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Compressible Fluctuating Hydrodynamics

Dip=—pV -v
p(Dwv)=—VP+ V. (nVv+X)
pcy (D:T)=—=P(V-v)+ V- (kVT+Z)+ (nVv+X): Vv

where the variables are the density p, velocity v, and temperature T
fields,

D:O0=00+v-V(O)
Vv=(Vv+ Vv )—2(V-v)I/3

and capital Greek letters denote stochastic fluxes:

X =\/2nkg T W.

<W,-J-(r, t)W,f,(r’, t/)> = (5ik5jl + (5,‘/(5][( - 25ij5k1/3) 5(1‘ — t')é(r — I‘I).
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Incompressible Velocity Equation

An incompressible limit c¢2 = 9P /9p — oo (isothermal speed of sound)
presumably leads to

Ov+v-Vv=—-Vr+1vVv4+ V- (\/2up*1 kBTW)
s.t.V.-v=0,
where where the kinematic viscosity v = 7/p, and 7 is determined from
incompressibility.

We assume that W can be modeled as spatio-temporal white noise (a
delta-correlated Gaussian random field)

Wi (r, YWV (' t)) = (0irdjn + dindjx) 6(t — t')o(r —r').

Can one justify this limit more rigorously, at least formally?
In principle one can just write this sort of equation. But knowing where it
came from seems important in some cases...
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Local Angular Momentum Conservation
Angular Momentum

Starting from the general momentum conservation law

Ot(pv) = -V -0 +f,

where o is the stress tensor and f is an external force density, it is not
hard to derive a law of motion for the external angular momentum density
w=rx (pv),

ow=-V.-(rxo)+rxf+o,, (1)

where the vector dual of the antisymmetric part of the stress tensor
o= (c—0a")/2is

Ve 020 T)

Oa = (U zX) Xy

This shows that the angular momentum obeys a Jocal conservation law if
and only if o, = 0, that is, if the stress tensor is symmetric.

A. Donev (CIMS) Adiabatic May 2012 6 /35



Local Angular Momentum Conservation

Angular Momentum Equation

@ In principle, molecules store internal angular momentum in internal
degrees of freedom, and the complete set of variables should include a
molecular spin angular velocity Q (r, t),

V xv

6tv+v-Vv:1/V2v—2V,V><< —Q)—i—f\,

V xv

/(6tQ+v-VQ):CV2§2+4V,< —Q>+f9,

where v, is a rotational viscosity and ( is a spin viscosity.

@ In the limit v, — o0, it seems that

Q%va

= fluid angular velocity,

and we get the usual velocity equation [note that
V x (V xv) = -V
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Local Angular Momentum Conservation

@ Fluctuation-dissipation balance gives the form of the stochastic
forcing, | conjecture it to be

fo=V. (\/2@—1 kBTWA) 220, p Tk T Wi

e Total angular momentum density p (r x v + /2) should be locally
conserved, implying

f,=V_. <\/21/p_1 kBTW) -V x (\/2Vrp_1kBTWB> ,

where VW is a symmetric stochastic stress tensor.

@ What happens in the limit v, — oo? Does the stochastic stress
become symmetric?

@ Can you actually see any effect of antisymmetry of the stochastic
stress tensor if you cannot see 7
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Two-Component Mixture
Binary Fluid Mixtures

Each species has its own velocity v; and vs.

@ Primitive variables are now the total density p = p1 + p2, the

concentration ¢ = p1/p, the center-of-mass velocity
v = cvi + (1 — ¢)vp, and the inter-species velocity via = vi — va.
The continuity equations are as usual

8t,01 =-V - (plvl) and 8tp2 =-V. (p2v2) . (2)

Postulated approximate momentum conservation equations
O (pvi)+... = VP +V- ['7: (an—l—Z)} —¢évip+ 0O
Ot (p2V2) +... = =-VP+V. |:l;)2 (nVV+Z):| —|—§V12 —@,

where Py = p1kg T /m and similarly for P, £ is a friction coefficient,

and
O = /2ekg T W),
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Two-Component Mixture
Contd.

e Kinetic theory suggests that the friction coefficient is [1]

—c(1— )P T
E=c(l-o) X

)

where ¢t = kg T /m is the isothermal speed of sound.
@ The equations can be written in terms of concentration ¢ = p1/p and
Ui = C(l — C)V12. (3)
@ Some approximations lead to the postulated two-fluid equations

p(Otc+v-Ve)= -V -[pus],
Oiurn +v - Vuyp = —c%—Vc - C%X*IUH + pflG), (4)
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Two-Component Mixture
Overdamped Limit

1

If the friction coefficient cZx~
damps the relative velocity

is large, the friction term quickly

Ujp = —XVC + %@
PeT

@ The concentration equation then becomes a stochastic Fick's law

drc+v-Ve=xVic+ V- <\/2mxp—1 c(l—c) W(C)> )

The ¢(1 — ¢) should somehow ensure that 0 < ¢ < 1 strictly.

Note that diffusion arose out of advection by fast velocity
fluctuations, but there is double-counting via v fluctuations.

A. Donev (CIMS) Adiabatic May 2012 12 / 35



Giant Fluctuations in Diffusive Mixing

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[2, 3, 4]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Giant Fluctuations in Diffusive Mixing

Animation: Diffusive Mixing in Gravity
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Giant Fluctuations in Diffusive Mixing

Diffusion by Velocity Fluctuations

@ In liquids diffusion of mass is much slower than diffusion of
momentum, x < v, leading to a Schmidt number

Se =2 ~ 105
X

@ Model equations for giant fluctuations in diffusive mixing are

Ov =P vV + V- <\/21/p—1 kBTWﬂ
drc =—v-Vec+xVc,

where P is the orthogonal projection onto the space of
divergence-free velocity fields, P =1—-G (’Dg)f1 D in real space,
where D = V - [ denotes the divergence operator and G = V the
gradient operator.

@ Conjecture: There exists some limiting dynamics for ¢ in the limit
Sc — o in the scaling

v=xSe, x(x+v)= xv=const
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Giant Fluctuations in Diffusive Mixing

@ The coupled linearized velocity-concentration system in one dimension

is:
Vi = UV + V20 Wi (5)
Ct = XCxx — VEX) (6)

where g = Cy is the imposed background concentration gradient.

@ Concentration fluctuations become long-ranged and are enhanced by

the gradient
(&)’

X(x +v)k*

@ In the simpler linearized case it can be shown that the limiting
dynamics exists and the term v, becomes a stochastic forcing for the
concentration (Eric Vanden-Eijnden). General case is still an open
question.

(ee”) ~
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Giant Fluctuations in Diffusive Mixing

Animation: Changing Schmidt Number
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Low Mach Number Limit
Binary Mixture Compressible Equations

Dip=—p(V -v)
p(Dv) == VP+ V- (nVv+X)
pcy (D:T)=—P(V-v)+ V- (kVT+Z)+ (nVv+X): Vv
p(Dec) =V - [px (V) + W], 7)

The pressure P (p, c, T) can be decomposed into a thermodynamic portion
Po and a kinematic portion (Ma?) .

If ¢2 = OP/8p — oo the fluctuations of the thermodynamic pressure are
fast, leading to the equation of state (EOS) constraint

P(p,c, T) = Py = const
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Low Mach Number Limit
Low Mach Number Approximation

@ The density is not an independent variable anymore but rather
determined from the constraint.

o By differentiating the EOS constraint and using the continuity
equation we get

op op
pV-v:() (D c)+<) (D:T),
dc)pr ‘ T ) p . t

which is a generalization of the incompressibility constraint.

@ In the stochastic setting this is a strange sort of stochastic constraint
pV -v=—=V - [px(Vec)+W¥+...].

@ By linearizing around equilibrium and using Fourier transforms this
can be shown to lead to a velocity v which is “white” in time (has
nonzero power at infinite wavefrequencies).
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Chemical Reactions
Chemical Langevin Equation

@ Consider a single reaction with stochiometric coefficients are
v =19 — 97" (negative for reactants)

Wf ... 0%) & (07,....07).

@ The contribution to the mass balance from the reaction is

A\
<2A> W(r,t)|, (8)

NI

(0207) eace = imj | — (BPr) A+ (BPr)

where the reaction affinity

Here ﬂf = ﬁﬁfmk,uk are related to the chemical potentials pu.
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Chemical Reactions
Nonlinear Fluctuations

@ For ideal gas mixtures,

Vi
Bukmkuk _ Ck (mkkB T) (r[:,k ) 7
k

giving the more familiar stochastic law-of-mass action form

e i(2)" ()"

where kT are the more familiar forward/reverse reaction rates.
@ Near chemical equilibrium, both A and A are close to zero, and

2j ~ exp <Z ,&;f) + exp (Z ﬁ;) ,
K K

which is the more common form of the chemical Langevin equation.
This form separates the forward and reverse reactions and their noises.
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Chemical Reactions
Kramers Picture

The two forms are not, however, equivalent far from equilibrium,
which is where most chemical reactions operate.

One can actually derive the nonlinear equation from a simpler linear
equation in a stiff limit.

Ala Kramers, think of reaction as a diffusion along a reaction
coordinate 0 < v < 1.

Denote the probability that reaction complex is in state v at point
(r,t) with ¢ (v,r, t).

Drop (r, t) for now for notational simplicity.

The chemical potential is related to the enthalpy h(~y) which has the
familiar “energy barrier” form,

_ ksT

My

() Inc(v)+h(v),

where myc =, ﬁtmk = >, U, my is the reaction complex mass.
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Chemical Reactions
Stiff Limits

@ The diffusion along ~ follows the postulated stochastic diffusion
equation

0 0 e Oh 0
(Dt€)reacs = — 56 | 5 + 1o | + 5= (V2mEpTe W) .
07 07

oy ' kgT dy

@ If the reaction barrier is much larger than kg T, most complexes are in
the product (v = 1) or the reactant state (v = 0).

e In this way Bedeaux et al. obtain the nonlinear mass reaction law [5].
For the fluctuations, they linearized the equations first.

@ It is an open question to see if one can do the nonlinear analysis and
thus resolve the ambiguity in the nonlinear Langevin equation.
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Direct Fluid-Particle Coupling
Fluid-Structure Coupling

e Consider a blob (Brownian particle) of size a with position q(t) and
velocity u = ¢, and the velocity field for the fluid is v(r, t).

@ We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

e Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel ¢,(Ar) with
compact support of size a (integrates to unity).

@ Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the blob [6].
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Direct Fluid-Particle Coupling
Local Averaging and Spreading Operators

@ Define the local fluid velocity,

vo=(@lv= [ 5. nv(ro)r
@ The induced force density in the fluid because of the particle is:

f=-Xd(q—r)=—[S(a)] A,

where X is a fluid-particle force (note that this ensures momentum
conservation).

@ Crucial for energy conservation is that the local averaging operator
J(q) and the local spreading operator S(q) are adjoint, S = J*.
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Direct Fluid-Particle Coupling
Fluid-Particle Direct Coupling

@ The equations of motion in our coupling approach are postulated
(Pep Espafiol is working on a derivation) to be

p(Ov+v-Vv) = —Vr+vVi+V.-X—[S(q)A
meu=meq = F(q)+A
st. V.v = 0,

where the fluid-particle force X is a frictional + stochastic force

A=—Clu— (V] +V2ks TW,
F(q) = —VU(q) is the applied force, and m, is the excess mass of

the particle.

e Dunweg and Ladd [7] (arXiv:0803.2826v2), and also Atzberger [8],
have shown that this system satisfies fluctuation-dissipation balance,
that is, preserves the invariant Gibbs distribution

B 2 L2
P(v,u,q)=Z exp{—,@ [U(q)+m92+/p2dr}}.
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Direct Fluid-Particle Coupling
Overdamped Limit #1

o If we take { — o0, the particle velocity u becomes rapidly fluctuating
around the local fluid velocity [J (q)] v.

e We postulate that the limiting equations are (can we derive them?)

p(Ov+v-Vv) = —Vr+vV?+ V- X —[S(q)]\+ correction
met = F(q)+ A
stu=q = [J(q)Jvand V-v=0,

where A is now a Lagrange multiplier that enforces the no-slip
condition u = vq.

@ The fluctuationing stress ¥ = /2vp—1 kg T W drives the Brownian
motion.

@ In the existing (stochastic) IBM approaches inertial effects are
ignored, me = 0 and thus A = —F.
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Direct Fluid-Particle Coupling
contd.

@ The correction (I believe) arising from the adiabatic mode elimination
is

correction = —(m_mme)VS (ks T)

and thus does not matter in the incompressible limit.

@ It is perfectly reasonable to add an additional contribution

q=[(a)]v+(¢F(a)+ V2 ks TW,

although strictly in the limit { — oo this would vanish, so it is not
exactly clear in what sense the above applies.
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Direct Fluid-Particle Coupling

Overdamped Limit #2

o If we take n — oo, we get the asymptotic Brownian dynamics limit
q(t) = MF(q) + 2k TMY2W + kg T (V4 - M),
@ Here the mobility depends on the fluid equation
M(q)=¢t-Jcls
=14 u_l/dr'/dr (G (r,¥)] 0pa(a—¥)das(a—r)

and where G is the Green's function for the Stokes equation (Oseen
tensor) with v = 1.

@ | stated lots of things that | can almost or | cannot formally prove...

@ What to do in the full nonlinear setting (not a Stokes approximation)?
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Direct Fluid-Particle Coupling
Open Questions

Diffusion as an overdamped limit of inter-species velocity fluctuations
(multicomponent mixtures are done ad hoc at present).

Incompressible limit in the stochastic setting.

Limiting dynamics for diffusive mixing for large Schmidt numbers.
Fluctuating low Mach number equations.

Local angular momentum conservation.

Fluid-particle coupling in the overdamped limit.

Fluctuations in nonlinear chemical reactions.
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Direct Fluid-Particle Coupling
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