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We derive a closed equation for the empirical concentration of colloidal particles
in the presence of both hydrodynamic and direct interactions. The ensemble average
of our functional Langevin equation reproduces known deterministic Dynamic Density
Functional Theory (DDFT) [Rex and Léwen, Phys. Rev. Lett., 101(14):148502,
2008], and, at the same time, it also describes the microscopic fluctuations around the
mean behavior. We suggest separating the ideal (non-interacting) contribution from
additional corrections due to pairwise interactions. We find that, for an incompressible
fluid and in the absence of direct interactions, the mean concentration follows Fick’s law
just as for uncorrelated walkers. At the same time, the nature of the stochastic terms
in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated
and uncorrelated walkers. This leads to striking differences in the behavior of the
fluctuations around Fick’s law, even in the absence of pairwise interactions. We connect
our own prior work [A. Donev, T. G. Fai, E. Vanden-Eijnden, J. Stat. Mech., P04004,
2014] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature,
and demonstrate that the fluid cannot easily be eliminated from consideration if one
wants to describe the collective diffusion in colloidal suspensions.
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s I. Introduction

s Over the past decade and a half there has been considerable interest in extending traditional (static)
7 Density Functional Theory (DFT) for liquids to account for dynamics, leading to Dynamic DFT (DDFT) [1-
s [5]. Recently, attempts have been made to additionally account for hydrodynamic interactions (HI) among the
o particles due to the presence of a viscous solvent [6HI0], as necessary when modeling colloidal suspensions. A
10 key feature of these proposed HI+DDFT theories is that even for the simple case of non-interacting Brownian
n particles suspended in a fluid the resulting equations appear to be different from Fick’s law, in contrast to the
12 case of independent (uncorrelated) Brownian walkers. Here we show that for the case of non-interacting but
13 hydrodynamically-correlated Brownian particles one can write down a closed equation for the average density
1 that is exactly Fick’s law, without uncontrolled approximations such as closures of the BBGKY hierarchy.
15 Furthermore, our equation includes fluctuations around Fick’s law, and sheds light on the controversy over
16 the difference between deterministic and fluctuating DDFT [IH4]. The derivation presented here follows on
17 our previous work [I1] in which we obtain the same result by using a fluctuating hydrodynamic formalism.
18 Here we follow an approach originally proposed by Dean [3] for the case of uncorrelated Brownian walkers,
1v and obtain the same equation as derived in [I1] by rather different means. Our work demonstrates that
2 hydrodynamics is not something that is to be added to Fick’s law as non-local correction; rather, fluctuating
21 hydrodynamics underlies diffusion and gives rise to Fick’s law. This simple yet seemingly frequently missed
22 point is silently evidenced by the well-known Stokes-Einstein relation, which relates the diffusion coefficient
2 X ~ kgT/ (no) to the temperature T, the size of the particles o, and the viscosity of the fluid 7.

2+ For consistency, in this paper we use the notation of our prior closely-related work [I1] instead of the nota-
25 tion more common in the DDFT literature. We start from the overdamped Langevin equations of Brownian
26 Dynamics (BD), which are often used to model dynamics of colloidal particles or polymer chains in flow.
27 The Ito equations of motion for the (correlated) positions of the N particles Q (t) = {q, (t),...,qy (t)} are

dQ = —M (9oU) dt + (2ksT M)? dB + kyT (g - M) dt, (1)

2s where B(t) is a collection of independent Brownian motions, U (Q) is a conservative interaction potential,
20 M (Q) = 0 is a symmetric positive semidefinite mobility block matrix for the collection of particles. The
2 Fokker-Planck equation (FPE) for the probability density P (Q,t) corresponding to (1) is

2k (g won g}

s and is in detailed-balance (i.e., is time reversible) with respect to the Gibbs-Boltzmann distribution
2~ exp (—U(Q)/kpT). A commonly-used model of the mobility matrix, suitable for dilute suspensions,
1 is the Rotne-Prager pairwise approximation [12].

s We will assume here that the mobility is pairwise additive, and that the block of the mobility corresponding
35 to the pair of particles 7 and j is a smooth function of only the positions of those particles,

V(l,j) : Mij (qwq]) - %a (3)

s where R (r, ') is a symmetric positive-semidefinite (SPD) tensor kernel (linear operator mapping vector
w fields to vector fields) E] The assumption of pairwise additivity is appropriate for low-density colloidal
s suspensions, when the typical distance between particles is significantly larger than the typical size of a
30 particle; at higher densities complex many-body effects appear which are beyond the scope of this work.
w0 Because we assume that holds even if ¢ = j, the self-diffusion tensor of a particle with position r is

x(r)=R(r,r).

a For confined systems, R (r,7') depends on the positions of the two particles relative to the boundaries
2 and x (r) may be anisotropic and may depend on the position; for a translationally-invariant and isotropic

! Here we adopt the notation of our previous work [11], except that we have included an additional factor of 2 in R to
simplify some of the expressions.



s system R (r,r') = R (r —r') and x (r) = xI, where x is the self-diffusion coefficient of the particles. Rex
s and Lowen [0 [7] assume translational invariance but take a form for the mobility in which the diagonal
s elements of the mobility are treated differently from the off-diagonal ones,

M; (Q) =M (q;,q;) = - [0, + (1 — 0ij) wiz (g, — q;)]

 kgT
X (5 (1 = w1z (0)) + wis (¢, — a;)] )

~ kpT

s where we have neglected higher-order hydrodynamic corrections and taken w;; = 0, which is appropriate
« for dilute suspensions. The Rotne-Prager [12] form for wis (1), which is what Rex and Lowen used in
s their numerical simuations, can be written in the form

30 N o3 7 30 3\ ror -
— 4+ — — - r o
wis (r) = 4r 23 dr 23 r2 ’ (5)
12 o ] 9r I+ Ir\rer <9
- — — r
320 32 ) 2 =29

w0 where o is the radius of the colloidal particles, and satisfies the key condition wq5(0) = I. Therefore, the
s term involving d;; in (4) can be deleted and (4) becomes of the form (3) with

R (qi7 Qj) = XWi2 (qi - qj) :

s1 Note that in colloidal suspensions there is typically a hard-core repulsion that ensures that particles
s> essentially never overlap, which implies that the behavior of wis (r) for 7 < 20 is not expected to be
s3 important. Since the effect of hydrodynamic interactions is distinct from that of direct interactions, it
s« is important to also consider the case of an ideal gas in which the only interparticle interactions are of
ss hydrodynamic origin. Furthermore, particles can overlap relative to their far-field hydrodynamic radius
s for suspensions of soft particles such as star polymer chains [13].

s In a clever but formal derivation [4], Dean started from the overdamped Langevin equations for a
ss collection of N interacting Brownian walkers driven by independent noise, i.e., a diagonal mobility matrix
ss M = (kgT) ™" xI, to obtain a closed-form equation for the empirical or fluctuating density (concentration)

s0 of particles
N

c(rit) =) d(q;(t)—r). (6)
i=1
&1 For non-interacting particles, this equation can formally be written as an Ito stochastic partial differential
s2 equation (SPDE) [4],

O =xVe+ V- (Ve W), (7)

63 where W, (r,t) denotes a spatio-temporal white-noise vector field. As pointed out in Ref. [4] and further
e elaborated in [2], equation (7)) is simply a formal rewriting of (I)). The only difference is that the identity of
es the different particles has been removed by going from a Lagrangian to an Eulerian description. Importantly,
ss the solution of (7)) should forever remain a sum of delta functions (whose positions diffuse independently).
o7 In fact, the multiplicative noise SPDE as written has no clear mathematical interpretation, and neither
s does the square root of a sum of delta functions in the noise amplitude.

o Of primary interest in practice are expectation values of the instantaneous concentration ¢ (7, t), such
0 as the average concentration, which is also the single-particle distribution function ¢V (r,t) = (c (r,t)).
n Taking an ensemble average of is trivial because of the linearity of the deterministic term and the
2 fact that the noise term averages to zero due to its Ito interpretation, and for the case of non-interacting
73 particles one simply obtains Fick’s law,

Dyt = v, (8)

7 If direct interactions among the particles are included, one cannot write a closed form equation and an infinite
75 hierarchy of BBGKY equations arises; a closure approximation for the higher-order correlation functions is



76 required, as explained by Marconi and Tarazona [4]. It is important to note that @ and (&|) describe rather dif-
7 ferent objects; the solution to (7)) is a spiky sum of delta functions, and not a smooth average density or single-
78 particle distribution function as Fick’s deterministic law (8)) or traditional (static) DET describes [1, 2] 4].
79 As summarized in Ref. [2], Fick’s law can also be obtained by starting from the FPE and
s integrating over N — 1 particles to get an equation for the single-particle distribution function ¢! (r,t).
a1 This route was followed by Rex and Lowen [6] [7] in order to include the effect of hydrodynamic interactions
& in and obtain an equation that, at first sight, appears distinctly different from Fick’s law. It is important
g3 to note that in order to close the BBGKY hierarchy some uncontrolled approximations are made in Refs.
s [0l [7]; we will not require such approximations until Section [} For non-interacting particles, in our notation,
ss eq. (5) in Ref. 7] reduces to

atc(l) (’I",t) _ XV2C(1) (7:7 t) +xV - (/ W1o (’I“ _ ’I"/) \vi®) (7“,7'/7t) dfr/) , (9)

s where ¢(?) (v, 7/, t) is the two-particle distribution function, and we useV to denote gradient with respect to
v and V' with respect to r'. In this work, we derive an equation for the empirical (fluctuating) concentration in
ss the presence of hydrodynamic interactions similar to , whose expectation gives @ In the absence of direct
g0 interactions this equation is given by and was previously derived by us using a different approach in
o Ref. [11]. In addition to reproducing Fick’s law for the average, (12 also describes the long-range correlated
a1 fluctuations around the mean. Here we also include the effect of direct interactions among the particles.
o2 The first term on the right hand side of @D is the familiar local Fick’s law; but the second term is a
a3 non-local diffusion term. It is important to note that the far-field behavior of the mobility is given

a by the scaled Oseen tensor
30 reTr o\3
—22(r o) (—) 10
w1z () 47"( + 2 )+ ( . )7 (10)

o5 which is long-ranged and decays as r~'. While it may at first sight look like w5 (7) is small for r > o,
% it should be recalled that the Stokes-Einstein formula x = kgT'/ (67no) implies that the second term in (9]
o7 is independent P| of o since ywis (1) ~ (kgT) / (nr). The equation of Rex and Lowen (9)) therefore implies
s that Fick’s law needs to be amended with a long-ranged non-local term even for dilute suspensions with
o no direct interactions among the diffusing particles.

wo Let us observe, however, that the Rotne-Prager mobility satisfies an additional key property,
1 V- wia(r) = 0, or more generally,

V- -R(r,r')=0. (11)

102 This is a direct consequence of the fact that hydrodynamic interactions (correlations) are mediated by an
103 incompressible fluid [I2]. In this case the second term on the right hand side of (9) in fact vanishes after a
104 simple integration by parts. Therefore, Fick’s law for the average concentration remains valid even in the
10s presence of long-ranged hydrodynamic correlations among the Brownian walkers. This important physical
106 implication of seems to be have been missed in [6l [7] and subsequent works because the focus in DFT,
w7 and therefore DDFT, is almost exclusively on interacting particles and nonlocal free-energy functionals, and
108 comparatively little attention seems to have been given to the nonlocal difffusion aspect of @D Following
100 the completion of this work, we learned of an early derivation by Altenberger and Deutch that showed
uo that, indeed, holds even in the presence of hydrodynamic interactions (correlations), see (3.10) in Ref.
w [14]. These authors also made use of and noted the importance of the divergence-free condition (11]).

2 It is important to also note another derivation aiming to include hydrodynamics in DDFT, developed by the
us authors of Refs. [8H10]. These authors argue that inertia also needs to be included, and arrive at an equation
1e that has even more non-local terms than (9). We believe that these derivations, while careful (even rigorous),
us start from an incorrect inertial formulation of the equations of motion of colloidal particles immersed in fluid.
s As explained by Hinch [I5] and later summarized eloquently and clearly by Roux [16], any equation of motion
u7 that accounts for inertial effects must include the inertia of the fluid in addition to any excess inertia of the
us particles over the fluid they expel. This is because the time it takes for momentum to diffuse through the liquid,

2 This is expected since the leading-order hydrodynamic correction comes from a monopole term (Stokeslet) that corresponds
to a point force in a Stokesian fluid.



1o with diffusion coefficient equal to the kinematic viscosity v = n/p (note the appearance of the fluid inertia here
120 via the density p), is in fact longer than inertial time scales. It is therefore inconsistent to use hydrodynamic
21 friction or mobility functions such as the Rotne-Prager tensor, which assume steady Stokes flow, i.e., infinitely
122 fast momentum diffusion, while including inertia of the particles explicitly. The only Markovian formulation
123 of the hydrodynamics of colloidal suspensions that includes both hydrodynamics and thermal fluctuations
12+ (Brownian motion) consistently is that of fluctuating hydrodynamics [15, 17, [18]. Roux starts from the inertial
15 formulation of Hinch [15] and derives the overdamped equation of motion from those inertial equations
126 [16]. We therefore consider the overdamped equation (1)), rather than the inertial Langevin equations used
127 by a number of authors [8 19 20], as the correct starting point for including hydrodynamics in DDFT.
In our own recent work [11], we started from a simplified version of the complete formulation of Hinch [15]
and Roux [I6]. In this approximation [21H25], the no-slip condition resolved over the surface of the particles
is approximated by an average no-slip condition at the centroid of each of the particles, and the particles are
assumed to be neutrally-buoyant (but see Ref. [24] for an extension to account for excess inertia). Another
way to think of the approximation is as a low-order multipole approximation of the complete hydrodynamics,
suitable for dilute suspensions, and accurate to the same order as the Rotne-Prager far-field approximation
[25, 26]. By starting from the simplified fluctuating hydrodynamic formulation and eliminating the fluid
velocity as a fast variable, one can obtain the overdamped Lagrangian equation (1)) [11, 2I]. In Ref. [11] we
started from an inertial Fulerian description, i.e., a description involving not the positions of the individual
particles but rather the empirical concentration ¢ (7,t), and obtained, by adiabatic elimination of the fast
fluid velocity, the overdamped Eulerian Ito SPDE

0=V -[x(r)Vc—w- Ve (12)
Here w (7,t) is a random velocity field that is white in time and has a spatial covariance [11],
(w(r,t) @w(r', 1) =2R (r,7) 6 (t = 1), (13)

126 and the incompressibility condition is assumed to hold. The ensemble average of is nothing other
120 than Fick’s law (8)), and does not include any non-local diffusion terms because of the incompressibility
10 of the fluid. It is important to point out that (12)), just like (7)), describes a spiky sum of delta functions
1 which are advected by a rapidly-decorrelating random velocity field. However, is distinctly different
132 from : while both equations have multiplicative noise, is linear, while is nonlinear. As we discuss
133 in more detail in the Conclusions, one can obtain from (|12)) upon taking a suitable (nontrivial) limit
13 in which R (v, 7’) becomes highly localized around r = r'.

135 Here, we connect our prior work to the DDFT literature, by obtaining the overdamped Eulerian (fluctuating
13s DDFT) equation starting from the overdamped Lagrangian equation , rather than from the inertial
137 Eulerian formulation as we did in Ref. [11]. Our argument is essentially a generalization of that of Dean [3]
138 and makes specific use of the hydrodynamic formulation that is hidden in Rotne-Prager-like approximations
130 to the mobility matrix. As it must, for non-interacting particles the present calculation gives exactly the same
10 Tesult for the empirical concentration and Fick’s law for the average concentration. Furthermore,
11 here we extend our previous work to account for direct interactions (as opposed to hydrodynamic interactions)
12 among the diffusing particles. Just as in the work of Dean [4], we obtain a closed but nonlinear and
13 nonlocal equation for the empirical (fluctuating) concentration. As expected, in the presence of interactions
14 it is not possible to write down a closed form for the ensemble-averaged concentration, and approximate
s closures are required for two-particle and three-particle correlation functions [4l 6] [7].

us This paper is organized as follows. In Section [[I| we summarize and then derive our key result ,
17 a fluctuating diffusion equation for a collection of particles interacting both hydrodynamically and via
1 conservative potentials. In Section [I1I| we discuss coarse-graining (averaging) and the relation of our work
19 to density functional theory, Fick’s macroscopic law, and fluctuating hydrodynamics, and point to several
150 important open problems. Finally, we give some conclusions in Section [[V]

151 II.  Fluctuating DDFT with Hydrodynamic Interactions

152 In this section we summarize our main results, and defer the detailed derivations to Appendix [A] For
153 completeness, we will include here a direct interaction among the particles in the form of a conservative



15« potential that includes an external potential U; () and a pairwise additive potential Us(r, r’),

U@ =Y Uia)+3 > hia.a) (14)

i#]

155 where, without loss of generality, we can assume that Uy (7, 7') = Uy (7', r) and [VUy(r, 7')]
156 that such an interaction was not included in our prior work [11].

157 Here we use to formally derive a closed-form SPDE for the empirical concentration (). Our
158 calculation mimics the one performed by Dean for the case of uncorrelated walkers [3]. The result of the
150 calculations detailed in Appendix [A]is the fluctuating hydrodynamic equation (conservation law)

» = 0. Note

r/=

Oe(r,t) ==V - (w (r,t)c(r,t) + V- (x(r)Ve(r,t) + b(r,r)c(r, 1))

+V. (c(r,t) /R(’r,’r')V’c(’r’,t} dr’)
+ (kgT) ™'V - (c('r,t) /R(r,r’)V’Ul(r’)c(r’,t) dr’) (15)
+ (kgT) 'V - <c(r,t) / R(r, v \V'Us(r', 7" )e(r, t)e(r”  t) dr’dr”) ,

10 where b(r,7') = V' - R(r,7') and w (r,t) is a random velocity field with covariance (13)), see (A14)) for
161 & derivation of the stochastic term in the Ito convention and (A5) for the Stratonovich interpretation.
12 Compare to the equation obtained by following the same procedure for the case of uncorrelated

163 particles, M;; = J;; (k:BT)f1 x (q,),
Oue(r,t) = V - ((2x (1) c(r, 1)) W) + V- (x(r)Ve(r, 1)) (16)
+ (ks D)V - (x(r)e(r, ) VUI(r))
+ (kgT) 'V - (X(T’)C(’I”,t)/V/UQ(T,T'/)C(T/,t) dr’)

16« which is a slight generalization of Eq. (17) in [3] to account for the one-particle potential and the possible
165 anisotropy and spatial dependence of the diffusion tensor x /(7).

16 Ensemble averaging gives the first member of a BBGKY-like hierarchy of equations for the
167 single-particle distribution function,

0. (r,t) = V - (x(r) Ve (r, 1)) + V- ( / R (r, ) V' (r, 7', 1) dr’)
+ (kgT)"' V- <X(7‘)VU1 (r) Y (r,t) + / R (r, v )V'U (') P (r, 7' 1) dr’)
+ (kgT) 'V - </ (x(r)VUs (r,7") + R (r,7') V'Uy (r,7)) @ (r,7/,t) dr’)
+ (kgT)' V- < / R(r,7v") @ (v, " t) VU, (¢ 7" dr"dr’> , (17)

165 which is a slight generalization of equation (5) in Ref. [6] [7] with wi; = 0. Here ¢® (r, 7/, 7" t) denotes
160 the three-particle correlation function. We note that the term involving ¢® is missing in (4.4) in Ref. [14],
o as well as (3.1) in Ref. [27], apparently because of an additional low-density approximation in the spirit
1 of kinetic theory.

12 When the incompressibility condition is satisfied, Eqs. and simplify in a key way; as also
113 observed in Ref. [14], after an integration by parts the nonlocal diffusion term on the second line of and



17a the second term on the right hand side in the first line of . disappear, see in the Ito convention
175 and for the Stratonov1ch 1nterpretat10nE| Therefore, in the absence of mteractions the fluctuating
176 DDFT equatron reduces to and the mean follows the local Fickian diffusion equation (), even
177 in the presence of hydrodynamic correlations among the particles. This important physical consequence of
178 incompressibility was not observed by Rex and Lowen [6] [7], and this omission may have lead some readers to
179 the wrong conclusion that hydrodynamic interactions lead to nonlocal corrections to Fick’s law for the mean.
180 Although not apparent at first sight, has the same structure of an overdamped Langevin equation
181 as does , namely, we can formally write it in the compact notation [2§]

)
de (-, 1)

0H

atc—_M[( )]50( )

+ (2kgT M [c(-,t)])% W.(-,t) + kgT ( M [c(-,t)]) ) (18)

182 where the mobility M [c(+)] is a positive-semidefinite linear operator that is a functional of the function
13 of position ¢, denoted here by the notation [¢(+)], and products imply a contraction over spatial position.
184 More precisely,

Ope(r,t) = —/dr/./\/l le(-,t); 7,7 56(25’ 0 (19)

/dr M (e 8): 77 WL, 1)

+ (ksT) / dr' ((W ([SCC((:)J ’r/]) ,

185 where the mobility M [c(-)] (v, r") = M [c(+); r,r'] is defined by its action on a scalar field f(r),

N|=

+ (2kpT)

/d’r’./\/l [e(-): v, 7] f(r') = — (kgT) ™" ( /’R r, ) c(r" )V f(r') dr’) :

18 Here H [c(r)] is an energy functional consisting of an ideal and an excess (potential) contribution,

Hlc()] = Hialc()] 4+ Hexc [c ()] = Hia e (+)] + / Ui(r)e(r)dr + % / Us(r, 7" )e(r)e(r') drdr’,

1e7 where the ideal gas energy functional is

Hyglc()] = kBT/ (r) (In (A’c(r)) — 1) dr,

188 A is a constant (e.g., the thermal de Broglie wavelength), and H.y. is the excess free energy functional. It
189 1S important to note that when incompressibility condition holds, we can remove the ideal contribution
1o from H and define H = H,,. without affecting , because

/’T\’, (r, ") e(r)V' (;if:i)) dr' = /T\’, (r,7") V'e(r') dr' = 0.

11 Also note that in the case of independent (uncorrelated) particles, can be written as a functional
192 Langevin equation ([19) with the same free-energy functional but with a different mobility operator M,q,
103 defined by its action on a scalar field f(r),

/ 08 Mg [c(): 7.77) F(#') = — (ks T)™" W - (x(r)e(r) V ().

3 Note that for incompressible w we have V - (wc) = w - Ve.



e The kinetic form [29] of the (formal) functional FPE associated with implies that the equilibrium
105 distribution associated with ([15)), assumed to be unique, is the formal Gibbs-Boltzmann distribution

Ple()] = Z " exp (—%) , (20)

106 which is the field representation of the equilibrium distribution exp (—U(Q)/kgT’) associated with the
107 particle description . In the incompressible case, uniqueness of the Gibbs-Boltzmann distribution can
s be ensured by adding a small multiple of the identity (so-called bare diffusion [11]) to the mobility matrix
19 M, that is, by adding a small multiple of M, 4 to the mobility operator M.

20 III.  Coarse-Graining

20 As noted by Marconi and Tarazona [4], (15]) contains the same physical content as because we have not
202 performed any coarse graining or averaging, and have not lost any information except the particle numbering.
203 Nevertheless, is an informative nontrivial rewriting of that can be used to perform additional
204 coarse-graining and attempt to describe the behavior of collective diffusion in colloidal suspensions at a
205 spectrum of length (and thus also time) scales, going from a microscopic scale ¢ to macroscopic scales. Here
206 we discuss three distinct types of coarse-graining one can perform on (15): an ensemble average over the
207 realizations of the noise, an average over an ensemble of initial conditions, and spatial averaging over a large
20 number of particles [30]. Spatial averaging is of great interest in practice since colloidal suspensions are
200 typically observed at mesoscopic scales larger than the size of individual particles. For example, in typical
210 experiments such as light scattering from colloidal suspensions, concentration fluctuations are averaged
au over a region containing many particles (e.g., the thickness of the sample).

22 One of the simplest, though by no means the only [31], ways to approach such spatial coarse graining
213 18 to define a smoothed empirical concentration that averages over particles in a physical region of typical
21a size € (see Section 4 in Ref. [2] and Section IV in Ref. [11]),

N

ce(rt) = de(a;(t) —r), (21)

=1

zs where ¢ is a smoothing kernel with support ~ ¢ that converges to a delta function as & — 0 (e.g., a
26 Gaussian with standard deviation ). For £ smaller than the typical particle size or interparticle distance, we
217 have little to no coarse-graining and detailed microstructural information (e.g., layering in a hard-core fluid)
28 is encoded in cg. For € much larger than some characteristic correlation length (e.g., decay length of the pair
210 correlation function), microstructural information will no longer be encoded in c¢, although fluctuations in ¢
20 may still be non-negligible. Ultimately, for very large £ we expect c¢ to become macroscopic with negligible
21 fluctuations, although it is not a priori obvious how large & needs to be for this to become the case.

22 A. Ensemble Averaging

23 For simplicity, and in order to facilitate a direct comparison with prior work by others, in this section
24 we will assume there is no external potential, U; = 0. We will also assume an isotropic homogeneous
s (translationally- and rotationally-invariant) system,

R(r,7) =R(r—7") and x(r)=x[l.

26 Furthermore, we will assume that the incompressibility condition holds, which we again emphasize is
227 true for the Rotne-Prager mobility.
25 Direct ensemble averaging of the functional Langevin equation gives

DV (7, 1) = — / dr’ <M (c(-,1): 7, 7] ;H—> (22)

c(r',t)

) far (EED 2,

220 where we used the fact that for incompressible R we can replace H by H., and the fact that in the
230 [to interpretation the stochastic term vanishes in expectation. As derived more carefully in Appendix




2n A of our prior work [I1], the thermal or stochastic drift term on the second line of can be averaged
222 explicitly due to linearity, and leads to the first term on the right hand side of . This demonstrates
233 that Fickian diffusion is already included in the hydrodynamic correlation tensor R, as evidenced by the
2 Stokes-Einstein-like relation yI = R (0). It also shows that all of the terms in the second, third and fourth
235 lines of (17)) come from the closure of the term (—M 0 Hex./0c). Recall that the second term on the first
236 line of ((17)) disappears for incompressible R.

237 In order to make useful in practice, some closure approximation for the two-particle correlation function
238 18 required, and it is here that equilibrium statistical mechanical quantities such as free energy functionals
230 enter in the calculations, as first discussed by Marconi and Tarazona [4] in the absence of hydrodynamic
210 correlations and then generalized by Rex and Lowen [6,[7] to account for hydrodynamics. Namely, by assuming
2a1 that the higher-order correlation functions can be approximated by those of the equilibrium system kept
22 at the same density profile by an external potential, system can be approzimated with (c.f. (14) in [7])

) SF
8tc(1) (,r,7 t) _ (/CBT) 1 xV - (c(l) (’I“,t> Véc(l)—(frt)) (23>
5 Ne® (1) VT g
kD) V- [ R =)D o )V )

243 where F [c(l) (+)] is the equilibrium density functional familiar from static DFT, which is only explictly known
214 for the ideal-gas, see the discussion around . This microscopic equilibrium density functional captures
25 microstructural information about the colloidal system at scales comparable to the size of the colloidal
26 particles. Espaniol and Lowen [5] explain how to connect the equilibrium free-energy functional with a non-
27 Markovian non-local equation for ¢") without making approximations; after making a Markovian (separation
2 of time scales) approximation they obtain a non-local diffusion equation (c.f. (32) in Ref. [5]), and after a
a0 further approximation of the diffusion kernel they obtain the equation of Marconi and Tarazona. Note that
250 in the presence of hydrodynamic correlations the second line of involves ¢® | which makes the equation
21 unclosed and therefore not yet useful in practice without a further closure approximation for ¢ (v, 7 t).
22 Rex and Lowen [0l [7] suggest such an approximation in terms of the equilibrium pair correlation function.
253 It is important to note that, in general, the free-energy functional F' (defined on a space of functions)
25 that enters in the equation for the ensemble average is different from the energy functional H (formally
255 defined on a space of distributions) that enters in the functional Langevin equation . In fact, a precise
256 thermodynamic definition can be given to the classical DDFT functional F' [c(l) ()} as an expectation value

257 over a Gibbs-Boltzmann distribution related to (20). However, for noninteracting particles (an ideal gas)
s F and H have formally the same functional form,

F = Fiq = Hia.

250 Equation as written contains a long-ranged nonlocal diffusion term on the second line, which is there
x0 even when there are no direct interactions. For an ideal gas, the flux in the parenthesis on the second

261 line of becomes

0(2) (T7 T/v t) 1
/R (7’ — ’r') WV’C( ) (r17 t) d’l’,7

262 which is still not closed. For an ideal gas, the closure for the two-particle correlation function that Rex
263 and Lowen [0, [7] suggest becomes

A (o )~ e (e t) D ().

s After also making this approximation we can write the second line of in the form
D (r,1) /’R (r—7) Ve (¢ 1) dr,

265 which vanishes after an integration by parts due to the incompressibility condition ([11)).
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%6 1The above considerations for an ideal gas suggest that should be written in a form that separates
27 the ideal from the non-ideal contributions,

OF,
(1) = V2 Tyw o e® _Toexe
O™ (r 1) = XV (1) + (kpT) XV (C (r ) VS (r,t))

OF,
T -1 . o A(2) / / exc / ) 24
+ (kgT) V (/’R(r r')c (T’r’t)v—éc(l) D dr> (24)

268 Where Fy. is the ezcess (over the ideal gas) free-energy functional. The first line is the equation obtained for
20 uncorrelated walkers by Marconi and Tarazona [4]. In the last line of (24)), R is long-ranged but one expects
20 that the remainder of the integrand is short-ranged far from phase transitions in some sense [27] and therefore
i1 the result will be nonlocal only over scales that represents that typical correlation length in the microstructure
a2 of the system. Making this more precise requires some further approximations and is beyond the scope
273 of this work. It is interesting to note that the first line in can be written in functional notation as

OF

— | dr' Mipg [¢V (-, 8); v, 7| —————,
/ a6 ] dc (/1)

o7a which, surprisingly, involves Mj,q even though Mj,q does not appear in the original dynamics. Further

215 work is necessary to explore how well closures such as describe collective diffusion in both confined

76 and unconfined dilute and semi-dilute colloidal suspensions.

o7 B, Averaging over initial conditions

as As written, the fluctuating DDFT equation is a nonlinear non-local SPDE that appears of little
270 practical utility; solving it is no easier than solving using Brownian Dynamics [25]. This is so even in
20 the absence of direct interactions because of the nonlocal diffusive flux term c(r,t) [ R(r,v")V'c(r',t) dr'.
51 However, an important observation, previously missed, is that the incompressibility of the fluid mediating
22 the hydrodynamic correlations implies that the correlation tensor is divergence free. This implies that
283 the nonlocal diffusive flux term vanishes, and therefore, in the absence of direct interactions the fluctuating
25 DDF'T equation is the linear and local stochastic advection-diffusion equation .

s It is important to emphasize that is mathematically well-behaved and does have utility beyond that of
28 formal equations such as because it can be averaged over initial conditions (rather than over realizations
267 of the noise) [11]. Specifically, let us assume that the initial positions of the particles are uniformly sampled
283 from an equilibrium ensemble constrained to have a specified mean ¢ (7, t) via a suitable external or chemical
280 potential [4, [7]. For noninteracting walkers, this simply amounts to choosing the initial particle positions
200 independently from a probability distribution ~ ¢y (7, t). Because of the linearity of we can trivially
201 average it over this ensemble of initial conditions; the equation remains the same but now the initial condition
202 18 the smooth ¢ (7,0) = co rather than a spiky sum of delta functions. This is useful if one wants to describe
203 particular instances (realizations) of the dynamics starting from a random configuration of particles. For
200 example, consider a fluorescence recovery after photobleaching (FRAP) experiment [32] in which a random
205 subset of the particles uniformly distributed below a given plane are fluorescently labeled at ¢ = 0 and then
206 allowed to diffuse freely. This can be modeled by solving (/1)) for a finite collection of particles, but, equivalently,
207 one can solve (using computational fluid dynamics techniques) the Eulerian equation with ¢ (r,0) =
208 const. above the given plane and ¢ (7, 0) = 0 below it, to obtain the probability ~ ¢ (7, t) of finding a particle
200 at position r for a specific instance of the noise w (r,t). More general smooth initial conditions are also
300 possible, e.g., a Gaussian profile corresponding to a nonuniform laser beam intensity in a FRAP experiment.
s Because of its nonlinearity, averaging (15 over initial conditions is nontrivial and requires further
02 approximations that are beyond the scope of this work. We believe such averaging could lead to descriptions
303 that describe collective diffusion at all scales, from the microscopic to the macroscopic, in a manner more
30+ suitable for numerical approximations than ([1)).

s C. Spatial Averaging

s6 It is important to contrast the fluctuating diffusion that describes the microscopic dynamics to the
307 equation obtained by considering a macroscopic limit and coarse-graining the concentration over many
s08 particles, rather than over realizations of the noise. The literature on the subject is large [14] 27, 33-35] and
300 we make no attempt to review it here, rather, we summarize some key results. Let us denote with ¢ (7, ) ~
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310 C¢ (7, 1) the macroscopic concentration, which, roughly speaking, can be thought of as ¢ (r,t) averaged over
su a region of macroscopic size £ (i.e., a region containing many particles and typical size much larger than the
a2 interaction range of the pairwise potential). A precise mathematical definition is possible by suitable rescaling
a3 of space and time, see Refs. [36-39]; equivalently, one can consider the Fourier transform of ¢ (v, ¢) in the limit
s1e of small wavenumbers. It has been demonstrated rigorously [37] that for uncorrelated walkers interacting
us with short-ranged potentials the macroscopic concentration obeys a nonlinear but local Fick’s law [33]

oc = xV?I(e) = xV - (dljlf)vc) .

a6 Here I1(¢) is the osmotic pressure of the suspension at thermodynamic (local) equilibrium with uniform
a7 concentration ¢ (for an ideal gas I1(¢) = ckgT), I1(¢) = ¢ (df /d¢) — f, where f(¢) is the thermodynamic
a1s equilibrium free-energy density of a macroscopic system with uniform density c.

sis  We are, however, not aware of any mathematical techniques that can be used to rigorously justify Fick’s
20 law in the presence of long-ranged hydrodynamic correlations. Felderhof [27] argues that from a variant
of one can obtain Fick’s law with a diffusion coefficient that depends on concentration and gives
2 a low-density expansion of the collective diffusion coefficient (c.f. (4.24) in [27]) that matches the one
23 obtained by Batchelor [35] using Einstein’s formula. It is important to point out that at later stages of his
24 argument Felderhof makes key use of the divergence-free nature of the hydrodynamic correlations [*| which
s he also emphasizes follows from the incompressibility of the fluid (c.f. (4.13) in [27]). While Felderhof and
326 other authors in the physics literature write Fick’s law as an equation for ¢(!) it is clear from the derivations
7 that an assumption is being made that ¢! varies little and slowly in space. It is important to remember
s that c¢(V) (r,t) and ¢ (7, t) are different objects, although one expects that in cases where ¢! varies slowly
320 in space the two are closely related since ensemble and spatial averaging are expected to commute.

;0 Of particular interest is to understand collective diffusion over the broad-spectrum of mesoscopic
a1 length-scales, i.e., scales that are larger than o, where o is a typical microscopic length, but not so large
s22 that the hydrodynamic limit applies. For non-interacting uncorrelated walkers, the ensemble-averaged
33 concentration follows the same diffusion equation (Fick’s law) with the same diffusion coefficient at all
. scales, as seen from the linearity of . We demonstrated here that the same holds even in the presence
135 of hydrodynamic correlations among the particles. Direct interactions appear to, however, complicate the
336 picture and lead to non-local nonlinear terms like those in , and we do not know of any rigorous results
s in the mesoscopic regime. Non-equilibrium thermodynamics [28] and the theory of coarse-graining [30]
18 provide guidance on the structure of the resulting equations but not their explicit form.

;30 In principle, an equation for the coarse-grained concentration can be carried out by convolving
30 (filtering) the right hand side of (15]) with the kernel d.. In general this leads to an unclosed equation and
further approximations are required. Once again the special case of an ideal gas is much simpler to tackle
;2 because becomes the linear . In Ref. [I1] we proposed how to carry out spatial coarse-graining
3 by performing a partial ensemble average of ([12]) over fluctuations of the random velocity field w below
sua the coarse-graining scale. Our argument, however, closely relied on the linearity of and therefore only
us applies when there are incompressible hydrodynamic correlations but no direct interactions among the
us particles. The general conclusion of our work and other related works in the literature is that coarse-graining
w7 leads to effective dissipation (entropy production) with transport coefficients that must be renormalized
us in a way that takes into account the mesoscopic observation scale. The same undoubtly holds for any
a9 “free energy functional” that may appear in the mesoscopic equations. Carrying out such a renormalization
350 Of remains a difficult but important challenge for the future.

1 IV.  Conclusions

32

-

34

s

2 Hydrodynamics plays an important role in colloidal suspensions and must be included in DDFT theories.
353 Momentum transport in the fluid leads to hydrodynamic correlations among the diffusing particles and
s has important consequences for the collective diffusion not seen if one looks at the self-diffusion of a single
ss5 particle in suspension. Starting from as a model of these hydrodynamic correlations, we obtained a closed
356 equation for the instantaneous, fluctuating, or empirical concentration, the ensemble average of which
37 ({L7)) matches the DDFT equation previously obtained by Rex and Lowen [0 [7]. This generalizes the results

4 This part of the derivation of Felderhof inspired the rewriting .
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3!

a1

s of Dean [3] for the case of uncorrelated (independent) Brownian walkers to account for hydrodynamics,
350 and generalizes our prior results [11] to account for direct interactions among the particles.

0 A few comments about the physical reasoning behind are in order. Note that the generic form (4))
does not fit because the appearance of the Kronecker d;;. It can be shown that the requirement that the
se2 mobility be positive semidefinite for any configuration of particles and any N implies that ||w12(0)]], < 1;
363 if this holds as an equality then E| w12(0) = I and therefore holds. This has important physical
364 consequences that do not appear to have been widely appreciated. Notably, for two overlapping particles,
1 ¢; = g, predicts M;; = M ;; = M,;; = M j;, which implies that, in fact, the two particles continue
%6 to0 move in synchrony forever, and g; = q; for all times. By contrast, if ||wi2(0)[|, < 1, as for the case of
37 independent Brownian walkers wqs = 0, two particles released from the same position separate immediately.
e We believe that it is physically more realistic to assume that the trajectories of nearby particles become
360 highly correlated rather than remain independent. Furthermore, two perfectly overlapping particles should
w0 behave as if there is only a single particle at that location. The well-known Rotne-Prager mobility [12],
s which was used by Rex and Lowen [0, [7] in their numerical calculations, does conform to (3). In our prior
w2 work [11], we used a model based on fluctuating hydrodynamics [23], 40}, 41], which, in the limit of infinite
w3 Schmidt number (momentum diffusion much faster than particle diffusion) converges to (1)) with (3) and
s a covariance operator [21) 25]

36

—

kT
R (r1,72) = % o(ry, )G, r") o’ (ry,r")dr'dr”, (25)

sis where G is the Green’s function for the steady Stokes equation with unit viscosity and appropriate
w6 boundary conditions. For unbounded three-dimensional systems G is the Oseen tensor G (', r") =

ar (87r) "' (I + 7~ %r @ r), where 7 = 7/ — . Here o is a smoothing kernel that filters out features at scales
sis below the size of the diffusing particles o, e.g., o could be a Gaussian with standard deviation o. The
a9 self-diffusion coefficient x given by obeys a Stokes-Einstein formula, in three dimensions, x ~ kgT'/ (no)
30 [I1]. When the particles are far apart, qu —q; H > o, the mobility is well-approximated by the Oseen

se1 tensor, M ;; (qi, q ) ~nlG (%’7 qj). At short distances the divergence of the Oseen tensor is mollified
s2 by the filter, and (25]) gives a pairwise mobility very similar to the Rotne-Prager mobility widely-used
383 in BD simulations [25]. Note that follows from the incompressibility of the Green’s function G.

;s Numerical methods to solve and , along with an extensive visual and quantitative analysis of the
385 surprising characteristics of the solution can be found in Ref. [I1]. A key observation is that, due to the Ito
36 nature of the hydrodynamic term —w - Ve in , the ensemble-averaged concentration continues to follow
se7 the local Fick’s law (), despite the presence of hydrodynamic correlations among the diffusing particles. Note,
388 however, that the behavior of each instance (relization) of the stochastic process c¢(r, t) is rather distinct from
380 the behavior of the mean concentration, as discussed extensively in our prior work [11]. In particular, the
200 fluctuating equation is non-dissipative (reversible), while Fick’s law (8)) is dissipative (irreversible). In the
s01 presence of large concentration gradients the solutions of exhibit characteristic long-ranged correlations
32 (glant fluctuations) that are quite distinct from the case of uncorrelated walkers [42-45]. This indicates that
303 the mathematical structure and the physical behavior of is very different from that of because
30 hydrodynamics affects the fluctuations of the concentration in crucial ways. This fact is well-known in nonequi-
35 librium statistical mechanics circles, and recent experiments [44] have demonstrated how giant concentration
306 fluctuations can arise for a simple polymer solution out of equilibrium in the absence of gravity. Nonequi-
s07 librium concentration fluctuations have also been measured in gravity for a nanocolloidal suspension [45].
38 The striking difference between correlated and uncorrelated walkers is somewhat surprising. After all, one
390 would expect that, if the correlations are sufficiently weak in a certain sense (e.g., they decay rapidly with
400 distanceﬁ), should converge to . It is important to emphasize, however, that corresponds to the
s01 physically unrealistic case of particles performing uncorrelated random motions even when they overlap. In
s02 reality, it is the solvent molecules that have to kick the colloidal particles, and nearby particles must become
s03 correlated because their diffusion is caused by the motion of correlated fluid molecules. Let us assume for a
s0s moment that (1) holds with an isotropic smooth R (r — 7’) that is nonzero only if the two particles are within

5 Observe that w12(0) must be rotationally invariant and therefore has to be the identity matrix.
6 It must be pointed out, however, that incompressible hydrodynamic correlations such as the Rotne-Prager tensor, must
be long ranged because of the incompressibility constraint.
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ws a distance o’ apart, and has a finite value at the origin, R (0) = xI. Let us also account for the fact that
w06 the diffusing particles themselves are not point particles but have a physical size o, and consider the coarse-
s07 grained concentration for & ~ 0. The case considered by Dean corresponds to the double limit ¢ — 0 and
ws 0 — 0, but the order of these limits is not a priori clear. Formal manipulations show that converges in a
s00 certain sense to if one takes the limit o — 0 first and then takes the limit o’ — 0. It is an interesting open
a0 question what happens if the order of the limits is reversed, or if ¢ and ¢’ go to zero simultaneously. Such calcu-
a1 lations will shed further light on the nature of diffusion in liquid suspensions and mixtures over a much broader
a2 spectrum of length and time scales than described by Fick’s law with phenomenological diffusion constants.

413
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20 Appendix
21 A.  Equations for the Empirical Concentration

22 In this Appendix we present the detailed derivation of and . In the beginning, we will consider
s23 the case of no direct interactions among the particles, U = 0, and subsequently add the direct forces. The
s24 assumption that the covariance operator R is symmetric positive-semidefinite is equivalent to the requirement
s that the mobility matrix M (Q) be symmetric positive semi-definite for all @, and implies that there exists
26 an infinite countable set of eigenfunctions ¢, (r) that factorize (diagonalize) the covariance operator,

Y bi(r) @ gy(r') = R(r,r').
k

27 Note that if holds then the eigenfunctions of R are also incompressible, V - ¢, (r) = 0.
28 1. Stratonovich form

29 It is not hard to show that in the absence of direct interactions corresponds to the Stratonovich
10 equation for the position of an individual tracer i =1,..., N,

N
dg; = Zb(Qian)dt+\/§Z¢k(Qi) o dBy, (A1)
j=1 k
s1 where o denotes a Stratonovich product, Bj, are independent Brownian motions, and we defined
b(r,r') = V' - R(r,r') =) ¢(r)V - ¢y (r"). (A2)
k

22 Note that when the incompressibility condition holds b(r,r’) = 0.
sz For the Stratonovich interpretation we can use ordinary calculus to write

de(r,t) = =) b(q,(t), q;(t)) - Vi(r — q;(t))dt
n=t (A3)

N
—V2) Y ula,(t) - Vo(r — q;(t)) o dBy(t)
i=1 k
s34 Using integration by parts and properties of the delta function we can write this as a closed-form equation for ¢,
de(r,t) = -V - (c(r,t) /b(’r,’r’)c(r’,t)d’r’) dt

(A4)
—V2) V- (y(r)e(r, 1)) o dBy(1)
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a3 or, after recalling the definition of b in (A2)) and performing an integration by parts to transfer the gradient
436 1O C,

de(r,t) =V - (c(r,t) /’R(r,r’)V’c(r’,t)dr’) dt

(A5)
—V2) V- (y(r)e(r, 1)) o dBy(1).

27 When the incompressibility condition (1)) is satisfied, b = 0 and (A4]) implies that

a3 which is exactly identical to the Stratonovich form of the equation we obtained in Ref. [I1] by rather

s different means. Here we can identify w (r,t) = V23", ¢, (7)dBy(t ) as a random velocity field with
w0 covariance given by (13)). While the Stratonovmh form of the equation is the simplest, the Ito form is the

a1 most convenient for performing an ensemble average to obtain an equation for the average concentration c(.
w2 2. Ito form
a3 In the Ito interpretation, (Al]) reads

dq; = a(q,)dt + Zb q;,q;)dt + \/_Z ¢1.(q,)dB, (A7)
J#i

44 where we defined

a(r) =V -R(r,r) =) $(r)V - ¢y(r +Z¢k ) Vo (r) = b(r,r) +g(r), (A8)

k
445 and

Z ér(1) - V(7). (A9)

s The Ito equation (A7) can also be written as

N
dq, = g(q,)dt + Y b(q;, q;)dt + V2> ¢,(q,)dBy, (A10)
=1 k

sar which will be the most convenient for our calculation. Note that when the incompressibility condition
448 hOldS,
a(r)=g(r) =V -x(r) (A11)

mo is the divergence of the diffusion tensor, which vanishes for translationally-invariant systems.
0 Using Ito calculus, we can now write an equation for the empirical concentration,

de(r,t) ==Y <g(q@-(t)) + Y blg(h), qj(t))> - Vo(r — q;(t))dt

i=1 j=1

_ \/QZ Z &,(q;(1)) - V(r — q,(t))dBy(t) (A12)

+ ZZ% a;(t)i(q;(t)) : VVO(r — q,(t))dt
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ss1 Using integration by parts and properties of the delta function we can write this as a closed-form equation for c,

de(r,t) = =V - (g(r)e(r,t) dt + VV . (R(r,r)c(r,t)) dt

~-Vv. <c<r,t) / b(r,r’)f:(r’,t)dr’) dt (A13)
— \/52 V - (¢y(r)c(r,t)) dBy(1),

ss2 which can further be simplified to
de(r,t) =V - (R(r,r)Ve(r,t) + b(r,r)c(r,t)) dt
/ / / /
+V (c(’r, t) /’R(r, r)V'e(r ,t)dr) dt (A14)
—VIY V- (Gy(rlelr, 1) dBi(1)
P
w3 Here we can identify w (r,t) = /2", ¢, (7)dBy(t) as a random velocity field with covariance given by .

s Upon averaging over realizations of the noise the fluctuating term drops out in the Ito interpretation,
w5 giving a non-local diffusion equation for the mean concentration ¢ (r,t) = (c(r, t))

OV (r,t) =V - (x(r)VeD (r,t) + b(r, )V (r,1))
2 ( / R(r 1) (e (r 8) Ve (1, 1)) dr’> | (A15)
ss6 By noting that the two-particle correlation function is
D (r ' t)=(c(rt)c(r, 1)) — (c(r )6 (r—7r'), (A16)
ss7 we see after an integration by parts that is equivalent to

OV (r t) =V - (X(T)Vc(l)(nt)) +V. (/ R(r,r)V'c? (r ' 1) d’r’) ,

ss which, for a translationally-invariant system, is exactly the equation (9 obtained by Rex and Lowen.
s When the incompressibility condition holds, Eq. (A13) reduces to the fluctuating Fick’s law

de(r,t) =V - (x(r)Ve(r,t)) dt — \/52 ¢ (1) - Ve(r, t)dBy(t), (A17)

w0 which is exactly the stochastic advection-diffusion equation . In this case the mean follows Fick’s law
0,V (rt) =V - (x(r)veD(r, 1)),

w1 and the non-local diffusion term involving ¢ disappears since b = 0.
62 3. Direct interactions

w3 _If we include direct interactions among the particles of the form (14)), the Stratonovich equation of motion

464 becomes
N
dg; =Y b(q;,q;)dt + V2> ¢(q;) 0 dBy
e ’ (A18)
+ (kBT)_l ZR(qu Qj) <f1((Ij) + Z f?(qju %)) dt

J=1 k#j
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s where we have defined the external and pairwise forces
fi(r) ==VU(r),  fao(r.v') = =VU(r,7). (A19)
a6 For simplicity, and without loss of generality, we will assume that there is no self-force coming from the

w7 pairwise interactions, f,(r,r) = 0.
ws  The new term in (A18) adds the following term to the drift in (A3]):

— (kT)~ ZR (¢:-9;) (fl(qj)+2f2(qj7qk)> - Vié(r —q;)

3,5=1 k#j

— (kgT)™! [ R(a:,q;) (fl(q]) > filg; qk)> o(r — qi)]
7 k=1

]:

2. /R(r’ )1 (r)8(r — g;)d(r" — q;) dr,)

ij=1

— (kT (Z / Rir,v') £5(r',7")5(r — q,)5(r" — q,)5(r" — q) dr'dr")

—_

(A20)
— (kgT)™'V - <

w0 This can also be written in terms of the empirical concentration as

— (kgT)' V- (c('r,t>/R(r,r’)fl(r’>c(’°'vt> d"“/) (A21)

— (kgT)' V- (c(r,t) /’R(r,r’)fQ(r’,'r”)c(r’,t)c(fr”,t) dr’dr”) ,

a0 Or, in terms of the potentials U; and Us, as

(ksT) 'V - (C('r, t) / R(r, )V Us(r)e(r',¢) d’"') (A22)

+ (kgT) 'V - (c(’r,t) /’R,('r',T/)V'UQ(T',T”)C(T’,t)c('r”,t) dr’dr”) :

s Adding these terms to the right hand side of @D (or, in the Stratonovich interpretation, to (A5])) gives
a2 our final result . Remarkably, this is a closed equation for the fluctuating concentration just as in
3 the case of uncorrelated particles [3].

s Taking an ensemble average of the new terms leads to terms involving the two-particle and
as three-particle correlation function

(e, " t) = (c(r, t)elr t)e(r” 1))
— 3{e(r, t)e(r’, 1)) (3(r —7") + o(r' — 7))
— 3{c(r t)e(r”, 1) (6(r — ') + 6(r' — r")) (A23)
— 3{e(r’ el 1)) (6(r — ') +3(r — "))

+ {c(r, 1))o(r —r)o(r" — "),

a6 which, after some algebra, gives our final result for the average concentration.
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