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Abstract. We present explicit methods for simulating diffusions whose generator is self-adjoint
with respect to a known (but possibly not normalizable) density. These methods exploit this property
and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme.
The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to
gain higher order accuracy in the small noise limit. It also permits to avoid computing explicitly
certain terms in the equation, such as the divergence of the mobility tensor, which can be tedious to
calculate. Finally, the scheme is shown to be ergodic with respect to the exact equilibrium probability
distribution of the diffusion when it exists. These results are illustrated on several examples including
a Brownian dynamics simulation of DNA in a solvent. In this example, the proposed scheme is able
to accurately compute dynamics at time step sizes that are an order of magnitude (or more) larger
than those permitted with commonly used explicit predictor-corrector schemes.
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1. Introduction. This paper is concerned with the numerical integration of
diffusions of the type:

dY =−M(Y )DU(Y )dt︸ ︷︷ ︸
deterministic drift

+kT divM(Y )dt+
√

2kTB(Y )dW︸ ︷︷ ︸
heat bath

(1.1)

where we have introduced the following.

Y (t)∈Rn state of the system
U :Rn→R potential energy

DU :Rn→Rn force
M :Rn→Rn×n mobility matrix

(divM)i=
∑n
j=1∂Mij/∂xj divergence of mobility matrix

B :Rn→Rn×n noise coefficient matrix
W (t)∈Rn Brownian motion

kT temperature factor

Let B(x)T denote the transpose of the real matrix B(x). Assuming that

M(x) =B(x)B(x)T for all x∈Rn, (1.2)

this dynamics defines a Markov process whose generator L is self-adjoint with respect
to the following density

ν(x) = exp

(
− 1

kT
U(x)

)
. (1.3)
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Indeed since the action of L on any suitable test function f(x) can be written as

(Lf)(x) =kT ν−1(x)div(ν(x)M(x)Df(x)) , (1.4)

it follows from integration by parts that

〈Lf,g〉ν = 〈f,Lg〉ν for all suitable test functions f(x) and Gh(x) , (1.5)

where 〈·, ·〉ν denotes an L2-inner product weighted by the density ν(x):

〈f,g〉ν =

∫
Rn

f(x)Gh(x)ν(x)dx .

This property implies that the diffusion is ν-symmetric [57], in the sense that

ν(x)pt(x,y) =ν(y)pt(y,x) for all t>0 , (1.6)

where pt(x,y) denotes the transition density of Y (t) given that Y (0) =x. In fact, (1.5)
corresponds to an infinitesimal version of (1.6). We stress that (1.6) can hold even
if ν(x) is not normalizable: in this case, the solution to (1.1) reaches no statistical
steady state, i.e., it is not ergodic. If, however, the density (1.3) is normalizable,

Z=

∫
Rn

exp

(
− 1

kT
U(x)

)
dx<∞ , (1.7)

then the diffusion (1.1) is ergodic with respect to ν(x)/Z. This normalized density
is called the equilibrium probability density of the diffusion and is also referred to as
the Boltzmann-Gibbs density. When (1.7) holds, the dynamics observed at equilib-
rium is time-reversible, and the property (1.6) is referred to as the detailed balance
condition in the physics literature. Our main purpose here is to exploit the properties
above, in particular (1.6), to design stable and accurate numerical integrators for (1.1)
that work even in out-of-equilibrium situations when the density ν(x) in (1.3) is not
normalizable.

The importance of this objective stems from the wide range of applications where
diffusions of the type (1.1) serve as dynamical models. For example, (1.1) is used
to model the evolution of coarse-grained molecular systems in regimes where the
details of the microscopic interactions can be represented by a heat bath. Mul-
tiscale models of polymers in a Stokesian solvent fit this category, a context in
which (1.1) is referred to as Brownian dynamics (BD) with hydrodynamic inter-
actions [22, 25, 86, 108]. BD has been used to quantitatively simulate the non-
equilibrium dynamics of biopolymers in dilute solutions [63, 99], and to validate
and clarify experimental findings for bacteriophage DNA dynamics in extensional,
shear, and mixed planar flows [64, 46, 45, 50, 97, 98]. The dynamics of DNA
molecules in confined solutions with complex geometries has also been studied us-
ing BD to guide the design of microfluidic devices to manipulate these molecules
[12, 51, 52, 53, 109, 110, 35, 34, 33, 36, 29, 16, 111].

Because of the relevance of (1.1) to BD, this is also the context in which most
work on the development of numerical schemes to simulate this equation has been
devoted [86, 47]. Perhaps the most widely used among these is the so-called Fix-
man scheme, which is an explicit predictor-corrector scheme that also has the ad-
vantage that it avoids the explicit computation of the divergence of the mobility
matrix [25]. Unfortunately, explicit BD time integrators like the Fixman scheme are
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often insufficient in applications because the interplay between the drift and the noise
terms in (1.1) can induce numerical instabilities or artifacts such as systematic drifts
[71, 90]. This is a well known problem with explicit discretizations of nonlinear dif-
fusions [102, 39, 84, 38, 48], and it is especially acute if the potential force in (1.1) is
stiff, which is typically the case in applications. The standard solution to this problem
is to introduce implicitness. In a sequence of works, this strategy was investigated
to deal with the steep potentials that enforce finite extensibility of bond lengths in
bead-spring models [26, 37, 49, 100, 41]. The leading semi-implicit predictor-corrector
scheme emerging from this effort is numerically stable at much larger time step sizes
than explicit predictor-corrector schemes but it requires a nonlinear solve at every
step, which is time-consuming and raises convergence questions about the methods
used to solve this nonlinear system that are not easy to answer, in general.

In this paper, following the strategy introduced in [10], we adopt a probabilistic
approach based on the ν-symmetry property in (1.6) to build stable explicit integrators
for (1.1) that avoid implicitness and do not assume a specific form of the potential
forces. Specifically, we propose an integrator for (1.1) with the following properties.

(P1) it samples the exact equilibrium probability density of the SDE when this den-
sity exists (i.e., when ν(x) in (1.3) is normalizable);

(P2) it generates a weakly accurate approximation to the solution of (1.1) at constant
temperature;

(P3) it acquires higher order accuracy in the small noise limit, kT→0; and,
(P4) it avoids computing the divergence of the mobility matrix.

We stress that Properties (P2)-(P4) hold even when the density ν(x) in (1.3) is not
normalizable, i.e., (1.1) is out-of-equilibrium and not ergodic with respect to any
invariant distribution. Thus, even though the scheme we propose involves a Monte-
Carlo step, its aim and philosophy are very different from Monte-Carlo methods where
a discretized version of (1.1) is used as a proposal step but whose only goal is to sample
a target distribution with no concern for the dynamics of (1.1) [82, 32, 95, 17, 40,
56, 69, 3, 2, 66]. Compared to the method proposed in [10], the main novelty of the
scheme introduced here stems from Properties (P3) and (P4). Indeed, to achieve (P3)
we need to control the rate of rejections in the Monte Carlo step in the small noise
limit, kT→0, which is nontrivial because the density ν(x) in (1.3) that enters the key
relation (1.6) becomes singular in this limit. Similarly, (P4) constrains the type of
proposal moves we can use in the scheme, and this property is important in situations
where the mobility matrix does not have an explicit expression, e.g., when the solvent
is confined [29]. In the sequel, we use a BD model of DNA in a solvent to show that
the new scheme achieves the same accuracy as explicit predictor-corrector schemes
with time step sizes that are an order of magnitude (or more) larger. Beside BD, this
scheme should also be useful in the simulation of polymer conformational transitions
in electrophoretic flows [60, 88, 61, 105, 42, 43], in other contexts where the effective
dynamics of a set of coarse-grained variables satisfies (1.1) [18, 78, 77, 19, 65], in
applications to Bayesian inference [28], etc.

Organization of the paper. The new scheme, with a structure that imme-
diately shows that it satisfies Property (P4) is introduced in §2. In §3, we present
numerical examples with comparisons to the Fixman algorithm. A proof of the er-
godicity Property (P1) of the scheme is provided in §4. The weak accuracy Property
(P2) is proven in §5 using (1.6). The behavior of the scheme in the small noise limit,
specifically Property (P3), is investigated in §6. A conclusion is given in §7.
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2. The integrator and its main properties. Following [10], the scheme intro-
duced in this paper combines a proposal step obtained via time-discretization of (1.1)
with an accept/reject Monte-Carlo step. The detailed algorithm is given below in
terms of vector and matrix-valued variables Gh :Rn→Rn and Bh :Rn→Rn×n, re-
spectively, whose explicit forms will be specified shortly in such a way that Proper-
ties (P1)–(P4) are met.

Algorithm 2.1. Given the current position X0 at time t the algorithm proposes
an updated position X?

1 at time t+h for some time step size h>0 via{
X?

1 = X̃1 +hGh(X̃1)+(X̃1−X0) ,

X̃1 =X0 +
√

h
2Bh(X0)ξ .

(2.1)

Here ξ∈Rn denotes a Gaussian random vector with mean zero and covariance
E(ξiξj) =kTδij. The proposal move X?

1 is then accepted or rejected by taking as
actual update for the position at time t+h the value

X1 =γX?
1 +(1−γ)X0 , (2.2)

where γ is a Bernoulli random variable which assumes the value 1 with probability
αh(X0,X

?
1 ) and value 0 with probability 1−αh(X0,X

?
1 ). The function αh(X0,X

?
1 ) is

known as the acceptance probability and is given by

αh(X0,X
?
1 )

= min

(
1,

det(Bh(X0))

det(Bh(X?
1 ))

exp

(
− 1

kT

[
|η|2

2
− |ξ|

2

2
+U(X?

1 )−U(X0)

]))
,

(2.3)

where η satisfies:

Bh(X?
1 )η=Bh(X0)ξ+

√
2hGh(X̃1) . (2.4)

We remark that the calculation of the acceptance probability in (2.3) usually
requires a Cholesky factorization to determine Bh(X?

1 ) and its determinant; and a
linear solve to determine η via (2.4). Let us now discuss how to choose Gh(x) and
Bh(x) in (2.1) by requiring that Properties (P1)–(P4) are satisfied. It is useful to
look at these properties sequentially and see the constraints on Gh(x) and Bh(x) they
entail.

2.1. Property (P1): Ergodicity. As long as Bh(x)Bh(x)T is positive defi-
nite for every x at which ν(x)>0, the transition probability distribution induced
by Algorithm 2.1 satisfies the ν-symmetry property (1.6) with t=h. (Note that this
transition probability distribution has no density with respect to Lebesgue measure,
so (1.6) must be reinterpreted in terms of distributions: this is a minor technical
difficulty on which we will dwell upon in §4.) When ν(x) is normalizable and the vari-
ables Gh(x) and Bh(x) are sufficiently regular, it can be shown that Algorithm 2.1 is
ergodic with respect to the equilibrium probability distribution with density ν(x)/Z.
Thus, one can stably generate an infinitely long trajectory from the method with the
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right stationary distribution. Moreover, the ergodicity theorem implies that

1

T

∫ T

0

f(Xbt/hc)dt→
1

Z

∫
Rn

f(x)ν(x)dx , as T→∞, (2.5)

where f(x) is a suitable test function. Note that it is not surprising that Property
(P1) holds for quite general Gh(x) and Bh(x) since the ν-symmetry property (1.6) is
enforced by the accept/reject step in Algorithm 2.1 as long as the correct acceptance
probability αh(X0,X

∗
1 ) is used. This idea is the essence of the Metropolis-Hastings

method. More remarkable is the next observation, relevant to Property (P2).

2.2. Property (P2): Weak Accuracy. For every sufficiently regular Gh(x)
and Bh(x) satisfying

Bh(x)Bh(x)T =M(x)+O(h) for all x∈Rn, (2.6)

where M(x) is the mobility matrix entering (1.1), Algorithm 2.1 is weakly accurate
on finite time intervals:

|Ex(f(Y (bt/hch))−Ex(f(Xbt/hc))|≤C(T,Gh)h1/2 , for all t∈ [0,T ], (2.7)

where Ex denotes the expectation conditional on the initial state being x. The obser-
vation above is remarkable in that it holds for any sufficiently regular Gh(x), including
the trivial Gh(x) = 0. As we will see in §5, this really is a consequence of an (infinites-
imal) fluctuation-dissipation theorem: as long as the noise term is handled accurately
in the proposal move (2.1) (which it is if (2.6) holds), weak accuracy follows from
the fact that the only diffusion satisfying the ν-symmetry property (1.6) (which it
does through Property (P1)) is the one with the correct drift term. Note that this
immediately opens the door to schemes where the divergence of M(x) does not need
to be computed. In fact, with Gh(x) = 0, the calculation of no part of the drift is
necessary. Of course, this trivial choice is not the best (nor even a good) one, and to
enforce Property (P3), we will have to use more specific Gh(x) and Bh(x).

2.3. Property (P3): Second-order Accuracy in Small Noise Limit. Let
Gh(x) and Bh(x) be the following two-stage Runge-Kutta methods:

Gh(x) =−b1M(x)DU(x)−b2M(x)DU(x1)

−b3M(x1)DU(x)−b4M(x1)DU(x1) ,

x1 =x−a12hM(x)DU(x) ,

(2.8)

{
Bh(x)Bh(x)T =d1M(x)+d2M(x1) ,

x1 =x+c12hM(x)DU(x) ,
(2.9)

with parameter values:

d1 = 1/4 , d2 = 3/4 , b1 = 5/8 , b2 = b3 =−3/8 , b4 = 9/8 , & c12 =a12 = 2/3 . (2.10)

Algorithm 2.1 operated with this choice of Gh(x) and Bh(x) satisfies:

lim
kT→0

(Ex|Y (bt/hch)−Xbt/hc|2)1/2≤C(T )h2 , (2.11)

for all t∈ [0,T ].
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When the mobility is constant, then Bh(x) =B(x) and Gh(x) reduces to the so-
called Ralston Runge-Kutta method [87]. The above statement, which is one of the
main results of this paper, is established in §6 using an asymptotic analysis of the
rejection rate in the deterministic limit as kT→0. This analysis reveals that the
parameter values in (2.10) are optimal, that is, they are the only choice that yield
Property (P3). The validity of this statement requires an assumption to the effect
that singularities of the Hessian matrix D2U(x) can be avoided. The sufficiency of
this condition is discussed in the numerical examples in §3, but in short, we found that
this assumption is hard to violate in practice. When this condition is violated, Section
§6 proposes alternatives choices of Gh(x) and Bh(x) and a general strategy to design
them; however, the above choice, we believe, strikes a balance between accuracy and
complexity. The small noise limit is relevant when the deterministic drift dominates
the dynamics of (1.1), which is the case in BD applications when the Péclet number
is moderate to high or when the system is driven by an external flow. (The Péclet
number compares the work done by the potential force to the thermal energy kT .)

2.4. Additional remarks on integrator. Note that Property (P4) automat-
ically follows when Gh(x) and Bh(x) are given by (2.8) and (2.9), respectively, since
at no point do we need to calculate the divergence of M(x). Note also, that with
this choice of Gh(x) and Bh(x), the proposal move in Algorithm 2.1 involves inter-
nal stages. Both the mobility matrix and force lack a definition if an internal stage
assumes a non-physical value. In this case it is straightforward to show that any
extension of these functions results in an algorithm that satisfies the ν-symmetry con-
dition (1.6). Hence, we suggest using the trivial extension where the mobility matrix
is set equal to the identity matrix and the force is set equal to zero. Independent of
the extension chosen, the energy is taken to be infinite at non-physical states, which
implies that non-physical proposal moves are always rejected.

Let us end this section by stressing that the idea of using Monte-Carlo to perform
BD simulation is not new and goes back at least to [58, 59]. In place of the proposal
move (2.1), these papers use the Ermak-McCammon scheme, which corresponds to a
forward Euler discretization of (1.1). This scheme reduces to the Metropolis-adjusted
Langevin algorithm (MALA) when the mobility matrix is constant [94, 93, 8]. MALA
is a special case of the smart and hybrid Monte-Carlo algorithms, which are older and
more general sampling methods [95, 17]. However, the Metropolis Ermak-McCammon
scheme has two drawbacks: it involves the divergence of the mobility tensor, and
worse, as illustrated in the next section, there are important situations where the
acceptance probability in the scheme breaks down in the small noise limit. The
proposed integrator gets around these problems.

Next, we will use several examples to illustrate these properties of the Metropolis
integrator then prove all the statements made in this section in Sections 4, 5 and 6.

3. Numerical Examples. Unless otherwise indicated, in this section we work
with Algorithm 2.1 operated with Gh(x) and Bh(x) given by (2.8) and (2.9) with
parameter values (2.10). Test problems consist of the following self-adjoint diffusions:

(E1) Brownian particle with a tilted square well potential energy;
(E2) 1D bead-spring chain in a confined solvent;
(E3) 3D bead-spring chain in an unbounded solvent; and,
(E4) Brownian particle with a two-dimensional double-well potential energy.

Example (E1) features a non-normalizable density, and shows that standard explicit
integrators may not detect properly features of a potential with jumps, which leads
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to unnoticed but large errors in dynamic quantities such as mean first passage times.
As shown in (E2) and (E3), standard integrators can also fail when the potential con-
tains a hard-core or Lennard-Jones-type component. Example (E2) is not physically
realistic, however, it is simple enough to be allow intensive numerical tests and yet,
we believe, complex enough to capture some of the essential features which make (1.1)
challenging to simulate including multiplicative noise, nontrivial (divM)(x), and steep
potentials. On the other hand, example (E3) is physically relevant to polymeric fluid
simulations but, since the solvent is unbounded (divM)(x) = 0 in this case. In sum,
(E1) – (E3) demonstrate two main modes of failure of standard explicit integrators.
(E4) illustrates the properties of the proposed scheme in the small noise limit.

3.1. Example (E1): Brownian particle with a tilted square well po-
tential energy. The following example emphasizes that the Metropolis integrator,
Algorithm 2.1, applies to self-adjoint diffusions even when the density ν(x) is not
normalizable. To introduce this example, it helps to consider simulating a Brownian
particle moving in a regularized, periodic square well potential. In order to adequately
resolve the jump in the potential, a standard scheme requires a sufficiently small time
step size. Without this resolution the scheme’s equilibrium distribution will be es-
sentially uniform, and its estimate of dynamic quantities associated to crossing the
square potential barrier will be inaccurate. These predictions are borne out in the
following numerical experiment. Inspired by [89], we introduce a static tilting force
F >0 so that the particle drifts to the right intermittently stopping at the jumps in
the potential. With this tilting force, Stratonovich was able to derive a formula for the
mean first passage time, which we use below to benchmark and compare the Fixman
and Metropolis integrator [101]. At this point it is worth mentioning that when the
mobility matrix in (1.1) is constant, the Fixman scheme reduces to a second-order
trapezoidal discretization of the drift and a first-order approximation to the noise.

To be more precise, let U(x) be a periodic, square well potential given by:

U(x) = tanh

(
(x mod 3)−2

ε

)
−tanh

(
(x mod 3)−1

ε

)
,

where ε is a smoothness parameter. The period in this function is selected so that
the jumps in U(x) over one cycle [0,3] occur at x= 1 and x= 2. A Brownian particle
moving in a tilted square well potential satisfies an equation of the form (1.1) with
mobility equal to unity and,

dY =−Ũ ′(Y )dt+
√

2kTdW , Y (0)∈R ,

where we have introduced the following tilted potential energy function:

Ũ(x) =U(x)−Fx .

Observe that when F = 0 the potential Ũ(x) reduces to U(x). For every F ∈R, it is
straightforward to use (1.4) to show that the generator of Y (t) is self-adjoint with
respect to the density ν(x) = exp(−Ũ(x)/kT ). When F >0 the static tilting force
gives rise to a downward tilt in the potential Ũ(x) as shown in the northwest inset in
Figure 3.1, and so, ν(x) is not normalizable since

∫
Rν(x)dx= +∞. The first passage

time of Y (t) from any x0∈R to x0 +3 is defined as:

τ = inf{t>0 : Y (0) =x0 , Y (t)≥x0 +3} .
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Parameter Description Value

Physical Parameters

F static tilting force 0.25
kT temperature factor 1

ε
square well

smoothness parameter
0.001

Numerical Parameters

h time step size
{0.01,0.05,0.025,

0.0125,0.00625,0.003125}

Ns
# of first passage

time samples
105

Table 3.1
Simulation Parameters for a Brownian Particle with a Tilted Square Well Potential.

The numerical experiments that follow consist of launching an integrator with initial
condition X0 =x0 and time step size h, and terminating the simulation at the first step
n where Xn≥x0 +3. To avoid systematically overestimating the first passage time,
we use the approximation, τ ≈nh−h/2. As a side note, we mention that the accuracy
of this approximation to the mean first passage time (which goes like O(

√
h)) can be

improved upon by accounting for the probability that the particle reaches x0 +3 in
between each discrete step [76].

The numerical and physical parameters used in the numerical experiments are
given in Table 3.1. To visualize the long-term behavior of the schemes, it helps to
plot the probability density of points produced by each scheme modulo a period of
the square well potential. An approximation to this density is shown in the southeast
insets in Figure 3.1. At both the coarse and fine time step size tested, the Fixman
scheme underestimates the barrier height, and consequently, numerical tests show
that it grossly underestimates, e.g., the mean first passage time between wells. This
underestimate persists unless its time step size is small enough to resolve the barrier
(h<10−4). The Metropolis integrator is able to capture the features of the potential
even at the coarse time step size h= 10−1, and its approximation to the mean first
passage time is about 2% accurate with a time step size h= 10−3.

3.2. Example (E2): 1D bead-spring chain with hydrodynamic interac-
tions. This example confirms Properties (P2) and (P3) of the Metropolis integrator.
Consider a 1D bead-spring chain consisting of n beads and n+1 springs confined to an
interval [0,L] and immersed in a ‘solvent’ with viscosity µ as illustrated in Figure 3.2.
We stress that this example is fictitious because incompressibility implies that the
velocity of a 1D Stokesian solvent is constant. Still, the example captures some of
the key features of hydrodynamic interactions – including a non-trivial (divM)(x) –
while being simple enough to permit detailed numerical studies.

We begin by writing this system as a self-adjoint diffusion of the form (1.1) with
a normalizable density ν(x). Assume that the bead and solvent inertia are negligible.
Let qi and Fi denote the ith bead position and force, respectively; let u(q)∈R denote
the solvent velocity for q∈ [0,L]; and, let ui=u(qi) for i= 1, ·· · ,n. Order the particle
positions so that:

0<q1< ·· ·<qn<L.
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Fig. 3.1. Brownian Particle with a Tilted Square Well Potential. The main
figure graphs the relative error in the mean first passage time as a function of the time step
size for the Metropolis integrator (solid). The error bars represent a 99% confidence interval.

The dashed line is an O(h1/2) reference slope. The inset on the upper left shows one cycle of
the tilted square well potential. The insets on the lower right plot the approximate density of
the Fixman (solid) and Metropolis integrator (dashed) obtained by wrapping the points along
a trajectory around the boundaries of a period of the square well potential. By comparing
the densities at the coarse and fine time step size, notice that the density of the Metropolis
integrator is converged at the coarse time step size, while the Fixman scheme at both the
coarse and fine time step size is unable to detect properly the jump in the potential. This
difference is reflected in the main figure which shows that the Metropolis integrator is about
2% accurate with a time step size h=10−3, while the Fixman scheme is grossly inaccurate
at all time step sizes tested.

This ordering is maintained by the following soft-core spring potential:

UFENE(x) =− ε
2

log

(
1−
( x

2`

)2

−
(

1− x

2`

)2
)
. (3.1)

There are two parameters in this potential: an energy constant ε and bond length at
rest `. The linear behavior of UFENE(x) about its resting position x= ` is given by a
Hookean spring with stiffness ε/`2. Moreover, this potential possesses a singularity at
x= 0 that prevents interbead collisions, and a second singularity at x= 2` to enforce
finite extension of the spring length. Potentials of this type play an important role
in capturing the right non-Newtonian behavior of a dilute polymer solution using
bead-spring models [7, 86].

In addition to neighboring spring interactions, the particles are coupled by non-
bonded interactions mediated by a fictitious solvent. Since the bead and solvent
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inertia are negligible, a balance between the solvent viscous force and the bead spring
forces leads to the following equations for the solvent velocity:

µ
∂2u

∂x2
=−

n∑
i=1

Fiδ(q−qi) , u(0) =u(L) = 0 , (3.2)

where δ(q−qi) is a unit force located at the position of the ith bead qi. Let x=
(q1, ·· · ,qn)T , and in terms of which, the mobility matrix M(x) in (1.1) comes from
solving (3.2) and it describes the linear relationship between the solvent velocities at
the bead positions and the bead forces:

n∑
j=1

Mij(x)Fj =ui . (3.3)

The deterministic drift in (1.1) arises from assuming the solvent velocity matches
the bead velocities at the bead positions. A heat bath is then added to this drift
to ensure that the density of the stationary distribution of the resulting equations is
proportional to:

ν(x) = exp

(
− 1

kT
U(x)

)
,

where the total potential energy is just the sum of the n+1 spring potential energies:

U(x) =

n+1∑
i=1

UFENE(qi−qi−1) , where q0 = 0 and qn+1 =L.

Now we show how to solve (3.2) for the solvent velocity, and in the process, derive a
procedure for exactly evaluating the mobility matrix in this specific case.

In terms of the friction matrix Γ(x) =M−1(x), the linear relationship (3.3) can
be written as:

Fi=

n∑
j=1

Γijuj . (3.4)

Given the instantaneous forces and positions of the particles, the solution to (3.2) can
be derived as follows. In between the particles, the fluid velocity is linear since the
solvent experiences no force there. At the ith particle position, there is a discontinuity
in the derivative of the fluid velocity:

∂u

∂q
(q= q+

i )− ∂u
∂q

(q= q−i ) =−Fi
µ
, (3.5)

for i= 1, ·· · ,n. With u0 =u(q0) = 0 and un+1 =u(qn+1) = 0, notice that (3.5) implies:

ui+1−ui
qi+1−qi

− ui−ui−1

qi−qi−1
=−Fi

µ
. (3.6)

Comparing this equation with (3.4), it is evident that Γ is a tridiagonal matrix with
entries given by:

Γij =


µ

qi+1−qi + µ
qi−qi−1

, if i= j ,

− µ
qi+1−qi , if i−j= 1 ,

− µ
qi−qi−1

, if i−j=−1 .

(3.7)
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These expressions are explicit and straightforward to implement in the Fixman scheme
or the Metropolis integrator, Algorithm 2.1. The friction and mobility matrices are
symmetric positive-definite, and the friction matrix is tridiagonal while the mobility
matrix is not tridiagonal, in general.

For the numerical experiment, consider an eight bead chain that is initially com-
pressed as shown in the northwest inset of Figure 3.3. The equilibrium positions of the
beads are indicated by the tick marks in this inset. We use the Fixman and Metropo-
lis integrator, Algorithm 2.1, to simulate the relaxation of the system from this state.
Specifically, the schemes compute the expected value of the average position of the
particles as the lattice relaxes towards equilibrium:

Ex

(
1

n

n∑
i=1

qi(t)

)
, (3.8)

for t∈ [0,T ], where T = 50 dimensionless time units was found to be sufficient to
capture the relaxation dynamics for all parameter values tested. Setting µvisc, L, and
ε equal to unity is equivalent to rescaling the system by a characteristic length, time
and energy scale. This leaves the temperature factor kT as a free physical parameter
that we vary in the numerical experiments. These simulation parameter values are
provided in Table 3.2.

The relative error of the Metropolis integrator in computing (3.8) is shown in
Figure 3.3 for a range of temperatures. Near the deterministic limit, we used a forward
Euler scheme operated at a very small time step size to obtain a benchmark solution
(h<10−5). The Metropolis integrator is accurate for time step sizes that exceed h=
0.05. As the temperature is increased, and in the absence of an analytical solution, we
used Richardson extrapolation to obtain a benchmark solution. Using this benchmark
we estimated the error of the Metropolis integrator at various temperatures. These
graphs show that although the relative error increases with increasing temperature,
the Metropolis integrator remains within 1% error for a time step size h= 0.1 from
the deterministic limit to the moderate temperature kT = 0.1.

To deal with stochastic instabilities in the Fixman scheme, we use ‘the method of
rejecting exploding trajectories’ [84]. In this stabilization technique, if a nonphysical
move is generated by the Fixman scheme the entire sample path is rejected. At the
very low temperature of kT = 0.001, and if h≤0.0125, the Fixman scheme rejects a
negligible amount of trajectories and is as accurate as the Metropolis integrator oper-
ated at h= 0.2. However, the Fixman scheme rejects almost all trajectories generated
at the low temperature kT = 0.01 even if the time step size is reduced to h= 0.0001,
and its performance is much worse at the moderate temperature kT = 0.1.
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M M M M 

L"0"
M M 

q1

qn

qi

Fig. 3.2. This figure shows a one-dimensional bead spring chain in a solvent. The
chain consists of n beads connected by n+1 springs confined to an interval [0,L]. The spring
potential energies are modeled by a two-sided FENE potential (3.1) that is plotted in the
inset. The singularities in this potential enforce excluded volume between beads and finite
extension of the spring length. The solvent velocity satisfies a steady-state Stokes equation
with point sources of drag located at the bead positions.

Parameter Description Value

Physical Parameters

µvisc solvent viscosity 1
L chain length 1
ε energy constant 1
kT temperature factor {0.0001,0.001,0.01,0.1}
n # of beads 8

T
time-span

for simulation
50

Numerical Parameters

h time step sizetime step size {0.2,0.1,0.05,0.025,0.0125}

Ns
# of sample
trajectories

105

(q1(0),·· · ,qn(0)) initial positions
(0.1,0.11,0.33,0.34,
0.56,0.57,0.79,0.81)

(q̃1,·· · , q̃n)
equilibrium

positions of springs
(0.1,0.21,0.33,0.44,
0.55,0.67,0.79,0.9)

Table 3.2
Simulation parameters for a one-dimensional bead-spring chain in a solvent.
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Fig. 3.3. One-dimensional bead-spring chain in a solvent. The main figure shows
the relative error in the mean position of the particles (3.8) computed using the Metropolis
integrator at the kT values shown in the legend. The error bars represent a 95% confidence
interval. The northwest inset shows the initial condition (dots) and equilibrium positions
(tick marks) of the beads. Observe that the Metropolis integrator remains within 1% accurate
at the large time step size h=0.1 for a wide range of temperatures. This figure confirms
that the Metropolis integrator is weakly accurate at constant temperature Property (P2), and
second-order accurate in the small noise limit Property (P3). The curve kT→0 corresponds
to a kT that is small enough – a pico kT – so that the O(h2) rate of convergence is dominant.
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3.3. Example (E3): DNA dynamics in a solvent. The following exam-
ple applies the Metropolis integrator to a BD simulation of a DNA molecule with
hydrodynamic interactions. Consider a bead-spring model of a bacteriophage DNA
molecule with Nb= 11 spherical beads, where each spring approximates the effect of
4850 base pairs, so that ten springs contain approximately the number of base pairs in
a DNA molecule with a contour length of 21µm [112]. Assume the beads are spherical
with radius Rb and move in a Stokesian solvent with viscosity ηs. To be specific, the
solvent velocity u(q)∈R3 and pressure p(q)∈R satisfy:

ηs(∇2u)(q)−(∇p)(q)+f(q) = 0 , (∇·u)(q) = 0 , for all q∈Ω⊂R3 , (3.9)

where Ω is the domain of the solvent and f(q)∈R3 is the applied force density due
to the beads. We augment these equations with the following boundary conditions:
the fluid is at rest at infinity and satisfies no-slip conditions on the surfaces of each
bead. Let qi, vi, and Fi denote the position, translational velocity, and force of
the ith bead where i∈{1, ·· · ,Nb}. Introduce the 3Nb dimensional vectors of bead
positions x= (q1,·· · ,qNb

)T , bead translational velocities V = (v1, ·· · ,vNb
)T and bead

forces F = (F1, ·· · ,FNb
)T . An immediate consequence of the linearity of the Stokes

equation (3.9) is that:

V =M(x)F ,

where M(x) is the 3Nb×3Nb mobility matrix. This linear relationship always holds
for bodies moving in a Stokes fluid. Moreover, the matrix M(x) is always symmetric
and positive definite for every x∈R3Nb .

Determining the entries of the mobility matrix requires solving the Stokes equa-
tion (3.9) for the solvent velocity field which is a very complicated boundary value
problem. This difficulty motivates using the Rotne-Pragner-Yamakawa (RPY) ap-
proximation of the solvent velocity field, which leads to the following approximate
mobility matrix:

M(x) =

 Ω1,1 ·· · Ω1,Nb

...
. . .

...
ΩNb,1 ·· · ΩNb,Nb

 , Ωi,j =

{
1
ζ I3×3 , if i= j

ΩRPY (ri−rj) , otherwise ,
(3.10)

for all x∈R3Nb . Here, we have introduced the 3×3 matrix ΩRPY (q) defined as:

ΩRPY (q) =
1

ζ

(
C1(q)I3×3 +C2(q)

q

|q|
⊗ q

|q|

)
, (3.11)

where C1(q) and C2(q) are the following scalar-valued functions:

C1(q) =

 3
4

(
Rb

|q|

)
+ 1

2

(
Rb

|q|

)3

, if |q|>2Rb ,

1− 9
32

(
|q|
Rb

)
, otherwise ,

and,

C2(q) =

 3
4

(
Rb

|q|

)
− 3

2

(
Rb

|q|

)3

, if |q|>2Rb ,

3
32

(
|q|
Rb

)
, otherwise .
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The quantity 1/ζ is the mobility constant produced by a single bead translating in
an unbounded solvent at a constant velocity: ζ= 6πηsRb. The approximation (3.10)
preserves the physical property that the mobility matrix is positive semi-definite,
satisfies (divM)(x) = 0 for all x∈R3Nb , and is exact up to O((Rb/rij)

4) where Rb is
the bead radius and rij is the distance between distinct beads i and j [96].

A well-defined characteristic length of DNA is its Kuhn length bk which represents
the distance along the polymer chain over which orientational correlations decay. The
bending rigidity of a polymer decreases with increasing bk. For DNA, the Kuhn length
is approximately a tenth of a micrometer. In terms of which, consider a worm like
chain (WLC) model for the spring potential energy given by:

UWLC(r) =
kT

2bk

(
`2

`−r
−r+

2r2

`

)
, (3.12)

where ` is the maximum length of each spring. This empirical potential energy cap-
tures the entropic elasticity which causes the DNA molecule to be in a tightly coiled
state. The linear behavior of this potential is given by a Hookean spring with spring
constant: Hs= 3kT/(bk`). The strength of the hydrodynamic interactions can be
quantified by using this spring constant to compute the dimensionless bead radius:
a∗=Rb/

√
kT/Hs. Using the DNA parameter values provided in Table 3.3, we find

that a∗= 0.291 which for a dimensionless Rouse model (same bead-spring chain, but
with Hookean springs) signifies a moderate strength of hydrodynamic interactions
[86]. Since the Rouse chain has the same features as the DNA model, minus the
steep potential, a reasonable time step size for the DNA simulation can be deter-
mined by simulating a dimensionless Rouse system at this value of a∗ and the same
non-random initial condition. In particular, it can be shown that a time step size of
h≈10−4 leads to an average acceptance probability of about 98%−99% as the Rouse
chain transitions from a stretched to a coiled state.

With approximately this time step size h= (10−4)/2, we use the Metropolis in-
tegrator to generate one thousand trajectories of the DNA chain from the initial
conformation shown in the inset of Figure 3.4 using the values provided in Table 3.3
over the interval [0,1]. This time-span is sufficiently long to capture the relaxation
dynamics of the chain. The average acceptance probability is about 98%. From the
simulation data, the radius of gyration was estimated and this estimate is plotted in
Figure 3.4. Repeating this experiment at higher time resolution led to no noticeable
change in this graph. The Metropolis integrator seems able to compute dynamics for
this system at a time step size that is about 50× larger than what is possible using
the Fixman scheme combined with ‘the method of rejecting exploding trajectories’ as
described in the 1D bead-spring example.
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Parameter Description Value Units

Physical Parameters

Nb # of beads 11
bk Kuhn length 1×10−1 µm
Rb bead radius 7.7×10−2 µm
` maximum spring length 2.1 µm

ηs solvent viscosity 1×10−9 kg
µm·s

kT thermal energy 4.11×10−9 kg(µm)2

s2

T time-span 1 s

Numerical Parameters

h time step size 0.5×10−4 s

Ns
# of sample
trajectories

103

Table 3.3
DNA Simulation Parameters.
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Fig. 3.4. DNA Simulation. The main figure plots the exponential decay in the mean-
squared radius of gyration and the inset plots snapshots of the relaxation of a DNA molecule
from an initial conformation shown in the top-most panel of the inset. Initially the beads
are evenly spaced on the x-axis with a spacing of 1.5µm. In this example, the Metropolis
integrator is able to take about one to two orders of magnitude larger time step size than
conventional explicit schemes.
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3.4. Example (E4): Brownian particle with a double well potential
energy. In the small noise limit, the proposal move (2.1) converges to a deterministic
update:

X?
1→X0 +hGh(X0) , as kT→0 . (3.13)

If this update is a higher order discretization of the zero noise limit of (1.1), then
the proposal move will be deterministically accurate to that order. However, it does
not follow from this alone that the actual update in (2.2) is deterministically accurate
too. Indeed, Property (P3) also requires that

αh(X0,X
?
1 )→1 , as kT→0 . (3.14)

This statement may appear to contradict Property (P2): that the algorithm is weakly
accurate so long as the noise is handled correctly regardless of the proposal move
used, but it does not. To be perfectly clear, both (3.13) and (3.14) are asymptotic
statements in kT while keeping the time step size h fixed (and sufficiently small for
certain estimates to be valid), whereas Property (P2) is a non-asymptotic result that
assumes both kT and h are fixed.

In §6 we show that for general Gh(x) and Bh(x),

αh(X0,X
?
1 )∼1∧exp

(
− 1

kT
fkT (X0,h)

)
, as kT→0 , (3.15)

where we have introduced{
fkT (x,h) =U(x+hGh(x))−U(x)+hGh(x)TMh(x+hGh(x))−1Gh(x) ,

Mh(x) =Bh(x)Bh(x)T .
(3.16)

From (3.15) it follows that if fkT (x,h)≤0 for all x∈Rn, then the asymptotic state-
ment (3.14) is true, and the Metropolis integrator acquires the accuracy of the deter-
ministic update in (3.13). On the other hand, proposal moves from initial conditions
X0 =x where fkT (x,h)>0 will most likely be rejected if the noise is small enough, and
therefore, in the small noise limit the Metropolis integrator is not deterministically
accurate at these points. In §6 it is proved that when Gh(x) and Bh(x) are given
respectively by (2.8) and (2.9) with parameter values given in (2.10), the function
fkT (x,h) is negative semi-definite for h small enough, and hence, the Metropolis inte-
grator operated with this choice of Gh(x) and Bh(x) is second-order deterministically
accurate. A sufficient condition for this statement to be true is an assumption on the
Hessian of U(x) – introduced in Assumption 6.1 – which roughly speaking requires
that the integrator does not hit singular points of the Hessian matrix of U(x). The
following example illustrates these statements, and in particular, the sufficiency of
Assumption 6.1.

Consider a Brownian particle with the following two-dimensional double-well po-
tential energy function:

U(x) = 5(x2
2−1)+1.25(x2−x1/2)2 , x= (x1,x2)T ,

and a mobility matrix set equal to the 2×2 identity matrix for simplicity. The Hessian
of this potential energy becomes singular at the two points marked by an ‘x’ in
Figures 3.6 (a) and (b). (In a neighborhood of these points, Assumption 6.1 might not
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be satisfied.) For this example, Gh(x) in (2.8) with parameter values given in (2.10)
simplifies to the Ralston Runge-Kutta method:{

Gh(x) =− 1
4DU(x)− 3

4DU(x̃) ,

x̃=x− 2
3hDU(x) .

(3.17)

We will compare this choice against the following choices of Gh(x):

Gh(x) =−DU(x) , (3.18)

Gh(x) =−DU
(
x− h

2
DU(x)

)
, (3.19)

which correspond to a first-order forward Euler and second-order midpoint discretiza-
tion of (1.1) in the zero noise limit, respectively. We also consider a third-order
accurate Kutta approximation given by:{

Gh(x) =− 1
6DU(x)− 2

3DU(x̃)− 1
6DU(x̄) ,

x̃=x− h
2DU(x) , x̄=x+hDU(x)−2hDU(x̃) .

(3.20)

Figure 3.5 plot the fkT (x,h) function and a sample trajectory for the forward Euler
and midpoint schemes. In the gray-shaded regions, the fkT (x,h) function is positive,
and therefore, if the noise is small enough, the sample trajectory of the Metropolis
scheme will likely get stuck in these regions. In the simulation we pick kT = 10−8.
The Metropolis integrator based on Gh(x) given by (3.18) or (3.19) stop accepting
proposal moves once they enter the shaded region.

Figure 3.6 plot the fkT (x,h) function of the Ralston and Kutta schemes, which as
expected are negative semi-definite when h is small enough. The inset in Figures 3.6
(a) and (b) zoom into neighborhoods of the two points where the matrix D2U(x) is
singular, showing that the fkT (x,h) function of the Ralston scheme can be positive
in these neighborhoods. The insets also show that these regions become smaller as
the time step size is reduced. (On the other hand, the fkT (x,h) function of the
midpoint scheme can be positive in regions that do not shrink with decreasing time
step size – underscoring the optimality of the Ralston scheme among RK2 methods.)
The Kutta scheme does not have such a problem at these singular points of the
Hessian. Indeed, in §6 we prove that the fkT (x,h) function of any third-order Runge-
Kutta approximation is always negative semi-definite if h is small enough regardless
of whether Assumption 6.1 is satisfied.

We have also considered the same system, but with the non-constant mobility
matrix given by:

M(x) =

[
x2

1 +x2
2 +1 0

0 x2
1 +x2

2 +1

]
.

Experiments revealed that choosing Bh(x) =B(x) leads to an fkT (x,h) function that
is not negative definite, whereas using Bh(x) given by (2.9) gives the desired property.
Moreover, as shown in §6, Gh(x) given by a third-order accurate Runge-Kutta scheme
(6.22), and Bh(x) correspondingly selected (6.24), also leads to a deterministically
third-order accurate scheme.
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Parameter Description Value

Physical Parameters

kT temperature factor 10−8

Numerical Parameters

h time step size {0.01,0.005}
Y (0) initial condition (0,−0.01)T

Table 3.4
Simulation Parameters for a Brownian Particle with a 2D Double Well Potential.
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(a) Gh(x) = (3.18) (b) Gh(x) = (3.18)

Midpoint  (h = 0.01)
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(c) Gh(x) = (3.19) (d) Gh(x) = (3.19)

Fig. 3.5. Deterministically Inaccurate Metropolis Integrators. The shaded
regions in (a) - (d) are areas where the fkT (x,h) function of the Metropolis integrator is
positive. In the background are contours of the potential energy in black. Observe that the
fkT (x,h) functions of the Euler and Midpoint schemes are positive in a region which persists
even if the time step size is halved. Thus, sample trajectories produced by these schemes
– starting at (0,−0.01)T with kT =10−8 – incorrectly terminate once they enter the shaded
regions.
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(a) Gh(x) = (3.17) (b) Gh(x) = (3.17)
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Fig. 3.6. Deterministically Accurate Metropolis Integrators. Gray shading
represents regions where the fkT function of the Metropolis integrator is positive. In the
background are contours of the potential energy in black. The singular points of the Hessian
of U(x) are x-marked in (a) and (b). Moreover, the insets in (a) and (b) show that the
fkT (x,h) function of the Ralston scheme can be positive in neighborhoods of these singular
points. When the time step size is reduced in the Ralston scheme, the gray regions become
smaller. The Kutta scheme – being third-order accurate – does not have a problem at these
points, confirming the theory provided in §6. As shown sample trajectories – starting at
(0,−0.01)T with kT =10−8 – are accurately represented by both schemes.
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4. Ergodicity for Normalizable ν(x). In this section it is shown that Al-
gorithm 2.1 satisfies Property (P1) when the density ν(x) in (1.3) is normalizable,
with normalization constant Z given in (1.7). We begin by showing that ν(x)/Z is
a stationary density for the method by viewing the algorithm first as a Metropolis
method in an enlarged space, and second, as a Metropolis-Hastings method in the
original space. By using tools from the theory of Metropolis-Hastings methods, we
use the second viewpoint to prove that this stationary density is unique, and that the
k-step transition probability distribution of the algorithm converges to the equilibrium
distribution µ(dx) = (ν(x)/Z)dx as k→∞ for arbitrary initial distributions.

4.1. Integrator as a Metropolis algorithm in an enlarged space. Inter-
estingly, even though the solution to (1.1) is not differentiable, the proposal move
in Algorithm 2.1 can be derived from a discretization of a second-order differential
equation. This derivation can then be used to prove that the scheme is a Metropolis
algorithm. In this way the steps that follow resemble those used in the derivation of
the hybrid Monte-Carlo method [95, 17].

Let Gh :Rn→Rn and Bh :Rn→Rn×n be the functions appearing in Algo-
rithm 2.1. In terms of which, consider the following extended dynamics:{

Q̇=V ,

V̇ =Gh(Q) ,
(4.1)

with initial conditions:

Q(0) =X0 , V (0) =Bh(X0)ξ ,

where ξ∈Rn denotes a Gaussian random vector with mean zero and covariance
E(ξiξj) =kTδij . A position Verlet discretization of this system is given by [30]:

Q1/2 =Q0 + δt
2 V0 ,

V1 =V0 +δtGh(Q1/2) ,

Q1 =Q1/2 + δt
2 V1 ,

(4.2)

where δt is an artificial time step size. The proposal move (2.1) is obtained by setting:

δt=
√

2h , X?
1 =Q1 , (4.3)

where h is the physical time step size. Since position Verlet is volume-preserving and
time reversible in the enlarged position-velocity space, it is a valid proposal move
within a Metropolis algorithm targeted to the equilibrium distribution with density:

νextended(x,v) =
(2πkT )−n/2

det(Bh(x))
exp

(
− 1

kT

vTMh(x)−1v

2

)
ν(x)

Z
, (4.4)

where we have introduced the matrixMh(x) =Bh(x)Bh(x)T . Notice that the marginal
probability density function of νextended(x,v) in the original position space is the
correct one: ν(x)/Z. The acceptance probability (2.3) is obtained from:

αh(X0,X
?
1 ) = 1∧ νextended(Q1,V1)

νextended(Q0,V0)
,

which is the standard Metropolis ratio in the enlarged space. We emphasize that
nowhere in this derivation did we assume a specific form of Gh(x), and that by casting
the integrator as a Metropolis algorithm, it immediately follows that the algorithm
preserves the probability density ν(x)/Z.
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4.2. Integrator as a Metropolis-Hastings algorithm. Here it is shown that
the Markov chain produced by Algorithm 2.1 can be put in the frame of a Metropolis-
Hastings method. A key idea in this framework is the notion of Markov chain re-
versibility: a Markov chain with transition probability distribution P (x,dy) is said to
be reversible with respect to a measure µ(dx) if and only if the following equality of
measures holds,

P (x,dy)µ(dx) =P (y,dx)µ(dy) . (4.5)

This condition is a generalization of the ν-symmetry condition (1.6) to measures.
Indeed, setting P (x,dy) =pt(x,y)dy and µ(dy) =ν(y)dy, (4.5) implies (1.6). In other
words, (1.6) is a special case of (4.5), when both the transition probability distribution
and the measure µ(dx) have a common dominating measure, like Lebesgue measure.
A reversible Markov chain automatically admits µ(dx) as an invariant measure since:∫ ∫

f(y)P (x,dy)µ(dx) =

∫ ∫
f(y)P (y,dx)µ(dy) =

∫
f(y)µ(dy) ,

for arbitrary test function f(x).
The Metropolis-Hastings algorithm constructs a Markov chain with a specified

stationary distribution µ(dx) by enforcing condition (4.5) at every step of the chain
[82, 32]. The method is made up of a proposal move with probability distribution
Q(x,dy) and an acceptance probability α(x,y). If the current state is x, the algorithm
updates this state in two sub-steps: first, a proposal move is generated from Q(x,dy);
and second, this proposal move is accepted with probability α(x,y), and otherwise, the
proposal move is rejected and the chain remains at x. Thus, the transition probability
distribution of a Metropolis-Hastings chain can be written as:

P (x,dy) =Q(x,dy)α(x,y)+δx(dy)

∫
(1−α(x,z))Q(x,dz) , (4.6)

where δx(dy) denotes the Dirac-delta distribution on Rn concentrated at the current
state x∈Rn. The Metropolis-Hastings method requires that Q(x,dy) and α(x,y)
are selected so that P (x,dy) is reversible with respect to µ(dx). The necessary and
sufficient conditions on the acceptance probability and proposal distribution for this
to be true is:

Q(x,dy)α(x,y)µ(dx) =Q(y,dx)α(y,x)µ(dy) , (4.7)

which is an identity statement about measures [104]. In the case where Q(x,dy) =
q(x,y)dy and µ(dy) =ν(y)dy, it can be shown that this requirement is fulfilled by:

α(x,y) = min

(
1,
q(y,x)ν(y)

q(x,y)ν(x)

)
. (4.8)

A quick glance at Algorithm 2.1 suggests that the scheme is a Metropolis-Hastings
method, but in order to establish this, we derive the probability transition density of
the proposal move in (2.1), and use this density to obtain the acceptance probability
in (2.3) from (4.8). Once we have written the Metropolis integrator as a Metropolis-
Hastings method, it immediately follows that it is reversible with respect to µ(dy) =
ν(y)dy, and with a few additional steps, it can be shown that this stationary density
is unique, and that the scheme is ergodic. The proof of the following theorem fleshes
out the details in this sketch.
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Theorem 4.1. Assume that ν(x) in (1.3) is normalizable with normalization
constant Z>0 given in (1.7). Let Ph(x,dy) denote the transition probability distri-
bution of the integrator Algorithm 2.1. For sufficiently regular Gh(x), Bh(x), and
ν(x), the Markov chain induced by Algorithm 2.1 preserves the equilibrium distri-
bution µ(dx) = (ν(x)/Z)dx, and the k-step transition probability distribution of the
scheme converges to µ in the total variation norm:

lim
k→∞

‖P kh (x, ·)−µ‖TV = 0 , for all x∈Rn . (4.9)

Here, we have used the total variation (TV) distance between two probability
measures, which is defined as

‖µ1−µ2‖TV = 2 sup
A
|µ1(A)−µ2(A)| , (4.10)

where the supremum runs over all measurable sets. In particular, the total variation
distance between two probability measures is two if and only if they are mutually
singular.

Proof. A formula for the transition probability density of the proposal move (2.1),
which we denote by qh(x,y), can be derived as follows. Consider the transformation:

ϕ(x,y)(z) =y−2z+x−hGh(z) .

Since X̃1 appearing in (2.1) is a multivariate Gaussian with mean X0 and covariance
matrix kTh/2Mh(X0) =kTh/2Bh(X0)Bh(X0)T , a simple change of variables under
ϕ implies that:

qh(x,y) =

∫
Rn

(πkTh)−n/2

det(Bh(x))
exp

(
− (z−x)TMh(x)−1(z−x)

kTh

)
δ(ϕ(x,y)(z))dz . (4.11)

A second change of variables yields,

qh(x,y) =
(πkTh)−n/2

det(Bh(x))
exp

(
−

(a(x,y)−x)TMh(x)−1(a(x,y)−x)

kTh

)
(4.12)

× 1

|det(Dϕx,y(a(x,y)))|
,

where a(x,y) satisfies: ϕ(x,y)(a(x,y)) = 0. Given qh(x,y) in (4.12) and ν(x) in (1.3), the
acceptance probability (2.3) can be derived from the Metropolis-Hastings ratio (4.8).
Specifically,

qh(y,x)ν(y)

qh(x,y)ν(x)
=

det(Bh(x))

det(Bh(y))

×exp

(
− (a−y)TMh(y)−1(a−y)−(a−x)TMh(x)−1(a−x)

hkT
− U(y)−U(x)

kT

)
,

where we have introduced a=a(x,y) =a(y,x), which satisfies: y−2a+x−hGh(a) = 0.
(Since ϕ(x,y) =ϕ(y,x) it follows that a(x,y) =a(y,x) and the Jacobian determinant of
the transformation ϕ appearing in (4.12) drops out of this ratio.) The probability
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transition distribution of the algorithm can now be written in the Metropolis-Hastings
form (4.6):

Ph(x,dy) =ph(x,y)dy+rh(x)δx(dy) , (4.13)

where ph(x,y) is the off-diagonal transition density,

ph(x,y) = qh(x,y)αh(x,y) ,

and rh(x) is the probability of remaining at the same point,

rh(x) = 1−
∫
Rn

ph(x,z)dz .

Thus, we conclude that the Metropolis integrator, Algorithm 2.1, is reversible, and
therefore, preserves the stationary distribution µ(dx) = (ν(x)/Z)dx.

We now turn to proving that the k-step transition probability of the integrator
converges to this stationary distribution in the limit k→∞. Since the target density
(1.3) and the transition density (4.11) are strictly positive and smooth everywhere,
the algorithm is irreducible with respect to Lebesgue measure and aperiodic; see,
e.g., Lemma 1.2 of [81] and references therein. According to Corollary 2 of [103], a
Metropolis-Hastings algorithm that is irreducible with respect to the same measure
it is designed to preserve is positive Harris recurrent. Consequently, the algorithm is
irreducible, aperiodic, and positive Harris recurrent. According to Proposition 6.3 of
[85], these properties are equivalent to ergodicity of the chain.

We conclude this section by remarking that while Theorem 4.1 assumes that ν(x)
is normalizable, neither the ν-symmetry condition (1.6) – which is a special case of
(4.5) – nor the Metropolis-Hastings algorithm require that ν(x) is normalizable. In
fact, the identity (4.5) does not require that µ(dx) is a probability measure, and
is automatically satisfied by a Metropolis-Hastings chain with transition probability
distribution (4.6). In the next section, we discuss the benefits of using an integration
scheme that exactly preserves the ν-symmetry condition (1.6).

5. Weak Accuracy at Constant Temperature. By casting Algorithm 2.1
as a Metropolis-Hastings algorithm, the previous section showed that the algorithm
satisfies the ν-symmetry condition (1.6) by design. For the diffusion process Y (t) that
solves (1.1), this ν-symmetry property is equivalent to the self-adjoint property (1.5),
which imposes a fairly strong constraint on the dynamics. To see this, expand the
generator of the process Y (t) acting on a test function f(x) in (1.4) as follows:

(Lf)(x) = (−M(x)DU(x)+kT divM(x))TDf(x)+kT trace(M(x)D2f(x)) , (5.1)

and consider another diffusion process Ỹ (t) driven by the same noise, yet with a
different drift:

dỸ =a(Ỹ )dt+
√

2kTB(Ỹ )dW , Ỹ (0)∈Rn . (5.2)

Let L̃ represent the generator of Ỹ (t) whose action on a test function is given by:

(L̃f)(x) =a(x)TDf(x)+kT trace(M(x)D2f(x)) .

If the generator of this diffusion is self-adjoint with respect to ν(x), then its drift is
uniquely determined:

a(x) =−M(x)DU(x)+kT (divM)(x) , (5.3)



Metropolis integrators for self-adjoint diffusions 25

and is identical to the drift appearing in (1.1). To prove this statement, note that
self-adjointness of the differential operator L̃ implies that:

〈f,L̃g〉ν = 〈L̃f,g〉ν =

∫
(L̃f)(x)g(x)ν(x)dx ,

=

∫
ai(x)

∂f

∂xi
(x)g(x)ν(x)dx+kT

∫
Mij(x)

∂2f

∂xi∂xj
(x)g(x)ν(x)dx ,

=

∫ (
ai(x)−kT ∂Mij

∂xj
(x)+Mij(x)

∂U

∂xj
(x)

)
∂f

∂xi
(x)g(x)ν(x)dx

−kT
∫
Mij(x)

∂g

∂xj
(x)

∂f

∂xi
(x)ν(x)dx ,

where the Einstein notation has been used to indicate a sum over repeated indices.
The last step in this calculation involves an integration by parts with vanishing bound-
ary terms due to suitable boundary conditions on the test functions. Since g(x) above
is arbitrary, we can choose g(x) = 1 to obtain:∫ (

ai(x)−kT ∂Mij

∂xj
(x)+Mij(x)

∂U

∂xj
(x)

)
∂f

∂xi
(x)ν(x)dx= 0 .

Arbitrariness of f(x) implies (5.3). This constraint on the dynamics seems to moti-
vate using approximations which preserve the ν-symmetry property of the continuous
process, like the Metropolis integrator. We must consider, however, what precisely is
gained – if anything – from a discretization that satisfies ν-symmetry especially when
ν(x) is not normalizable.

We thus take this analysis one step further. Consider a process X̃(t) that satisfies
the SDE:

dX̃= ã(X̃)dt+
√

2kTBh(X̃)dW , X̃(0)∈Rn , (5.4)

for all t∈ [0,h]. The infinitesimal generator Lh of this process is given by:

(Lhf)(x) = ã(x)TDf(x)+kT trace(Mh(x)D2f(x)) ,

where Mh(x) =Bh(x)Bh(x)T . Assuming that the noise in (5.4) is a single step approx-
imation to the exact noise appearing in (1.1) and that Lh is self-adjoint with respect
to ν(x), it immediately follows from the derivation of (5.3) that ã(x) is a single step
approximation to the true drift in (1.1):

ã(x) =−M(x)DU(x)+kT (divM)(x)+O(h) .

We interpret this result as saying that:

noise accuracy is sufficient for accuracy of a ν-symmetric integrator.

This result enables the design of integrators that satisfy Property (P4) – avoid com-
puting the divergence of the mobility matrix – and is one of the main advantages of
using a ν-symmetric integrator to simulate a self-adjoint diffusion.

The following theorem specializes this result to a Metropolis integrator. It requires
that Bh(x) is chosen so that the Brownian force appearing in (1.1) is approximated
to leading order. We emphasize that nowhere in the statement of this theorem is
there a similar requirement on Gh(x), and just to be clear, Gh(x) does not need to
approximate any part of the drift appearing in (1.1).
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Theorem 5.1 (Weak Accuracy). Assume that

Bh(x)Bh(x)T =M(x)+O(h) for all x∈Rn .

For every sufficiently regular Bh(x), Gh(x), and time interval T >0, there exists a
C(T,Gh,Bh)>0 such that the Metropolis integrator, Algorithm 2.1, satisfies:

|Ex(f(Y (bt/hch))−Ex(f(Xbt/hc))|≤C(T,Gh,Bh)h1/2 ,

for all t∈ [0,T ].

In order to prove Theorem 5.1, we analyze the transition probability distribution
of the Metropolis integrator. To this end let us fix some notation. Let Pt and Ph
respectively denote the transition probabilities of the true solution and Metropolis
integrator, whose actions on a test function f(x) are given by:

(Ptf)(x) =Exf(Y (t)) , with Y (0) =x , (5.5)

(Phf)(x) =Ex(f(X?
1 )αh(X0,X

?
1 ))+f(X0)Ex(1−αh(X0,X

?
1 )) , with X0 =x . (5.6)

To express the derivative of the mobility tensor, we adopt the following shorthand:

DM(x)(u,v,w) =
∂Mij

∂xk
ukvjwi .

In this notation there are three vectorial inputs to the tensor DM(x). Notice that the
first input gives the direction of the derivative of M(x). Also notice that since M(x)
is symmetric, DM(x)(u,v,w) =DM(x)(u,w,v). When evaluated at two vectors, this
third-order tensor returns a vector with ith component given by:

(DM(x)(u,v))i=
∂Mij

∂xk
ukvj .

With this notation consider the following approximation to the acceptance probability:

α̃h(x,ξ) = 1∧e−
√

2h
kT Γ(x,ξ) , (5.7)

where we have introduced:

Γ(x,ξ) = (DU(x)+M(x)−1Gh(x))TBh(x)ξ (5.8)

+
kT

2
trace(M(x)−1DM(x)(Bh(x)ξ))− 1

2
DM(x)(Bh(x)ξ,Bh(x)−T ξ,Bh(x)−T ξ) .

Recall, ξ∈Rn denotes a Gaussian random vector with mean zero and covariance
E(ξiξj) =kTδij . It is straightforward to show that this approximation satisfies:{
α̃h(x,ξ) =αh(x,y)+O(h) , with y=x+

√
2hBh(x)ξ+hGh

(
x+
√

h
2Bh(x)ξ

)
.

Notice that when Gh(x) =−M(x)DU(x) the first term in (5.8) vanishes which may
lead to an improvement in the acceptance rate, especially if the mobility matrix is
constant. We emphasize that this choice of Gh(x) is not required by Theorem 5.1. It
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is also apparent that adding (divM)(x) to Gh(x) does not yield a similar improvement
in the acceptance rate.

Proof. [Proof of Theorem 5.1] The proof focuses on deriving the following upper
bound on the difference between Ph in (5.5) and Ph in (5.6):

|(Phf)(x)−(Phf)(x)|≤Ch3/2 , (5.9)

for both sufficiently small h and regular test functions f(x). Standard results in
numerical analysis for SDEs then imply the algorithm converges weakly on finite time
intervals with global order 1/2; see for instance [83, Chapter 2.2]. For a detailed
treatment of the technical issues involved in extending this one-step error estimate
to a global error estimate when the potential force appearing in (1.1) is not globally
Lipschitz, the reader is referred to [8].

Using Taylor’s theorem and (5.6), one can write:

Exf(X1) =f(x)+I1 +I2 +I3 +I4 +I5 +I6 , (5.10)

where we have introduced

I1 =Ex (Df(x)(X?
1 −x)) ,

I2 =
1

2
Ex
(
D2f(x)(X?

1 −x,X?
1 −x)

)
,

I3 =Ex (Df(x)(X?
1 −x)(α̃h(x,ξ)−1)) ,

I4 =Ex (Df(x)(X?
1 −x)(αh(x,X?

1 )− α̃h(x,ξ))) ,

I5 =
1

2
Ex
(
D2f(x)(X?

1 −x,X?
1 −x)(αh(x,X?

1 )−1)
)
,

I6 =
1

2
Ex
(
αh(x,X?

1 )

∫ 1

0

(1−s)2D3f(x+s(X?
1 −x))(X?

1 −x)3ds

)
,

where X?
1 denotes the proposal move (2.1) with X0 =x. (Here we interpret D3f(x)y3

as being the trilinear form D3f(x) applied to the triple (y,y,y).) The terms f(x), I1,
I2 and I3 contribute to the weak accuracy of the method. In what follows we describe
how to treat these terms. It is straightforward to show that the remaining terms I4,
I5 and I6 in (5.10) are O(h3/2).

Notice that I1 simplifies to,

I1 =hEx
(
Df(x)TGh(X̃1)

)
,

=hDf(x)TGh(x)+O(h3/2) . (5.11)

The leading term in I2 involves a quadratic form in ξ, and hence,

I2 =hE
(
D2f(x)(Bh(x)ξ,Bh(x)ξ)

)
+O(h2) ,

=hkT trace(M(x)D2f(x))+O(h2) . (5.12)

By referring to (5.1), let’s take stock of the analysis so far. The term I2 con-
tributes the last term in (5.1) – the so-called ‘Ito correction term.’ Choosing
Gh(x) =−M(x)DU(x)+O(h), the term I1 accurately represents the contribution of
the deterministic drift to (5.1). However, this choice of Gh(x) is insufficient for accu-
racy since the term involving (divM)(x) in (5.1) has not been accounted for. While
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this missing term can be added to Gh(x), an explicit formula for (divM)(x) is not
typically available in practical BD problems. This discussion foretells the importance
of the term I3. In fact, it will be shown that – independent of the precise form of
Gh(x) – the sum of I1 and I3 represent the leading order effect of the drift in (5.1).

Now we show how to estimate I3. To simplify these calculations, introduce
c(z,z,z) = 1

2

√
2hkTDM(Bhz,B

−T
h z,B−Th z) ,

b(z) =−
√

2h
kT (DU+M−1Gh)TBhz−

√
2hkT
2 trace(M(x)−1DM(Bhz)) ,

a=
√

2hkTBThDf ,

(5.13)

where z∈Rn. For the sake of clarity, the dependence of Df(x), Gh(x), M(x) and
Bh(x) on x is suppressed. In terms of these variables I3 can be written as,

I3 = (2π)−n/2
∫
Rn

aT ze−
|z|2
2

(
1∧eb(z)+c(z,z,z)−1

)
dz+O(h3/2) ,

=−(2π)−n/2
∫
Rn

divz(e
− |z|

2

2 a)
(

1∧eb(z)+c(z,z,z)−1
)
dz+O(h3/2) .

Let Ω ={z∈Rn | b(z)+c(z,z,z)≤0}, and reduce this integral into,

I3 =−(2π)−n/2
∫

Ω

divz(e
− |z|

2

2 a)
(
eb(z)+c(z,z,z)−1

)
dz+O(h3/2) ,

= (2π)−n/2
∫

Ω

e−
|z|2
2 (b(a)+c(a,z,z)+2c(z,a,z))

(
eb(z)+c(z,z,z)

)
dz+O(h3/2) .

The last step applies the following multidimensional integration by parts formula∫
∂Ω

g1(z)~g2(z)T~νdz=

∫
Ω

g1(z)(divz~g2)(z)dz+

∫
Ω

~g2(z)T (∇zg1)(z)dz ,

by setting: g1(z) =eb(z)+c(z,z,z)−1 and ~g2(z) =e−
|z|2
2 a. Here, ∂Ω ={z | b(z)+

c(z,z,z) = 0} and ~ν is the outward pointing normal to the region Ω. Since the
map z 7→ b(a)+c(a,z,z)+2c(z,a,z) is symmetric (or even: f(−z) =f(z)) and z 7→
b(z)+c(z,z,z) is anti-symmetric (or odd: f(−z) =−f(z)), it follows that

I3 = (2π)−n/2
∫

Ω

e−
|z|2
2 (b(a)+c(a,z,z)+2c(z,a,z))dz+O(h3/2)

+(2π)−n/2
∫

Ω

e−
|z|2
2 (b(a)+c(a,z,z)+2c(z,a,z))(eb(z)+c(z,z,z)−1)dz ,

=
1

2
(2π)−n/2

∫
Rn

e−
|z|2
2 (b(a)+c(a,z,z)+2c(z,a,z))dz+O(h3/2)

+(2π)−n/2
∫

Ω

e−
|z|2
2 (b(a)+c(a,z,z)+2c(z,a,z))(eb(z)+c(z,z,z)−1)dz ,

=
1

2
(b(a)+cijjai+2cijiaj)+O(h3/2) .

Substituting (5.13) back into this expression and simplifying yields,

I3 =h(kT divM−MDU−Gh)TDf+O(h3/2) . (5.14)

The estimates (5.11), (5.12) and (5.14) imply that,

(Phf)(x) =f(x)+h(Lf)(x)+O(h3/2) ,

which agrees with an Ito-Taylor expansion of (Phf)(x) up to O(h3/2), and hence, the
scheme has the desired single step accuracy.



Metropolis integrators for self-adjoint diffusions 29

6. Small Noise Limit.

6.1. General Principle. For every t>0, the solution to (1.1) with non-random
initial condition Y (0) =x∈Rn converges in the small noise limit to the solution of the
following ordinary differential equation:

Ẏ=−M(Y)DU(Y) , Y(0) =x∈Rn , (6.1)

in the L2-norm, meaning that:

Ex
{
|Y (t)−Y(t)|2

}
→0 , as kT→0 ,

which we denote as Y (t)
L2

→Y(t). At the same time, the proposal move in (2.1) satisfies,

X?
1
L2

→X0 +hGh(X0) . (6.2)

Higher order accuracy of Algorithm 2.1 necessitates that the deterministic update
(6.2) approximates Y(h) to higher-order. However, this condition is not sufficient
because the actual update in Algorithm 2.1 involves a Bernoulli random variable (2.2),
which imposes an additional requirement for deterministic accuracy on the acceptance
probability αh(x,y) in (2.3):

αh(X0,X
?
1 )→1 , as kT→0 . (6.3)

Otherwise, the proposal move will not be accepted, and consequently, the integrator
will be dynamically inaccurate. Finding necessary and sufficient conditions for de-
terministic accuracy motivates an asymptotic analysis of the Metropolis integrator.
This analysis reveals the following asymptotic relationship between αh(x,y) and a
deterministic function fkT (x,h),

αh(X0,X
?
1 )∼1∧exp

(
− 1

kT
fkT (X0,h)

)
as kT→0 , (6.4)

where we have introduced{
fkT (x,h) =U(x+hGh(x))−U(x)+hGh(x)TMh(x+hGh(x))−1Gh(x) ,

Mh(x) =Bh(x)Bh(x)T .
(6.5)

From this asymptotic relation, it follows that:

fkT (X0,h)<0 =⇒ αh(X0,X
?
1 )→1 ,

and the Metropolis integrator acquires the deterministic accuracy of its proposal move.

Thus, our design philosophy is to pick Gh(x) and Bh(x) in Algorithm 2.1 so that:

(1) the update x 7→x+hGh(x) generates a higher order accurate approximation to
the solution of (6.1); and simultaneously,

(2) fkT (x,h) is negative definite.

We emphasize that the time step size h is held fixed in the above statements.
These ideas are formulated precisely in the following theorem.
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Theorem 6.1. Consider the solutions Y (t) and X produced by (1.1) and Algo-
rithm 2.1, respectively. Let Y(t) denote the exact solution to (6.1) with non-random
initial condition Y(0) =x. Let X denote the discrete path defined by:

Xk+1 =Xk+hGh(Xk) , X0 =x∈Rn . (6.6)

Assume that Gh(x) and Bh(x) in Algorithm 2.1 are selected so that the following hold.

(A1) For every T >0 there exists C̃(T )>0 such that:

|Y(bt/hch)−Xbt/hc|≤ C̃(T )hp , for all t∈ [0,T ] .

(A2) The function fkT (x,h) in (6.5) is negative definite for all x∈Rn.

Then there exists a constant C(T )>0 such that

lim
kT→0

(Ex|Y (bt/hch)−Xbt/hc|2)1/2≤C(T )hp ,

for every t∈ [0,T ] and initial condition x∈Rn.

A Metropolis integrator that satisfies these assumptions has the interesting prop-
erty that even when the noise is infinitesimal the scheme will be both accurate and
ν-symmetric. In practice, to meet Assumption (A1) we select Gh(x) and Bh(x) in
Algorithm 2.1 to be n-stage Runge-Kutta methods, and pick the parameters in these
methods to ensure that both Assumption (A1) and (A2) in Theorem 6.1 are satisfied.

Proof. By the triangle inequality, the desired error can be decomposed into

(Ex|Y (bt/hch)−Xbt/hc|2)1/2≤

≤ C̃(T )hp by Assumption (A1)︷ ︸︸ ︷
|Y(bt/hch)−Xbt/hc| (6.7)

+(Ex|Y (bt/hch)−Y(bt/hch)|2)1/2︸ ︷︷ ︸
L2
→ 0 by Lemma 8.1

+(Ex|Xbt/hc−Xbt/hc|2)1/2︸ ︷︷ ︸
L2
→ 0 by Lemma 8.2

using Assumption (A2)

.

By Assumption (A1), X is a pth-order approximation of Y(t), and so, the first term
in the upper bound in (6.7) is bounded by C(T )hp. The remaining terms vanish in
the small noise limit. Indeed, by applying the Ito-Taylor formula to |Y (t)−Y(t)|2,
and using Gronwall’s lemma, it can be shown that

Ex|Y (t)−Y(t)|2≤kTC2 exp(C1T ) , ∀ t∈ [0,T ] . (6.8)

From this somewhat crude estimate, it follows that the second term appearing in the
upper bound in (6.7) vanishes in the small noise limit. The third term in this upper
bound vanishes because the mean-squared acceptance probability equals one in the
small noise limit as a consequence of Assumption (A2). More details are provided in
Lemmas 8.1 and 8.2 provided in the Appendix.
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6.2. Necessity of Second-Order Accuracy. Here we theoretically show what
can go wrong with the simple choice:

Gh(x) =−M(x)DU(x) .

This Gh(x) corresponds to a forward Euler approximation to (6.1). For the sake of
clarity, assume that the mobility is constant and set Bh=B. Using Taylor’s theorem
(6.5) can be written as:

fkT (x,h) =h2

(∫ 1

0

(1−s)D2U(xs)(MDU(x),MDU(x))ds

)
, xs=x−shMDU(x) .

From this expression it is clear that the function fkT (x,h) can become positive in
regions where U(x) is convex, no matter how small the time step size h is made.
In this case the rejection rate of the Metropolis integrator, Algorithm 2.1, will tend
to one in the small noise limit. In other words, even though the proposal move is
first-order accurate, it is never accepted, and hence, the Metropolis integrator fails
to be first-order accurate. This prediction was verified in the numerical experiments
provided in §3, and motivates using proposal moves that are deterministically second
or higher-order accurate.

6.3. Second-Order Accuracy. We will now use Theorem 6.1 to prove that
the Metropolis integrator, Algorithm 2.1, based on the following choice of Gh(x) and
Bh(x) acquires second-order accuracy in the small noise limit. Let Gh(x) be a two-
stage Runge-Kutta method:

Gh(x) =−b1M(x)DU(x)−b2M(x)DU(x1)

−b3M(x1)DU(x)−b4M(x1)DU(x1) ;

x1 =x−ha21M(x)DU(x) ,

(6.9)

with parameters b1, b2, b3, b4, and a21. Second-order accuracy requires that:

b1 +b2 +b3 +b4 = 1 , (b2 +b4)a21 = 1/2 , b3 = b2 , (6.10)

and so, we can choose a21 and b4 as free parameters. Define the matrix Bh(x) through:{
Bh(x)Bh(x)T =d1M(x)+d2M(x1) ;

x1 =x+hc21M(x)DU(x) .
(6.11)

First-order accuracy at constant temperature requires that d1 +d2 = 1 which leaves d2

and c21 as free parameters. To summarize, choosing Gh(x) and Bh(x) given by (6.9)
and (6.11), respectively, leads to a Metropolis integrator that satisfies Assumption
(A1) of Theorem 6.1 with p= 2. The following assumption on U(x) will be sufficient
to select these free parameters so that Assumption (A2) is also satisfied.

Assumption 6.1. Assume the potential energy function U :Rn→R satisfies:

detD2U(y) 6= 0 ,

for all y∈Rn.

With this assumption we are now in position to prove the following statement
which optimizes the free parameters appearing in (6.9) and (6.11) so that Assumption
(A2) is satisfied.
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Theorem 6.2. Consider the solution Y(t) to (6.1) with the non-random initial
condition x∈Rn and assume that U(x) satisfies Assumption 6.1. Let X denote the
approximation produced by Algorithm 2.1 with Gh(x) in (6.9) and Bh(x) in (6.11)
with parameter values:

b1 = 5/8 , b2 = b3 =−3/8 , b4 = 9/8 , d1 = 1/4 , d2 = 3/4 , a21 = c21 = 2/3 . (6.12)

For every T >0 there exists a constant C(T )>0 such that

lim
kT→0

(Ex|Y (bt/hch)−Xbt/hc|2)1/2≤C(T )h2 ,

for every t∈ [0,T ].

Proof. According to Assumptions (A1) and (A2) of Theorem 6.1, to prove this
statement it suffices to show that Assumption (A2) is satisfied by Algorithm 2.1
operated with Gh(x) in (6.9), Bh(x) in (6.11), and the parameter values given in
(6.12). To illustrate how we do this, let us assume for simplicity that: M is constant
and (6.10) holds. Under these assumptions (6.5) simplifies to:

fkT (x,h) =−h
3

4

(
M− h

2
MA(x)M

)
(A(x)MDU(x),A(x)MDU(x)) (6.13)

+
h2

2
(B(x)−A(x))(Gh(x),Gh(x)) ,

where we have introduced:

A(x) =

∫ 1

0

D2U(x+sha21k1)ds , and B(x) = 2

∫ 1

0

(1−s)D2U(x+shGh)ds . (6.14)

Assumption (A2) in Theorem 6.1 requires that the leading order term arising in (6.13)
is strictly negative and dominates the indefinite terms appearing at higher order. (In
situations where D2U(x)MDU(x) = 0, this might not be the case no matter how small
h is made, but such situations are excluded by requiring Assumption 6.1 to hold.) If
U(x) is quadratic, then B=A, the second term in (6.13) vanishes, and fkT (x,h) is
negative definite if h<2/‖MA‖. In the non-quadratic case, ‖MA‖ in this condition
is replaced by a local Lipschitz constant on the vector field MDU(x) and the second
term in (6.13) is bounded as follows. A Taylor expansion of B(x)−A(x) yields:

B(x)−A(x) =h

(
1

3
− a21

2

)
D3U(x)(MDU(x))+O(h2) .

Choosing a21 = 2/3 ensures that the second term in (6.13) is O(h4), and therefore,
that fkT (x,h) is negative definite for h small enough. This choice of a21 corresponds
to the so-called Ralston Runge-Kutta scheme [87].

When the mobility matrix is not constant, the choice Mh(x) =M(x) does not
always lead to a negative semi-definite fkT (x,h) function. This motivates the approx-
imation (6.11). We will choose the remaining free parameters to remove the indefinite
terms appearing at O(h2) and O(h3) that involve the derivatives of the mobility. By
eliminating these terms, fkT (x,h) will be dominated by the leading term appearing
in (6.13), and hence, the argument presented when the mobility is constant carries
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over to the non-constant case. In addition to the notation introduced in the proof of
Theorem 5.1, we use the following shorthand for the second derivative of the mobility:

D2M(x)(s,u,v,w) =
∂Mij

∂xk∂xl
slukvjwi .

Symmetry of second derivatives implies that D2M(x)(s,u,v,w) =D2M(x)(u,s,v,w).
For brevity, if a function is evaluated at x, the function’s input is omitted.

Based on the preceding discussion, assume the second order conditions (6.10) hold
and a21 = 2/3. These conditions leave b4, d2, and c21 as free parameters. Rewrite
fkT (x,h) as,

fkT (x,h) =hGThM
−1Gh+U(x+hGh)−U+hGThM

−1(M−Mh(x+hGh))M−1Gh
(6.15)

+hGThM
−1(M−Mh(x+hGh))M−1(M−Mh(x+hGh))M−1Gh+O(h4) .

A Taylor expansion of the mobility matrix implies Gh(x) can be written as,

Gh=−MDU+
h

2
(MAMDU+DM(MDU,DU)) (6.16)

− h
2

6
D2M(MDU,MDU,DU)−h2b4a

2
21DM(MDU,AMDU)+O(h3) .

Substituting (6.16) into (6.15) yields,

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) (6.17)

− h
2

2
DM(MDU,DU,DU)+

h3

4
DM(MDU,DU)TM−1DM(MDU,DU)

+h3b4a
2
21DM(MDU,DU,AMDU)+

h3

6
D2M(MDU,MDU,DU,DU)

+hGThM
−1(M−Mh(x+hGh))M−1Gh

+hGThM
−1(M−Mh(x+hGh))M−1(M−Mh(x+hGh))M−1Gh+O(h4) .

Observe that the leading term in (6.17) includes (6.13) and additional terms involving
the derivatives of the mobility. Using (6.11) expand Mh(x+hGh) as:

Mh(x+hGh) =M+h(d2c21−1)DM(MDU)+O(h2) . (6.18)

Substitute (6.18) into (6.17) to obtain:

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) (6.19)

+h2(
1

2
−d2c21)DM(MDU,DU,DU)+O(h3) .

If d2c21 = 1/2 the derivatives of the mobility up to O(h3) are eliminated in this ex-
pression. Under this condition

Mh(x+hGh) =M− h
2
DM(MDU)+c21

h2

4
D2M(MDU,MDU)+O(h3) . (6.20)
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Substituting (6.20) into (6.17) yields:

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) (6.21)

+h3(b4a
2
21−

1

2
)DM(MDU,DU,AMDU)

+h3(
1

6
− c21

4
)D2M(MDU,MDU,DU,DU)+O(h4) .

Eliminating the terms up to O(h3) requires the conditions: b4a
2
21 = 1/2 and c21 = 2/3.

The above conditions uniquely specify the parameters appearing in (6.9) and (6.11).
Moreover, they imply that the leading term in (6.21) is the same as (6.13), and by
the same dominant asymptotic argument, fkT (x,h) is negative semi-definite when h
is small enough.

6.4. Third-Order Accuracy. Define Gh(x) to be the following three-stage
Runge-Kutta method:

Gh(x) =−b1M(x)DU(x)−b2M(x1)DU(x1)−b3M(x2)DU(x2) ;

x1 =x−ha21M(x)DU(x) ;

x2 =x−ha31M(x)DU(x)−ha32M(x1)DU(x1) .

(6.22)

Third-order accuracy requires that:
b1 +b2 +b3 = 1 ,

b2a21 +b3(a31 +a32) = 1/2 ,

b2a
2
21 +b3(a31 +a32)2 = 1/3 ,

a21a32b3 = 1/6 ,

(6.23)

and so, we can choose a31 and a32 as free parameters. In a corresponding manner,
the covariance matrix of the approximation to the noise is defined as:

Bh(x)Bh(x)T =d1M(x)+d2M(x1)+d3M(x2) ;

x1 =x+hc21M(x)DU(x) ;

x2 =x+hc31M(x)DU(x)+hc32M(x1)DU(x1) .

(6.24)

First-order accuracy at constant temperature requires that d1 +d2 +d3 = 1 which
leaves five free parameters. Interestingly, every third-order Runge-Kutta method
yields a deterministically third-order Metropolis algorithm provided the parameters
in (6.24) are coupled to the parameters in (6.22) in the manner prescribed in the
following theorem.

Theorem 6.3. Let X denote the approximation Algorithm 2.1 with Gh(x) given
by (6.22), Bh(x) given by (6.24), and parameter values satisfying:

d1 = b1 , d2 = b2 , d3 = b3 , c21 =a21 , c31 =a31 , c32 =a32 . (6.25)

For every (b1,b2,b3,a21,a31,a32) satisfying (6.23), and for every T >0, there exists a
constant C(T )>0 such that

lim
kT→0

(Ex|Y (bt/hch)−Xbt/hc|2)1/2≤C(T )h3 , for every t∈ [0,T ] .
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Proof. According to Theorem 6.1, to prove this statement it suffices to show
that Assumption (A2) is met by Algorithm 2.1 operated using Gh(x) in (6.22), Bh(x)
in (6.24), and parameter values satisfying (6.23) and (6.25). A Taylor expansion of
Gh(x) yields:

Gh=−MDU+
h

2
(MAMDU+DM(MDU,DU))+R1h

2 +O(h3) . (6.26)

where we have introduced

R1 =−h
2

6
MA2MA1MDU− h

2

6
D2M(MDU,MDU,DU) , (6.27)

− h
2

2
DM(MDU,D2UMDU)− h

2

6
DM(MD2UMDU+DM(MDU,DU),DU) ,

and the following matrices:

A1 =

∫ 1

0

D2U(x−sha21MDU)ds ,

A2 =

∫ 1

0

D2U(x−sh(a31MDU+a32M(x1)DU(x1)))ds , x1 =x−ha21MDU ,

A= 2(b2a21A1 +b3(a31 +a32)A2) .

Observe that (6.26) matches (6.16) up to O(h2). It follows that

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) (6.28)

− h
2

2
DM(MDU,DU,DU)+

h3

4
DM(MDU,DU)TM−1DM(MDU,DU)

−h3RT1 DU+hGThM
−1(M−Mh(x+hGh))M−1Gh

+hGThM
−1(M−Mh(x+hGh))M−1(M−Mh(x+hGh))M−1Gh+O(h4) ,

where as before B= 2
∫ 1

0
(1−s)D2U(x+shGh)ds. In the case when U is quadratic:

A=B=A1 =A2 ,

and (6.28) simplifies to:

fkT =−h3

(
1

12
M− h

8
MAM

)
(AMDU,AMDU) , (if U is quadratic) .

This expression is negative if h<2/31/‖MA‖. In the non-quadratic case, and as
before, the norm of MA is replaced with a local Lipschitz constant on DU .

Assuming (6.25) an expansion of Mh yields:

Mh(x+hGh) =M− h
2
DM(MDU) (6.29)

+
h2

6

(
D2M(MDU,MDU)+DM(MD2UMDU+DM(MDU,DU))

)
.
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Substituting (6.27) and (6.29) into (6.28) and simplifying yields:

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) (6.30)

+
h3

6
DUTMA2MA1MDU .

This function is negative semi-definite provided h is small enough.

Although all of these third-order Runge Kutta methods lead to a negative semi-
definite fkT (x,h) function in the deterministic limit for sufficiently small time step,
the following theorem specifies an optimal choice of free parameters.

Proposition 6.1. Let X denote the approximation induced by Algorithm 2.1
with Gh(x) in (6.22) with parameter values given by

b1 = 1/6 , b2 = 2/3 , b3 = 1/6 , a21 = 1/2 , a31 =−1 , a32 = 2 . (6.31)

When M is constant, and h sufficiently small, this choice of parameters minimizes
the indefinite remainder terms in (6.28).

Proof. When M is constant, (6.28) simplifies to:

fkT (x,h) =−h
3

4

(
M− h

2
MAM

)
(AMDU,AMDU)+

h2

2
(B−A)(Gh,Gh) . (6.32)

A Taylor expansion of the indefinite remainder in (6.32) yields

B−A=h(b2a
2
21 +b3(a31 +a32)2− 1

3
)D3U(x)(MDU)

+h2(
1

6
− a31 +a32

6
)D3U(x)(D2UMDU)

+h2(
1

12
− b2a

3
21

3
− b3(a31 +a32)3

3
)D4U(x)(MDU,MDU)+O(h3) .

The third-order conditions (6.23) imply the O(h) term in B−A vanishes. Within
this two-parameter family of schemes it appears that one is optimal. In particular,
to eliminate the O(h2) error in B−A, the following additional conditions must be
satisfied: {

a31 +a32 = 1 ,

b2a
3
21 +b3(a31 +a32)3 = 1

4 .
(6.33)

The six equations in (6.23) and (6.33) uniquely specify a three stage Runge-Kutta
scheme. It is given by the following choice of coefficients:

b1 = 1/6 , b2 = 2/3 , b3 = 1/6 , a21 = 1/2 , a31 =−1 , a32 = 2 . (6.34)

This scheme is known as Kutta’s third order method [62].
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7. Conclusion. This paper presented a ν-symmetric integrator for self-adjoint
diffusions. This integrator is a Metropolis-Hastings algorithm with an optimized
Runge-Kutta based proposal move and target density set equal to ν(x). Since the
Metropolis-Hastings ratio does not involve the normalization constant of ν(x), the al-
gorithm is well-defined even in situations where this density is not normalizable (i.e.,
it is not a probability density). In the context of non-normalizable ν(x), the paper
proved that the algorithm is weakly accurate for finite noise as a direct consequence of
its ν-symmetry and its consistent approximation of the noise. Through an asymptotic
analysis of the integrator’s rejection rate in the small noise limit, second-order deter-
ministic accuracy was also established. For applications to BD, the scheme shares
the nice properties of the Fixman scheme (explicitness, finite-time accuracy, second-
order deterministic accuracy and avoids divergence of the mobility). In addition, it
is ergodic if ν(x) is normalizable. These properties imply that the scheme is able to
stably calculate dynamic quantities at reasonable time step sizes and generate long
trajectories. The paper verified these claims on a collection of low-dimensional toy
problems and a more realistic simulation of DNA in an unbounded solvent. These
features make the scheme appealing for the simulations of realistic BD applications,
which will be the topic of future investigations.

8. Appendix. Here we provide Lemmas required in the proof of Theorem 6.1.

Lemma 8.1. Consider the solutions Y (t) to (1.1) and Y(t) to (6.1) with initial
condition: Y (0) =Y(0) =x∈Rn. For every T >0, then

Y (t)
L2

→Y(t) , for all t∈ [0,T ] and x∈Rn .

Proof. By the Ito-Taylor formula,

|Y (t)−Y(t)|2≤2

∫ t

0

〈Y (s)−Y(s),−M(Y (s))DU(Y (s))+M(Y(s))DU(Y(s))〉ds

+2kT

∫ t

0

〈Y (s)−Y(s),divM(Y (s))〉ds+2kT

∫ t

0

traceM(Y (s))ds

+2
√

2kT

∫ t

0

〈Y (s)−Y(s),B(Y (s))dW (s)〉

Using bounds on M(x) and U(x) and their derivatives, and taking the expectation of
both sides of this inequality, it follows from Gronwall’s Lemma that

Ex|Y (t)−Y(t)|2≤C1

∫ t

0

Ex|Y (s)−Y(s)|2ds+kT C2 T ,

≤kT exp(C1T )C2 T .

Passing to the small noise limit produces the desired L2 convergence.

Lemma 8.2. Let X and X denote the numerical solutions generated by Algo-
rithm 2.1 and (6.6) respectively, with: X0 =X0 =x∈Rn. If the fkT (x,h) function of
Algorithm 2.1 satisfies Assumption (A2) in Theorem 6.1, then for every T >0,

Xbt/hc
L2

→Xbt/hc , for all t∈ [0,T ] and x∈Rn .
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Proof. The proof goes by induction over the number of steps, so it suffices to
consider the difference between a single step of both schemes conditioned on the
previous time step:

E|X1−X1|2 =E|X?
1 −X1|2αh(X0,X

?
1 )+ |X0−X1|2 E (1−αh(X0,X

?
1 )) ,

≤ (1+C1 h) |X0−X0|2 +C2 h
3/2 kT +C3 hE (1−αh(X0,X

?
1 )) .

The desired L2 convergence follows from applying Discrete Gronwall’s Lemma to this
recurrence inequality, passing to the small noise limit, and invoking Lemma 8.3.

Lemma 8.3. Let αh(X0,X
?
1 ) denote the acceptance probability in (2.3). If the

fkT (x,h) function of Algorithm 2.1 satisfies Assumption (A2) in Theorem 6.1, then

Eαh(X0,X
?
1 )→1 , as kT→0 ,

for all X0∈Rn.

Proof. Let X1 =X0 +hGh(X0) and Mh(x) =Bh(x)Bh(x)T . Expand the exponent
of αh(X0,X

?
1 ) in powers of kT to obtain:

αh(X0,X
?
1 ) =

1∧exp

(
− 1

kT

[
fkT (X0,h)+

kT

2
log

(
detMh(X1)

detMh(X0)

)
+gkT (X0,ξ,h)

])
(8.1)

where fkT (x,h) is given by (6.5) and gkT (x,ξ,h) is exactly:

gkT (x,ξ,h) =U(X?
1 )−U(X1)

+
√

2h(Bh(X0)ξ)TMh(X1)−1Gh(X1)

+h(Gh(X̃1)TMh(X1)−1Gh(X̃1)−Gh(X0)TMh(X1)−1Gh(X0))

+
1

2
ξTBh(X0)T (Mh(X1)−1−Mh(X0)−1)Bh(X0)ξ

+
1

2
ηTBh(X?

1 )−1(Mh(X1)−Mh(X?
1 ))Mh(X1)−1Bh(X?

1 )η

+
kT

2
log

(
detMh(X?

1 )

detMh(X1)

)
.

Recall that, ξ∈Rn denotes a Gaussian random vector with mean zero and covariance
E(ξiξj) =kTδij . Since:{

X?
1 −X1 = 2(X̃1−X0)+h(Gh(X̃1)−G(X0)) ,

X̃1−X0 =
√

h
2Bh(X0)ξ ,

(8.2)

it follows from bounds on the derivatives of both Gh(x) and Mh(x) that,

gkT (x,ξ,h)≤C1 |ξ|2 h1/2 .

Thus,

α̃h(X0,ξ)≤αh(X0,X
?
1 )≤1 (8.3)
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where we have introduced:

α̃h(X0,ξ) = 1∧exp

(
− 1

kT

[
fkT (X0,h)+

kT

2
log

(
detMh(X1)

detMh(X0)

)
+C1 |ξ|2 h1/2)

])
.

Taking the expectation of the lower bound in (8.3) yields:

E α̃h(X0,ξ) =

∫
ΩkT

exp

(
−|z|

2

2

)
(2π)−n/2dz

+exp

(
− 1

kT

[
fkT (X0,h)+

kT

2
log

(
detMh(X1)

detMh(X0)

)])
×
∫

Ωc
kT

exp

(
−|z|

2

2
(1+C1h

1/2)

)
(2π)−n/2dz

where

ΩkT =

{
y∈Rn : C1 h

1/2 |y|2≤−fkT (X0,h)

kT
− 1

2
log

(
detMh(X1)

detMh(X0)

)}
.

Passing to the small noise limit kT→0, Assumption (A2) in Theorem 6.1 implies:

ΩkT→Rn , as kT→0 .

The desired limit statement follows from applying the Squeeze Lemma to (8.3).
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[71] J. J. López Cascales and J. Garca de la Torre, Shear-rate dependence of the intrinsic vis-

cosity of bead-and-spring chains: hydrodynamic interaction and excluded-volume effects,
Polymer 32 (1991), 3359.

[72] D. K. Lubensky and D. R. Nelson, Driven polymer translocation through a narrow pore,



42 BOU-RABEE, DONEV, and VANDEN-EIJNDEN

Biophysical Journal 77 (1999), no. 4, 1824–1838.
[73] R. S. Maier and D. L. Stein, Transition-rate theory for nongradient drift fields, Phys Rev Lett

69 (1992), no. 26, 3691.
[74] , Escape problem for irreversible systems, Phys Rev E 48 (1993), no. 2, 931.
[75] , A scaling theory of bifurcations in the symmetric weak-noise escape problem, J Stat

Phys 83 (1996), no. 3-4, 291–357.
[76] R. Manella, Absorbing boundaries and optimal stopping in a stochastic differential equation,

Physics Letters A 254 (1999), 257–262.
[77] L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, String method in collective

variables: Minimum free energy paths and isocommittor surfaces, J Chem Phys 125
(2006), 024106.

[78] L. Maragliano and E. Vanden-Eijnden, A temperature accelerated method for sampling free
energy and determining reaction pathways in rare events simulations, Chem Phys Lett
426 (2006), 168175.

[79] J. C. Mattingly, N. S. Pillai, and A. M. Stuart, Diffusion limits of the random walk Metropolis
algorithm in high dimensions, Ann Appl Probab 22 (2012), 881–930.

[80] S. Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and C. Clementi, Dynamics of
polymer translocation through nanopores: Theory meets experiment, Phys Rev Lett 96
(2006), no. 11, 118103.

[81] K. L. Mengersen and R. L. Tweedie, Rates of convergence of the Hastings and Metropolis
algorithms, Ann Stat 24 (1996), 101–121.

[82] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations
of state calculations by fast computing machines, J Chem Phys 21 (1953), 1087–1092.

[83] G. N. Milstein and M. V. Tretyakov, Stochastic numerics for mathematical physics, Springer,
Berlin, 2004.

[84] , Numerical integration of stochastic differential equations with nonglobally Lipschitz
coefficients, IMA J Num Anal 43 (2005), 1139–1154.

[85] E. Nummelin, General irreducible Markov chains and non-negative operators, Cambridge
University Press, New York, NY, 1984.
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