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Compressible Fluctuating Hydrodynamics

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇P + ∇ ·

(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v

where the variables are the density ρ, velocity v, and temperature T
fields,

Dt� = ∂t� + v ·∇ (�)

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3

and capital Greek letters denote stochastic fluxes:

Σ =
√

2ηkBT W .

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk − 2δijδkl/3) δ(t − t ′)δ(r − r′).
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Incompressible Velocity Equation

An incompressible limit c2
T = ∂P/∂ρ→∞ (isothermal speed of sound)

presumably leads to

∂tv + v ·∇v = −∇π + ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

s.t.∇ · v = 0,

where where the kinematic viscosity ν = η/ρ, and π is determined from
incompressibility.
We assume that W can be modeled as spatio-temporal white noise (a
delta-correlated Gaussian random field)

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

Can one justify this limit more rigorously, at least formally?
In principle one can just write this sort of equation. But knowing where it
came from seems important in some cases...

A. Donev (CIMS) Adiabatic May 2012 4 / 35



Local Angular Momentum Conservation

Angular Momentum

Starting from the general momentum conservation law

∂t (ρv) = −∇ · σ + f,

where σ is the stress tensor and f is an external force density, it is not
hard to derive a law of motion for the external angular momentum density
w = r × (ρv),

∂tw = −∇ · (r × σ) + r × f + σa, (1)

where the vector dual of the antisymmetric part of the stress tensor
σa =

(
σ − σT

)
/2 is

σa =
(
σa
yz , σ

a
zx , σ

a
xy

)
.

This shows that the angular momentum obeys a local conservation law if
and only if σa = 0, that is, if the stress tensor is symmetric.
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Local Angular Momentum Conservation

Angular Momentum Equation

In principle, molecules store internal angular momentum in internal
degrees of freedom, and the complete set of variables should include a
molecular spin angular velocity Ω (r, t),

∂tv + v ·∇v = ν∇2v − 2νr∇×
(
∇× v

2
−Ω

)
+ fv

I (∂tΩ + v ·∇Ω) = ζ∇2Ω + 4νr

(
∇× v

2
−Ω

)
+ fΩ,

where νr is a rotational viscosity and ζ is a spin viscosity.

In the limit νr →∞, it seems that

Ω ≈ ∇× v

2
= fluid angular velocity,

and we get the usual velocity equation [note that
∇× (∇× v) = −∇2v].
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Local Angular Momentum Conservation

contd.

Fluctuation-dissipation balance gives the form of the stochastic
forcing, I conjecture it to be

fΩ = ∇ ·
(√

2ζρ−1 kBT WA

)
+ 2
√

2νrρ−1kBT WB

Total angular momentum density ρ (r × v + I Ω) should be locally
conserved, implying

fv = ∇ ·
(√

2νρ−1 kBT W
)
−∇×

(√
2νrρ−1kBT WB

)
,

where W is a symmetric stochastic stress tensor.

What happens in the limit νr →∞? Does the stochastic stress
become symmetric?

Can you actually see any effect of antisymmetry of the stochastic
stress tensor if you cannot see Ω?
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Two-Component Mixture

Binary Fluid Mixtures

Each species has its own velocity v1 and v2.

Primitive variables are now the total density ρ = ρ1 + ρ2, the
concentration c = ρ1/ρ, the center-of-mass velocity
v = cv1 + (1− c)v2, and the inter-species velocity v12 = v1 − v2.

The continuity equations are as usual

∂tρ1 = −∇ · (ρ1v1) and ∂tρ2 = −∇ · (ρ2v2) . (2)

Postulated approximate momentum conservation equations

∂t (ρ1v1) + . . . = −∇P1 + ∇ ·
[
ρ1

ρ

(
η∇v + Σ

)]
− ξv12 + Θ

∂t (ρ2v2) + . . . = −∇P2 + ∇ ·
[
ρ2

ρ

(
η∇v + Σ

)]
+ ξv12 −Θ,

where P1 = ρ1kBT/m and similarly for P2, ξ is a friction coefficient,
and

Θ =
√

2ξkBT W(c).
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Two-Component Mixture

Contd.

Kinetic theory suggests that the friction coefficient is [1]

ξ = c (1− c)
ρcT
χ
,

where cT = kBT/m is the isothermal speed of sound.

The equations can be written in terms of concentration c = ρ1/ρ and

u12 = c(1− c)v12. (3)

Some approximations lead to the postulated two-fluid equations

ρ (∂tc + v ·∇c) = −∇ · [ρu12] ,

∂tu12 + v ·∇u12 = −c2
T∇c − c2

Tχ
−1u12 + ρ−1Θ, (4)
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Two-Component Mixture

Overdamped Limit

If the friction coefficient c2
Tχ
−1 is large, the friction term quickly

damps the relative velocity

u12 ≈ −χ∇c +
χ

ρc2
T

Θ.

The concentration equation then becomes a stochastic Fick’s law

∂tc + v ·∇c = χ∇2c + ∇ ·
(√

2mχρ−1 c(1− c)W(c)

)
.

The c(1− c) should somehow ensure that 0 ≤ c ≤ 1 strictly.

Note that diffusion arose out of advection by fast velocity
fluctuations, but there is double-counting via v fluctuations.
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Giant Fluctuations in Diffusive Mixing

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[2, 3, 4]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Giant Fluctuations in Diffusive Mixing

Animation: Diffusive Mixing in Gravity
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Giant Fluctuations in Diffusive Mixing

Diffusion by Velocity Fluctuations

In liquids diffusion of mass is much slower than diffusion of
momentum, χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103.

Model equations for giant fluctuations in diffusive mixing are

∂tv =P
[
ν∇2v + ∇ ·

(√
2νρ−1 kBT W

)]
∂tc =− v ·∇c + χ∇2c,

where P is the orthogonal projection onto the space of
divergence-free velocity fields, P = I− G (DG)−1 D in real space,
where D� ≡∇ ·� denotes the divergence operator and G ≡∇ the
gradient operator.
Conjecture: There exists some limiting dynamics for c in the limit
Sc →∞ in the scaling

ν = χSc , χ(χ+ ν) ≈ χν = const
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Giant Fluctuations in Diffusive Mixing

contd.

The coupled linearized velocity-concentration system in one dimension
is:

vt = νvxx +
√

2ν Wx (5)

ct = χcxx − v c̄x , (6)

where g = c̄x is the imposed background concentration gradient.

Concentration fluctuations become long-ranged and are enhanced by
the gradient

〈ĉ ĉ?〉 ∼ (c̄x)2

χ(χ+ ν)k4
.

In the simpler linearized case it can be shown that the limiting
dynamics exists and the term v c̄x becomes a stochastic forcing for the
concentration (Eric Vanden-Eijnden). General case is still an open
question.
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Giant Fluctuations in Diffusive Mixing

Animation: Changing Schmidt Number
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Low Mach Number Limit

Binary Mixture Compressible Equations

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] , (7)

The pressure P (ρ, c,T ) can be decomposed into a thermodynamic portion
P0 and a kinematic portion

(
Ma2

)
π.

If c2
T = ∂P/∂ρ→∞ the fluctuations of the thermodynamic pressure are

fast, leading to the equation of state (EOS) constraint

P (ρ, c,T ) = P0 = const
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Low Mach Number Limit

Low Mach Number Approximation

The density is not an independent variable anymore but rather
determined from the constraint.

By differentiating the EOS constraint and using the continuity
equation we get

ρ∇ · v =

(
∂ρ

∂c

)
P,T

(Dtc) +

(
∂ρ

∂T

)
P,c

(DtT ) ,

which is a generalization of the incompressibility constraint.

In the stochastic setting this is a strange sort of stochastic constraint

ρ∇ · v = −∇ · [ρχ (∇c) + Ψ + . . . ] .

By linearizing around equilibrium and using Fourier transforms this
can be shown to lead to a velocity v which is “white” in time (has
nonzero power at infinite wavefrequencies).
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Chemical Reactions

Chemical Langevin Equation

Consider a single reaction with stochiometric coefficients are
ν = ϑ− − ϑ+ (negative for reactants)(

ϑ+
1 , . . . , ϑ

+
n

)
↔
(
ϑ−1 , . . . , ϑ

−
n

)
.

The contribution to the mass balance from the reaction is

(∂tρj)react = νjmj

− (βPr) Ã+ (βPr)
1
2

(
2
Ã
A

) 1
2

W̌(r , t)

 , (8)

where the reaction affinity

Ã = exp

(∑
k

µ̃−k

)
− exp

(∑
k

µ̃+
k

)
=

(∏
k

eµ̃
+
k −

∏
k

eµ̃
−
k

)
,

A =
∑
k

µ̃−k −
∑
k

µ̃+
k = β

∑
k

νkmkµk .

Here µ̃±k = βϑ±k mkµk are related to the chemical potentials µk .
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Chemical Reactions

Nonlinear Fluctuations

For ideal gas mixtures,

eβνkmkµk = Ck (mkkBT )−
3νk

2

(
ρk
mk

)νk
,

giving the more familiar stochastic law-of-mass action form

(βPr) Ã = k+
reac∏
k

(
ρk
mk

)ϑ+
k

− k−
prod∏
k

(
ρk
mk

)ϑ−k
,

where k± are the more familiar forward/reverse reaction rates.

Near chemical equilibrium, both A and Ã are close to zero, and

2
Ã
A
≈ exp

(∑
k

µ̃+
k

)
+ exp

(∑
k

µ̃−k

)
,

which is the more common form of the chemical Langevin equation.
This form separates the forward and reverse reactions and their noises.
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Chemical Reactions

Kramers Picture

The two forms are not, however, equivalent far from equilibrium,
which is where most chemical reactions operate.

One can actually derive the nonlinear equation from a simpler linear
equation in a stiff limit.

Ala Kramers, think of reaction as a diffusion along a reaction
coordinate 0 ≤ γ ≤ 1.

Denote the probability that reaction complex is in state γ at point
(r, t) with c (γ, r, t).
Drop (r, t) for now for notational simplicity.

The chemical potential is related to the enthalpy h (γ) which has the
familiar “energy barrier” form,

µ (γ) =
kBT

mrc
ln c (γ) + h (γ) ,

where mrc =
∑

k ϑ
+
k mk =

∑
k ϑ
−
k mk is the reaction complex mass.
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Chemical Reactions

Stiff Limits

The diffusion along γ follows the postulated stochastic diffusion
equation

(Dtc)react = − ∂

∂γ
ξ

[
∂c

∂γ
+

mrc

kBT

∂h

∂γ

]
+

∂

∂γ

(√
2mξρ−1c W

)
.

If the reaction barrier is much larger than kBT , most complexes are in
the product (γ = 1) or the reactant state (γ = 0).

In this way Bedeaux et al. obtain the nonlinear mass reaction law [5].
For the fluctuations, they linearized the equations first.

It is an open question to see if one can do the nonlinear analysis and
thus resolve the ambiguity in the nonlinear Langevin equation.
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Direct Fluid-Particle Coupling

Fluid-Structure Coupling

Consider a blob (Brownian particle) of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the blob [6].
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Direct Fluid-Particle Coupling

Local Averaging and Spreading Operators

Define the local fluid velocity,

vq = [J (q)] v =

∫
δa (q− r) v (r, t) dr.

The induced force density in the fluid because of the particle is:

f = −λδa (q− r) = − [S (q)]λ,

where λ is a fluid-particle force (note that this ensures momentum
conservation).

Crucial for energy conservation is that the local averaging operator
J(q) and the local spreading operator S(q) are adjoint, S = J?.
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Direct Fluid-Particle Coupling

Fluid-Particle Direct Coupling

The equations of motion in our coupling approach are postulated
(Pep Español is working on a derivation) to be

ρ (∂tv + v ·∇v) = −∇π + ν∇2v + ∇ ·Σ− [S (q)]λ

me u̇ = me q̈ = F (q) + λ

s.t. ∇ · v = 0,

where the fluid-particle force λ is a frictional + stochastic force

λ = −ζ [u− J (q) v] +
√

2ζkBT W̃ ,

F (q) = −∇U (q) is the applied force, and me is the excess mass of
the particle.
Dunweg and Ladd [7] (arXiv:0803.2826v2), and also Atzberger [8],
have shown that this system satisfies fluctuation-dissipation balance,
that is, preserves the invariant Gibbs distribution

P (v,u,q) = Z−1 exp

{
−β
[

U (q) + me
u2

2
+

∫
ρ

v 2

2
dr

]}
.
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Direct Fluid-Particle Coupling

Overdamped Limit #1

If we take ζ →∞, the particle velocity u becomes rapidly fluctuating
around the local fluid velocity [J (q)] v.

We postulate that the limiting equations are (can we derive them?)

ρ (∂tv + v ·∇v) = −∇π + ν∇2v + ∇ ·Σ− [S (q)]λ+ correction

me u̇ = F (q) + λ

s.t. u = q̇ = [J (q)] v and ∇ · v = 0,

where λ is now a Lagrange multiplier that enforces the no-slip
condition u = vq.

The fluctuationing stress Σ =
√

2νρ−1 kBT W drives the Brownian
motion.

In the existing (stochastic) IBM approaches inertial effects are
ignored, me = 0 and thus λ = −F.
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Direct Fluid-Particle Coupling

contd.

The correction (I believe) arising from the adiabatic mode elimination
is

correction = −(m −me)

m
∇S (kBT )

and thus does not matter in the incompressible limit.

It is perfectly reasonable to add an additional contribution

q̇ = [J (q)] v + ζ−1F (q) +
√

2ζ−1kBT W̃ ,

although strictly in the limit ζ →∞ this would vanish, so it is not
exactly clear in what sense the above applies.
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Direct Fluid-Particle Coupling

Overdamped Limit #2

If we take η →∞, we get the asymptotic Brownian dynamics limit

q̇ (t) = MF (q) +
√

2kBT M1/2W̃ + kBT (∇q ·M) ,

Here the mobility depends on the fluid equation

M (q) = ζ−1 − JL−1S

= ζ−1 + ν−1

∫
dr′
∫

dr
[
G
(
r, r′
)]
δ∆a

(
q− r′

)
δ∆a (q− r)

and where G is the Green’s function for the Stokes equation (Oseen
tensor) with ν = 1.

I stated lots of things that I can almost or I cannot formally prove...

What to do in the full nonlinear setting (not a Stokes approximation)?

A. Donev (CIMS) Adiabatic May 2012 33 / 35



Direct Fluid-Particle Coupling

Open Questions

Diffusion as an overdamped limit of inter-species velocity fluctuations
(multicomponent mixtures are done ad hoc at present).

Incompressible limit in the stochastic setting.

Limiting dynamics for diffusive mixing for large Schmidt numbers.

Fluctuating low Mach number equations.

Local angular momentum conservation.

Fluid-particle coupling in the overdamped limit.

Fluctuations in nonlinear chemical reactions.
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Direct Fluid-Particle Coupling
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