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(Active) Colloids

Non-Spherical Colloids near Boundaries
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Figure: (Left) Cross-linked spheres; Kraft et al. (PRE 2013). (Right)
Lithographed boomerangs; Chakrabarty et al. (PRL 2013).
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(Active) Colloids

Light-Activated Diffusion/Osmophoresis

Light activated 202 decomposition
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Figure: From Jeremie Palacci (now UCSD), was at Paul Chaikin lab (NYU
Physics) (Science 2013).
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(Active) Colloids

Light-Activated Colloidal Surfers

Movie from Jeremie Palacci
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Micro-rollers

Microrollers: Fingering Instability

Experiments by Michelle Driscoll (was in the Chaikin lab at NYU Physics,
now at Northwestern Physics), simulations by Blaise Delmotte (was at
Courant, now at LadHyX Paris) [1, 2].
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Micro-rollers

Role of Brownian Motion
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Simulations show that thermal fluctuation are quantitatively important
because they set the gravitational height [2].
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Micro-rollers
Critters
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Simulations by Blaise Delmotte revealed that stable motile clusters
termed critters can form purely by hydrodynamic interactions [1].

Still trying to create critters that don't shed particles in the lab...
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Continuum Simulations
Continuum models of rollers: 2D

e Consider an infinite sheet of rotlets with planar density p(x,y, t),
which is fixed at a height z = h given by the gravitational height
h=a+ kgT/mg.
e A point torque T¥ at (x’,y’; h) induces a fluid velocity in the (x,y)
plane given by the kernel (Green’s function), with S = 3T /(4mn),

o . o (x—x")?
KX (X X 7y yv h) - S [(x X/)2 ( )+4h2]5/2’
S N A (x=x")y—y")
Ky (X XuY =Y h) - Sh[(x—x’)2+(y—y’)2+4h2]5/2'
@ The conservation law for the rotlet density in the sheet is given by the
nonlocal conservation law PDE

Op(x,y,t) _ _O(p(Kcxp)) 9(p(Ky*p)) (1)
ot Ox Oy '
where * denotes convolution, (K * p) (r) = [ K (r—+') p(r') dr'.
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Continuum Simulations

Deterministic 2D non-local conservation law
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Quasi-2D simulations show that continuum deterministic models can
reproduce the fingering instability.
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Continuum Simulations
Continuum models of rollers: 1D
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Continuum Simulations

Deterministic 1D non-local conservation law
t=1.26 dx=0.125h, W=16h, h=2
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Quasi-1D simulations show the formation of a front of finite width
~ (5 —10)h (made by Zhe Chen using aperiodic FFT-based convolutions

+ BDS advection by Wenjun Zhao).
3/2020 14 /33
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Continuum Simulations
Continuum models of fingering instability
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Linear stability analysis of flngermg Set d = 10h based on 1D model.
The stability analysis shows that the line in the back is linearly unstable
with dominant wavelength ~ 10h.
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Brownian HydroDynamics Particle Simulations

Minimally-Resolved Simulations

@ Represent each spherical particle by a single blob, and solve the Ito
equations of Brownian HydroDynamics for the (correlated)
positions of the N spherical microrollers Q (t) = {q; (t),...,qy ()},

dQ = MFdt + M Tdt + (2kg T M)2 dB+ kg T (9q - M) dt, (3)
where B(t) is a vector of Brownian motions, and F (Q) are applied
forces, and T the external magnetic torques.

@ How to compute deterministic velocities MF efficiently?
1
@ How to generate Brownian increments (2kg T M)z AB efficiently?

@ How to generate stochastic drift kg T (0q - M) efficiently by only
solving mobility problems?
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Brownian HydroDynamics Particle Simulations
Blobs in Stokes Flow

@ The symmetric positive semidefinite (SPD) blob-blob mobility
matrix M encodes the hydrodynamics:
3 x 3 block Mj; maps a force on blob j to a velocity of blob i.

@ The mobility is approximated to have a far-field pairwise
approximation

where the hydrodynamic kernel R for spheres of radius a is
2 2 .
R (a;,9;) ~ 1" (I n 2V5> <| + ZV&) Gt (a)
where G is the Green’s function for steady Stokes flow, given the
appropriate boundary conditions.
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Brownian HydroDynamics Particle Simulations
Confined Geometries

@ The Green's function is only known explicitly in some very special
circumstances, e.g., for a single no-slip boundary G is the
Oseen-Blake tensor.

@ For blobs next to a wall the Rotne-Prager-Blake tensor has been
computed by Swan (MIT) and Brady (Caltech) and we will use it here.
It is still missing corrections when the blobs overlap the wall so we
have made a heuristic fix [2].

o We compute M using GPU-accelerated O(N3Z) sum.
Often faster than Fast Multipole Methods for up to 10® blobs.

@ For slit channels we can use a grid-based fluid Stokes solver to
compute the (action of the) Green’s functions on the fly [3]
In the triply periodic case [4] or explicit Stokes solver [3] approach
adding thermal fluctuations (Brownian motion) can be done using
fluctuating hydrodynamics.
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Brownian HydroDynamics Particle Simulations

Generating Brownian increments

@ We want to sample random Brownian “velocities” with covariance
M.
2kg T 1 T 2kg T
U, = Mz2W = (UU;) = M
b At (UsUs ) ( At
@ The product M>W can be computed iteratively by repeated
multiplication of a vector by M using (preconditioned) Krylov
subspace Lanczos methods.

@ Close to a bottom wall pairwise hydrodynamic interactions decay
rapidly like 1/r3, so the Krylov method converges in a small
constant number of iterations, without any preconditioning.

@ One can use fluctuating hydrodynamics to generate M3W with
only a few FFTs in near linear time for periodic suspensions (also
works with multigrid) [4, 3].
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Brownian HydroDynamics Particle Simulations
Stochastic drift term

dQ(t)
dt
o Key idea to get (Jq - M); = OM,;;/0Q; is to use random finite

1

differences (RFD) [2]: If (APAQT = 1),
jim 1({/\4 (Q + gAQ> M (Q - gAQ> } AP) = (5)

= MF+ (kg TM)2 W (t) + (ks T) 9 - M

6—0 0
[gM (Q)} : (APAQT) = kg T 9 - M (Q). (6)
@ This leads to a stochastic Adams-Bashforth temporal integrator [2],

Q™! - Q" 3. ., 1 p1ent 2kg T
N Fn— = n—1gn
At M M TV ar

T (a0 ) - (o 2w)

(M™)2 W"
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Rigid Multiblob Method

Microrollers: Uniform Suspension

Constant

of motion

Simulations by Brennan Sprinkle+Blaise Delmotte [3] of a uniform
suspension of microrollers at packing fraction ¢ = 0.4 (GIF).
Compare to experiments (AVI) by Michelle Driscoll.
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Rigid Multiblob Method

Rigid MultiBlob Models

® /<

@ The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a.

@ Standard is stiff springs but we want rigid multiblobs.

e Equivalent to a (smartly!) regularized first-kind boundary
integral formulation.

@ We can efficiently simulate the driven and Brownian motion of
the rigid multiblobs.
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Rigid Multiblob Method
Rigid MultiBlobs

e We add rigidity forces as Lagrange multipliers A = {A1,..., A,} to
constrain a group of blobs forming body p to move rigidly,

ZM,-J-)\J- =up +wp X (ri—q,) (7)
J
> i =f,
i€B,
Z(I‘,‘ — qp) X )\,‘ :Tp.

i€Bp,

where u is the velocity of the tracking point q, w is the angular
velocity of the body around q, f is the total force applied on the body,
T is the total torque applied to the body about point q, and r; is the
position of blob /.

@ This can be a very large linear system for suspensions of many
bodies discretized with many blobs:
Use iterative solvers with a good preconditioner.
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Rigid Multiblob Method
Suspensions of Rigid Bodies

@ In matrix notation we have a saddle-point linear system of equations
for the rigidity forces A and unknown motion U,

M K A u
RSN ©
Same as first-kind boundary integral methods!

@ The surface velocity t can be used to model active slip or to
generate Brownian velocities [3].

@ Solution gives the mobility matrix
N= (KM K)™ (9)
U=NF- (NK'M )i
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Rigid Multiblob Method
Lubrication for spherical colloids

@ Use Stokesian Dynamics approach introduced by Brady, but with
more accurate rigid multiblob “far-field” mobility:

(7 am) (0) = (F) (10)

@ A g is a lubrication correction to the resistance matrix formed
by adding pairwise contributions for each pair of nearby surfaces
(either particle-particle or particle-wall).

@ The pairwise terms in App can be computed analytically using
asymptotic expansion (for very close particles) or tabulated by using a
more accurate reference method (e.g., boundary integral).

@ Lubrication-corrected mobility matrix

N=[NT+8ug] =N -1 +8us-N".
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Rigid Multiblob Method
Linear Algebra

@ Without lubrication corrections, we have had great success with the
indefinite block-diagonal preconditioner

P o ()

where we neglect all hydrodynamic interactions between blobs on
distinct bodies in the preconditioner.

@ For the mobility problem, we find a small constant number of
GMRES iterations independent of the number of rigid multiblobs.

@ For minimally-resolved single blob models we get the saddle-point

system
Nmin -1 A _ —u
("7 ag) ()= (),
where M nin is the generalized RPY mobility including rotation.

Brennan Sprinkle is working on preconditioners.
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Rigid Multiblob Method

: : : 1
Generating Brownian Displacements ~ N 2W

@ Assume that we knew how to efficiently generate Brownian blob
. 1 e :
velocities M2W (PSE for periodic, Lancsoz for sedimented
suspensions, fluctuating Stokes solver for slit channels).

For rigid multiblobs use the block-diagonal preconditioner in the
Lancsoz iteration.

@ Key idea: Solve the mobility problem with random slip ,
M -K][A]_ | o=k MW
[—ICT 0][U}__[ F - (12)
U=NF+ (kg T)2 NKT M M> W = NF + (2kg T)2 N2 W.
which defines a N2 = NIKTM M2 -
N (WD) =N (KTMTI) N = NN = N
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Rigid Multiblob Method
Random Traction Euler-Maruyuama

@ One can use the RFD idea to make more efficient temporal integrators
for Brownian rigid multiblobs [3], such as the following Euler scheme:

@ Solve a mobility problem with a random force+torque:
M K" ARFD 0
[l I S B 7 P CS

@ Compute random finite differences:
ke T
FRFD _ XB (KT (Qn +6W) _ (’Cn)T) \RFD

5
GRFD — kliTT (M (Qn 1 5W) _ Mn) ARFD
- % (Kl (Q” + 6W) - IC") uRm.
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Rigid Multiblob Method
Random Traction EM contd.

©@ Compute correlated random slip:

o (2kgT\Y2 1

U’ = (At) (M")2 W
@ Solve the saddle-point system:

M K" "+ iRl
ERIiHEEES
© Move the particles (rotate for orientation)
Q" = Q" + AtU".

(14)
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Rigid Multiblob Method
Conclusions

@ It is possible to construct efficient algorithms for Brownian
HydroDynamics of nonspherical colloids in the presence of
boundaries.

e Collective dynamics of active colloidal suspensions above a wall is
strongly affected by the bottom wall!

@ Specialized temporal integrators employing random finite
differences are required to obtain the correct stochastic drift terms.

e Fast methods for convolving with the (regularized) Green's function
for Stokes flow in partially-confined geometries with mixed periodicity
are still under active development in my group.

@ Higher accuracy can be reached by using our recently-developed
fluctuating boundary integral method (FBIM) [5], which uses the
same ideas | described here for rigid multiblobs but replaces the RPY
tensor with a high-order singular quadrature.
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Rigid Multiblob Method
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