against simulations performed using the
LAKIMOCA lattice-based code. Finally, in Section VB3 we apply FPKMC to simulations
of radiation damage accumulation over previously inaccessible time scales, namely, to time
intervals and radiation doses characteristic of material lifetimes in a nuclear reactor. To
our knowledge, this is the first time an atomistic model has reached technologically rel-
evant radiation doses exceeding the previous simulation benchmarks by several orders of

magnitude.
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A. Two-Species Annihilation

As a validation study, let us first consider a system of spherical particles of two species A
or B in three dimensions. The particles of different species have different radii R4 and Rp
and different diffusion coefficients D4 and Dg, Dg < D,. Particles of like species do not
see each other but particles of unlike species annihilate upon hard-sphere contact, i.e. at
the annihilation distance ra,p .0 = R4 + Rp. As a base for comparison, we first simulated
the same model reaction using the BIGMAC code for several values of the hop distance A,
characterized hereafter by the dimensionless ratio 6 = A/(R4+ Rp). For the hopping-based
pair propagators in FPKMC we set § = 0.1, which was found to be sufficiently small to give
accurate results, yet large enough to make the pair propagators almost as efficient as the
analytical pair propagators for cube-shaped particles.

The simulations were performed in a cubic simulation domain of volume L? with periodic
boundary conditions. In the simulations reported here, half of the particles are of species
A and the other half are of species B. We consider two different initial conditions. In the
first case As and Bs are randomly and uniformly distributed in the simulation volume (the
overlapping particles of unlike species are removed). The reaction kinetics is described by the
reduction of the number of A (or B) particles with time, N4(t) = Npg(t). Figure 2 shows this
decay kinetics for FPKMC simulations as well as for BIGMAC runs with different hop sizes
J. The results indicate that hop sizes as large as § = 1/4 can be used in BIGMAC without a
noticeable error and that BIGMAC and FPKMC produce virtually indistinguishable results.

In the second test case, one half of the box (z > L/2) is randomly filled with A’s and
the other half (z < L/2) with B’s. The resulting N4(t) = Np(t) is shown in Fig. 2, with
similar qualitative behavior as in the first case of intermixed As and Bs. The concentration
profiles c4(z;t) and cp(x;t) are shown for several different points in time in Fig. 2 for both
FPKMC and BIGMAC with hop size 6 = 1/4 revealing an excellent agreement between
the two algorithms. The efficiency of BIGMAC simulations is proportional to the square
of the hop size, but even for the rather large hop sizes used in our BIGMAC simulations,
the latter take several hours to annihilate most of the initial 1.28 - 10° particles, whereas
the FPKMC code accomplishes the same in about 10 minutes on a typical single-processor

desktop machine essentially independently of the value of §.
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Figure 2: Comparison between BIGMAC and FPKMC for the two-species annihilation (A+B — 0)
test problem in three dimensions, starting from a uniformly-mixed (top left) and phase-separated
(top right and bottom) initial state. The two top panels and their insets show the number of
particles as a function on time, N4(t) = Np(t), using log-log and semi-log scales. The bottom panel
shows the particle concentration profiles c(z;t) (solid curves for BIGMAC, circles for FPKMC)
and cp(z;t) (dashed curves for BIGMAC, squares for FPKMC) for the phase-separated initial
Concentration profiles taken at several times during the simulation are plotted in

conditions.

different colors.

B. Radiation Damage

Modeling of radiation damage in reactor materials is not only another test problem for

our algorithm but also a technologically important application, notably in the design and
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maintenance of nuclear power plants. When a metal is irradiated, incoming high energy
particles (neutrons, ions, electrons) collide with atoms of the host crystal lattice inducing
displacement cascades and producing numerous defects, such as excess vacancies and inter-
stitials. Many of these defects quickly annihilate with each other, but some diffuse away
from the initial impact locations, and eventually finding other defects to react with and to
form defect clusters. The cluster density and sizes can grow over time resulting in sub-
stantial (most often detrimental) modifications of material microstructure and properties.
The atomistic KMC method is well suited for simulations of radiation damage accumula-
tion by tracing the numerous diffusive hops and reactions among crystal defects induced
by collision cascades. Unfortunately, the same detailed nature of KMC simulations makes
them computationally demanding and limits their time horizon to times far shorter than the
technologically relevant time scales (years).

The FPKMC algorithm seems to be perfect for simulations of materials under irradiation
and, in fact, it was this particular application that served as an initial inspiration for the
new method development. The advantage of FPKMC over other KMC methods is that the
new algorithm handles equally efficiently both the fast stages of cascade annealing when the
density of diffusing defects is high and the slow evolution of the small number of surviving
defects that continue their diffusive motion during the intervals between subsequent collision
cascades. This intermittent (fast-slow-fast-...) character of system’s evolution is the major
computational challenge in radiation damage simulations that the asynchronous FPKMC
algorithm addresses.

To enable radiation damage simulations, several particle species are introduced:
monomers, including highly-mobile interstitials (I) and less-mobile vacancies (V'), a number
of mobile cluster species, for example, dimers (I and V3) and trimers (I3 and V3), immobile
species representing clusters larger than any of the mobile species (I, and V.), and defect
(Frenkel) pairs (IV). Each particle is assigned a hard-sphere radius: for the clusters the
radius is related to the number of monomers ¢ > 1 contained in the clusters assuming that
the monomer volumes are additive, i.e. R, ~ Ry + (R; — Ro)c'/3.

Frenkel pairs (V') are inserted in the simulation volume at a specified birth rate and
instantly (i.e., with decay time 77y = 0) decay via IV — [ + V. The resulting interstitial
and vacancy monomers are placed randomly within the simulation box, either at some initial

distance from each other or completely independently of each other. Electron irradiation
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creates individual Frenkel pairs while irradiation by high-energy ions or neutrons creates
damage in the form of displacement cascades producing compact collections of monomers
and clusters, each cascade containing about 100 Frenkel pairs. The collision cascades are
randomly selected from a library of cascade configurations generated in Molecular Dynam-
ics simulations and the cascade locations and orientations are sampled from appropriate
distributions.

Upon collisions, particles of like species coalesce, for example, I+1 — Iy or V+V3 — V._y,
whereas collisions of particles of unlike species lead to complete or partial annihilation, for
example, Is +V.—4 — V5. In our current implementation, the distance at which two particles
collide must be equal to the sum of their radii since the FPKMC algorithm handles the
geometry of the protective regions assuming that an additive hard-sphere interactions among
the particles. For consistency, the same is assumed in simulations performed with the lattice-
based LAKIMOCA code that are used here for comparison. To imitate the stronger effect
of elastic strain on the interstitials (the bias), the interstitials are assigned radius 1.2 times
larger than that of the vacancies.

The defect clusters emit monomers at a given rate, represented as a decay reaction, for
example, V.5 — V.4 +V, or Iy — I + I. The emitted monomer is placed at a preset
emission distance J, from the cluster surface, in a random direction. This is at variance
with most other commonly adopted non-local emission rules, e.g. in the mean-field Cluster
Rate Theory method [22], in which the monomers are emitted from the clusters to “infinity”.
If and when a cluster shrinks by emission to a size at which it becomes mobile, the species
of the remaining cluster is changed accordingly, for example, V._y — V5 + V.

The rates of defect diffusion and monomer emission from the clusters are calculated
according to the standard expressions for the rates of thermally activated rate processes in
solids. Defect migration and binding energies needed to compute the rates are calculated
atomistically, e.g. from first-principles theory, or estimated from experimental data. In the

simple model we consider here, only the monomers are mobile, with a diffusion coefficient
_ —Eom /KT
D, = Doe Fm/kT

where F,, is the activation energy for defect migration (lattice hop). The rate of emission

of monomers from a cluster composed of ¢ monomers is
Fc — FODla—QC2/36—Eb(C)/kT7
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where a is the lattice spacing, Iy is a constant that depends on the lattice type and Ej(c) is
the monomer binding energy in a cluster of size ¢, estimated using

C2/3 _ (C _ 1)2/3
22/3 — 1 ’

Eb<0) = Ef + [Eb(2) — Ef]

where E; is the monomer formation energy [13].

1. Thin film of metal under electron irradiation

As a test problem, here we consider a model previously studied in Ref. [13] using two
other KMC algorithms and the mean-field cluster dynamics [22]. The model system is a
0.287um-thick film of a-iron subjected to electron radiation. Periodic boundary conditions
are used in the x and y directions, while absorbing walls are used in the z direction. Further
details of the model are given in Ref. [13] and will not be repeated here. We made a few
minor changes to the model parameters presented in Ref. [13], notably switching from the
non-local to local emission of monomers from the clusters. Here we compare our FPKMC
simulations with new results obtained using the LAKIMOCA code [5].

In pure iron, the interstitials are much more mobile than the vacancies which results
in their rapid absorption at the free surfaces or annihilation with the vacancies. Due to
this very high monomer mobility, very few if any interstitial clusters form. However, the
ones that do nucleate, can grow rather large because the binding energy of interstitials in
the clusters is rather high. A large fraction of computational effort is therefore expended
on propagating the interstitials. However, depending on the irradiation rate (fluence), the
vacancies may have time to move significantly between successive insertions of Frenkel pairs.
Here we present a high-fluence case studied computationally and experimentally in Ref. [13].
Further computational tests of the FPKMC code in a wide range of irradiation conditions
will be discussed in Section V B 2.

A comparison of the simulated time evolution for the number of defects, as well as their
spatial distribution at the end of 120 seconds of irradiation, is shown in Fig. 3. Generally, we
observe a good agreement between FPKMC and LAKIMOCA results although the number of
accumulated defects is slightly smaller in the FPKMC simulations than in the LAKIMOCA
runs. This is perhaps a consequence of different treatment of defect diffusion in the two

methods: in FPKMC the defects move by continuous diffusion whereas in LAKIMOCA
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Figure 3: Comparison between FPKMC (symbols) and LAKIMOCA [5] (lines) simulations of
a 0.287um-thick film of a-iron subjected to 120 seconds of electron radiation at a temperature
T = 200°C. The results shown on the plots are obtained by averaging over 50 runs. (Top) The
time evolution of the total number of mono-vacancies, small vacancy clusters and interstitials (in
clusters). The statistical error bars are comparable to the symbol sizes. The inset shows a different
scale to focus on the smaller clusters. (Bottom) The density profile along the thickness of the
film for all vacancies (in monomers and clusters), mono-vacancies, vacancies in clusters and all
interstitials (in monomers and clusters) at the end of 120 seconds of simulated irradiation. The
error bars are comparable to the symbol sizes, except for the interstitials for which the statistics is

poor.
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the defects walk on a lattice. However, at sufficiently low densities, lattice discreteness is
not as important and the effective reaction and emission rates are well matched between
the discrete and continuum models. Further comparisons between FPKMC and OKMC
simulations will be given in a future publication, here we simply observe the ability of the
FPKMC algorithm to correctly simulate radiation damage by comparing it to a standard
OKMC. Each FPKMC simulation sample used for obtaining the data plotted in Fig. 3 has
taken less than five minutes to complete on a modest workstation (a 3.4 GHz Xeon 64-bit

processor). Efficiency of FPKMC simulations is further discussed in the next section.

2. Performance

For a large number of particles N, the computational complexity of the FPKMC algorithm
per event should be order O(log N) which is the cost of event queue updates. For a typical
value of N = 10°, the logarithm is masked by other dominant costs that are all linear (e.g.,
neighbor searches and sampling from the propagators). Computational tests in the range of
N from 10* to 10° have indeed verified that the cost of FPKMC simulations scales linearly
with the number of particles.

The FPKMC code performance also depends on a number of other parameters, e.g. parti-
cle density, the disparity of diffusion and emission rates, differences in particles sizes between
the different species, etc. These and other factors and their interactions affect the overall
performance in complex ways that are yet to be fully examined. We defer to future applica-
tions to study the subtle effects of various model parameters on the method’s performance.
Here we present a few figures on the performance of our FPKMC code for the same simple
model of metal thin film described in Section V B, as a function of irradiation flux measured
in the units of displacements per atom (dpa) per second (dpa/s). The kinetics of defect mi-
crostructure evolution and, in particular, the amount and character of accumulated damage
depend sensitively on flux and temperature. For example, the defect density (accumulated
damage) increases with the increasing flux and /or the decreasing temperature. It is therefore
not a priort obvious that FPKMC will be equally effective in dealing with a wide range of
fluxes and temperatures. A reasonable measure of the algorithm performance is the damage
dose simulated over a unit of CPU time expressed for example, in the unit of dose simulated

in one day of computing (dpa/cpuday).
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Dose rate (dpa/s)|Total dose (dpa)|Simulated time|Speed (s/cpus)|Efficiency (dpa/cpuday)
1.5-1074 18 33 hrs 0.14 1.8
1.5-107° 2.9 54 hrs 1.3 1.7
1.5-1076 4.1 31 days 13 1.6
1.5-1077 1.6 125 days 150 2.0
1.5-1078 10 21 years 2.1-10° 2.7
1.5-107° 8.4 175 years 2.3-10% 3.0

Table I: Performance of the FPKMC algorithm in simulations of a 0.287um-thick film of a-iron
at T = 473°K subjected to different fluxes (dose rates) of electron radiation. Conditions typical
of nuclear reactors correspond to dose rates on the order of 10~8dpa/s and lifetimes from years to
several decades, while in the accelerated irradiation facilities the dose rates can be on the order of
10~*dpa/s and the tests can last for several hours or days. A displacement dose of K —dpa means
that, on average, each atom has been displaced from its equilibrium lattice position K times due
to incoming radiation. Note that simulation efficiency changes over the course of one simulation

so that the overall efficiencies reported in the last column are representative averages.

The figures presented in Table I demonstrate that, with the use of optimization techniques
discussed in Section IV F, the algorithm performance remains nearly constant across several
decades of radiation flux. This highly desirable property derives from the ability of our
asynchronous event-driven algorithm to deal with very large differences in event rates and
local densities. We observe that, in the course of a single simulation, the FPKMC algorithm
self-adjusts to the current conditions of spatial and temporal heterogeneity without much

intervention or parameter tuning.

3. Radiation Damage on Reactor Timescales

Future development of nuclear energy demands materials that can withstand harsh condi-
tions of particle irradiation, high temperature, mechanical stress and active chemical agents
over tens of years. The only fully reliable method to evaluate the potential of a candidate
material is to subject it to conditions relevant for the future reactor designs. However, such

an approach is not practical given that the relevant environment can be achieved only after
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the reactor is already built. Furthermore, even if an appropriate material testing facility
were to exist, testing the candidate materials over the intervals of 50 or 100 years would not
be practical.

The idea of accelerated material testing is to subject candidate materials to conditions
even harsher than in the reactor but over shorter periods of times, e.g. a few hours or days,
in the hope that the observed (accelerated) material degradation can be used as a predictor
of the performance of the same material during its lifetime in a real reactor. The premise of
accelerated materials testing is that materials theory and numerical simulations can provide
a reliable connection between the accelerated tests and the material lifetime performance
predictions. To serve this purpose, material simulations should meet two conditions. First,
accurate material models need to be developed and validated against experimental mea-
surements. Second, the simulation algorithms need to be efficient to enable computational
predictions of materials performance under reactor conditions. The performance data pre-
sented in Table I suggests that FPKMC can meet this second challenge. Here we continue
to focus on the thin-film model studied in Section V B and use our FPKMC code to simulate
damage accumulation at two different dose rates, a high dose rate of 1.5 - 10~*dpa/s typical
of of accelerated experiments in material testing facilities such as JANNUS [23], and a low
dose rate of 1.5 - 10~8dpa/s typical of the existing nuclear reactors. We ran both simula-
tions to a total dose of 10 dpa, which required several CPU days per sample on a common
workstation.

Direct comparison of two simulations performed at the same temperature 7' = 200°C'
revealed very different kinetics and end-of-dose damage, which is not surprising given that
much more time is available for damage annealing (healing) at the slow (reactor) time scales.
In order to enable scaling from high dose rates to low dose rates, it was proposed [24] to
raise the temperature in the high dose rate irradiation test so as to preserve the ratio of the
damage insertion rate to the rate of defect diffusion. Such scaling would be exact if there
were only one evolution mechanism whose rate can be adjusted by changing the temperature.
However, even in the simple model of a-iron considered here, there is a whole spectrum of
mechanisms and associated rates with different temperature activation parameters. One
can only hope that an approximate scaling can be achieved by adjusting the rate of just one
dominant mechanism that controls the overall rate of damage accumulation. In an extensive

series of numerical experiments we observed that, within the simple model considered here,
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Figure 4: State of damage in a thin a—Fe film irradiated by electrons to the total dose of 10 dpa:
(Top right) At the high dose rate of 1.5-10~*dpa/s and T = 262°C and (Bottom right) At the low
dose rate of 1.5 - 10~%dpa/s and T' = 130°C.

(Left) Volume fraction of vacancies (swelling) as a function of damage dose. The vacancy fraction
was obtained by counting together all vacancies in the simulation volume, both in the vacancy
monomers or vacancy clusters, and dividing the sum by the total number of atomic sites. The
black solid curve is the swelling kinetics under the high dose rate/high temperature and the dashed
red curve is the same kinetics under the low dose rate/low temperature irradiation conditions.
Both curves were obtained by averaging over 10 independent simulation runs for each irradiation
condition, and the vertical bars show the estimated statistical errors. The inset in the bottom
figure shows a histogram of the distribution of vacancy cluster sizes at a dose of 5 dpa for both
the high dose rate/high temperature irradiation (shaded gray bars) and for the low dose rate/low

temperature irradiation (red bars).

the overall rate and character of damage evolution appears to be controlled by the ratio of
vacancy diffusion to the irradiation dose rate. This is likely because, at all temperatures
of interest here, the interstitials are much more mobile than the vacancies and disappear
nearly instantly following the insertion of a Frenkel pair, leaving the less mobile vacancies
to diffuse and cluster in the absence of interstitials.

Figure 4 compares the state of damage reached at T' = 262°C' and high dose rate, with
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that reached at T' = 130°C' at low dose rate. The kinetics of damage accumulation and
the resulting populations of voids are similar to each other but the scaling is only approx-
imate and some differences in the resulting microstructures are noticeable. Most visibly, a
few large interstitial clusters form at the high dose rate where the time interval between
successive Frenkel-pair insertions is comparable to the lifetime of inserted interstitials. On
the contrary, at the lower dose rate the newly inserted interstitials disappear (at the free
surfaces or through annihilation with the vacancies) well before the next Frenkel pair is
inserted. Additionally, as seen from the histograms shown in the insert, the average size
of the vacancy clusters is larger at the higher dose rate. The approximate agreement in
the overall swelling supports the idea that it may be possible to compensate the enhanced
rate of damage accumulation in accelerated tests by raising the test temperature so that the
resulting damage is approximately the same as in the reactor but at a lower temperature.
That the scaling is only approximate is less than surprising considering that multiple rate
processes, each with its own temperature dependence, act together to produce the resulting

damage kinetics.

VI. CONCLUSIONS

We have described an asynchronous event-driven algorithm for diffusion kinetic Monte
Carlo simulations of diffusion-reaction particle systems, based on the First Passage Kinetic
Monte Carlo method first proposed in Ref. [10] and described in more detail in Ref. [11].
The First Passage Kinetic Monte Carlo (FPKMC) algorithm avoids long sequences of small
diffusive hops commonly used to bring particles to collisions, by enabling large super-hops
sampled from exact (semi)analytical solutions for diffusion Green’s functions (propagators)
in spatially isolated protective regions each containing just one or two particles. The FPKMC
algorithm is exact to the extent that the system’s stochastic trajectory is sampled from the
exact diffusion-reaction Master Equation for the N-particle system, to within the accuracy
of the single- and two-body Green’s functions. At the same time, for a range of simulations
reported here and in Ref. [11], the new algorithm is several orders of magnitude more
efficient than the existing (approximate) hopping-based algorithms.

In this work we extended the FPKMC method to considerably more complex simula-

tions in which particle diffusion is just one among many competing processes. We described
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generalizations and algorithmic components necessary to handle systems with multiple par-
ticle species and multiple reactions, including annihilation, clustering, emission, and particle
birth and death. We focused on the case of hard spheres that are more appropriate than
cubes for a multitude of intended applications. Handling hard sphere collisions as a first-
passage process turned out to be more complicated than the case of cubes which necessi-
tated a hopping-based approximation for the pair propagators. The resulting solution to the
sphere collision problem was found practical and efficient but raised a more general issue of
combining the asynchronous event-driven framework employed in FPKMC with the more
traditional synchronous time-driven simulations. Our successful implementation of time-
driven pair propagators in FPKMC points to hybrid time-driven /event-driven algorithms as
a promising direction for future research.

The new implementation of the FPKMC algorithm has proven suitable for simulations
of damage accumulation in materials subjected to irradiation by high-energy particles. The
accuracy of the FPKMC algorithm and our implementation was validated on several test
problems by comparison to traditional (object) KMC algorithms developed for diffusion-
reaction simulations in the continuum (BIGMAC) and on the lattice (LAKIMOCA). The
new algorithm is shown to perform well in a wide range of radiation conditions enabling, for
the first time, simulations of irradiated materials to large technologically relevant radiation
doses (e.g., 10dpa) on a serial workstation. Closing the gap between the short time horizon
of traditional KMC simulations and long material life in the reactor required to gain several
orders of magnitude in computational efficiency. In FPKMC, this gain is achieved entirely
through an exact factorization of the difficult N-body reaction-diffusion problem into one-
and two-body problems.

With its efficiency, the new FPKMC method can make a significant impact on the impor-
tant area of accelerated material testing for next-generation nuclear reactor designs. There
is a strong synergy between atomistic KMC simulations and experiments carried out in
accelerated testing facilities. The accuracy of an atomistic KMC model can be improved
by expanding its mechanism catalog and obtaining more accurate values of model param-
eters. For this purpose, computationally efficient KMC simulations can be used to explore
and identify experimental conditions in which accelerated material tests would be most in-
formative for model validation, e.g. most sensitive to a particular mechanism or model

parameter. Furthermore, the same simulations can be used to fine-tune the KMC models
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for conditions typical of real reactors. The approximate scaling predicted in our FPKMC
simulations provides exactly the right kind of connection between simulations and experi-
ments. Once the accuracy of the material models is established, FPKMC simulations can be
used to extrapolate from accelerated material tests into relevant but inaccessible conditions
of nuclear reactors without relying on any approximate scaling. To quantify the reliabil-
ity of such computational extrapolations, FPKMC simulations can be used to assess the
uncertainties in computational predictions of accumulated damage given the uncertainties
in model parameters, similarly to what is routinely done in climate modeling. Ultimately,
efficient KMC simulations can and should become an integral component of reliable material
testing programs.

In addition to allowing reactor material simulations on technologically-relevant time-
scales, the new method may prove enabling in other areas of science, in engineering and
in finance. One particularly attractive application for the new method is in cell biology,
where multiple reaction-diffusion mechanisms conspire to produce a wide variety of specific
biological responses. Parallelization of the FPKMC algorithm could further extend length
and time scales accessible to diffusion-reaction simulations, even though the asynchronous

event-driven algorithms are notoriously difficult to parallelize [14].
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Appendix A: SAMPLING THE SINGLE-SPHERE PROPAGATORS

The solution to the diffusion problem inside a sphere with absorbing boundaries ¢(r, t) can
only be represented in closed-form in the Laplace domain and thus one must resort to rapidly-
converging series solutions, as given in Eqs. (4) and (5) for short and long times, respectively.
As explained in more detail in Ref. [11], efficient rejection sampling of such distributions
can be performed by truncating the series if the truncated series can be augmented with an
upper and lower bound on the true distribution, tighter and tighter as more terms are added
to the series. For example, estimates of the absolute value of the remainder in the truncated
series can be used to provide bounds.

Randomly sampled points can be rejected if they are above the upper bound or accepted
if they are below the lower bound, or, if neither, the next term added to the series to compute
tighter bounds. With rapidly converging series and tight bound estimates, typically only a
few of the leading terms in the series need to be computed while still providing exact sampling
of the target distribution. In Ref. [11], series for the various bounds were given for the case
of a point particle diffusing with diffusion coefficient D = 1 inside a one dimensional interval
of length one (starting from the center). Here we give the corresponding three dimensional
results, i.e., the case of a point diffusing inside a unit three dimensional sphere (starting

from the center).

a. First-passage propagator

Integration of ¢(r,t) over the unit sphere yields the survival probability in two infinite

series forms, a short time series

where

Sp=(2rt*)2 Y [Qm + (1+—2m)21 exp [—M} :

m=—n—1
and a long time series
oo

S(t) = =272 (1) m2e ™, (A2)

m=1
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We select a switchover time 7 between the short- and long-time series such that 1/ w2 <
7 < 1/4 and use the piecewise smooth function C(t) as an over-estimator for the survival

probability at all times,

S(r)
oy = 50 Ss(t) for t < 7
S)(t) for t > T,

where S,(t) = (1 — 2)e~w /7273 and S)(t) = 22" are the leading terms of the short-
and long-time series for the survival probability. A sample exit time ¢ is obtained by solving
C(t) = &, where £ is random number uniformly distributed in [0, 1). Solving this equation for
t < 7 can be done efficiently by Newton iteration. To obtain the sequence of converging lower
and upper bounds necessary for rejection sampling, note that the terms of the long-time series
alternate in sign and decrease in magnitude with increasing m and can themselves serve as the
needed bounds. For the short-time series we can bound the remainder R, (t) = S(t) — S,(t)
with

0 < Ry(t) < (477753)_% (+2m)*

] [-0E2).

In our implementation we use 7 = 0.243, which gives a rejection ratio of about 0.6%. The
maximum relative error in the survival probability is C'(¢)/S(t) — 1 = 7- 1073, so that C(¢)

is an acceptable approximation for S(t) without rejection sampling.

b. No-passage propagator

To enable efficient rejection sampling, we need a tight over-estimator C(r;t) for the no-
passage probability distribution ¢;(r; ) at arbitrary time ¢. Here we construct such a function
by stitching together two different expressions appropriate for times shorter and longer than
a switchover time 7 (1/72 < 7 < 1/4). For times ¢ < 7 the leading term (m = 0) in the

short-time series solution (1) is a reasonable over-estimator:

2

Cs(r;t) = (47Tt)_%€_27.

On the other hand, for times ¢ > 7 a good over-estimator is given by

S sinmr e ] 1 ey
C’l(r,t) = o |:€ + ﬁ (1 + 47T2t) e .
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Sampling from C(r;t) entails evaluation of one inverse error function while sampling

from Cj(r;t) requires solving for r the following equation

1
—sinwr —rcosmr =&,
s

where ¢ is a random number uniformly distributed on [0, 1). The solution can be found by
Newton iteration using r = {’/W as a starting guess if £ < 1/2 andr =1 — % 2(1-¢)
if £ > 1/2.

The same two series solutions can be used to obtain a sequence of increasingly tight
bounds on the no-passage distribution. For short times, we approximate c(r,t) with the

partial sum

em(r,t) = i (1+ %)exp [_(7"+4—i’”)2] ,

k=—m

and use the following lower and upper bounds for the remainder term, R; < ¢(r,t)—cp(r,t) <

R’UJ

9 9)2
R, — <1_2m+1+t>exp[_(r 2m 2)1+§exp{_(r+2m+2)}
r r

4t 4t
1+¢ 2 2)? 2t —2m — 2
R, = (122N o | E2mE27 28 (r=2m =2
T 4t T 4t

For long times, tight lower and upper bounds on the no-passage probability distribution are

obtained from the following bound for the magnitude of the remainder

=k
4r? k;ﬂ o sin(krr)e ™™t < [27rr(m +1)+ %} e (mH1)P it

Appendix B: NEAR-NEIGHBOR LIST (NNL) METHOD

The near-neighbor list (NNL) method [21] is a neighbor search technique that is superior
to the linked list cell method in conditions where particles do not change neighbors over many
events. The essential idea is to enclose every protective region P; inside a bounding neighbor-
hood N, P; C N;. This bounding neighborhood is fixed while the particle and its protection
change as the particle moves around, until the particle comes close to the boundary of N

at which point a new N is constructed. In principle, one can treat the boundary of N as a
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first-passage surface, however we simply rebuild the bounding neighborhood whenever the
particle comes close to its boundary.

The linked list NNL(4) lists all other neighborhoods that intersect neighborhood N; (hard
walls or other boundaries may also be near neighbors). This is used to identify potential
interactions of particle ¢ and can be reused until the particle core C; approaches the bound-
ary of N;. This results in significant savings of computational effort if particle motion is
localized and the particles experience numerous displacements before leaving their bounding
neighborhood. Note that the LLC method is still used to build A; and NNL(7) which keeps
the maximal cost of pairwise searches at O(NN) instead of O(N?). In our implementation N
is build as a sphere concentric with the particle and with the diameter larger than 2 R; but
smaller than the cell size, where ¢ > 1 is a parameter.

Even the NNL method can become inefficient when some particles are much larger than
others, e.g. large clusters formed by coalescence of defects in radiation damage modeling.
In such cases, if the cells are still maintained larger than the size of the largest particle, the
same cells may contain many small particles making the search for near neighbors expensive.
On the other hand, if the cells are kept reasonably small, neighbor searches need to examine
many small cells in order to account for all near neighbors of the large particles. The idea
of the bounding sphere complexes (BSCs) [21] method is to use small cells but to cover N;
with a collection of Nggc spheres, each smaller than the cell size. The so-constructed sphere
complex remains immobile until N; changes, which would occur infrequently if the large
particles move slowly or are immobile. The small spheres forming BSCs are inserted in the
LLCs and near neighbors of each large particle are found by searching for the near neighbors

of each constituent small sphere in the corresponding BCS.
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