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I. Introduction5

Over the past decade and a half there has been considerable interest in extending traditional (static)6

Density Functional Theory (DFT) for liquids to account for dynamics, leading to Dynamic DFT (DDFT) [1–7

5]. Recently, attempts have been made to additionally account for hydrodynamic interactions (HI) among the8

particles due to the presence of a viscous solvent [6–10], as necessary when modeling colloidal suspensions. A9

key feature of these proposed HI+DDFT theories is that even for the simple case of non-interacting Brownian10

particles suspended in a fluid the resulting equations appear to be different from Fick’s law, in contrast to the11

case of independent (uncorrelated) Brownian walkers. Here we show that for the case of non-interacting but12

hydrodynamically-correlated Brownian particles one can write down a closed equation for the average density13

that is exactly Fick’s law, without uncontrolled approximations such as closures of the BBGKY hierarchy.14

Furthermore, our equation includes fluctuations around Fick’s law, and sheds light on the controversy over15

the difference between deterministic and fluctuating DDFT [1–4]. The derivation presented here follows on16

our previous work [11] in which we obtain the same result by using a fluctuating hydrodynamic formalism.17

Here we follow an approach originally proposed by Dean [3] for the case of uncorrelated Brownian walkers,18

and obtain the same equation as derived in [11] by rather different means. Our work demonstrates that19

hydrodynamics is not something that is to be added to Fick’s law as non-local correction; rather, fluctuating20

hydrodynamics underlies diffusion and gives rise to Fick’s law. This simple yet seemingly frequently missed21

point is silently evidenced by the well-known Stokes-Einstein relation, which relates the diffusion coefficient22

χ ∼ kBT/ (ησ) to the temperature T , the size of the particles σ, and the viscosity of the fluid η.23

For consistency, in this paper we use the notation of our prior closely-related work [11] instead of the nota-24

tion more common in the DDFT literature. We start from the overdamped Langevin equations of Brownian25

Dynamics (BD), which are often used to model dynamics of colloidal particles or polymer chains in flow.26

The Ito equations of motion for the (correlated) positions of the N particles Q (t) = {q1 (t) , . . . , qN (t)} are27

dQ = −M (∂QU) dt+ (2kBTM )
1
2 dB + kBT (∂Q ·M) dt, (1)

where B(t) is a collection of independent Brownian motions, U (Q) is a conservative interaction potential,28

M (Q) � 0 is a symmetric positive semidefinite mobility block matrix for the collection of particles. The29

Fokker-Planck equation (FPE) for the probability density P (Q, t) corresponding to (1) is30

∂P

∂t
=

∂

∂Q
·
{
M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (2)

and is in detailed-balance (i.e., is time reversible) with respect to the Gibbs-Boltzmann distribution31

∼ exp (−U(Q)/kBT ). A commonly-used model of the mobility matrix, suitable for dilute suspensions,32

is the Rotne-Prager pairwise approximation [12].33

We will assume here that the mobility is pairwise additive, and that the block of the mobility corresponding34

to the pair of particles i and j is a smooth function of only the positions of those particles,35

∀ (i, j) : M ij

(
qi, qj

)
=

R
(
qi, qj

)
kBT

, (3)

where R (r, r′) is a symmetric positive-semidefinite (SPD) tensor kernel (linear operator mapping vector36

fields to vector fields) 1. The assumption of pairwise additivity is appropriate for low-density colloidal37

suspensions, when the typical distance between particles is significantly larger than the typical size of a38

particle; at higher densities complex many-body effects appear which are beyond the scope of this work.39

Because we assume that (3) holds even if i = j, the self-diffusion tensor of a particle with position r is40

χ (r) = R (r, r) .

For confined systems, R (r, r′) depends on the positions of the two particles relative to the boundaries41

and χ (r) may be anisotropic and may depend on the position; for a translationally-invariant and isotropic42

1 Here we adopt the notation of our previous work [11], except that we have included an additional factor of 2 in R to

simplify some of the expressions.
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system R (r, r′) ≡R (r − r′) and χ (r) = χI , where χ is the self-diffusion coefficient of the particles. Rex43

and Löwen [6, 7] assume translational invariance but take a form for the mobility in which the diagonal44

elements of the mobility are treated differently from the off-diagonal ones,45

M ij (Q) ≡M ij

(
qi, qj

)
=

χ

kBT

[
δijI + (1− δij)ω12

(
qi − qj

)]
,

=
χ

kBT

[
δij (I − ω12 (0)) + ω12

(
qi − qj

)]
(4)

where we have neglected higher-order hydrodynamic corrections and taken ω11 = 0, which is appropriate46

for dilute suspensions. The Rotne-Prager [12] form for ω12 (r), which is what Rex and Löwen used in47

their numerical simuations, can be written in the form48

ω12 (r) =


(

3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r
r2

, r > 2σ(
1− 9r

32σ

)
I +

(
3r

32σ

)
r ⊗ r
r2

, r ≤ 2σ
(5)

where σ is the radius of the colloidal particles, and satisfies the key condition ω12(0) = I. Therefore, the49

term involving δij in (4) can be deleted and (4) becomes of the form (3) with50

R
(
qi, qj

)
≡ χω12

(
qi − qj

)
.

Note that in colloidal suspensions there is typically a hard-core repulsion that ensures that particles51

essentially never overlap, which implies that the behavior of ω12 (r) for r ≤ 2σ is not expected to be52

important. Since the effect of hydrodynamic interactions is distinct from that of direct interactions, it53

is important to also consider the case of an ideal gas in which the only interparticle interactions are of54

hydrodynamic origin. Furthermore, particles can overlap relative to their far-field hydrodynamic radius55

for suspensions of soft particles such as star polymer chains [13].56

In a clever but formal derivation [4], Dean started from the overdamped Langevin equations for a57

collection of N interacting Brownian walkers driven by independent noise, i.e., a diagonal mobility matrix58

M = (kBT )−1 χI, to obtain a closed-form equation for the empirical or fluctuating density (concentration)59

of particles60

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (6)

For non-interacting particles, this equation can formally be written as an Ito stochastic partial differential61

equation (SPDE) [4],62

∂tc = χ∇2c+ ∇ ·
(√

2χcWc

)
, (7)

where Wc (r, t) denotes a spatio-temporal white-noise vector field. As pointed out in Ref. [4] and further63

elaborated in [2], equation (7) is simply a formal rewriting of (1). The only difference is that the identity of64

the different particles has been removed by going from a Lagrangian to an Eulerian description. Importantly,65

the solution of (7) should forever remain a sum of delta functions (whose positions diffuse independently).66

In fact, the multiplicative noise SPDE (7) as written has no clear mathematical interpretation, and neither67

does the square root of a sum of delta functions in the noise amplitude.68

Of primary interest in practice are expectation values of the instantaneous concentration c (r, t), such69

as the average concentration, which is also the single-particle distribution function c(1) (r, t) = 〈c (r, t)〉.70

Taking an ensemble average of (7) is trivial because of the linearity of the deterministic term and the71

fact that the noise term averages to zero due to its Ito interpretation, and for the case of non-interacting72

particles one simply obtains Fick’s law,73

∂tc
(1) = χ∇2c(1). (8)

If direct interactions among the particles are included, one cannot write a closed form equation and an infinite74

hierarchy of BBGKY equations arises; a closure approximation for the higher-order correlation functions is75
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required, as explained by Marconi and Tarazona [4]. It is important to note that (7) and (8) describe rather dif-76

ferent objects; the solution to (7) is a spiky sum of delta functions, and not a smooth average density or single-77

particle distribution function as Fick’s deterministic law (8) or traditional (static) DFT describes [1, 2, 4].78

As summarized in Ref. [2], Fick’s law (8) can also be obtained by starting from the FPE (2) and79

integrating over N − 1 particles to get an equation for the single-particle distribution function c(1) (r, t).80

This route was followed by Rex and Löwen [6, 7] in order to include the effect of hydrodynamic interactions81

in (8) and obtain an equation that, at first sight, appears distinctly different from Fick’s law. It is important82

to note that in order to close the BBGKY hierarchy some uncontrolled approximations are made in Refs.83

[6, 7]; we will not require such approximations until Section II. For non-interacting particles, in our notation,84

eq. (5) in Ref. [7] reduces to85

∂tc
(1) (r, t) = χ∇2c(1) (r, t) + χ∇ ·

(ˆ
ω12 (r − r′)∇′c(2) (r, r′, t) dr′

)
, (9)

where c(2) (r, r′, t) is the two-particle distribution function, and we use∇ to denote gradient with respect to r86

and ∇′ with respect to r′. In this work, we derive an equation for the empirical (fluctuating) concentration in87

the presence of hydrodynamic interactions similar to (7), whose expectation gives (9). In the absence of direct88

interactions this equation is given by (12) and was previously derived by us using a different approach in89

Ref. [11]. In addition to reproducing Fick’s law for the average, (12) also describes the long-range correlated90

fluctuations around the mean. Here we also include the effect of direct interactions among the particles.91

The first term on the right hand side of (9) is the familiar local Fick’s law; but the second term is a92

non-local diffusion term. It is important to note that the far-field behavior of the mobility (5) is given93

by the scaled Oseen tensor94

ω12 (r) =
3

4

σ

r

(
I +

r ⊗ r
r2

)
+O

((σ
r

)3)
, (10)

which is long-ranged and decays as r−1. While it may at first sight look like ω12 (r) is small for r � σ,95

it should be recalled that the Stokes-Einstein formula χ = kBT/ (6πησ) implies that the second term in (9)96

is independent 2 of σ since χω12 (r) ∼ (kBT ) / (ηr). The equation of Rex and Löwen (9) therefore implies97

that Fick’s law needs to be amended with a long-ranged non-local term even for dilute suspensions with98

no direct interactions among the diffusing particles.99

Let us observe, however, that the Rotne-Prager mobility (5) satisfies an additional key property,100

∇ · ω12(r) = 0, or more generally,101

∇ ·R(r, r′) = 0. (11)

This is a direct consequence of the fact that hydrodynamic interactions (correlations) are mediated by an102

incompressible fluid [12]. In this case the second term on the right hand side of (9) in fact vanishes after a103

simple integration by parts. Therefore, Fick’s law (8) for the average concentration remains valid even in the104

presence of long-ranged hydrodynamic correlations among the Brownian walkers. This important physical105

implication of (11) seems to be have been missed in [6, 7] and subsequent works because the focus in DFT,106

and therefore DDFT, is almost exclusively on interacting particles and nonlocal free-energy functionals, and107

comparatively little attention seems to have been given to the nonlocal difffusion aspect of (9). Following108

the completion of this work, we learned of an early derivation by Altenberger and Deutch that showed109

that, indeed, (8) holds even in the presence of hydrodynamic interactions (correlations), see (3.10) in Ref.110

[14]. These authors also made use of and noted the importance of the divergence-free condition (11).111

It is important to also note another derivation aiming to include hydrodynamics in DDFT, developed by the112

authors of Refs. [8–10]. These authors argue that inertia also needs to be included, and arrive at an equation113

that has even more non-local terms than (9). We believe that these derivations, while careful (even rigorous),114

start from an incorrect inertial formulation of the equations of motion of colloidal particles immersed in fluid.115

As explained by Hinch [15] and later summarized eloquently and clearly by Roux [16], any equation of motion116

that accounts for inertial effects must include the inertia of the fluid in addition to any excess inertia of the117

particles over the fluid they expel. This is because the time it takes for momentum to diffuse through the liquid,118

2 This is expected since the leading-order hydrodynamic correction comes from a monopole term (Stokeslet) that corresponds

to a point force in a Stokesian fluid.



5

with diffusion coefficient equal to the kinematic viscosity ν = η/ρ (note the appearance of the fluid inertia here119

via the density ρ), is in fact longer than inertial time scales. It is therefore inconsistent to use hydrodynamic120

friction or mobility functions such as the Rotne-Prager tensor, which assume steady Stokes flow, i.e., infinitely121

fast momentum diffusion, while including inertia of the particles explicitly. The only Markovian formulation122

of the hydrodynamics of colloidal suspensions that includes both hydrodynamics and thermal fluctuations123

(Brownian motion) consistently is that of fluctuating hydrodynamics [15, 17, 18]. Roux starts from the inertial124

formulation of Hinch [15] and derives the overdamped equation of motion (1) from those inertial equations125

[16]. We therefore consider the overdamped equation (1), rather than the inertial Langevin equations used126

by a number of authors [8, 19, 20], as the correct starting point for including hydrodynamics in DDFT.127

In our own recent work [11], we started from a simplified version of the complete formulation of Hinch [15]
and Roux [16]. In this approximation [21–25], the no-slip condition resolved over the surface of the particles
is approximated by an average no-slip condition at the centroid of each of the particles, and the particles are
assumed to be neutrally-buoyant (but see Ref. [24] for an extension to account for excess inertia). Another
way to think of the approximation is as a low-order multipole approximation of the complete hydrodynamics,
suitable for dilute suspensions, and accurate to the same order as the Rotne-Prager far-field approximation
[25, 26]. By starting from the simplified fluctuating hydrodynamic formulation and eliminating the fluid
velocity as a fast variable, one can obtain the overdamped Lagrangian equation (1) [11, 21]. In Ref. [11] we
started from an inertial Eulerian description, i.e., a description involving not the positions of the individual
particles but rather the empirical concentration c (r, t), and obtained, by adiabatic elimination of the fast
fluid velocity, the overdamped Eulerian Ito SPDE

∂tc = ∇ · [χ (r)∇c]−w ·∇c. (12)

Here w (r, t) is a random velocity field that is white in time and has a spatial covariance [11],

〈w (r, t)⊗w (r′, t′)〉 = 2R (r, r′) δ (t− t′) , (13)

and the incompressibility condition (11) is assumed to hold. The ensemble average of (12) is nothing other128

than Fick’s law (8), and does not include any non-local diffusion terms because of the incompressibility129

of the fluid. It is important to point out that (12), just like (7), describes a spiky sum of delta functions130

which are advected by a rapidly-decorrelating random velocity field. However, (12) is distinctly different131

from (7): while both equations have multiplicative noise, (12) is linear, while (7) is nonlinear. As we discuss132

in more detail in the Conclusions, one can obtain (7) from (12) upon taking a suitable (nontrivial) limit133

in which R (r, r′) becomes highly localized around r = r′.134

Here, we connect our prior work to the DDFT literature, by obtaining the overdamped Eulerian (fluctuating135

DDFT) equation (12) starting from the overdamped Lagrangian equation (1), rather than from the inertial136

Eulerian formulation as we did in Ref. [11]. Our argument is essentially a generalization of that of Dean [3]137

and makes specific use of the hydrodynamic formulation that is hidden in Rotne-Prager-like approximations138

to the mobility matrix. As it must, for non-interacting particles the present calculation gives exactly the same139

result (12) for the empirical concentration and Fick’s law (8) for the average concentration. Furthermore,140

here we extend our previous work to account for direct interactions (as opposed to hydrodynamic interactions)141

among the diffusing particles. Just as in the work of Dean [4], we obtain a closed but nonlinear and142

nonlocal equation for the empirical (fluctuating) concentration. As expected, in the presence of interactions143

it is not possible to write down a closed form for the ensemble-averaged concentration, and approximate144

closures are required for two-particle and three-particle correlation functions [4, 6, 7].145

This paper is organized as follows. In Section II we summarize and then derive our key result (15),146

a fluctuating diffusion equation for a collection of particles interacting both hydrodynamically and via147

conservative potentials. In Section III we discuss coarse-graining (averaging) and the relation of our work148

to density functional theory, Fick’s macroscopic law, and fluctuating hydrodynamics, and point to several149

important open problems. Finally, we give some conclusions in Section IV.150

II. Fluctuating DDFT with Hydrodynamic Interactions151

In this section we summarize our main results, and defer the detailed derivations to Appendix A. For152

completeness, we will include here a direct interaction among the particles in the form of a conservative153
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potential that includes an external potential U1 (r) and a pairwise additive potential U2(r, r
′),154

U (Q) =
N∑
i=1

U1(qi) +
1

2

N∑
i,j=1
i 6=j

U2(qi, qj) (14)

where, without loss of generality, we can assume that U2(r, r
′) = U2(r

′, r) and [∇U2(r, r
′)]r′=r = 0. Note155

that such an interaction was not included in our prior work [11].156

Here we use (1,3) to formally derive a closed-form SPDE for the empirical concentration (6). Our157

calculation mimics the one performed by Dean for the case of uncorrelated walkers [3]. The result of the158

calculations detailed in Appendix A is the fluctuating hydrodynamic equation (conservation law)159

∂tc(r, t) = −∇ · (w (r, t) c(r, t)) + ∇ · (χ(r)∇c(r, t) + b(r, r)c(r, t))

+ ∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′c(r′, t) dr′

)
+ (kBT )−1∇ ·

(
c(r, t)

ˆ
R(r, r′)∇′U1(r

′)c(r′, t) dr′
)

+ (kBT )−1∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′U2(r

′, r′′)c(r′, t)c(r′′, t) dr′dr′′
)
,

(15)

where b(r, r′) = ∇′ ·R(r, r′) and w (r, t) is a random velocity field with covariance (13), see (A14) for160

a derivation of the stochastic term in the Ito convention and (A5) for the Stratonovich interpretation.161

Compare (15) to the equation obtained by following the same procedure for the case of uncorrelated162

particles, M ij = δij (kBT )−1χ (qi),163

∂tc(r, t) = ∇ ·
(

(2χ (r) c(r, t))
1
2 Wc

)
+ ∇ · (χ(r)∇c(r, t)) (16)

+ (kBT )−1∇ · (χ(r)c(r, t)∇U1(r))

+ (kBT )−1∇ ·
(
χ(r)c(r, t)

ˆ
∇′U2(r, r

′)c(r′, t) dr′
)

which is a slight generalization of Eq. (17) in [3] to account for the one-particle potential and the possible164

anisotropy and spatial dependence of the diffusion tensor χ(r).165

Ensemble averaging (15) gives the first member of a BBGKY-like hierarchy of equations for the166

single-particle distribution function,167

∂tc
(1) (r, t) = ∇ ·

(
χ(r)∇c(1) (r, t)

)
+ ∇ ·

(ˆ
R (r, r′)∇′c(2) (r, r′, t) dr′

)
+ (kBT )−1∇ ·

(
χ(r)∇U1 (r) c(1) (r, t) +

ˆ
R (r, r′)∇′U1 (r′) c(2) (r, r′, t) dr′

)
+ (kBT )−1∇ ·

(ˆ
(χ(r)∇U2 (r, r′) + R (r, r′) ∇′U2 (r, r′)) c(2) (r, r′, t) dr′

)
+ (kBT )−1∇ ·

(ˆ
R (r, r′) c(3) (r, r′, r′′, t) ∇′U2 (r′, r′′) dr′′dr′

)
, (17)

which is a slight generalization of equation (5) in Ref. [6, 7] with ω11 = 0. Here c(3)(r, r′, r′′, t) denotes168

the three-particle correlation function. We note that the term involving c(3) is missing in (4.4) in Ref. [14],169

as well as (3.1) in Ref. [27], apparently because of an additional low-density approximation in the spirit170

of kinetic theory.171

When the incompressibility condition (11) is satisfied, Eqs. (15) and (17) simplify in a key way; as also172

observed in Ref. [14], after an integration by parts the nonlocal diffusion term on the second line of (15) and173
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the second term on the right hand side in the first line of (17) disappear, see (A17) in the Ito convention174

and (A6) for the Stratonovich interpretation 3. Therefore, in the absence of interactions the fluctuating175

DDFT equation (15) reduces to (12) and the mean follows the local Fickian diffusion equation (8), even176

in the presence of hydrodynamic correlations among the particles. This important physical consequence of177

incompressibility was not observed by Rex and Löwen [6, 7], and this omission may have lead some readers to178

the wrong conclusion that hydrodynamic interactions lead to nonlocal corrections to Fick’s law for the mean.179

Although not apparent at first sight, (15) has the same structure of an overdamped Langevin equation180

as does (1), namely, we can formally write it in the compact notation [28]181

∂tc = −M [c(·, t)] δH

δc (·, t)
+ (2kBT M [c(·, t)])

1
2 Wc(·, t) + kBT

(
δ

δc (·, t)
·M [c(·, t)]

)
, (18)

where the mobility M [c(·)] is a positive-semidefinite linear operator that is a functional of the function182

of position c, denoted here by the notation [c(·)], and products imply a contraction over spatial position.183

More precisely,184

∂tc(r, t) = −
ˆ
dr′M [c(·, t); r, r′] δH

δc (r′, t)
(19)

+ (2kBT )
1
2

ˆ
dr′M

1
2 [c(·, t); r, r′]Wc(r

′, t)

+ (kBT )

ˆ
dr′

(
δM [c(·, t); r, r′]

δc (r′, t)

)
,

where the mobility M [c(·)] (r, r′) ≡M [c(·); r, r′] is defined by its action on a scalar field f(r),185

ˆ
dr′M [c(·); r, r′] f(r′) ≡ − (kBT )−1 ∇ ·

(
c(r)

ˆ
R (r, r′) c(r′)∇′f(r′) dr′

)
.

Here H [c(r)] is an energy functional consisting of an ideal and an excess (potential) contribution,186

H [c (·)] = Hid [c (·)] +Hexc [c (·)] = Hid [c (·)] +

ˆ
U1(r)c(r)dr +

1

2

ˆ
U2(r, r

′)c(r)c(r′) drdr′,

where the ideal gas energy functional is187

Hid [c (·)] = kBT

ˆ
c (r)

(
ln
(
Λ3c (r)

)
− 1
)
dr,

Λ is a constant (e.g., the thermal de Broglie wavelength), and Hexc is the excess free energy functional. It188

is important to note that when incompressibility condition (11) holds, we can remove the ideal contribution189

from H and define H ≡ Hexc without affecting (19), because190

ˆ
R (r, r′) c(r′)∇′

(
δHid

δc (r′)

)
dr′ =

ˆ
R (r, r′)∇′c(r′) dr′ = 0.

Also note that in the case of independent (uncorrelated) particles, (16) can be written as a functional191

Langevin equation (19) with the same free-energy functional but with a different mobility operator Mind,192

defined by its action on a scalar field f(r),193

ˆ
dr′Mind [c(·); r, r′] f(r′) ≡ − (kBT )−1 ∇ · (χ(r)c(r)∇f(r)) .

3 Note that for incompressible w we have ∇ · (wc) = w ·∇c.
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The kinetic form [29] of the (formal) functional FPE associated with (19) implies that the equilibrium194

distribution associated with (15), assumed to be unique, is the formal Gibbs-Boltzmann distribution195

P [c(·)] = Z−1 exp

(
−H [c (·)]

kBT

)
, (20)

which is the field representation of the equilibrium distribution exp (−U(Q)/kBT ) associated with the196

particle description (1). In the incompressible case, uniqueness of the Gibbs-Boltzmann distribution can197

be ensured by adding a small multiple of the identity (so-called bare diffusion [11]) to the mobility matrix198

M , that is, by adding a small multiple of Mind to the mobility operator M.199

III. Coarse-Graining200

As noted by Marconi and Tarazona [4], (15) contains the same physical content as (1) because we have not201

performed any coarse graining or averaging, and have not lost any information except the particle numbering.202

Nevertheless, (15) is an informative nontrivial rewriting of (1) that can be used to perform additional203

coarse-graining and attempt to describe the behavior of collective diffusion in colloidal suspensions at a204

spectrum of length (and thus also time) scales, going from a microscopic scale ξ to macroscopic scales. Here205

we discuss three distinct types of coarse-graining one can perform on (15): an ensemble average over the206

realizations of the noise, an average over an ensemble of initial conditions, and spatial averaging over a large207

number of particles [30]. Spatial averaging is of great interest in practice since colloidal suspensions are208

typically observed at mesoscopic scales larger than the size of individual particles. For example, in typical209

experiments such as light scattering from colloidal suspensions, concentration fluctuations are averaged210

over a region containing many particles (e.g., the thickness of the sample).211

One of the simplest, though by no means the only [31], ways to approach such spatial coarse graining212

is to define a smoothed empirical concentration that averages over particles in a physical region of typical213

size ξ (see Section 4 in Ref. [2] and Section IV in Ref. [11]),214

cξ (r, t) =
N∑
i=1

δξ (qi (t)− r) , (21)

where δξ is a smoothing kernel with support ∼ ξ that converges to a delta function as ξ → 0 (e.g., a215

Gaussian with standard deviation ξ). For ξ smaller than the typical particle size or interparticle distance, we216

have little to no coarse-graining and detailed microstructural information (e.g., layering in a hard-core fluid)217

is encoded in cξ. For ξ much larger than some characteristic correlation length (e.g., decay length of the pair218

correlation function), microstructural information will no longer be encoded in cξ, although fluctuations in cξ219

may still be non-negligible. Ultimately, for very large ξ we expect cξ to become macroscopic with negligible220

fluctuations, although it is not a priori obvious how large ξ needs to be for this to become the case.221

A. Ensemble Averaging222

For simplicity, and in order to facilitate a direct comparison with prior work by others, in this section223

we will assume there is no external potential, U1 = 0. We will also assume an isotropic homogeneous224

(translationally- and rotationally-invariant) system,225

R(r, r′) ≡R(r − r′) and χ(r) ≡ χI.

Furthermore, we will assume that the incompressibility condition (11) holds, which we again emphasize is226

true for the Rotne-Prager mobility.227

Direct ensemble averaging of the functional Langevin equation (15) gives228

∂tc
(1)(r, t) = −

ˆ
dr′
〈
M [c(·, t); r, r′] δHexc

δc (r′, t)

〉
(22)

+ (kBT )

ˆ
dr′

〈
δM [c(·, t); r, r′]

δc (r′, t)

〉
,

where we used the fact that for incompressible R we can replace H by Hexc, and the fact that in the229

Ito interpretation the stochastic term vanishes in expectation. As derived more carefully in Appendix230
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A of our prior work [11], the thermal or stochastic drift term on the second line of (22) can be averaged231

explicitly due to linearity, and leads to the first term on the right hand side of (17). This demonstrates232

that Fickian diffusion is already included in the hydrodynamic correlation tensor R, as evidenced by the233

Stokes-Einstein-like relation χI = R (0). It also shows that all of the terms in the second, third and fourth234

lines of (17) come from the closure of the term 〈−M δHexc/δc〉. Recall that the second term on the first235

line of (17) disappears for incompressible R.236

In order to make (17) useful in practice, some closure approximation for the two-particle correlation function237

is required, and it is here that equilibrium statistical mechanical quantities such as free energy functionals238

enter in the calculations, as first discussed by Marconi and Tarazona [4] in the absence of hydrodynamic239

correlations and then generalized by Rex and Löwen [6, 7] to account for hydrodynamics. Namely, by assuming240

that the higher-order correlation functions can be approximated by those of the equilibrium system kept241

at the same density profile by an external potential, system (17) can be approximated with (c.f. (14) in [7])242

∂tc
(1) (r, t) = (kBT )−1 χ∇ ·

(
c(1) (r, t)∇ δF

δc(1) (r, t)

)
(23)

+ (kBT )−1∇ ·
(ˆ

R (r − r′) c(2) (r, r′, t)∇′ δF

δc(1) (r′, t)
dr′
)
,

where F
[
c(1) (·)

]
is the equilibrium density functional familiar from static DFT, which is only explictly known243

for the ideal-gas, see the discussion around (24). This microscopic equilibrium density functional captures244

microstructural information about the colloidal system at scales comparable to the size of the colloidal245

particles. Español and Löwen [5] explain how to connect the equilibrium free-energy functional with a non-246

Markovian non-local equation for c(1) without making approximations; after making a Markovian (separation247

of time scales) approximation they obtain a non-local diffusion equation (c.f. (32) in Ref. [5]), and after a248

further approximation of the diffusion kernel they obtain the equation of Marconi and Tarazona. Note that249

in the presence of hydrodynamic correlations the second line of (23) involves c(2), which makes the equation250

unclosed and therefore not yet useful in practice without a further closure approximation for c(2) (r, r′, t).251

Rex and Löwen [6, 7] suggest such an approximation in terms of the equilibrium pair correlation function.252

It is important to note that, in general, the free-energy functional F (defined on a space of functions)253

that enters in the equation for the ensemble average is different from the energy functional H (formally254

defined on a space of distributions) that enters in the functional Langevin equation (19). In fact, a precise255

thermodynamic definition can be given to the classical DDFT functional F
[
c(1) (·)

]
as an expectation value256

over a Gibbs-Boltzmann distribution related to (20). However, for noninteracting particles (an ideal gas)257

F and H have formally the same functional form,258

F = Fid = Hid.

Equation (23) as written contains a long-ranged nonlocal diffusion term on the second line, which is there259

even when there are no direct interactions. For an ideal gas, the flux in the parenthesis on the second260

line of (23) becomes261 ˆ
R (r − r′) c

(2) (r, r′, t)

c(1) (r′, t)
∇′c(1) (r′, t) dr′,

which is still not closed. For an ideal gas, the closure for the two-particle correlation function that Rex262

and Löwen [6, 7] suggest becomes263

c(2) (r, r′, t) ≈ c(1) (r, t) c(1) (r′, t) .

After also making this approximation we can write the second line of (23) in the form264

c(1) (r, t)

ˆ
R (r − r′)∇′c(1) (r′, t) dr′,

which vanishes after an integration by parts due to the incompressibility condition (11).265
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The above considerations for an ideal gas suggest that (23) should be written in a form that separates266

the ideal from the non-ideal contributions,267

∂tc
(1) (r, t) = χ∇2c(1) (r, t) + (kBT )−1 χ∇ ·

(
c(1) (r, t)∇ δFexc

δc(1) (r, t)

)
+ (kBT )−1∇ ·

(ˆ
R (r − r′) c(2) (r, r′, t)∇′ δFexc

δc(1) (r′, t)
dr′
)
. (24)

where Fexc is the excess (over the ideal gas) free-energy functional. The first line is the equation obtained for268

uncorrelated walkers by Marconi and Tarazona [4]. In the last line of (24), R is long-ranged but one expects269

that the remainder of the integrand is short-ranged far from phase transitions in some sense [27] and therefore270

the result will be nonlocal only over scales that represents that typical correlation length in the microstructure271

of the system. Making this more precise requires some further approximations and is beyond the scope272

of this work. It is interesting to note that the first line in (24) can be written in functional notation as273

−
ˆ
dr′Mind

[
c(1)(·, t); r, r′

] δF

δc(1) (r′, t)
,

which, surprisingly, involves Mind even though Mind does not appear in the original dynamics. Further274

work is necessary to explore how well closures such as (24) describe collective diffusion in both confined275

and unconfined dilute and semi-dilute colloidal suspensions.276

B. Averaging over initial conditions277

As written, the fluctuating DDFT equation (15) is a nonlinear non-local SPDE that appears of little278

practical utility; solving it is no easier than solving (1) using Brownian Dynamics [25]. This is so even in279

the absence of direct interactions because of the nonlocal diffusive flux term c(r, t)
´
R(r, r′)∇′c(r′, t) dr′.280

However, an important observation, previously missed, is that the incompressibility of the fluid mediating281

the hydrodynamic correlations implies that the correlation tensor is divergence free. This implies that282

the nonlocal diffusive flux term vanishes, and therefore, in the absence of direct interactions the fluctuating283

DDFT equation is the linear and local stochastic advection-diffusion equation (12).284

It is important to emphasize that (12) is mathematically well-behaved and does have utility beyond that of285

formal equations such as (16) because it can be averaged over initial conditions (rather than over realizations286

of the noise) [11]. Specifically, let us assume that the initial positions of the particles are uniformly sampled287

from an equilibrium ensemble constrained to have a specified mean c0 (r, t) via a suitable external or chemical288

potential [4, 7]. For noninteracting walkers, this simply amounts to choosing the initial particle positions289

independently from a probability distribution ∼ c0 (r, t). Because of the linearity of (12) we can trivially290

average it over this ensemble of initial conditions; the equation remains the same but now the initial condition291

is the smooth c (r, 0) = c0 rather than a spiky sum of delta functions. This is useful if one wants to describe292

particular instances (realizations) of the dynamics starting from a random configuration of particles. For293

example, consider a fluorescence recovery after photobleaching (FRAP) experiment [32] in which a random294

subset of the particles uniformly distributed below a given plane are fluorescently labeled at t = 0 and then295

allowed to diffuse freely. This can be modeled by solving (1) for a finite collection of particles, but, equivalently,296

one can solve (using computational fluid dynamics techniques) the Eulerian equation (12) with c (r, 0) =297

const. above the given plane and c (r, 0) = 0 below it, to obtain the probability ∼ c (r, t) of finding a particle298

at position r for a specific instance of the noise w (r, t). More general smooth initial conditions are also299

possible, e.g., a Gaussian profile corresponding to a nonuniform laser beam intensity in a FRAP experiment.300

Because of its nonlinearity, averaging (15) over initial conditions is nontrivial and requires further301

approximations that are beyond the scope of this work. We believe such averaging could lead to descriptions302

that describe collective diffusion at all scales, from the microscopic to the macroscopic, in a manner more303

suitable for numerical approximations than (1).304

C. Spatial Averaging305

It is important to contrast the fluctuating diffusion (24) that describes the microscopic dynamics to the306

equation obtained by considering a macroscopic limit and coarse-graining the concentration over many307

particles, rather than over realizations of the noise. The literature on the subject is large [14, 27, 33–35] and308

we make no attempt to review it here, rather, we summarize some key results. Let us denote with c̄ (r, t) ≈309
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cξ (r, t) the macroscopic concentration, which, roughly speaking, can be thought of as c (r, t) averaged over310

a region of macroscopic size ξ (i.e., a region containing many particles and typical size much larger than the311

interaction range of the pairwise potential). A precise mathematical definition is possible by suitable rescaling312

of space and time, see Refs. [36–39]; equivalently, one can consider the Fourier transform of c (r, t) in the limit313

of small wavenumbers. It has been demonstrated rigorously [37] that for uncorrelated walkers interacting314

with short-ranged potentials the macroscopic concentration obeys a nonlinear but local Fick’s law [33]315

∂tc̄ = χ∇2Π(c̄) = χ∇ ·
(
dΠ(c̄)

dc̄
∇c̄

)
.

Here Π(c̄) is the osmotic pressure of the suspension at thermodynamic (local) equilibrium with uniform316

concentration c̄ (for an ideal gas Π(c̄) = c̄ kBT ), Π(c̄) = c̄ (df/dc̄)− f , where f(c̄) is the thermodynamic317

equilibrium free-energy density of a macroscopic system with uniform density c̄.318

We are, however, not aware of any mathematical techniques that can be used to rigorously justify Fick’s319

law in the presence of long-ranged hydrodynamic correlations. Felderhof [27] argues that from a variant320

of (17) one can obtain Fick’s law with a diffusion coefficient that depends on concentration and gives321

a low-density expansion of the collective diffusion coefficient (c.f. (4.24) in [27]) that matches the one322

obtained by Batchelor [35] using Einstein’s formula. It is important to point out that at later stages of his323

argument Felderhof makes key use of the divergence-free nature of the hydrodynamic correlations 4, which324

he also emphasizes follows from the incompressibility of the fluid (c.f. (4.13) in [27]). While Felderhof and325

other authors in the physics literature write Fick’s law as an equation for c(1) it is clear from the derivations326

that an assumption is being made that c(1) varies little and slowly in space. It is important to remember327

that c(1) (r, t) and c̄ (r, t) are different objects, although one expects that in cases where c(1) varies slowly328

in space the two are closely related since ensemble and spatial averaging are expected to commute.329

Of particular interest is to understand collective diffusion over the broad-spectrum of mesoscopic330

length-scales, i.e., scales that are larger than σ, where σ is a typical microscopic length, but not so large331

that the hydrodynamic limit applies. For non-interacting uncorrelated walkers, the ensemble-averaged332

concentration follows the same diffusion equation (Fick’s law) with the same diffusion coefficient at all333

scales, as seen from the linearity of (8). We demonstrated here that the same holds even in the presence334

of hydrodynamic correlations among the particles. Direct interactions appear to, however, complicate the335

picture and lead to non-local nonlinear terms like those in (24), and we do not know of any rigorous results336

in the mesoscopic regime. Non-equilibrium thermodynamics [28] and the theory of coarse-graining [30]337

provide guidance on the structure of the resulting equations but not their explicit form.338

In principle, an equation for the coarse-grained concentration (21) can be carried out by convolving339

(filtering) the right hand side of (15) with the kernel δξ. In general this leads to an unclosed equation and340

further approximations are required. Once again the special case of an ideal gas is much simpler to tackle341

because (15) becomes the linear (12). In Ref. [11] we proposed how to carry out spatial coarse-graining342

by performing a partial ensemble average of (12) over fluctuations of the random velocity field w below343

the coarse-graining scale. Our argument, however, closely relied on the linearity of (12) and therefore only344

applies when there are incompressible hydrodynamic correlations but no direct interactions among the345

particles. The general conclusion of our work and other related works in the literature is that coarse-graining346

leads to effective dissipation (entropy production) with transport coefficients that must be renormalized347

in a way that takes into account the mesoscopic observation scale. The same undoubtly holds for any348

“free energy functional” that may appear in the mesoscopic equations. Carrying out such a renormalization349

of (15) remains a difficult but important challenge for the future.350

IV. Conclusions351

Hydrodynamics plays an important role in colloidal suspensions and must be included in DDFT theories.352

Momentum transport in the fluid leads to hydrodynamic correlations among the diffusing particles and353

has important consequences for the collective diffusion not seen if one looks at the self-diffusion of a single354

particle in suspension. Starting from (3) as a model of these hydrodynamic correlations, we obtained a closed355

equation (15) for the instantaneous, fluctuating, or empirical concentration, the ensemble average of which356

(17) matches the DDFT equation previously obtained by Rex and Löwen [6, 7]. This generalizes the results357

4 This part of the derivation of Felderhof inspired the rewriting (24).
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of Dean [3] for the case of uncorrelated (independent) Brownian walkers to account for hydrodynamics,358

and generalizes our prior results [11] to account for direct interactions among the particles.359

A few comments about the physical reasoning behind (3) are in order. Note that the generic form (4)360

does not fit (3) because the appearance of the Kronecker δij . It can be shown that the requirement that the361

mobility be positive semidefinite for any configuration of particles and any N implies that ‖ω12(0)‖2 ≤ 1;362

if this holds as an equality then 5 ω12(0) = I and therefore (3) holds. This has important physical363

consequences that do not appear to have been widely appreciated. Notably, for two overlapping particles,364

qi = qj, (3) predicts M ii = M jj = M ij = M ji, which implies that, in fact, the two particles continue365

to move in synchrony forever, and qi = qj for all times. By contrast, if ‖ω12(0)‖2 < 1, as for the case of366

independent Brownian walkers ω12 = 0, two particles released from the same position separate immediately.367

We believe that it is physically more realistic to assume that the trajectories of nearby particles become368

highly correlated rather than remain independent. Furthermore, two perfectly overlapping particles should369

behave as if there is only a single particle at that location. The well-known Rotne-Prager mobility [12],370

which was used by Rex and Löwen [6, 7] in their numerical calculations, does conform to (3). In our prior371

work [11], we used a model based on fluctuating hydrodynamics [23, 40, 41], which, in the limit of infinite372

Schmidt number (momentum diffusion much faster than particle diffusion) converges to (1) with (3) and373

a covariance operator [21, 25]374

R (r1, r2) =
kBT

η

ˆ
σ (r1, r

′)G (r′, r′′)σT (r2, r
′′) dr′dr′′, (25)

where G is the Green’s function for the steady Stokes equation with unit viscosity and appropriate375

boundary conditions. For unbounded three-dimensional systems G is the Oseen tensor G (r′, r′′) =376

(8πr)−1 (I + r−2r ⊗ r), where r = r′ − r′′. Here σ is a smoothing kernel that filters out features at scales377

below the size of the diffusing particles σ, e.g., σ could be a Gaussian with standard deviation σ. The378

self-diffusion coefficient χ given by (25) obeys a Stokes-Einstein formula, in three dimensions, χ ∼ kBT/ (ησ)379

[11]. When the particles are far apart,
∥∥qi − qj∥∥� σ, the mobility is well-approximated by the Oseen380

tensor, M ij

(
qi, qj

)
≈ η−1G

(
qi, qj

)
. At short distances the divergence of the Oseen tensor is mollified381

by the filter, and (25) gives a pairwise mobility very similar to the Rotne-Prager mobility (5) widely-used382

in BD simulations [25]. Note that (11) follows from the incompressibility of the Green’s function G.383

Numerical methods to solve (12) and (1), along with an extensive visual and quantitative analysis of the384

surprising characteristics of the solution can be found in Ref. [11]. A key observation is that, due to the Ito385

nature of the hydrodynamic term −w ·∇c in (12), the ensemble-averaged concentration continues to follow386

the local Fick’s law (8), despite the presence of hydrodynamic correlations among the diffusing particles. Note,387

however, that the behavior of each instance (relization) of the stochastic process c(r, t) is rather distinct from388

the behavior of the mean concentration, as discussed extensively in our prior work [11]. In particular, the389

fluctuating equation (12) is non-dissipative (reversible), while Fick’s law (8) is dissipative (irreversible). In the390

presence of large concentration gradients the solutions of (12) exhibit characteristic long-ranged correlations391

(giant fluctuations) that are quite distinct from the case of uncorrelated walkers [42–45]. This indicates that392

the mathematical structure and the physical behavior of (16) is very different from that of (15) because393

hydrodynamics affects the fluctuations of the concentration in crucial ways. This fact is well-known in nonequi-394

librium statistical mechanics circles, and recent experiments [44] have demonstrated how giant concentration395

fluctuations can arise for a simple polymer solution out of equilibrium in the absence of gravity. Nonequi-396

librium concentration fluctuations have also been measured in gravity for a nanocolloidal suspension [45].397

The striking difference between correlated and uncorrelated walkers is somewhat surprising. After all, one398

would expect that, if the correlations are sufficiently weak in a certain sense (e.g., they decay rapidly with399

distance 6), (15) should converge to (16). It is important to emphasize, however, that (16) corresponds to the400

physically unrealistic case of particles performing uncorrelated random motions even when they overlap. In401

reality, it is the solvent molecules that have to kick the colloidal particles, and nearby particles must become402

correlated because their diffusion is caused by the motion of correlated fluid molecules. Let us assume for a403

moment that (1) holds with an isotropic smooth R (r − r′) that is nonzero only if the two particles are within404

5 Observe that ω12(0) must be rotationally invariant and therefore has to be the identity matrix.
6 It must be pointed out, however, that incompressible hydrodynamic correlations such as the Rotne-Prager tensor, must

be long ranged because of the incompressibility constraint.
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a distance σ′ apart, and has a finite value at the origin, R (0) = χI. Let us also account for the fact that405

the diffusing particles themselves are not point particles but have a physical size σ, and consider the coarse-406

grained concentration (21) for ξ ∼ σ. The case considered by Dean corresponds to the double limit σ → 0 and407

σ′ → 0, but the order of these limits is not a priori clear. Formal manipulations show that (15) converges in a408

certain sense to (16) if one takes the limit σ → 0 first and then takes the limit σ′ → 0. It is an interesting open409

question what happens if the order of the limits is reversed, or if σ and σ′ go to zero simultaneously. Such calcu-410

lations will shed further light on the nature of diffusion in liquid suspensions and mixtures over a much broader411

spectrum of length and time scales than described by Fick’s law with phenomenological diffusion constants.412
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Appendix420

A. Equations for the Empirical Concentration421

In this Appendix we present the detailed derivation of (15) and (17). In the beginning, we will consider422

the case of no direct interactions among the particles, U = 0, and subsequently add the direct forces. The423

assumption that the covariance operator R is symmetric positive-semidefinite is equivalent to the requirement424

that the mobility matrix M (Q) be symmetric positive semi-definite for all Q, and implies that there exists425

an infinite countable set of eigenfunctions φk(r) that factorize (diagonalize) the covariance operator,426 ∑
k

φk(r)⊗ φk(r′) = R(r, r′).

Note that if (11) holds then the eigenfunctions of R are also incompressible, ∇ · φk(r) = 0.427

1. Stratonovich form428

It is not hard to show that in the absence of direct interactions (1,3) corresponds to the Stratonovich429

equation for the position of an individual tracer i = 1, . . . , N ,430

dqi =
N∑
j=1

b(qi, qj)dt+
√

2
∑
k

φk(qi) ◦ dBk, (A1)

where ◦ denotes a Stratonovich product, Bk are independent Brownian motions, and we defined431

b(r, r′) = ∇′ ·R(r, r′) =
∑
k

φk(r)∇ · φk(r′). (A2)

Note that when the incompressibility condition (11) holds b(r, r′) = 0.432

For the Stratonovich interpretation we can use ordinary calculus to write433

dc(r, t) = −
N∑

i,j=1

b(qi(t), qj(t)) ·∇δ(r − qi(t))dt

−
√

2
N∑
i=1

∑
k

φk(qi(t)) ·∇δ(r − qi(t)) ◦ dBk(t)

(A3)

Using integration by parts and properties of the delta function we can write this as a closed-form equation for c,434

dc(r, t) = −∇ ·
(
c(r, t)

ˆ
b(r, r′)c(r′, t)dr′

)
dt

−
√

2
∑
k

∇ · (φk(r)c(r, t)) ◦ dBk(t)
(A4)
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or, after recalling the definition of b in (A2) and performing an integration by parts to transfer the gradient435

to c,436

dc(r, t) = ∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′c(r′, t)dr′

)
dt

−
√

2
∑
k

∇ · (φk(r)c(r, t)) ◦ dBk(t).
(A5)

When the incompressibility condition (11) is satisfied, b = 0 and (A4) implies that437

dc(r, t) = −
√

2
∑
k

φk(r) ·∇c(r, t) ◦ dBk(t), (A6)

which is exactly identical to the Stratonovich form of the equation we obtained in Ref. [11] by rather438

different means. Here we can identify w (r, t) =
√

2
∑

k φk(r)dBk(t) as a random velocity field with439

covariance given by (13). While the Stratonovich form of the equation is the simplest, the Ito form is the440

most convenient for performing an ensemble average to obtain an equation for the average concentration c(1).441

2. Ito form442

In the Ito interpretation, (A1) reads443

dqi = a(qi)dt+
N∑
j 6=i

b(qi, qj)dt+
√

2
∑
k

φk(qi)dBk, (A7)

where we defined444

a(r) = ∇ ·R(r, r) =
∑
k

φk(r)∇ · φk(r) +
∑
k

φk(r) ·∇φk(r) = b(r, r) + g(r), (A8)

and445

g(r) =
∑
k

φk(r) ·∇φk(r). (A9)

The Ito equation (A7) can also be written as446

dqi = g(qi)dt+
N∑
j=1

b(qi, qj)dt+
√

2
∑
k

φk(qi)dBk, (A10)

which will be the most convenient for our calculation. Note that when the incompressibility condition447

(11) holds,448

a(r) = g(r) = ∇ · χ (r) (A11)

is the divergence of the diffusion tensor, which vanishes for translationally-invariant systems.449

Using Ito calculus, we can now write an equation for the empirical concentration,450

dc(r, t) = −
N∑
i=1

(
g(qi(t)) +

N∑
j=1

b(qi(t), qj(t))

)
·∇δ(r − qi(t))dt

−
√

2
N∑
i=1

∑
k

φk(qi(t)) ·∇δ(r − qi(t))dBk(t)

+
N∑
i=1

∑
k

φk(qi(t))φk(qi(t)) : ∇∇δ(r − qi(t))dt

(A12)
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Using integration by parts and properties of the delta function we can write this as a closed-form equation for c,451

dc(r, t) = −∇ · (g(r)c(r, t)) dt+ ∇∇ : (R(r, r)c(r, t)) dt

−∇ ·
(
c(r, t)

ˆ
b(r, r′)c(r′, t)dr′

)
dt

−
√

2
∑
k

∇ · (φk(r)c(r, t)) dBk(t),

(A13)

which can further be simplified to452

dc(r, t) = ∇ · (R(r, r)∇c(r, t) + b(r, r)c(r, t)) dt

+ ∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′c(r′, t)dr′

)
dt

−
√

2
∑
k

∇ · (φk(r)c(r, t)) dBk(t).

(A14)

Here we can identify w (r, t) =
√

2
∑

k φk(r)dBk(t) as a random velocity field with covariance given by (13).453

Upon averaging over realizations of the noise the fluctuating term drops out in the Ito interpretation,454

giving a non-local diffusion equation for the mean concentration c(1)(r, t) = 〈c(r, t)〉455

∂tc
(1)(r, t) = ∇ ·

(
χ(r)∇c(1)(r, t) + b(r, r)c(1)(r, t)

)
+ ∇ ·

(ˆ
R(r, r′) 〈c (r, t)∇′c (r′, t)〉 dr′

)
. (A15)

By noting that the two-particle correlation function is456

c(2) (r, r′, t) = 〈c (r, t) c (r′, t)〉 − 〈c (r, t)〉 δ (r − r′) , (A16)

we see after an integration by parts that (A15) is equivalent to457

∂tc
(1)(r, t) = ∇ ·

(
χ(r)∇c(1)(r, t)

)
+ ∇ ·

(ˆ
R(r, r′)∇′c(2) (r, r′, t) dr′

)
,

which, for a translationally-invariant system, is exactly the equation (9) obtained by Rex and Löwen.458

When the incompressibility condition (11) holds, Eq. (A13) reduces to the fluctuating Fick’s law459

dc(r, t) = ∇ · (χ(r)∇c(r, t)) dt−
√

2
∑
k

φk(r) ·∇c(r, t)dBk(t), (A17)

which is exactly the stochastic advection-diffusion equation (12). In this case the mean follows Fick’s law460

∂tc
(1)(r, t) = ∇ ·

(
χ(r)∇c(1)(r, t)

)
,

and the non-local diffusion term involving c(2) disappears since b = 0.461

3. Direct interactions462

If we include direct interactions among the particles of the form (14), the Stratonovich equation of motion463

(A1) becomes464

dqi =
N∑
j=1

b(qi, qj)dt+
√

2
∑
k

φk(qi) ◦ dBk

+ (kBT )−1
N∑
j=1

R(qi, qj)

(
f 1(qj) +

∑
k 6=j

f 2(qj, qk)

)
dt

(A18)
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where we have defined the external and pairwise forces465

f 1(r) = −∇U1(r), f 2(r, r
′) = −∇U2(r, r

′). (A19)

For simplicity, and without loss of generality, we will assume that there is no self-force coming from the466

pairwise interactions, f 2(r, r) = 0.467

The new term in (A18) adds the following term to the drift in (A3):468

− (kBT )−1
N∑

i,j=1

R(qi, qj)

(
f 1(qj) +

∑
k 6=j

f 2(qj, qk)

)
·∇δ(r − qi)

= − (kBT )−1∇ ·
[

N∑
i,j=1

R(qi, qj)

(
f 1(qj) +

N∑
k=1

f 2(qj, qk)

)
δ(r − qi)

]

= − (kBT )−1∇ ·
(

N∑
i,j=1

ˆ
R(r, r′)f 1(r

′)δ(r − qi)δ(r′ − qj) dr′
)

− (kBT )−1∇ ·
(

N∑
i,j,k=1

ˆ
R(r, r′)f 2(r

′, r′′)δ(r − qi)δ(r′ − qj)δ(r′′ − qk) dr′dr′′
)

(A20)

This can also be written in terms of the empirical concentration as469

− (kBT )−1∇ ·
(
c(r, t)

ˆ
R(r, r′)f 1(r

′)c(r′, t) dr′
)

− (kBT )−1∇ ·
(
c(r, t)

ˆ
R(r, r′)f 2(r

′, r′′)c(r′, t)c(r′′, t) dr′dr′′
)
,

(A21)

or, in terms of the potentials U1 and U2, as470

(kBT )−1∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′U1(r

′)c(r′, t) dr′
)

+ (kBT )−1∇ ·
(
c(r, t)

ˆ
R(r, r′)∇′U2(r

′, r′′)c(r′, t)c(r′′, t) dr′dr′′
)
.

(A22)

Adding these terms to the right hand side of (A14) (or, in the Stratonovich interpretation, to (A5)) gives471

our final result (15). Remarkably, this is a closed equation for the fluctuating concentration just as in472

the case of uncorrelated particles [3].473

Taking an ensemble average of the new terms (A22) leads to terms involving the two-particle (A16) and474

three-particle correlation function475

c(3)(r, r′, r′′, t) = 〈c(r, t)c(r′, t)c(r′′, t)〉
− 1

2
〈c(r, t)c(r′, t)〉 (δ(r − r′′) + δ(r′ − r′′))

− 1
2
〈c(r, t)c(r′′, t)〉 (δ(r − r′) + δ(r′ − r′′))

− 1
2
〈c(r′, t)c(r′′, t)〉 (δ(r − r′) + δ(r − r′′))

+ 〈c(r, t)〉δ(r − r′)δ(r′ − r′′),

(A23)

which, after some algebra, gives our final result (17) for the average concentration.476
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