

Dynamic Density Functional Theory with hydrodynamic interactions and fluctuations

Aleksandar Donev* and Eric Vanden-Eijnden†

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [*Rex and Löwen, Phys. Rev. Lett.*, **101**(14):148302, 2008], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [*A. Donev, T. G. Fai, E. Vanden-Eijnden, J. Stat. Mech.*, P04004, 2014] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.

* donev@courant.nyu.edu

† eve2@courant.nyu.edu

5 I. Introduction

6 Over the past decade and a half there has been considerable interest in extending traditional (static)
7 Density Functional Theory (DFT) for liquids to account for dynamics, leading to Dynamic DFT (DDFT) [1–
8 5]. Recently, attempts have been made to additionally account for hydrodynamic interactions (HI) among the
9 particles due to the presence of a viscous solvent [6–10], as necessary when modeling colloidal suspensions. A
10 key feature of these proposed HI+DDFT theories is that even for the simple case of non-interacting Brownian
11 particles suspended in a fluid the resulting equations appear to be different from Fick's law, in contrast to the
12 case of independent (uncorrelated) Brownian walkers. Here we show that for the case of non-interacting but
13 hydrodynamically-correlated Brownian particles one can write down a closed equation for the average density
14 that is exactly Fick's law, without uncontrolled approximations such as closures of the BBGKY hierarchy.
15 Furthermore, our equation includes fluctuations around Fick's law, and sheds light on the controversy over
16 the difference between deterministic and fluctuating DDFT [1–4]. The derivation presented here follows on
17 our previous work [11] in which we obtain the same result by using a fluctuating hydrodynamic formalism.
18 Here we follow an approach originally proposed by Dean [3] for the case of uncorrelated Brownian walkers,
19 and obtain the same equation as derived in [11] by rather different means. Our work demonstrates that
20 hydrodynamics is not something that is to be added to Fick's law as non-local correction; rather, fluctuating
21 hydrodynamics underlies diffusion and gives rise to Fick's law. This simple yet seemingly frequently missed
22 point is silently evidenced by the well-known Stokes-Einstein relation, which relates the diffusion coefficient
23 $\chi \sim k_B T / (\eta \sigma)$ to the temperature T , the size of the particles σ , and the viscosity of the fluid η .

24 For consistency, in this paper we use the notation of our prior closely-related work [11] instead of the nota-
25 tion more common in the DDFT literature. We start from the overdamped Langevin equations of Brownian
26 Dynamics (BD), which are often used to model dynamics of colloidal particles or polymer chains in flow.
27 The Ito equations of motion for the (correlated) positions of the N particles $\mathbf{Q}(t) = \{\mathbf{q}_1(t), \dots, \mathbf{q}_N(t)\}$ are

$$d\mathbf{Q} = -\mathbf{M}(\partial_{\mathbf{Q}} U) dt + (2k_B T \mathbf{M})^{\frac{1}{2}} d\mathbf{B} + k_B T (\partial_{\mathbf{Q}} \cdot \mathbf{M}) dt, \quad (1)$$

28 where $\mathbf{B}(t)$ is a collection of independent Brownian motions, $U(\mathbf{Q})$ is a conservative interaction potential,
29 $\mathbf{M}(\mathbf{Q}) \succeq \mathbf{0}$ is a symmetric positive semidefinite *mobility* block matrix for the collection of particles. The
30 Fokker-Planck equation (FPE) for the probability density $P(\mathbf{Q}, t)$ corresponding to (1) is

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial \mathbf{Q}} \cdot \left\{ \mathbf{M} \left[\frac{\partial U}{\partial \mathbf{Q}} P + (k_B T) \frac{\partial P}{\partial \mathbf{Q}} \right] \right\}, \quad (2)$$

31 and is in detailed-balance (i.e., is time reversible) with respect to the Gibbs-Boltzmann distribution
32 $\sim \exp(-U(\mathbf{Q})/k_B T)$. A commonly-used model of the mobility matrix, suitable for dilute suspensions,
33 is the Rotne-Prager pairwise approximation [12].

34 We will assume here that the mobility is *pairwise* additive, and that the block of the mobility corresponding
35 to the pair of particles i and j is a smooth function of *only* the positions of those particles,

$$\forall (i, j) : \quad \mathbf{M}_{ij}(\mathbf{q}_i, \mathbf{q}_j) = \frac{\mathcal{R}(\mathbf{q}_i, \mathbf{q}_j)}{k_B T}, \quad (3)$$

36 where $\mathcal{R}(\mathbf{r}, \mathbf{r}')$ is a symmetric positive-semidefinite (SPD) tensor kernel (linear operator mapping vector
37 fields to vector fields)¹. The assumption of pairwise additivity is appropriate for low-density colloidal
38 suspensions, when the typical distance between particles is significantly larger than the typical size of a
39 particle; at higher densities complex many-body effects appear which are beyond the scope of this work.
40 Because we assume that (3) holds even if $i = j$, the self-diffusion tensor of a particle with position \mathbf{r} is

$$\boldsymbol{\chi}(\mathbf{r}) = \mathcal{R}(\mathbf{r}, \mathbf{r}).$$

41 For confined systems, $\mathcal{R}(\mathbf{r}, \mathbf{r}')$ depends on the positions of the two particles relative to the boundaries
42 and $\boldsymbol{\chi}(\mathbf{r})$ may be anisotropic and may depend on the position; for a translationally-invariant and isotropic

¹ Here we adopt the notation of our previous work [11], except that we have included an additional factor of 2 in \mathcal{R} to simplify some of the expressions.

⁴³ system $\mathcal{R}(\mathbf{r}, \mathbf{r}') \equiv \mathcal{R}(\mathbf{r} - \mathbf{r}')$ and $\boldsymbol{\chi}(\mathbf{r}) = \chi \mathbf{I}$, where χ is the self-diffusion coefficient of the particles. Rex
⁴⁴ and Löwen [6, 7] assume translational invariance but take a form for the mobility in which the diagonal
⁴⁵ elements of the mobility are treated differently from the off-diagonal ones,

$$\begin{aligned}\mathbf{M}_{ij}(\mathbf{Q}) \equiv \mathbf{M}_{ij}(\mathbf{q}_i, \mathbf{q}_j) &= \frac{\chi}{k_B T} [\delta_{ij} \mathbf{I} + (1 - \delta_{ij}) \boldsymbol{\omega}_{12}(\mathbf{q}_i - \mathbf{q}_j)], \\ &= \frac{\chi}{k_B T} [\delta_{ij} (\mathbf{I} - \boldsymbol{\omega}_{12}(0)) + \boldsymbol{\omega}_{12}(\mathbf{q}_i - \mathbf{q}_j)]\end{aligned}\quad (4)$$

⁴⁶ where we have neglected higher-order hydrodynamic corrections and taken $\omega_{11} = 0$, which is appropriate
⁴⁷ for dilute suspensions. The Rotne-Prager [12] form for $\boldsymbol{\omega}_{12}(\mathbf{r})$, which is what Rex and Löwen used in
⁴⁸ their numerical simulations, can be written in the form

$$\boldsymbol{\omega}_{12}(\mathbf{r}) = \begin{cases} \left(\frac{3\sigma}{4r} + \frac{\sigma^3}{2r^3} \right) \mathbf{I} + \left(\frac{3\sigma}{4r} - \frac{3\sigma^3}{2r^3} \right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r > 2\sigma \\ \left(1 - \frac{9r}{32\sigma} \right) \mathbf{I} + \left(\frac{3r}{32\sigma} \right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r \leq 2\sigma \end{cases} \quad (5)$$

⁴⁹ where σ is the radius of the colloidal particles, and satisfies the key condition $\boldsymbol{\omega}_{12}(0) = \mathbf{I}$. Therefore, the
⁵⁰ term involving δ_{ij} in (4) can be deleted and (4) becomes of the form (3) with

$$\mathcal{R}(\mathbf{q}_i, \mathbf{q}_j) \equiv \chi \boldsymbol{\omega}_{12}(\mathbf{q}_i - \mathbf{q}_j).$$

⁵¹ Note that in colloidal suspensions there is typically a hard-core repulsion that ensures that particles
⁵² essentially never overlap, which implies that the behavior of $\boldsymbol{\omega}_{12}(\mathbf{r})$ for $r \leq 2\sigma$ is not expected to be
⁵³ important. Since the effect of hydrodynamic interactions is distinct from that of direct interactions, it
⁵⁴ is important to also consider the case of an ideal gas in which the only interparticle interactions are of
⁵⁵ hydrodynamic origin. Furthermore, particles can overlap relative to their far-field hydrodynamic radius
⁵⁶ for suspensions of soft particles such as star polymer chains [13].

⁵⁷ In a clever but formal derivation [4], Dean started from the overdamped Langevin equations for a
⁵⁸ collection of N interacting Brownian walkers driven by *independent* noise, i.e., a diagonal mobility matrix
⁵⁹ $\mathbf{M} = (k_B T)^{-1} \chi \mathbf{I}$, to obtain a closed-form equation for the *empirical* or *fluctuating* density (concentration)
⁶⁰ of particles

$$c(\mathbf{r}, t) = \sum_{i=1}^N \delta(\mathbf{q}_i(t) - \mathbf{r}). \quad (6)$$

⁶¹ For non-interacting particles, this equation can formally be written as an Ito stochastic partial differential
⁶² equation (SPDE) [4],

$$\partial_t c = \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi c} \mathbf{W}_c \right), \quad (7)$$

⁶³ where $\mathbf{W}_c(\mathbf{r}, t)$ denotes a spatio-temporal white-noise vector field. As pointed out in Ref. [4] and further
⁶⁴ elaborated in [2], equation (7) is simply a formal rewriting of (1). The only difference is that the identity of
⁶⁵ the different particles has been removed by going from a Lagrangian to an Eulerian description. Importantly,
⁶⁶ the solution of (7) should forever remain a sum of delta functions (whose positions diffuse independently).
⁶⁷ In fact, the multiplicative noise SPDE (7) as written has no clear mathematical interpretation, and neither
⁶⁸ does the square root of a sum of delta functions in the noise amplitude.

⁶⁹ Of primary interest in practice are expectation values of the instantaneous concentration $c(\mathbf{r}, t)$, such
⁷⁰ as the *average* concentration, which is also the single-particle distribution function $c^{(1)}(\mathbf{r}, t) = \langle c(\mathbf{r}, t) \rangle$.
⁷¹ Taking an ensemble average of (7) is trivial because of the linearity of the deterministic term and the
⁷² fact that the noise term averages to zero due to its Ito interpretation, and for the case of non-interacting
⁷³ particles one simply obtains Fick's law,

$$\partial_t c^{(1)} = \chi \nabla^2 c^{(1)}. \quad (8)$$

⁷⁴ If direct interactions among the particles are included, one cannot write a closed form equation and an infinite
⁷⁵ hierarchy of BBGKY equations arises; a closure approximation for the higher-order correlation functions is

76 required, as explained by Marconi and Tarazona [4]. It is important to note that (7) and (8) describe rather different objects; the solution to (7) is a spiky sum of delta functions, and not a smooth average density or single-particle distribution function as Fick's *deterministic* law (8) or traditional (static) DFT describes [1, 2, 4].

79 As summarized in Ref. [2], Fick's law (8) can also be obtained by starting from the FPE (2) and 80 integrating over $N - 1$ particles to get an equation for the single-particle distribution function $c^{(1)}(\mathbf{r}, t)$. 81 This route was followed by Rex and Löwen [6, 7] in order to include the effect of hydrodynamic interactions 82 in (8) and obtain an equation that, at first sight, appears distinctly different from Fick's law. It is important 83 to note that in order to close the BBGKY hierarchy some uncontrolled approximations are made in Refs. 84 [6, 7]; we will not require such approximations until Section II. For non-interacting particles, in our notation, 85 eq. (5) in Ref. [7] reduces to

$$\partial_t c^{(1)}(\mathbf{r}, t) = \chi \nabla^2 c^{(1)}(\mathbf{r}, t) + \chi \nabla \cdot \left(\int \boldsymbol{\omega}_{12}(\mathbf{r} - \mathbf{r}') \nabla' c^{(2)}(\mathbf{r}, \mathbf{r}', t) d\mathbf{r}' \right), \quad (9)$$

86 where $c^{(2)}(\mathbf{r}, \mathbf{r}', t)$ is the two-particle distribution function, and we use ∇ to denote gradient with respect to \mathbf{r} 87 and ∇' with respect to \mathbf{r}' . In this work, we derive an equation for the empirical (fluctuating) concentration in 88 the presence of hydrodynamic interactions similar to (7), whose expectation gives (9). In the absence of direct 89 interactions this equation is given by (12) and was previously derived by us using a different approach in 90 Ref. [11]. In addition to reproducing Fick's law for the average, (12) also describes the long-range correlated 91 fluctuations around the mean. Here we also include the effect of direct interactions among the particles.

92 The first term on the right hand side of (9) is the familiar *local* Fick's law; but the second term is a 93 *non-local* diffusion term. It is important to note that the far-field behavior of the mobility (5) is given 94 by the scaled Oseen tensor

$$\boldsymbol{\omega}_{12}(\mathbf{r}) = \frac{3\sigma}{4r} \left(\mathbf{I} + \frac{\mathbf{r} \otimes \mathbf{r}}{r^2} \right) + O\left(\left(\frac{\sigma}{r}\right)^3\right), \quad (10)$$

95 which is long-ranged and decays as r^{-1} . While it may at first sight look like $\boldsymbol{\omega}_{12}(\mathbf{r})$ is small for $r \gg \sigma$, 96 it should be recalled that the Stokes-Einstein formula $\chi = k_B T / (6\pi\eta\sigma)$ implies that the second term in (9) 97 is independent² of σ since $\chi\boldsymbol{\omega}_{12}(\mathbf{r}) \sim (k_B T) / (\eta r)$. The equation of Rex and Löwen (9) therefore implies 98 that Fick's law needs to be amended with a long-ranged non-local term even for *dilute* suspensions with 99 *no* direct interactions among the diffusing particles.

100 Let us observe, however, that the Rotne-Prager mobility (5) satisfies an additional key property, 101 $\nabla \cdot \boldsymbol{\omega}_{12}(\mathbf{r}) = 0$, or more generally,

$$\nabla \cdot \mathcal{R}(\mathbf{r}, \mathbf{r}') = 0. \quad (11)$$

102 This is a direct consequence of the fact that hydrodynamic interactions (correlations) are mediated by an 103 incompressible fluid [12]. In this case the second term on the right hand side of (9) in fact *vanishes* after a 104 simple integration by parts. Therefore, Fick's law (8) for the average concentration remains valid even in the 105 presence of long-ranged hydrodynamic correlations among the Brownian walkers. This important physical 106 implication of (11) seems to be have been missed in [6, 7] and subsequent works because the focus in DFT, 107 and therefore DDFT, is almost exclusively on interacting particles and nonlocal free-energy functionals, and 108 comparatively little attention seems to have been given to the nonlocal diffusion aspect of (9). Following 109 the completion of this work, we learned of an early derivation by Altenberger and Deutch that showed 110 that, indeed, (8) holds even in the presence of hydrodynamic interactions (correlations), see (3.10) in Ref. 111 [14]. These authors also made use of and noted the importance of the divergence-free condition (11).

112 It is important to also note another derivation aiming to include hydrodynamics in DDFT, developed by the 113 authors of Refs. [8–10]. These authors argue that inertia also needs to be included, and arrive at an equation 114 that has even more non-local terms than (9). We believe that these derivations, while careful (even rigorous), 115 start from an incorrect inertial formulation of the equations of motion of colloidal particles immersed in fluid. 116 As explained by Hinch [15] and later summarized eloquently and clearly by Roux [16], any equation of motion 117 that accounts for inertial effects *must* include the inertia of the fluid in addition to any excess inertia of the 118 particles over the fluid they expel. This is because the time it takes for momentum to diffuse through the liquid,

² This is expected since the leading-order hydrodynamic correction comes from a monopole term (Stokeslet) that corresponds to a *point* force in a Stokesian fluid.

119 with diffusion coefficient equal to the kinematic viscosity $\nu = \eta/\rho$ (note the appearance of the fluid inertia here
 120 via the density ρ), is in fact *longer* than inertial time scales. It is therefore inconsistent to use hydrodynamic
 121 friction or mobility functions such as the Rotne-Prager tensor, which assume steady Stokes flow, i.e., infinitely
 122 fast momentum diffusion, while including inertia of the particles explicitly. The only Markovian formulation
 123 of the hydrodynamics of colloidal suspensions that includes *both* hydrodynamics and thermal fluctuations
 124 (Brownian motion) consistently is that of *fluctuating hydrodynamics* [15, 17, 18]. Roux starts from the inertial
 125 formulation of Hinch [15] and derives the overdamped equation of motion (1) from those inertial equations
 126 [16]. We therefore consider the overdamped equation (1), rather than the inertial Langevin equations used
 127 by a number of authors [8, 19, 20], as the correct starting point for including hydrodynamics in DDFT.

In our own recent work [11], we started from a simplified version of the complete formulation of Hinch [15] and Roux [16]. In this approximation [21–25], the no-slip condition resolved over the surface of the particles is approximated by an average no-slip condition at the centroid of each of the particles, and the particles are assumed to be neutrally-buoyant (but see Ref. [24] for an extension to account for excess inertia). Another way to think of the approximation is as a low-order multipole approximation of the complete hydrodynamics, suitable for dilute suspensions, and accurate to the *same* order as the Rotne-Prager far-field approximation [25, 26]. By starting from the simplified fluctuating hydrodynamic formulation and eliminating the fluid velocity as a fast variable, one can obtain the overdamped Lagrangian equation (1) [11, 21]. In Ref. [11] we started from an inertial *Eulerian* description, i.e., a description involving not the positions of the individual particles but rather the empirical concentration $c(\mathbf{r}, t)$, and obtained, by adiabatic elimination of the fast fluid velocity, the overdamped Eulerian Ito SPDE

$$\partial_t c = \nabla \cdot [\chi(\mathbf{r}) \nabla c] - \mathbf{w} \cdot \nabla c. \quad (12)$$

Here $\mathbf{w}(\mathbf{r}, t)$ is a random velocity field that is white in time and has a spatial covariance [11],

$$\langle \mathbf{w}(\mathbf{r}, t) \otimes \mathbf{w}(\mathbf{r}', t') \rangle = 2\mathcal{R}(\mathbf{r}, \mathbf{r}') \delta(t - t'), \quad (13)$$

128 and the incompressibility condition (11) is assumed to hold. The ensemble average of (12) is nothing other
 129 than Fick's law (8), and does not include any non-local diffusion terms because of the incompressibility
 130 of the fluid. It is important to point out that (12), just like (7), describes a spiky sum of delta functions
 131 which are advected by a rapidly-decorrelating random velocity field. However, (12) is distinctly different
 132 from (7): while both equations have multiplicative noise, (12) is *linear*, while (7) is *nonlinear*. As we discuss
 133 in more detail in the Conclusions, one can obtain (7) from (12) upon taking a suitable (nontrivial) limit
 134 in which $\mathcal{R}(\mathbf{r}, \mathbf{r}')$ becomes highly localized around $\mathbf{r} = \mathbf{r}'$.

135 Here, we connect our prior work to the DDFT literature, by obtaining the overdamped Eulerian (fluctuating
 136 DDFT) equation (12) starting from the overdamped Lagrangian equation (1), rather than from the inertial
 137 Eulerian formulation as we did in Ref. [11]. Our argument is essentially a generalization of that of Dean [3]
 138 and makes specific use of the hydrodynamic formulation that is hidden in Rotne-Prager-like approximations
 139 to the mobility matrix. As it must, for non-interacting particles the present calculation gives exactly the same
 140 result (12) for the empirical concentration and Fick's law (8) for the average concentration. Furthermore,
 141 here we extend our previous work to account for direct interactions (as opposed to hydrodynamic interactions)
 142 among the diffusing particles. Just as in the work of Dean [4], we obtain a *closed* but *nonlinear* and
 143 *nonlocal* equation for the empirical (fluctuating) concentration. As expected, in the presence of interactions
 144 it is not possible to write down a closed form for the ensemble-averaged concentration, and approximate
 145 closures are required for two-particle and three-particle correlation functions [4, 6, 7].

146 This paper is organized as follows. In Section II we summarize and then derive our key result (15),
 147 a fluctuating diffusion equation for a collection of particles interacting both hydrodynamically and via
 148 conservative potentials. In Section III we discuss coarse-graining (averaging) and the relation of our work
 149 to density functional theory, Fick's macroscopic law, and fluctuating hydrodynamics, and point to several
 150 important open problems. Finally, we give some conclusions in Section IV.

151 II. Fluctuating DDFT with Hydrodynamic Interactions

152 In this section we summarize our main results, and defer the detailed derivations to Appendix A. For
 153 completeness, we will include here a direct interaction among the particles in the form of a conservative

154 potential that includes an external potential $U_1(\mathbf{r})$ and a pairwise additive potential $U_2(\mathbf{r}, \mathbf{r}')$,

$$U(\mathbf{Q}) = \sum_{i=1}^N U_1(\mathbf{q}_i) + \frac{1}{2} \sum_{\substack{i,j=1 \\ i \neq j}}^N U_2(\mathbf{q}_i, \mathbf{q}_j) \quad (14)$$

155 where, without loss of generality, we can assume that $U_2(\mathbf{r}, \mathbf{r}') = U_2(\mathbf{r}', \mathbf{r})$ and $[\nabla U_2(\mathbf{r}, \mathbf{r}')]_{\mathbf{r}'=\mathbf{r}} = 0$. Note
156 that such an interaction was not included in our prior work [11].

157 Here we use (1,3) to formally derive a closed-form SPDE for the empirical concentration (6). Our
158 calculation mimics the one performed by Dean for the case of uncorrelated walkers [3]. The result of the
159 calculations detailed in Appendix A is the fluctuating hydrodynamic equation (conservation law)

$$\begin{aligned} \partial_t c(\mathbf{r}, t) = & -\nabla \cdot (\mathbf{w}(\mathbf{r}, t) c(\mathbf{r}, t)) + \nabla \cdot (\chi(\mathbf{r}) \nabla c(\mathbf{r}, t) + \mathbf{b}(\mathbf{r}, \mathbf{r}) c(\mathbf{r}, t)) \\ & + \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c(\mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_1(\mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_2(\mathbf{r}', \mathbf{r}'') c(\mathbf{r}', t) c(\mathbf{r}'', t) d\mathbf{r}' d\mathbf{r}'' \right), \end{aligned} \quad (15)$$

160 where $\mathbf{b}(\mathbf{r}, \mathbf{r}') = \nabla' \cdot \mathcal{R}(\mathbf{r}, \mathbf{r}')$ and $\mathbf{w}(\mathbf{r}, t)$ is a random velocity field with covariance (13), see (A14) for
161 a derivation of the stochastic term in the Ito convention and (A5) for the Stratonovich interpretation.
162 Compare (15) to the equation obtained by following the same procedure for the case of uncorrelated
163 particles, $\mathbf{M}_{ij} = \delta_{ij} (k_B T)^{-1} \chi(\mathbf{q}_i)$,

$$\begin{aligned} \partial_t c(\mathbf{r}, t) = & \nabla \cdot \left((2\chi(\mathbf{r}) c(\mathbf{r}, t))^{\frac{1}{2}} \mathcal{W}_c \right) + \nabla \cdot (\chi(\mathbf{r}) \nabla c(\mathbf{r}, t)) \\ & + (k_B T)^{-1} \nabla \cdot (\chi(\mathbf{r}) c(\mathbf{r}, t) \nabla U_1(\mathbf{r})) \\ & + (k_B T)^{-1} \nabla \cdot \left(\chi(\mathbf{r}) c(\mathbf{r}, t) \int \nabla' U_2(\mathbf{r}, \mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) \end{aligned} \quad (16)$$

164 which is a slight generalization of Eq. (17) in [3] to account for the one-particle potential and the possible
165 anisotropy and spatial dependence of the diffusion tensor $\chi(\mathbf{r})$.

166 Ensemble averaging (15) gives the first member of a BBGKY-like hierarchy of equations for the
167 single-particle distribution function,

$$\begin{aligned} \partial_t c^{(1)}(\mathbf{r}, t) = & \nabla \cdot (\chi(\mathbf{r}) \nabla c^{(1)}(\mathbf{r}, t)) + \nabla \cdot \left(\int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c^{(2)}(\mathbf{r}, \mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(\chi(\mathbf{r}) \nabla U_1(\mathbf{r}) c^{(1)}(\mathbf{r}, t) + \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_1(\mathbf{r}') c^{(2)}(\mathbf{r}, \mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(\int (\chi(\mathbf{r}) \nabla U_2(\mathbf{r}, \mathbf{r}') + \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_2(\mathbf{r}, \mathbf{r}')) c^{(2)}(\mathbf{r}, \mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(\int \mathcal{R}(\mathbf{r}, \mathbf{r}') c^{(3)}(\mathbf{r}, \mathbf{r}', \mathbf{r}'', t) \nabla' U_2(\mathbf{r}', \mathbf{r}'') d\mathbf{r}'' d\mathbf{r}' \right), \end{aligned} \quad (17)$$

168 which is a slight generalization of equation (5) in Ref. [6, 7] with $\omega_{11} = 0$. Here $c^{(3)}(\mathbf{r}, \mathbf{r}', \mathbf{r}'', t)$ denotes
169 the three-particle correlation function. We note that the term involving $c^{(3)}$ is missing in (4.4) in Ref. [14],
170 as well as (3.1) in Ref. [27], apparently because of an additional low-density approximation in the spirit
171 of kinetic theory.

172 When the incompressibility condition (11) is satisfied, Eqs. (15) and (17) simplify in a key way; as also
173 observed in Ref. [14], after an integration by parts the nonlocal diffusion term on the second line of (15) and

174 the second term on the right hand side in the first line of (17) disappear, see (A17) in the Ito convention
 175 and (A6) for the Stratonovich interpretation ³. Therefore, in the absence of interactions the fluctuating
 176 DDFT equation (15) reduces to (12) and the mean follows the local Fickian diffusion equation (8), *even*
 177 in the presence of hydrodynamic correlations among the particles. This important physical consequence of
 178 incompressibility was not observed by Rex and Löwen [6, 7], and this omission may have lead some readers to
 179 the wrong conclusion that hydrodynamic interactions lead to nonlocal corrections to Fick's law for the mean.
 180 Although not apparent at first sight, (15) has the same structure of an overdamped Langevin equation
 181 as does (1), namely, we can formally write it in the compact notation [28]

$$\partial_t c = -\mathcal{M}[c(\cdot, t)] \frac{\delta H}{\delta c(\cdot, t)} + (2k_B T \mathcal{M}[c(\cdot, t)])^{\frac{1}{2}} \mathcal{W}_c(\cdot, t) + k_B T \left(\frac{\delta}{\delta c(\cdot, t)} \cdot \mathcal{M}[c(\cdot, t)] \right), \quad (18)$$

182 where the mobility $\mathcal{M}[c(\cdot)]$ is a positive-semidefinite linear operator that is a functional of the function
 183 of position c , denoted here by the notation $[c(\cdot)]$, and products imply a contraction over spatial position.
 184 More precisely,

$$\begin{aligned} \partial_t c(\mathbf{r}, t) = & - \int d\mathbf{r}' \mathcal{M}[c(\cdot, t); \mathbf{r}, \mathbf{r}'] \frac{\delta H}{\delta c(\mathbf{r}', t)} \\ & + (2k_B T)^{\frac{1}{2}} \int d\mathbf{r}' \mathcal{M}^{\frac{1}{2}}[c(\cdot, t); \mathbf{r}, \mathbf{r}'] \mathcal{W}_c(\mathbf{r}', t) \\ & + (k_B T) \int d\mathbf{r}' \left(\frac{\delta \mathcal{M}[c(\cdot, t); \mathbf{r}, \mathbf{r}']}{\delta c(\mathbf{r}', t)} \right), \end{aligned} \quad (19)$$

185 where the mobility $\mathcal{M}[c(\cdot)](\mathbf{r}, \mathbf{r}') \equiv \mathcal{M}[c(\cdot); \mathbf{r}, \mathbf{r}']$ is defined by its action on a scalar field $f(\mathbf{r})$,

$$\int d\mathbf{r}' \mathcal{M}[c(\cdot); \mathbf{r}, \mathbf{r}'] f(\mathbf{r}') \equiv - (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') c(\mathbf{r}') \nabla' f(\mathbf{r}') d\mathbf{r}' \right).$$

186 Here $H[c(\mathbf{r})]$ is an energy functional consisting of an ideal and an excess (potential) contribution,

$$H[c(\cdot)] = H_{\text{id}}[c(\cdot)] + H_{\text{exc}}[c(\cdot)] = H_{\text{id}}[c(\cdot)] + \int U_1(\mathbf{r}) c(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int U_2(\mathbf{r}, \mathbf{r}') c(\mathbf{r}) c(\mathbf{r}') d\mathbf{r} d\mathbf{r}',$$

187 where the ideal gas energy functional is

$$H_{\text{id}}[c(\cdot)] = k_B T \int c(\mathbf{r}) (\ln(\Lambda^3 c(\mathbf{r})) - 1) d\mathbf{r},$$

188 Λ is a constant (e.g., the thermal de Broglie wavelength), and H_{exc} is the excess free energy functional. It
 189 is important to note that when incompressibility condition (11) holds, we can remove the ideal contribution
 190 from H and define $H \equiv H_{\text{exc}}$ without affecting (19), because

$$\int \mathcal{R}(\mathbf{r}, \mathbf{r}') c(\mathbf{r}') \nabla' \left(\frac{\delta H_{\text{id}}}{\delta c(\mathbf{r}')} \right) d\mathbf{r}' = \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c(\mathbf{r}') d\mathbf{r}' = 0.$$

191 Also note that in the case of independent (uncorrelated) particles, (16) can be written as a functional
 192 Langevin equation (19) with the same free-energy functional but with a different mobility operator \mathcal{M}_{ind} ,
 193 defined by its action on a scalar field $f(\mathbf{r})$,

$$\int d\mathbf{r}' \mathcal{M}_{\text{ind}}[c(\cdot); \mathbf{r}, \mathbf{r}'] f(\mathbf{r}') \equiv - (k_B T)^{-1} \nabla \cdot (\boldsymbol{\chi}(\mathbf{r}) c(\mathbf{r}) \nabla f(\mathbf{r})).$$

³ Note that for incompressible \mathbf{w} we have $\nabla \cdot (\mathbf{w} c) = \mathbf{w} \cdot \nabla c$.

194 The kinetic form [29] of the (formal) functional FPE associated with (19) implies that the equilibrium
 195 distribution associated with (15), assumed to be unique, is the formal Gibbs-Boltzmann distribution

$$P[c(\cdot)] = Z^{-1} \exp\left(-\frac{H[c(\cdot)]}{k_B T}\right), \quad (20)$$

196 which is the field representation of the equilibrium distribution $\exp(-U(\mathbf{Q})/k_B T)$ associated with the
 197 particle description (1). In the incompressible case, uniqueness of the Gibbs-Boltzmann distribution can
 198 be ensured by adding a small multiple of the identity (so-called bare diffusion [11]) to the mobility matrix
 199 \mathbf{M} , that is, by adding a small multiple of \mathbf{M}_{ind} to the mobility operator \mathbf{M} .

200 III. Coarse-Graining

201 As noted by Marconi and Tarazona [4], (15) contains the same physical content as (1) because we have not
 202 performed any *coarse graining* or averaging, and have not lost any information except the particle numbering.
 203 Nevertheless, (15) is an informative nontrivial rewriting of (1) that can be used to perform additional
 204 *coarse-graining* and attempt to describe the behavior of collective diffusion in colloidal suspensions at a
 205 spectrum of length (and thus also time) scales, going from a microscopic scale ξ to macroscopic scales. Here
 206 we discuss three distinct types of coarse-graining one can perform on (15): an ensemble average over the
 207 realizations of the noise, an average over an ensemble of initial conditions, and spatial averaging over a large
 208 number of particles [30]. Spatial averaging is of great interest in practice since colloidal suspensions are
 209 typically observed at mesoscopic scales larger than the size of individual particles. For example, in typical
 210 experiments such as light scattering from colloidal suspensions, concentration fluctuations are averaged
 211 over a region containing many particles (e.g., the thickness of the sample).

212 One of the simplest, though by no means the only [31], ways to approach such spatial coarse graining
 213 is to define a smoothed empirical concentration that averages over particles in a physical region of typical
 214 size ξ (see Section 4 in Ref. [2] and Section IV in Ref. [11]),

$$c_\xi(\mathbf{r}, t) = \sum_{i=1}^N \delta_\xi(\mathbf{q}_i(t) - \mathbf{r}), \quad (21)$$

215 where δ_ξ is a smoothing kernel with support $\sim \xi$ that converges to a delta function as $\xi \rightarrow 0$ (e.g., a
 216 Gaussian with standard deviation ξ). For ξ smaller than the typical particle size or interparticle distance, we
 217 have little to no coarse-graining and detailed microstructural information (e.g., layering in a hard-core fluid)
 218 is encoded in c_ξ . For ξ much larger than some characteristic correlation length (e.g., decay length of the pair
 219 correlation function), microstructural information will no longer be encoded in c_ξ , although fluctuations in c_ξ
 220 may still be non-negligible. Ultimately, for very large ξ we expect c_ξ to become *macroscopic* with negligible
 221 fluctuations, although it is not *a priori* obvious how large ξ needs to be for this to become the case.

222 A. Ensemble Averaging

223 For simplicity, and in order to facilitate a direct comparison with prior work by others, in this section
 224 we will assume there is no external potential, $U_1 = 0$. We will also assume an isotropic homogeneous
 225 (translationally- and rotationally-invariant) system,

$$\mathcal{R}(\mathbf{r}, \mathbf{r}') \equiv \mathcal{R}(\mathbf{r} - \mathbf{r}') \quad \text{and} \quad \boldsymbol{\chi}(\mathbf{r}) \equiv \chi \mathbf{I}.$$

226 Furthermore, we will assume that the incompressibility condition (11) holds, which we again emphasize is
 227 true for the Rotne-Prager mobility.

228 Direct ensemble averaging of the functional Langevin equation (15) gives

$$\begin{aligned} \partial_t c^{(1)}(\mathbf{r}, t) &= - \int d\mathbf{r}' \left\langle \mathcal{M}[c(\cdot, t); \mathbf{r}, \mathbf{r}'] \frac{\delta H_{\text{exc}}}{\delta c(\mathbf{r}', t)} \right\rangle \\ &\quad + (k_B T) \int d\mathbf{r}' \left\langle \frac{\delta \mathcal{M}[c(\cdot, t); \mathbf{r}, \mathbf{r}']}{\delta c(\mathbf{r}', t)} \right\rangle, \end{aligned} \quad (22)$$

229 where we used the fact that for incompressible \mathcal{R} we can replace H by H_{exc} , and the fact that in the
 230 Ito interpretation the stochastic term vanishes in expectation. As derived more carefully in Appendix

231 A of our prior work [11], the thermal or stochastic drift term on the second line of (22) can be averaged
 232 explicitly due to linearity, and leads to the first term on the right hand side of (17). This demonstrates
 233 that Fickian diffusion is already included in the hydrodynamic correlation tensor \mathcal{R} , as evidenced by the
 234 Stokes-Einstein-like relation $\chi \mathbf{I} = \mathcal{R}(0)$. It also shows that all of the terms in the second, third and fourth
 235 lines of (17) come from the closure of the term $\langle -\mathcal{M} \delta H_{\text{exc}} / \delta c \rangle$. Recall that the second term on the first
 236 line of (17) disappears for incompressible \mathcal{R} .

237 In order to make (17) useful in practice, some closure approximation for the two-particle correlation function
 238 is required, and it is here that equilibrium statistical mechanical quantities such as free energy functionals
 239 enter in the calculations, as first discussed by Marconi and Tarazona [4] in the absence of hydrodynamic
 240 correlations and then generalized by Rex and Löwen [6, 7] to account for hydrodynamics. Namely, by assuming
 241 that the higher-order correlation functions can be approximated by those of the equilibrium system kept
 242 at the same density profile by an external potential, system (17) can be *approximated* with (c.f. (14) in [7])

$$\begin{aligned} \partial_t c^{(1)}(\mathbf{r}, t) &= (k_B T)^{-1} \chi \nabla \cdot \left(c^{(1)}(\mathbf{r}, t) \nabla \frac{\delta F}{\delta c^{(1)}(\mathbf{r}, t)} \right) \\ &+ (k_B T)^{-1} \nabla \cdot \left(\int \mathcal{R}(\mathbf{r} - \mathbf{r}') c^{(2)}(\mathbf{r}, \mathbf{r}', t) \nabla' \frac{\delta F}{\delta c^{(1)}(\mathbf{r}', t)} d\mathbf{r}' \right), \end{aligned} \quad (23)$$

243 where $F[c^{(1)}(\cdot)]$ is the *equilibrium* density functional familiar from static DFT, which is only explicitly known
 244 for the ideal-gas, see the discussion around (24). This microscopic equilibrium density functional captures
 245 microstructural information about the colloidal system at scales comparable to the size of the colloidal
 246 particles. Español and Löwen [5] explain how to connect the equilibrium free-energy functional with a non-
 247 Markovian non-local equation for $c^{(1)}$ *without* making approximations; after making a Markovian (separation
 248 of time scales) approximation they obtain a non-local diffusion equation (c.f. (32) in Ref. [5]), and after a
 249 further approximation of the diffusion kernel they obtain the equation of Marconi and Tarazona. Note that
 250 in the presence of hydrodynamic correlations the second line of (23) involves $c^{(2)}$, which makes the equation
 251 unclosed and therefore not yet useful in practice without a further closure approximation for $c^{(2)}(\mathbf{r}, \mathbf{r}', t)$.
 252 Rex and Löwen [6, 7] suggest such an approximation in terms of the equilibrium pair correlation function.
 253 It is important to note that, in general, the free-energy functional F (defined on a space of functions)
 254 that enters in the equation for the ensemble average is *different* from the energy functional H (formally
 255 defined on a space of distributions) that enters in the functional Langevin equation (19). In fact, a precise
 256 thermodynamic definition can be given to the classical DDFT functional $F[c^{(1)}(\cdot)]$ as an expectation value
 257 over a Gibbs-Boltzmann distribution related to (20). However, for noninteracting particles (an ideal gas)
 258 F and H have formally the same functional form,

$$F = F_{\text{id}} = H_{\text{id}}.$$

259 Equation (23) as written contains a long-ranged nonlocal diffusion term on the second line, which is there
 260 even when there are no direct interactions. For an ideal gas, the flux in the parenthesis on the second
 261 line of (23) becomes

$$\int \mathcal{R}(\mathbf{r} - \mathbf{r}') \frac{c^{(2)}(\mathbf{r}, \mathbf{r}', t)}{c^{(1)}(\mathbf{r}', t)} \nabla' c^{(1)}(\mathbf{r}', t) d\mathbf{r}',$$

262 which is still not closed. For an ideal gas, the closure for the two-particle correlation function that Rex
 263 and Löwen [6, 7] suggest becomes

$$c^{(2)}(\mathbf{r}, \mathbf{r}', t) \approx c^{(1)}(\mathbf{r}, t) c^{(1)}(\mathbf{r}', t).$$

264 After also making this approximation we can write the second line of (23) in the form

$$c^{(1)}(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r} - \mathbf{r}') \nabla' c^{(1)}(\mathbf{r}', t) d\mathbf{r}',$$

265 which vanishes after an integration by parts due to the incompressibility condition (11).

266 The above considerations for an ideal gas suggest that (23) should be written in a form that separates
 267 the ideal from the non-ideal contributions,

$$\begin{aligned} \partial_t c^{(1)}(\mathbf{r}, t) &= \chi \nabla^2 c^{(1)}(\mathbf{r}, t) + (k_B T)^{-1} \chi \nabla \cdot \left(c^{(1)}(\mathbf{r}, t) \nabla \frac{\delta F_{\text{exc}}}{\delta c^{(1)}(\mathbf{r}, t)} \right) \\ &+ (k_B T)^{-1} \nabla \cdot \left(\int \mathcal{R}(\mathbf{r} - \mathbf{r}') c^{(2)}(\mathbf{r}, \mathbf{r}', t) \nabla' \frac{\delta F_{\text{exc}}}{\delta c^{(1)}(\mathbf{r}', t)} d\mathbf{r}' \right). \end{aligned} \quad (24)$$

268 where F_{exc} is the *excess* (over the ideal gas) free-energy functional. The first line is the equation obtained for
 269 uncorrelated walkers by Marconi and Tarazona [4]. In the last line of (24), \mathcal{R} is long-ranged but one expects
 270 that the remainder of the integrand is short-ranged far from phase transitions in some sense [27] and therefore
 271 the result will be nonlocal only over scales that represents that typical correlation length in the microstructure
 272 of the system. Making this more precise requires some further approximations and is beyond the scope
 273 of this work. It is interesting to note that the first line in (24) can be written in functional notation as

$$- \int d\mathbf{r}' \mathcal{M}_{\text{ind}} [c^{(1)}(\cdot, t); \mathbf{r}, \mathbf{r}'] \frac{\delta F}{\delta c^{(1)}(\mathbf{r}', t)},$$

274 which, surprisingly, involves \mathcal{M}_{ind} even though \mathcal{M}_{ind} does not appear in the original dynamics. Further
 275 work is necessary to explore how well closures such as (24) describe collective diffusion in both confined
 276 and unconfined dilute and semi-dilute colloidal suspensions.

277 B. Averaging over initial conditions

278 As written, the fluctuating DDFT equation (15) is a nonlinear non-local SPDE that appears of little
 279 practical utility; solving it is no easier than solving (1) using Brownian Dynamics [25]. This is so even in
 280 the absence of direct interactions because of the nonlocal diffusive flux term $c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c(\mathbf{r}', t) d\mathbf{r}'$.
 281 However, an important observation, previously missed, is that the incompressibility of the fluid mediating
 282 the hydrodynamic correlations implies that the correlation tensor is divergence free. This implies that
 283 the nonlocal diffusive flux term vanishes, and therefore, in the absence of direct interactions the fluctuating
 284 DDFT equation is the *linear* and *local* stochastic advection-diffusion equation (12).

285 It is important to emphasize that (12) is mathematically well-behaved and *does* have utility beyond that of
 286 formal equations such as (16) because it can be averaged over initial conditions (rather than over realizations
 287 of the noise) [11]. Specifically, let us assume that the initial positions of the particles are uniformly sampled
 288 from an equilibrium ensemble *constrained* to have a specified mean $c_0(\mathbf{r}, t)$ via a suitable external or chemical
 289 potential [4, 7]. For noninteracting walkers, this simply amounts to choosing the initial particle positions
 290 independently from a probability distribution $\sim c_0(\mathbf{r}, t)$. Because of the linearity of (12) we can trivially
 291 average it over this ensemble of initial conditions; the equation remains the same but now the initial condition
 292 is the *smooth* $c(\mathbf{r}, 0) = c_0$ rather than a spiky sum of delta functions. This is useful if one wants to describe
 293 particular instances (realizations) of the dynamics starting from a random configuration of particles. For
 294 example, consider a fluorescence recovery after photobleaching (FRAP) experiment [32] in which a random
 295 subset of the particles uniformly distributed *below* a given plane are fluorescently labeled at $t = 0$ and then
 296 allowed to diffuse freely. This can be modeled by solving (1) for a finite collection of particles, but, equivalently,
 297 one can solve (using computational fluid dynamics techniques) the Eulerian equation (12) with $c(\mathbf{r}, 0) =$
 298 const. above the given plane and $c(\mathbf{r}, 0) = 0$ below it, to obtain the probability $\sim c(\mathbf{r}, t)$ of finding a particle
 299 at position \mathbf{r} for a *specific* instance of the noise $\mathbf{w}(\mathbf{r}, t)$. More general smooth initial conditions are also
 300 possible, e.g., a Gaussian profile corresponding to a nonuniform laser beam intensity in a FRAP experiment.
 301 Because of its nonlinearity, averaging (15) over initial conditions is nontrivial and requires further
 302 approximations that are beyond the scope of this work. We believe such averaging could lead to descriptions
 303 that describe collective diffusion at *all* scales, from the microscopic to the macroscopic, in a manner more
 304 suitable for numerical approximations than (1).

305 C. Spatial Averaging

306 It is important to contrast the fluctuating diffusion (24) that describes the microscopic dynamics to the
 307 equation obtained by considering a *macroscopic* limit and coarse-graining the concentration over many
 308 particles, rather than over realizations of the noise. The literature on the subject is large [14, 27, 33–35] and
 309 we make no attempt to review it here, rather, we summarize some key results. Let us denote with $\bar{c}(\mathbf{r}, t) \approx$

310 $c_\xi(\mathbf{r}, t)$ the macroscopic concentration, which, roughly speaking, can be thought of as $c(\mathbf{r}, t)$ averaged over
 311 a region of macroscopic size ξ (i.e., a region containing many particles and typical size much larger than the
 312 interaction range of the pairwise potential). A precise mathematical definition is possible by suitable rescaling
 313 of space and time, see Refs. [36–39]; equivalently, one can consider the Fourier transform of $c(\mathbf{r}, t)$ in the limit
 314 of small wavenumbers. It has been demonstrated rigorously [37] that for uncorrelated walkers interacting
 315 with short-ranged potentials the macroscopic concentration obeys a nonlinear but local Fick’s law [33]

$$\partial_t \bar{c} = \chi \nabla^2 \Pi(\bar{c}) = \chi \nabla \cdot \left(\frac{d\Pi(\bar{c})}{d\bar{c}} \nabla \bar{c} \right).$$

316 Here $\Pi(\bar{c})$ is the osmotic pressure of the suspension at thermodynamic (local) equilibrium with uniform
 317 concentration \bar{c} (for an ideal gas $\Pi(\bar{c}) = \bar{c} k_B T$), $\Pi(\bar{c}) = \bar{c} (df/d\bar{c}) - f$, where $f(\bar{c})$ is the thermodynamic
 318 *equilibrium* free-energy density of a *macroscopic* system with uniform density \bar{c} .

319 We are, however, not aware of any mathematical techniques that can be used to rigorously justify Fick’s
 320 law in the presence of long-ranged hydrodynamic correlations. Felderhof [27] argues that from a variant
 321 of (17) one can obtain Fick’s law with a diffusion coefficient that depends on concentration and gives
 322 a low-density expansion of the collective diffusion coefficient (c.f. (4.24) in [27]) that matches the one
 323 obtained by Batchelor [35] using Einstein’s formula. It is important to point out that at later stages of his
 324 argument Felderhof makes key use of the divergence-free nature of the hydrodynamic correlations⁴, which
 325 he also emphasizes follows from the incompressibility of the fluid (c.f. (4.13) in [27]). While Felderhof and
 326 other authors in the physics literature write Fick’s law as an equation for $c^{(1)}$ it is clear from the derivations
 327 that an assumption is being made that $c^{(1)}$ varies little and slowly in space. It is important to remember
 328 that $c^{(1)}(\mathbf{r}, t)$ and $\bar{c}(\mathbf{r}, t)$ are different objects, although one expects that in cases where $c^{(1)}$ varies slowly
 329 in space the two are closely related since ensemble and spatial averaging are expected to commute.

330 Of particular interest is to understand collective diffusion over the broad-spectrum of *mesoscopic*
 331 length-scales, i.e., scales that are larger than σ , where σ is a typical microscopic length, but not so large
 332 that the hydrodynamic limit applies. For non-interacting uncorrelated walkers, the ensemble-averaged
 333 concentration follows the *same* diffusion equation (Fick’s law) with the same diffusion coefficient at *all*
 334 scales, as seen from the linearity of (8). We demonstrated here that the same holds even in the presence
 335 of hydrodynamic correlations among the particles. Direct interactions appear to, however, complicate the
 336 picture and lead to non-local nonlinear terms like those in (24), and we do not know of any rigorous results
 337 in the mesoscopic regime. Non-equilibrium thermodynamics [28] and the theory of coarse-graining [30]
 338 provide guidance on the structure of the resulting equations but not their explicit form.

339 In principle, an equation for the coarse-grained concentration (21) can be carried out by convolving
 340 (filtering) the right hand side of (15) with the kernel δ_ξ . In general this leads to an unclosed equation and
 341 further approximations are required. Once again the special case of an ideal gas is much simpler to tackle
 342 because (15) becomes the linear (12). In Ref. [11] we proposed how to carry out spatial coarse-graining
 343 by performing a *partial* ensemble average of (12) over fluctuations of the random velocity field \mathbf{w} below
 344 the coarse-graining scale. Our argument, however, closely relied on the linearity of (12) and therefore only
 345 applies when there are incompressible hydrodynamic correlations but no direct interactions among the
 346 particles. The general conclusion of our work and other related works in the literature is that coarse-graining
 347 leads to effective dissipation (entropy production) with transport coefficients that must be *renormalized*
 348 in a way that takes into account the mesoscopic observation scale. The same undoubtedly holds for any
 349 “free energy functional” that may appear in the mesoscopic equations. Carrying out such a renormalization
 350 of (15) remains a difficult but important challenge for the future.

351 IV. Conclusions

352 Hydrodynamics plays an important role in colloidal suspensions and must be included in DDFT theories.
 353 Momentum transport in the fluid leads to hydrodynamic correlations among the diffusing particles and
 354 has important consequences for the collective diffusion not seen if one looks at the self-diffusion of a single
 355 particle in suspension. Starting from (3) as a model of these hydrodynamic correlations, we obtained a closed
 356 equation (15) for the instantaneous, fluctuating, or empirical concentration, the ensemble average of which
 357 (17) matches the DDFT equation previously obtained by Rex and Löwen [6, 7]. This generalizes the results

⁴ This part of the derivation of Felderhof inspired the rewriting (24).

358 of Dean [3] for the case of uncorrelated (independent) Brownian walkers to account for hydrodynamics,
 359 and generalizes our prior results [11] to account for direct interactions among the particles.

360 A few comments about the physical reasoning behind (3) are in order. Note that the generic form (4)
 361 does not fit (3) because the appearance of the Kronecker δ_{ij} . It can be shown that the requirement that the
 362 mobility be positive semidefinite for any configuration of particles and any N implies that $\|\boldsymbol{\omega}_{12}(0)\|_2 \leq 1$;
 363 if this holds as an equality then ⁵ $\boldsymbol{\omega}_{12}(0) = \mathbf{I}$ and therefore (3) holds. This has important physical
 364 consequences that do not appear to have been widely appreciated. Notably, for two overlapping particles,
 365 $\mathbf{q}_i = \mathbf{q}_j$, (3) predicts $\mathbf{M}_{ii} = \mathbf{M}_{jj} = \mathbf{M}_{ij} = \mathbf{M}_{ji}$, which implies that, in fact, the two particles continue
 366 to move in synchrony forever, and $\mathbf{q}_i = \mathbf{q}_j$ for all times. By contrast, if $\|\boldsymbol{\omega}_{12}(0)\|_2 < 1$, as for the case of
 367 independent Brownian walkers $\boldsymbol{\omega}_{12} = 0$, two particles released from the same position separate immediately.

368 We believe that it is physically more realistic to assume that the trajectories of nearby particles become
 369 highly correlated rather than remain independent. Furthermore, two perfectly overlapping particles should
 370 behave as if there is only a single particle at that location. The well-known Rotne-Prager mobility [12],
 371 which was used by Rex and Löwen [6, 7] in their numerical calculations, *does* conform to (3). In our prior
 372 work [11], we used a model based on fluctuating hydrodynamics [23, 40, 41], which, in the limit of infinite
 373 Schmidt number (momentum diffusion much faster than particle diffusion) converges to (1) with (3) and
 374 a covariance operator [21, 25]

$$\mathcal{R}(\mathbf{r}_1, \mathbf{r}_2) = \frac{k_B T}{\eta} \int \boldsymbol{\sigma}(\mathbf{r}_1, \mathbf{r}') \mathbf{G}(\mathbf{r}', \mathbf{r}'') \boldsymbol{\sigma}^T(\mathbf{r}_2, \mathbf{r}'') d\mathbf{r}' d\mathbf{r}'', \quad (25)$$

375 where \mathbf{G} is the Green's function for the steady Stokes equation with unit viscosity and appropriate
 376 boundary conditions. For unbounded three-dimensional systems \mathbf{G} is the Oseen tensor $\mathbf{G}(\mathbf{r}', \mathbf{r}'') =$
 377 $(8\pi r)^{-1}(\mathbf{I} + r^{-2}\mathbf{r} \otimes \mathbf{r})$, where $\mathbf{r} = \mathbf{r}' - \mathbf{r}''$. Here $\boldsymbol{\sigma}$ is a smoothing kernel that filters out features at scales
 378 below the size of the diffusing particles σ , e.g., $\boldsymbol{\sigma}$ could be a Gaussian with standard deviation σ . The
 379 self-diffusion coefficient χ given by (25) obeys a Stokes-Einstein formula, in three dimensions, $\chi \sim k_B T / (\eta\sigma)$
 380 [11]. When the particles are far apart, $\|\mathbf{q}_i - \mathbf{q}_j\| \gg \sigma$, the mobility is well-approximated by the Oseen
 381 tensor, $\mathbf{M}_{ij}(\mathbf{q}_i, \mathbf{q}_j) \approx \eta^{-1}\mathbf{G}(\mathbf{q}_i, \mathbf{q}_j)$. At short distances the divergence of the Oseen tensor is mollified
 382 by the filter, and (25) gives a pairwise mobility very similar to the Rotne-Prager mobility (5) widely-used
 383 in BD simulations [25]. Note that (11) follows from the incompressibility of the Green's function \mathbf{G} .

384 Numerical methods to solve (12) and (1), along with an extensive visual and quantitative analysis of the
 385 surprising characteristics of the solution can be found in Ref. [11]. A key observation is that, due to the Ito
 386 nature of the hydrodynamic term $-\mathbf{w} \cdot \nabla c$ in (12), the ensemble-averaged concentration continues to follow
 387 the local Fick's law (8), despite the presence of hydrodynamic correlations among the diffusing particles. Note,
 388 however, that the behavior of each *instance* (realization) of the stochastic process $c(\mathbf{r}, t)$ is rather distinct from
 389 the behavior of the mean concentration, as discussed extensively in our prior work [11]. In particular, the
 390 fluctuating equation (12) is non-dissipative (reversible), while Fick's law (8) is dissipative (irreversible). In the
 391 presence of large concentration gradients the solutions of (12) exhibit characteristic long-ranged correlations
 392 (giant fluctuations) that are quite distinct from the case of uncorrelated walkers [42–45]. This indicates that
 393 the mathematical structure and the physical behavior of (16) is very different from that of (15) because
 394 hydrodynamics affects the fluctuations of the concentration in crucial ways. This fact is well-known in nonequi-
 395 librium statistical mechanics circles, and recent experiments [44] have demonstrated how *giant* concentration
 396 fluctuations can arise for a simple polymer solution out of equilibrium in the absence of gravity. Nonequi-
 397 librium concentration fluctuations have also been measured in gravity for a nanocolloidal suspension [45].

398 The striking difference between correlated and uncorrelated walkers is somewhat surprising. After all, one
 399 would expect that, if the correlations are sufficiently weak in a certain sense (e.g., they decay rapidly with
 400 distance ⁶), (15) should converge to (16). It is important to emphasize, however, that (16) corresponds to the
 401 physically unrealistic case of particles performing uncorrelated random motions even when they overlap. In
 402 reality, it is the solvent molecules that have to kick the colloidal particles, and nearby particles must become
 403 correlated because their diffusion is caused by the motion of correlated fluid molecules. Let us assume for a
 404 moment that (1) holds with an isotropic smooth $\mathcal{R}(\mathbf{r} - \mathbf{r}')$ that is nonzero only if the two particles are within

⁵ Observe that $\boldsymbol{\omega}_{12}(0)$ must be rotationally invariant and therefore has to be the identity matrix.

⁶ It must be pointed out, however, that incompressible hydrodynamic correlations such as the Rotne-Prager tensor, must be long ranged because of the incompressibility constraint.

405 a distance σ' apart, and has a finite value at the origin, $\mathcal{R}(0) = \chi \mathbf{I}$. Let us also account for the fact that
 406 the diffusing particles themselves are not point particles but have a physical size σ , and consider the coarse-
 407 grained concentration (21) for $\xi \sim \sigma$. The case considered by Dean corresponds to the double limit $\sigma \rightarrow 0$ and
 408 $\sigma' \rightarrow 0$, but the order of these limits is not *a priori* clear. Formal manipulations show that (15) converges in a
 409 certain sense to (16) if one takes the limit $\sigma \rightarrow 0$ first and then takes the limit $\sigma' \rightarrow 0$. It is an interesting open
 410 question what happens if the order of the limits is reversed, or if σ and σ' go to zero simultaneously. Such calcu-
 411 lations will shed further light on the nature of diffusion in liquid suspensions and mixtures over a much broader
 412 spectrum of length and time scales than described by Fick's law with phenomenological diffusion constants.
 413

414 Acknowledgments

415 We are grateful to Pep Espanol and Mike Cates for their insightful comments. A. Donev was supported
 416 in part by the National Science Foundation under grant DMS-1115341 and the Office of Science of the
 417 U.S. Department of Energy through Early Career award DE-SC0008271. E. Vanden-Eijnden was supported
 418 by the DOE office of Advanced Scientific Computing Research under grant DE-FG02-88ER25053, by the
 419 NSF under grant DMS07-08140, and by the Office of Naval Research under grant N00014-11-1-0345.

420 Appendix

421 A. Equations for the Empirical Concentration

422 In this Appendix we present the detailed derivation of (15) and (17). In the beginning, we will consider
 423 the case of no direct interactions among the particles, $U = 0$, and subsequently add the direct forces. The
 424 assumption that the covariance operator \mathcal{R} is symmetric positive-semidefinite is equivalent to the requirement
 425 that the mobility matrix $\mathbf{M}(\mathbf{Q})$ be symmetric positive semi-definite for all \mathbf{Q} , and implies that there exists
 426 an infinite countable set of eigenfunctions $\phi_k(\mathbf{r})$ that factorize (diagonalize) the covariance operator,

$$\sum_k \phi_k(\mathbf{r}) \otimes \phi_k(\mathbf{r}') = \mathcal{R}(\mathbf{r}, \mathbf{r}').$$

427 Note that if (11) holds then the eigenfunctions of \mathcal{R} are also incompressible, $\nabla \cdot \phi_k(\mathbf{r}) = 0$.

428 1. Stratonovich form

429 It is not hard to show that in the absence of direct interactions (1,3) corresponds to the Stratonovich
 430 equation for the position of an individual tracer $i = 1, \dots, N$,

$$d\mathbf{q}_i = \sum_{j=1}^N \mathbf{b}(\mathbf{q}_i, \mathbf{q}_j) dt + \sqrt{2} \sum_k \phi_k(\mathbf{q}_i) \circ dB_k, \quad (\text{A1})$$

431 where \circ denotes a Stratonovich product, B_k are independent Brownian motions, and we defined

$$\mathbf{b}(\mathbf{r}, \mathbf{r}') = \nabla' \cdot \mathcal{R}(\mathbf{r}, \mathbf{r}') = \sum_k \phi_k(\mathbf{r}) \nabla \cdot \phi_k(\mathbf{r}'). \quad (\text{A2})$$

432 Note that when the incompressibility condition (11) holds $\mathbf{b}(\mathbf{r}, \mathbf{r}') = 0$.

433 For the Stratonovich interpretation we can use ordinary calculus to write

$$\begin{aligned} dc(\mathbf{r}, t) = & - \sum_{i,j=1}^N \mathbf{b}(\mathbf{q}_i(t), \mathbf{q}_j(t)) \cdot \nabla \delta(\mathbf{r} - \mathbf{q}_i(t)) dt \\ & - \sqrt{2} \sum_{i=1}^N \sum_k \phi_k(\mathbf{q}_i(t)) \cdot \nabla \delta(\mathbf{r} - \mathbf{q}_i(t)) \circ dB_k(t) \end{aligned} \quad (\text{A3})$$

434 Using integration by parts and properties of the delta function we can write this as a closed-form equation for c ,

$$\begin{aligned} dc(\mathbf{r}, t) = & - \nabla \cdot \left(c(\mathbf{r}, t) \int \mathbf{b}(\mathbf{r}, \mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) dt \\ & - \sqrt{2} \sum_k \nabla \cdot (\phi_k(\mathbf{r}) c(\mathbf{r}, t)) \circ dB_k(t) \end{aligned} \quad (\text{A4})$$

⁴³⁵ or, after recalling the definition of \mathbf{b} in (A2) and performing an integration by parts to transfer the gradient
⁴³⁶ to c ,

$$dc(\mathbf{r}, t) = \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c(\mathbf{r}', t) d\mathbf{r}' \right) dt - \sqrt{2} \sum_k \nabla \cdot (\phi_k(\mathbf{r}) c(\mathbf{r}, t)) \circ dB_k(t). \quad (\text{A5})$$

⁴³⁷ When the incompressibility condition (11) is satisfied, $\mathbf{b} = 0$ and (A4) implies that

$$dc(\mathbf{r}, t) = -\sqrt{2} \sum_k \phi_k(\mathbf{r}) \cdot \nabla c(\mathbf{r}, t) \circ dB_k(t), \quad (\text{A6})$$

⁴³⁸ which is exactly identical to the Stratonovich form of the equation we obtained in Ref. [11] by rather
⁴³⁹ different means. Here we can identify $\mathbf{w}(\mathbf{r}, t) = \sqrt{2} \sum_k \phi_k(\mathbf{r}) dB_k(t)$ as a random velocity field with
⁴⁴⁰ covariance given by (13). While the Stratonovich form of the equation is the simplest, the Ito form is the
⁴⁴¹ most convenient for performing an ensemble average to obtain an equation for the average concentration $c^{(1)}$.

442 2. Ito form

⁴⁴³ In the Ito interpretation, (A1) reads

$$d\mathbf{q}_i = \mathbf{a}(\mathbf{q}_i) dt + \sum_{j \neq i}^N \mathbf{b}(\mathbf{q}_i, \mathbf{q}_j) dt + \sqrt{2} \sum_k \phi_k(\mathbf{q}_i) dB_k, \quad (\text{A7})$$

⁴⁴⁴ where we defined

$$\mathbf{a}(\mathbf{r}) = \nabla \cdot \mathcal{R}(\mathbf{r}, \mathbf{r}) = \sum_k \phi_k(\mathbf{r}) \nabla \cdot \phi_k(\mathbf{r}) + \sum_k \phi_k(\mathbf{r}) \cdot \nabla \phi_k(\mathbf{r}) = \mathbf{b}(\mathbf{r}, \mathbf{r}) + \mathbf{g}(\mathbf{r}), \quad (\text{A8})$$

⁴⁴⁵ and

$$\mathbf{g}(\mathbf{r}) = \sum_k \phi_k(\mathbf{r}) \cdot \nabla \phi_k(\mathbf{r}). \quad (\text{A9})$$

⁴⁴⁶ The Ito equation (A7) can also be written as

$$d\mathbf{q}_i = \mathbf{g}(\mathbf{q}_i) dt + \sum_{j=1}^N \mathbf{b}(\mathbf{q}_i, \mathbf{q}_j) dt + \sqrt{2} \sum_k \phi_k(\mathbf{q}_i) dB_k, \quad (\text{A10})$$

⁴⁴⁷ which will be the most convenient for our calculation. Note that when the incompressibility condition
⁴⁴⁸ (11) holds,

$$\mathbf{a}(\mathbf{r}) = \mathbf{g}(\mathbf{r}) = \nabla \cdot \chi(\mathbf{r}) \quad (\text{A11})$$

⁴⁴⁹ is the divergence of the diffusion tensor, which vanishes for translationally-invariant systems.

⁴⁵⁰ Using Ito calculus, we can now write an equation for the empirical concentration,

$$\begin{aligned} dc(\mathbf{r}, t) = & - \sum_{i=1}^N \left(\mathbf{g}(\mathbf{q}_i(t)) + \sum_{j=1}^N \mathbf{b}(\mathbf{q}_i(t), \mathbf{q}_j(t)) \right) \cdot \nabla \delta(\mathbf{r} - \mathbf{q}_i(t)) dt \\ & - \sqrt{2} \sum_{i=1}^N \sum_k \phi_k(\mathbf{q}_i(t)) \cdot \nabla \delta(\mathbf{r} - \mathbf{q}_i(t)) dB_k(t) \\ & + \sum_{i=1}^N \sum_k \phi_k(\mathbf{q}_i(t)) \phi_k(\mathbf{q}_i(t)) : \nabla \nabla \delta(\mathbf{r} - \mathbf{q}_i(t)) dt \end{aligned} \quad (\text{A12})$$

⁴⁵¹ Using integration by parts and properties of the delta function we can write this as a closed-form equation for c ,

$$\begin{aligned} dc(\mathbf{r}, t) &= -\nabla \cdot (\mathbf{g}(\mathbf{r})c(\mathbf{r}, t)) dt + \nabla \nabla : (\mathcal{R}(\mathbf{r}, \mathbf{r})c(\mathbf{r}, t)) dt \\ &\quad - \nabla \cdot \left(c(\mathbf{r}, t) \int \mathbf{b}(\mathbf{r}, \mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) dt \\ &\quad - \sqrt{2} \sum_k \nabla \cdot (\phi_k(\mathbf{r})c(\mathbf{r}, t)) dB_k(t), \end{aligned} \quad (\text{A13})$$

⁴⁵² which can further be simplified to

$$\begin{aligned} dc(\mathbf{r}, t) &= \nabla \cdot (\mathcal{R}(\mathbf{r}, \mathbf{r})\nabla c(\mathbf{r}, t) + \mathbf{b}(\mathbf{r}, \mathbf{r})c(\mathbf{r}, t)) dt \\ &\quad + \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c(\mathbf{r}', t) d\mathbf{r}' \right) dt \\ &\quad - \sqrt{2} \sum_k \nabla \cdot (\phi_k(\mathbf{r})c(\mathbf{r}, t)) dB_k(t). \end{aligned} \quad (\text{A14})$$

⁴⁵³ Here we can identify $\mathbf{w}(\mathbf{r}, t) = \sqrt{2} \sum_k \phi_k(\mathbf{r}) dB_k(t)$ as a random velocity field with covariance given by (13).

⁴⁵⁴ Upon averaging over realizations of the noise the fluctuating term drops out in the Ito interpretation,
⁴⁵⁵ giving a non-local diffusion equation for the mean concentration $c^{(1)}(\mathbf{r}, t) = \langle c(\mathbf{r}, t) \rangle$

$$\begin{aligned} \partial_t c^{(1)}(\mathbf{r}, t) &= \nabla \cdot (\chi(\mathbf{r})\nabla c^{(1)}(\mathbf{r}, t) + \mathbf{b}(\mathbf{r}, \mathbf{r})c^{(1)}(\mathbf{r}, t)) \\ &\quad + \nabla \cdot \left(\int \mathcal{R}(\mathbf{r}, \mathbf{r}') \langle c(\mathbf{r}, t) \nabla' c(\mathbf{r}', t) \rangle d\mathbf{r}' \right). \end{aligned} \quad (\text{A15})$$

⁴⁵⁶ By noting that the two-particle correlation function is

$$c^{(2)}(\mathbf{r}, \mathbf{r}', t) = \langle c(\mathbf{r}, t) c(\mathbf{r}', t) \rangle - \langle c(\mathbf{r}, t) \rangle \delta(\mathbf{r} - \mathbf{r}'), \quad (\text{A16})$$

⁴⁵⁷ we see after an integration by parts that (A15) is equivalent to

$$\partial_t c^{(1)}(\mathbf{r}, t) = \nabla \cdot (\chi(\mathbf{r})\nabla c^{(1)}(\mathbf{r}, t)) + \nabla \cdot \left(\int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' c^{(2)}(\mathbf{r}, \mathbf{r}', t) d\mathbf{r}' \right),$$

⁴⁵⁸ which, for a translationally-invariant system, is exactly the equation (9) obtained by Rex and Löwen.

⁴⁵⁹ When the incompressibility condition (11) holds, Eq. (A13) reduces to the fluctuating Fick's law

$$dc(\mathbf{r}, t) = \nabla \cdot (\chi(\mathbf{r})\nabla c(\mathbf{r}, t)) dt - \sqrt{2} \sum_k \phi_k(\mathbf{r}) \cdot \nabla c(\mathbf{r}, t) dB_k(t), \quad (\text{A17})$$

⁴⁶⁰ which is exactly the stochastic advection-diffusion equation (12). In this case the mean follows Fick's law

$$\partial_t c^{(1)}(\mathbf{r}, t) = \nabla \cdot (\chi(\mathbf{r})\nabla c^{(1)}(\mathbf{r}, t)),$$

⁴⁶¹ and the non-local diffusion term involving $c^{(2)}$ disappears since $\mathbf{b} = 0$.

⁴⁶² 3. Direct interactions

⁴⁶³ If we include direct interactions among the particles of the form (14), the Stratonovich equation of motion
⁴⁶⁴ (A1) becomes

$$\begin{aligned} d\mathbf{q}_i &= \sum_{j=1}^N \mathbf{b}(\mathbf{q}_i, \mathbf{q}_j) dt + \sqrt{2} \sum_k \phi_k(\mathbf{q}_i) \circ dB_k \\ &\quad + (k_B T)^{-1} \sum_{j=1}^N \mathcal{R}(\mathbf{q}_i, \mathbf{q}_j) \left(\mathbf{f}_1(\mathbf{q}_j) + \sum_{k \neq j} \mathbf{f}_2(\mathbf{q}_j, \mathbf{q}_k) \right) dt \end{aligned} \quad (\text{A18})$$

⁴⁶⁵ where we have defined the external and pairwise forces

$$\mathbf{f}_1(\mathbf{r}) = -\nabla U_1(\mathbf{r}), \quad \mathbf{f}_2(\mathbf{r}, \mathbf{r}') = -\nabla U_2(\mathbf{r}, \mathbf{r}'). \quad (\text{A19})$$

⁴⁶⁶ For simplicity, and without loss of generality, we will assume that there is no self-force coming from the
⁴⁶⁷ pairwise interactions, $\mathbf{f}_2(\mathbf{r}, \mathbf{r}) = 0$.

⁴⁶⁸ The new term in (A18) adds the following term to the drift in (A3):

$$\begin{aligned} & - (k_B T)^{-1} \sum_{i,j=1}^N \mathcal{R}(\mathbf{q}_i, \mathbf{q}_j) \left(\mathbf{f}_1(\mathbf{q}_j) + \sum_{k \neq j} \mathbf{f}_2(\mathbf{q}_j, \mathbf{q}_k) \right) \cdot \nabla \delta(\mathbf{r} - \mathbf{q}_i) \\ & = - (k_B T)^{-1} \nabla \cdot \left[\sum_{i,j=1}^N \mathcal{R}(\mathbf{q}_i, \mathbf{q}_j) \left(\mathbf{f}_1(\mathbf{q}_j) + \sum_{k=1}^N \mathbf{f}_2(\mathbf{q}_j, \mathbf{q}_k) \right) \delta(\mathbf{r} - \mathbf{q}_i) \right] \\ & = - (k_B T)^{-1} \nabla \cdot \left(\sum_{i,j=1}^N \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \mathbf{f}_1(\mathbf{r}') \delta(\mathbf{r} - \mathbf{q}_i) \delta(\mathbf{r}' - \mathbf{q}_j) d\mathbf{r}' \right) \\ & \quad - (k_B T)^{-1} \nabla \cdot \left(\sum_{i,j,k=1}^N \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \mathbf{f}_2(\mathbf{r}', \mathbf{r}'') \delta(\mathbf{r} - \mathbf{q}_i) \delta(\mathbf{r}' - \mathbf{q}_j) \delta(\mathbf{r}'' - \mathbf{q}_k) d\mathbf{r}' d\mathbf{r}'' \right) \end{aligned} \quad (\text{A20})$$

⁴⁶⁹ This can also be written in terms of the empirical concentration as

$$\begin{aligned} & - (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \mathbf{f}_1(\mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) \\ & - (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \mathbf{f}_2(\mathbf{r}', \mathbf{r}'') c(\mathbf{r}', t) c(\mathbf{r}'', t) d\mathbf{r}' d\mathbf{r}'' \right), \end{aligned} \quad (\text{A21})$$

⁴⁷⁰ or, in terms of the potentials U_1 and U_2 , as

$$\begin{aligned} & (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_1(\mathbf{r}') c(\mathbf{r}', t) d\mathbf{r}' \right) \\ & + (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_2(\mathbf{r}', \mathbf{r}'') c(\mathbf{r}', t) c(\mathbf{r}'', t) d\mathbf{r}' d\mathbf{r}'' \right). \end{aligned} \quad (\text{A22})$$

⁴⁷¹ Adding these terms to the right hand side of (A14) (or, in the Stratonovich interpretation, to (A5)) gives
⁴⁷² our final result (15). Remarkably, this is a closed equation for the fluctuating concentration just as in
⁴⁷³ the case of uncorrelated particles [3].

⁴⁷⁴ Taking an ensemble average of the new terms (A22) leads to terms involving the two-particle (A16) and
⁴⁷⁵ three-particle correlation function

$$\begin{aligned} c^{(3)}(\mathbf{r}, \mathbf{r}', \mathbf{r}'', t) &= \langle c(\mathbf{r}, t) c(\mathbf{r}', t) c(\mathbf{r}'', t) \rangle \\ & - \frac{1}{2} \langle c(\mathbf{r}, t) c(\mathbf{r}', t) \rangle (\delta(\mathbf{r} - \mathbf{r}'') + \delta(\mathbf{r}' - \mathbf{r}'')) \\ & - \frac{1}{2} \langle c(\mathbf{r}, t) c(\mathbf{r}'', t) \rangle (\delta(\mathbf{r} - \mathbf{r}') + \delta(\mathbf{r}' - \mathbf{r}'')) \\ & - \frac{1}{2} \langle c(\mathbf{r}', t) c(\mathbf{r}'', t) \rangle (\delta(\mathbf{r} - \mathbf{r}')) + \delta(\mathbf{r} - \mathbf{r}'')) \\ & + \langle c(\mathbf{r}, t) \rangle \delta(\mathbf{r} - \mathbf{r}') \delta(\mathbf{r}' - \mathbf{r}''), \end{aligned} \quad (\text{A23})$$

⁴⁷⁶ which, after some algebra, gives our final result (17) for the average concentration.

⁴⁷⁷ [1] H Frusawa and R Hayakawa. On the controversy over the stochastic density functional equations. *Journal of Physics A: Mathematical and General*, 33(15):L155, 2000.
⁴⁷⁸

479 [2] Andrew J Archer and Markus Rauscher. Dynamical density functional theory for interacting brownian
480 particles: stochastic or deterministic? *Journal of Physics A: Mathematical and General*, 37(40):9325, 2004.

481 [3] David S Dean. Langevin equation for the density of a system of interacting langevin processes. *Journal
482 of Physics A: Mathematical and General*, 29(24):L613, 1996.

483 [4] Umberto Marini Bettolo Marconi and Pedro Tarazona. Dynamic density functional theory of fluids. *The
484 Journal of Chemical Physics*, 110(16):8032–8044, 1999.

485 [5] Pep Español and Hartmut Löwen. Derivation of dynamical density functional theory using the projection
486 operator technique. *J. Chem. Phys.*, 131:244101, 2009.

487 [6] M Rex and H Löwen. Dynamical density functional theory with hydrodynamic interactions and colloids
488 in unstable traps. *Phys. Rev. Lett.*, 101(14):148302, 2008.

489 [7] M Rex and H Löwen. Dynamical density functional theory for colloidal dispersions including hydrodynamic
490 interactions. *The European Physical Journal E*, 28(2):139–146, 2009.

491 [8] Benjamin D. Goddard, Andreas Nold, Nikos Savva, Grigoris A. Pavliotis, and Serafim Kalliadasis. General
492 dynamical density functional theory for classical fluids. *Phys. Rev. Lett.*, 109:120603, 2012.

493 [9] Benjamin D Goddard, Grigoris A Pavliotis, and Serafim Kalliadasis. The overdamped limit of dynamic
494 density functional theory: Rigorous results. *Multiscale Modeling & Simulation*, 10(2):633–663, 2012.

495 [10] BD Goddard, A Nold, N Savva, P Yatsyshin, and S Kalliadasis. Unification of dynamic density functional
496 theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical
497 experiments. *Journal of Physics: Condensed Matter*, 25(3):035101, 2013.

498 [11] A. Donev, T. G. Fai, and E. Vanden-Eijnden. A reversible mesoscopic model of diffusion in liquids: from giant
499 fluctuations to fick's law. *Journal of Statistical Mechanics: Theory and Experiment*, 2014(4):P04004, 2014.

500 [12] Jens Rotne and Stephen Prager. Variational treatment of hydrodynamic interaction in polymers. *The Journal
501 of Chemical Physics*, 50:4831, 1969.

502 [13] C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni. Mori-zwanzig formalism as a practical
503 computational tool. *Faraday Discuss.*, 144:301–322, 2009.

504 [14] AR Altenberger and JM Deutch. Light scattering from dilute macromolecular solutions. *The Journal of
505 Chemical Physics*, 59(2):894–898, 2003.

506 [15] E. J. Hinch. Application of the Langevin equation to fluid suspensions. *J. Fluid Mech.*, 72(03):499–511, 1975.

507 [16] J. N. Roux. Brownian particles at different times scales: a new derivation of the Smoluchowski equation.
508 *Phys. A*, 188:526–552, 1992.

509 [17] E. H. Hauge and A. Martin-Lof. Fluctuating hydrodynamics and Brownian motion. *J. Stat. Phys.*,
510 7(3):259–281, 1973.

511 [18] D. Bedeaux and P. Mazur. Brownian motion and fluctuating hydrodynamics. *Physica*, 76(2):247–258, 1974.

512 [19] AJ Archer. Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach
513 to fluid mechanics. *J. Chem. Phys.*, 130:014509, 2009.

514 [20] Umberto Marini Bettolo Marconi and Pedro Tarazona. Nonequilibrium inertial dynamics of colloidal systems.
515 *The Journal of chemical physics*, 124:164901, 2006.

516 [21] P. J. Atzberger. A note on the correspondence of an immersed boundary method incorporating thermal
517 fluctuations with Stokesian-Brownian dynamics. *Physica D: Nonlinear Phenomena*, 226(2):144–150, 2007.

518 [22] P. J. Atzberger. Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal
519 Fluctuations. *J. Comp. Phys.*, 230:2821–2837, 2011.

520 [23] Eric E Keaveny. Fluctuating force-coupling method for simulations of colloidal suspensions. *arXiv preprint
521 arXiv:1306.1706*, 2013.

522 [24] F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Inertial Coupling Method for
523 particles in an incompressible fluctuating fluid. *Comput. Methods Appl. Mech. Engrg.*, 269:139–172, 2014.
524 Code available at <https://code.google.com/p/fluam>.

525 [25] S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Brownian Dynamics
526 without Green's Functions. 140(13):134110, 2014.

527 [26] M. R. Maxey and B. K. Patel. Localized force representations for particles sedimenting in Stokes flow.
528 *International journal of multiphase flow*, 27(9):1603–1626, 2001.

529 [27] BU Felderhof. Diffusion of interacting brownian particles. *Journal of Physics A: Mathematical and General*,
530 11(5):929, 1978.

531 [28] H. C. Öttinger. *Beyond equilibrium thermodynamics*. Wiley Online Library, 2005.

532 [29] M. Hütter and H.C. Öttinger. Fluctuation-dissipation theorem, kinetic stochastic integral and efficient
533 simulations. *J. Chem. Soc., Faraday Trans.*, 94(10):1403–1405, 1998.

534 [30] P. Español. Statistical mechanics of coarse-graining. *Novel Methods in Soft Matter Simulations*, pages 69–115,
535 2004.

536 [31] P. Español and I. Zúñiga. On the definition of discrete hydrodynamic variables. *J. Chem. Phys.*, 131:164106, 2009.

537 [32] Felix Höfling and Thomas Franosch. Anomalous transport in the crowded world of biological cells. *Reports
538 on Progress in Physics*, 76(4):046602, 2013.

539 [33] Toshiya Ohtsuki. Generalized diffusion equation of interacting Brownian particles. *Chemical Physics Letters*,
540 98(2):121–124, 1983.

541 [34] C Van den Broeck, F Lostak, and HNW Lekkerkerker. The effect of direct interactions on brownian diffusion.
542 *The Journal of Chemical Physics*, 74(3):2006–2010, 1981.

543 [35] GK Batchelor. Brownian diffusion of particles with hydrodynamic interaction. *Journal of Fluid Mechanics*,
544 74(01):1–29, 1976.

545 [36] J. L. Lebowitz, E. Presutti, and H. Spohn. Microscopic models of hydrodynamic behavior. *J. Stat. Phys.*,
546 51(5):841–862, 1988.

547 [37] S.R.S. Varadhan. Scaling limits for interacting diffusions. *Communications in mathematical physics*,
548 135(2):313–353, 1991.

549 [38] Herbert Spohn. Equilibrium fluctuations for interacting brownian particles. *Communications in mathematical
550 physics*, 103(1):1–33, 1986.

551 [39] Mao Zheng Guo and George Papanicolaou. Bulk diffusion for interacting brownian particles. In *Statistical
552 physics and dynamical systems*, pages 41–48. 1985.

553 [40] B. Dünweg and A.J.C. Ladd. Lattice Boltzmann simulations of soft matter systems. *Adv. Comp. Sim. for
554 Soft Matter Sciences III*, pages 89–166, 2009.

555 [41] P. J. Atzberger, P. R. Kramer, and C. S. Peskin. A stochastic immersed boundary method for fluid-structure
556 dynamics at microscopic length scales. *J. Comp. Phys.*, 224:1255–1292, 2007.

557 [42] P. N. Segrè, R. W. Gammon, and J. V. Sengers. Light-scattering measurements of nonequilibrium fluctuations
558 in a liquid mixture. *Phys. Rev. E*, 47:1026–1034, Feb 1993.

559 [43] A. Vailati and M. Giglio. Giant fluctuations in a free diffusion process. *Nature*, 390(6657):262–265, 1997.

560 [44] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio. Fractal fronts of diffusion
561 in microgravity. *Nature Communications*, 2:290, 2011.

562 [45] A. Oprisan and A. Leilani Payne. Dynamic shadowgraph experiments and image processing techniques for
563 investigating non-equilibrium fluctuations during free diffusion in nanocolloids. *Optics Communications*,
564 290:100–106, 2012.