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Fluctuations in a fluid are strongly affected by the presence of a macroscopic gradient making them
long-ranged and enhancing their amplitude. While small-scale fluctuations exhibit diffusive lifetimes,
moderate-scale fluctuations live shorter because of gravity. In this letter we explore fluctuations of
even larger size, comparable to the extent of the system in the direction of the gradient, and find
experimental evidence of a dramatic slowing-down of their dynamics. We recover diffusive behavior
for these strongly confined fluctuations, but with a diffusion coefficient that depends on the solutal
Rayleigh number. Results from dynamic shadowgraph experiments are complemented by theoretical
calculations and numerical simulations based on fluctuating hydrodynamics, and excellent agreement
is found. Hence, the study of the dynamics of non-equilibrium fluctuations allows to probe and
measure the competition of physical processes such as diffusion, buoyancy and confinement; i.e. the
ingredients included in the Rayleigh number, which is the control parameter of our system.
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The physics of systems out of thermodynamic equi-
librium is instrumental in several research areas such
as physics of fluids, soft matter, astrophysics, statistical
physics, biology, metallurgy and many others [1, 2]. As
an example, we consider in this letter a binary liquid mix-
ture subjected to a steady temperature gradient parallel
to gravity. Two component liquids experience separation
in the presence of temperature differences due to differ-
ent affinities of molecules to ’heat’ [3]. A phenomenon
referred to as thermodiffusion or Soret effect that will
induce a steady concentration gradient in the system.
This so-called solutal Rayleigh-Bénard setting, allows for
a very refined control of density profiles within the sys-
tem and the ability to investigate intimate properties of
fluids like molecular interactions [4–6].

Any full description of non-equilibrium systems must
include spontaneous fluctuations, whose nature is quite
different from fluctuations around equilibrium states
mainly due to the former long-ranged nature [7–9],
not restricted to the proximity of critical points [10].
Non-equilibrium fluctuations are thus a basic problem
in understanding transport phenomena like mass dif-
fusion [11], as well as fluctuation-induced, or Casimir,
forces [12–14]. In our non-equilibrium problem, the cou-
pling between spontaneous velocity fluctuations and the
macroscopic gradient results in giant non-equilibrium
concentration fluctuations (c-NEF) in the quiescent
state [9, 15]. Gravity quenches the intensity (statics) of
fluctuations with length scales larger than a character-
istic (horizontal) size 2π/q?s related to the dimensionless
solutal Rayleigh number Ras of the system [15, 16]:

Ras =
βs~g · ~∇c
νD

L4; | Ras |=(q?sL)4, (1)

where βs = ρ−1(∂ρ/∂c) is the solutal expansion coeffi-

cient, ρ the fluid density, ~g the gravity acceleration, c the
concentration (mass fraction) of the denser component

of the fluid, ~∇c the concentration gradient, D the mass
diffusion coefficient, ν the kinematic viscosity, and q?s a
characteristic solutal wave vector. This number is the
equivalent for the concentration of the Rayleigh number
for the temperature and describes the competition of op-
posite forces like buoyancy, diffusion and boundaries. It
is also known that, in addition to gravity, the presence of
boundaries further suppress the intensity of c-NEFs with
length scales larger than the confinement length L in the
direction of the gradient [9, 17].

The role played by the different physical mechanisms
(diffusion, buoyancy, confinement) on the dynamics of
the fluctuations has received comparatively little atten-
tion. It is known that gravity accelerates the dynam-
ics of c-NEFs with (horizontal) length scales larger than
2π/q?s [18, 19]. However, this means that fluctuations of
a larger size decay faster, which is a rather non-intuitive
behavior [20] and cannot be extrapolated to zero wave
number. To investigate these open issues further, we have
developed a new shadowgraph machine, with a state-of-
the-art CCD detector able to measure at wave vectors
down to qmin = 8.9 cm−1. Hence, we explored an entire
new range of wave numbers, smaller than ever before,
and discovered a dramatic slowing-down in the dynamics
of c-NEFs. We interpret this slowing-down as caused by
confinement, whose role on the dynamics of c-NEFs has
not been investigated so far. Our work demonstrates that
the study of the dynamics, rather than the intensity, of
non-equilibrium fluctuations gives deep insights into the
competition of physical processes such as diffusion, buoy-
ancy, and confinement.

Typically, the dynamics of fluctuations is character-
ized in terms of an Intermediate Scattering Function (ISF
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or, equivalently, a normalized time correlation function)
f(q, t), with f(q, 0) = 1. This function describes how
an spontaneous fluctuation of a thermodynamic variable
decays in time. In first approximation, the ISF can
be modeled by a single exponential, with decay time
τ(q) depending on the fluctuations’ wave number q, or
length scale in the horizontal directions (perpendicular
to gravity and gradient). Available theories accounting
for the simultaneous presence of diffusion (d) and gravity
(g) [18, 19], but not for confinement, predict for a stable
configuration (Ras < 0):

τ(q̃)

τs

∣∣∣∣
d+g

= τ̃(q̃)|d+g =
1

q̃2

(
1− Ras

q̃4

) , (2)

where the wave vector is expressed in dimensionless form
q̃ = qL, and τs = L2/D is the typical solutal time
it takes diffusion to traverse the thickness of the sam-
ple. Equation (2) implies different behaviors for the
decay times of small-scale and large-scale fluctuations,
namely, τ̃(q̃)|d = 1/q̃2 for q̃ � q̃?s , and τ̃(q̃)|g =
−q̃2/Ras for q̃ � q̃?s . Hence, small length-scale fluc-
tuations decay diffusively and evolve slower the larger
the scale. Buoyancy effects, for wave numbers smaller
than q?s , lead to a non-diffusive decay of fluctuations [20].
Separating these two regimes, the decay time of c-NEFs
exhibits a maximum at q̃?s , as clearly shown by Eq. (2).
The existence of this maximum, which identifies the most
persistent fluctuation in the system if confinement is ne-
glected, has been experimentally demonstrated in a num-
ber of experiments on c-NEFs both with a pure concen-
tration gradient (isothermal mass diffusion) [20, 21] or
with a concentration gradient induced by the Soret ef-
fect [11, 22, 23]. Our purpose here is to go beyond these
previous investigations, into a q-range where confinement
effects are to be expected.

To observe c-NEFs we used the thermal-gradient cell
sketched in Fig. 1: Two sapphire windows kept at fixed
vertical distance contain the fluid sample while being
thermally controlled by two Peltier elements with a
central hole. The entire system allows a quasi-mono-
chromatic parallel light beam pass through in the direc-
tion of the temperature gradient. Further details of the
thermal gradient cell can be found elsewhere [11, 24]. A
stabilizing temperature difference of ∆T = 20 K (with an
average temperature of T0 =298 K) is applied to a hor-
izontal layer of tetralin and n-dodecane at 50% weight
fraction. The sample thickness can be varied by using
different plastic spacers and sealing O-rings, and for this
work three thicknesses L = 0.7, 1.3 and 5.0 mm (and a
constant lateral extent of R = 13.0 mm) were used. The
solutal Rayleigh numbers are: Ras = −4× 104, −2× 105

and −1× 107, respectively [25, 26].
To apply a temperature difference by heating the fluid

mixture from above results in a linear temperature profile

FIG. 1. Experimental cell: two sapphire windows are kept
at different temperatures T0 + ∆T/2 (the top, red one) and
T0 − ∆T/2 (the bottom, blue one) while the sample fluid
(colored pattern) is contained by an O-ring (black circles) at
a thickness L precisely defined by three plastic spacers (gray
rectangles).

across the sample in a thermal time τT = L2/κ, where κ
is the fluid thermal diffusivity. Due to the smaller value
of the mass diffusion coefficient, a nearly linear concen-
tration profile is generated by the Soret effect [1, 27] in
a much larger solutal diffusion time τs = L2/D. Since
our mixture has a positive separation ratio, for negative
Ras both the temperature and the concentration profile
result in a stabilizing density profile [28].

Shadowgraphy [29–32] allows recording images whose
intensities I(x, t) contain a mapping of the sample
refractive-index fluctuations, over space and time, aver-
aged along the direction of the gradient. An example of
one of these images is shown in Fig. 2(a). These intensity
patterns are generated at the sensor plane by the hetero-
dyne superposition of the light scattered by the sample
refractive-index fluctuations and the much more intense
transmitted beam (’local oscillator’). Quantitative image
analysis is performed by the Differential Dynamic Algo-
rithm [11, 20, 21, 33]. One first computes differences
of normalized images ∆im(x,∆t) as shown in Fig. 2(b).
These difference images are then 2D-space-Fourier trans-
formed in silico, Fig. 2(c), to separate the contribution of
light scattered at different wave vectors. This procedure
provides results similar to conventional light scattering,
but with a shadowgraph one can access much smaller
wave vectors. Quantitative image analysis yields the so-
called structure function:

C(q,∆t) = 〈| ∆im(q,∆t) |2〉t,|q|=q =

= 〈| i(q, t)− i(q, t+ ∆t) |2〉t,|q|=q, (3)

with i(q, t) = F [I(x, t)/〈I(x, t)〉x] the 2D-Fourier trans-
form of a normalized image I(x, t) and ∆t the time delay
between the pair of analyzed images. Examples of exper-
imental C(q,∆t) are shown in Fig. 2(d-e).

The physical optics theory of shadowgraphy relates the
structure function to the ISF as [11, 20, 21, 33]:

C(q,∆t) = 2A{T (q)S(q) | 1− f(q,∆t) | +B(q)}, (4)



3

where T (q) is the optical transfer function of the instru-
ment (a oscillating function for a shadowgraph, see [30,
31]), S(q) the static structure factor of c-NEFs, A an in-
tensity pre-factor, and B(q) a background including all
the phenomena with time-correlation functions decaying
faster than the CCD frame rate, such as contributions
due to shot noise and temperature fluctuations. Hence,
experimental ISF f(q, t) can be evaluated via Eqs. (3)-
(4). Results for three different wave vectors are shown in
Fig. 2(f).

Essentially, for all the wave vectors accessible in the
experiments the ISF can be modeled by a single expo-
nential function. For direct comparison with theory and
simulations we extract effective experimental decay times
as the time needed to f(q, t) to decay to 1/e. Figure 3
presents these experimental decay times for the three Ras
investigated, the raw data in panel (a), and in dimen-
sionless form in panel (b). Note that in Fig. 3(b) for
almost all wave vectors smaller than q̃?s = 4

√
−Ras, the

effective decay time departs from the theoretical descrip-
tion of Eq. (2), shown as a dashed line. As the wave
vector decreases the decay time presents a minimum for
a dimensionless wave vector q̃b ∼= 5, while for smaller
wave vectors the decay time recovers a diffusive behavior
τ̃ ∝ q̃−2. These conclusions are clear in Fig. 3 except for
the larger Ras = −1× 107, with no experimental points
available at low enough q̃.

To interpret these experimental findings and under-
stand the physical origin of the discovered slowing-down
of large-scale c-NEFs, we use a Fluctuating Hydrody-
namics (FHD) model [17] that incorporates gravity and
confinement. FHD, based on original ideas by Onsager
and Landau, supplements dissipative fluxes with random
contributions so as to derive in a consistent way a fluc-
tuating or stochastic version of any thermodynamic or
hydrodynamic problem [9]. Previous FHD investigations
of our problem [17] focused on the intensity (statics) of
the c-NEFs. Here we investigate the dynamics and were
able to express the theoretical dynamic structure factor
as a series of exponentials:

S(q)f(q, t) =

∞∑
N=1

AN (q) exp

[
− t

τN (q)

]
, (5)

see [34] for further details. The decay times in Eq. (5) are
the inverse of the eigenvalues ΓN (q) = 1/τN (q) discussed
in Ref. [17]. The amplitudes AN are analytically related
to ΓN and q. The static structure factor discussed in [17]
is then S(q) =

∑
AN (q). In general, the ΓN can only

be computed numerically, however, in the limit q → 0, a
full analytical investigation is possible by means of power
expansions in q, and a clear hierarchy of well-separated
ΓN can be identified [17]. In that limit, the first am-
plitude in Eq. (5) dominates, and f(q → 0, t) becomes
a single-exponential in practice, with decay time due to

FIG. 2. (a) Shadowgraph image I(x, t); (b) difference of
normalized images ∆im(x,∆t); (c) power spectrum of (b)
| ∆im(q,∆t) |2; (d) structure function C(q,∆t) for three dif-
ferent time delays, vertical lines stand for wave vectors used
in (e); (e) structure function C(q,∆t) for three different wave
vectors, vertical lines stand for delay times used in (d); (f)
ISFs for three different wave vectors f(q,∆t): symbols are for
experimental data while lines show single-exponential model-
ing. All data are for Ras = −2× 105.

confinement (c):

τ̃(q̃ → 0)|c =
1

q̃2
(

1− Ras
Ras,c

) =
1

q̃2
(

1− Ras
720

) , (6)

where Ras,c = 720 is the critical solutal Rayleigh num-
ber at which the convective instability appears in this
system [28]. Predictions from the asymptotic Eq. (6) are
shown in Fig. 3(b) as dotted lines. Hence, the theory
shows a crossover from Eq. (2) (not-including confine-
ment) at large and intermediate q, to the confinement
behaviour of Eq. (6) at small q, precisely the kind of be-
haviour experimentally observed. We estimate the wave
number qb corresponding to the minimum decay time by
equating Eq. (2) and (6). This gives q̃b = 4

√
Ras,c =

4
√

720 ∼= 5.2 independent of Ras, in further agreement
with the experimental observations in Fig. 3(b).

For arbitrary values of q, the decay times τN (q) and
corresponding amplitudes can only be evaluated numer-
ically. We have performed a numerical investigation for
the experimental Ras [34], yielding similar results in the
three cases. For very large q̃ & 50, all decay times col-
lapse to the bulk value, τ̃N ' q̃−2, and the ISF is ap-
proximately a single exponential. As already commented,
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for very small q̃ . 0.3 the first mode dominates in am-
plitude and a single-exponential decay is again recov-
ered, with decay time given by Eq. (6). For interme-
diate 0.6 . q̃ . 30, the second mode leads in ampli-
tude but having a smaller decay time means that the
two lower modes play a significant role and the theoret-
ical ISF shows signatures of a double exponential decay.
Indeed, data from simulations show such signatures in
the predicted wave-vector range. However such signa-
tures were not detected in the experiments due to lim-
ited range, frame acquisition rate, and insufficient signal
to noise ratio. In Fig. 2(e) we reported three examples of
experimental ISFs for different wave vectors, with single-
exponential modeling.

Regardless of the multiple exponential character, a sin-
gle effective theoretical decay time τeff(q) can be defined
by f(q, τeff) = 1/e. In Fig. 3(b) we show results for the-
oretical τeff(q), computed via Eq. (5) from the numerical
decay rates and amplitudes. All the features seen in the
experimental data are well reproduced by the theory. No-
ticeably the slowing-down observed for small wave num-
bers is clearly related to confinement, since this is the
only ingredient added to the ’bulk’ theory of Eq. (2).

The FHD theory [17] assumes that viscous dissipation
dominates, and neglects the effect of fluid inertia; this is
justified by the fact that in all liquids momentum diffu-
sion is much faster than mass diffusion, i.e., the Schmidt
number Sc = ν/D is very large. While neglecting iner-
tial effects is a good approximation at most wavenum-
bers of interest, it is known that, depending on Ras, it
fails at sufficiently small wavenumbers due to the appear-
ance of propagative modes [35] (closely related to gravity
waves) driven by buoyancy. In order to confirm that
the observed slowing down is due to confinement and
not to inertia we have performed FHD numerical simu-
lations [36, 37] that account for inertial effects and con-
finement, see [34] for further details. Data points from a
numerical simulation with fluid parameters matching the
experimental ones are also displayed in Fig. 3. The ex-
cellent agreement of this dataset with experimental and
theoretical results, shows that inertia effects are not rel-
evant in our experiments. We note, however, that for
thicknesses L & 5 mm the simulations do show oscilla-
tory time-correlation functions (propagative modes) at
the smallest wavenumbers [37], but this range is not ac-
cessible in the experiments reported here.

We conclude that, although confinement has a moder-
ate damping impact on the intensities of large-scale non-
equilibrium concentration fluctuations [17], in the pres-
ence of gravity, it strongly affects their dynamics. Our
current findings are in contrast to the case of diffusion in
microgravity where the coupling to velocity fluctuations
greatly enhances the intensity of the c-NEFs but does
not alter their Fickian diffusive dynamics [38].

Although the focus of this letter is on the dynamics
and we leave for future publications a full discussion of

FIG. 3. Effective decay times: (a) Log-log plot of the ex-
perimental decay times τ as a function of wave vector q for
different Rayleigh numbers. (b) Same in terms of dimension-
less variables. In panel (b), filled red symbols are experimen-
tal data, open blue are for calculations based on the FHD
model, and open-dotted black are from numerical simulations.
Dashed curves represent Eq. (2) for q̃ > q̃b, which accounts
for gravity and diffusion only. Dotted lines represent Eq. (6)
for q̃ < q̃b, which accounts for confinement.

the statics, we note that the minimum q̃b in τeff cor-
responds to a minimum in the intensity of fluctuations
S(q). Hence, the current results might be interpreted as
a kind of de Gennes narrowing [39]. In analogy to diffu-
sion in colloids, where a competition between interparti-
cle interactions and hydrodynamic effects exists, here we
have competition between gravity and confinement.

Interestingly, we find that the dimensionless wave num-
ber where confinement coexists with gravity is related to
the critical solutal Rayleigh number Ras,c = 720 where
the convective instability first appears [28]. This is a sig-
nature of the Onsager regression hypothesis stating that
the dynamics of the fluctuations contains all of the signa-
tures seen in the deterministic dynamics, which is known
to be controlled by the Rayleigh number.
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