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Giant Fluctuations

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ (r)∇c] ,

where χ � 0 is a diffusion tensor.
But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role.
The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η),

χ ≈ kBT

6πση
,

where σ is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [1].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box
scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Hydrodynamic Correlations

The mesoscopic model we develop here applies, to a certain degree of
accuracy, to two seemingly very different situations:

1 Molecular diffusion in binary fluid mixtures, notably, diffusion of tagged
particles (e.g., fluorescently-labeled molecules in a FRAP experiment).

2 Diffusion of colloidal particles at low concentrations.

The microscopic mechanism of molecular diffusion in liquids is
different from that in either gases or solids due to the effects of
caging:

1 The Schmidt number is very large (unlike gases) and particles
remain trapped in their cage while fast molecular collisions
(interactions) diffuse momentum and energy.

2 The breaking and movement of cages requires collective
(hydrodynamic) rearrangement and thus the assumption of
independent Brownian walkers is not appropriate.
This is well-appreciated in the colloidal literature and is described as
hydrodynamic “interactions” (really, hydrodynamic correlations), but
we will see that the same applies to molecular diffusion.
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Brownian Dynamics Model

Brownian Dynamics

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = −M (∂QU) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (1)

where B(t) is a collection of independent Brownian motions, U (Q) is
a conservative interaction potential.

Here M (Q) � 0 is a symmetric positive semidefinite mobility block
matrix for the collection of particles, and introduces correlations
among the walkers.

The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (1) is

∂P

∂t
=

∂

∂Q
·
{

M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (2)

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ∼ exp (−U(Q)/kBT ).
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Brownian Dynamics Model

Hydrodynamic Correlations

Let’s start from the (low-density) pairwise approximation

∀ (i , j) : Mij

(
qi ,qj

)
=

R
(
qi ,qj

)
kBT

=
1

kBT

∑
k

φk (qi )φk

(
qj

)
,

Here R (r, r′) is a symmetric positive-definite kernel that is
divergence-free, and can be diagonalized in an (infinite dimensional)
set of divergence-free basis functions φk (r).

For the Rotne-Prager-Yamakawa tensor mobility,
R(r′, r′′) ≡R(r′ − r′′ ≡ r),

R(r) = χ


(

3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r

r2
, r > 2σ(

1− 9r

32σ

)
I +

(
3r

32σ

)
r ⊗ r

r2
, r ≤ 2σ

(3)

where σ is the radius of the colloidal particles and the diffusion
coefficient χ follows the Stokes-Einstein formula χ = kBT/ (6πησ).
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Brownian Dynamics Model

Lagrangian Overdamped Dynamics

A key point here is that we can also include the diagonal i = j .
In particular, two particles released from the same position move as
one forever.

Henceforth we will consider noninteracting particles (ideal gas),
U = 0.

This Lagrangian description of diffusion in the Stratonovich
interpretation can be written in the form

dq =
∑
k

φk (q) ◦ dBk , (4)

where the single realization of the random field
∑

k φk ◦ dBk
advects all of the walkers and induces correlations between the
tracers.
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Brownian Dynamics Model

Eulerian Overdamped Dynamics

We can use standard calculus to obtain an equation for the empirical
or instantaneous concentration

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (5)

We will write the result shortly, after we derive it from a fluctuating
hydrodynamics perspective:
derivation relies closely on divergence-free condition [2].

Aside: For uncorrelated walkers, Mij = δij (kBT )−1 χI, one can
formally write the (ill-defined) Ito stochastic partial differential
equation (SPDE) [3],

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
, (6)

where Wc (r, t) denotes a spatio-temporal white-noise vector field.
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Fluctuating Hydrodynamics Model

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0. (7)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
molecular cutoff scale σ.
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Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

Lagrangian description of a passive tracer diffusing in the fluid,

q̇ = u (q, t) +
√

2χ0 Wq, (8)

where Wq(t) is a collection of white-noise processes (independent
among tracers).
In this case σ is the typical size of the tracers.

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c + χ0∇2c, (9)

where χ0 is the bare diffusion coefficient.

The two descriptions are equivalent. When χ0 = 0,
c (q(t), t) = c (q(0), 0) or, due to reversibility,
c (q(0), t) = c (q(t), 0).
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Fluctuating Hydrodynamics Model

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations
[4]. These giant fluctuations have been studied experimentally [1] and
with hard-disk molecular dynamics [5].
Our Goal: Computational modeling of diffusive mixing in liquids in
the presence of thermal fluctuations.
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Overdamped Limit

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling [6]

χν = const.
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Overdamped Limit

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan’s model
in turbulence),

∂tc = −w �∇c + χ0∇2c, (10)

where � denotes a Stratonovich dot product.

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′,

In the Ito interpretation, there is enhanced diffusion,

∂tc = −w ·∇c + χ0∇2c + ∇ · [χ (r)∇c] (11)

where χ (r) is an analog of eddy diffusivity in turbulence.
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Overdamped Limit

Diffusion Coefficient

Let us factorize the integral of the velocity correlation function in
some (infinite dimensional) set of basis functions φk (r),∫ ∞

0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′ =

∑
k

φk (r)⊗ φk

(
r′
)
.

For periodic boundaries φk can be Fourier modes but in general they
depend on the boundary conditions for the velocity.

The notation w �∇c is a short-hand for
∑

k (φk ·∇c) ◦ dBk/dt,
where Bk (t) are independent Brownian motions (Wiener processes).

Similarly, w ·∇c is shorthand notation for
∑

k (φk ·∇c) dBk/dt.

The enhanced or fluctuation-induced diffusion is

χ (r) =

∫ ∞
0
〈u (r, t)⊗u

(
r, t + t ′

)
〉dt ′ =

∑
k

φk (r)⊗φk (r) = R (r, r) .
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Overdamped Limit

Back to Lagrangian description

If we take an overdamped limit of the Lagrangian equation we get
the previous equation plus bare diffusion,

dq =
∑
k

φk (q) ◦ dBk +
√

2χ0 dBq, (12)

where Bq(t) are independent Brownian motions (one per tracer).

This is equivalent to the well-known Brownian dynamics where the
mobility matrix has the form

Mij

(
qi ,qj

)
= η−1

∫
σ
(
qi , r

′)G
(
r′, r′′

)
σT
(
qj , r

′′) dr′dr′′.

Note that for r � σ an isotropic+translationally-invariant
Mij

(
qi ,qj

)
= Mij

(
qi − qj ≡ r

)
reverts to the Oseen tensor.

The next-order corrections look exactly like the RPY tensor, but the
behavior at short distances depends on the choice of the kernel σ.
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Overdamped Limit

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

χ (r) =
kBT

η

∫
σ
(
r, r′
)

G
(
r′, r′′

)
σT
(
r, r′′

)
dr′dr′′, (13)

where G is the Green’s function for steady Stokes flow.
For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.
The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that χ0 � χ:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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Numerics

Multiscale Numerical Algorithm

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing,

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

using a staggered finite-volume fluctuating hydrodynamics solver [4],
and compute un = σ ? vn by filtering.

2 Do a predictor advection-diffusion solve for concentration,

c̃n+1 − cn

∆t
= −un ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.

3 Take a corrector step for concentration,

cn+1 − cn

∆t
= −un ·∇

(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.
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Numerics

Lagrangian Algorithm

The tracer Lagrangian dynamics can be efficiently simulated without
artificial dissipation (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

using a spectral (FFT-based) algorithm.
2 Filter the velocity with a Gaussian filter (in Fourier space),

wn = σ ? vn.

3 Use a non-uniform FFT to evaluate un = wn(qn), and move the
tracers,

qn+1 = q + un∆t.

In non-periodic domains one would need to do a corrector step for tracers
(Euler-Heun method for the Stratonovich SDE).
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Numerics

Numerical Issues

1 All algorithms implemented on GPUs for periodic boundaries using
FFTs. We do large simulations in 2D here to study physics, 3D is
implemented but largest grid is O(5123).

2 Eulerian algorithm also implemented in IBAMR library by Boyce
Griffith, to be used for studying the effect of boundary conditions in
experiments on giant fluctuations.

3 For Eulerian algorithm the difficulty is in the advection: we need
essentially non-dissipative advection that is also good with
monotonicity preserving.

4 Right now we use a strictly non-dissipative centered advection, for
which we can calculate discrete diffusion enhancement operator
exactly.

5 Also trying more sophisticated minimally-dissipative semi-Lagrangian
advection schemes of John Bell implemented by Sandra May
(unfinished).
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The Physics of Diffusion

Is Diffusion Irreversible?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion

Effective Dissipation

The ensemble mean of concentration follows Fick’s deterministic
law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (14)

which is well-known from stochastic homogenization theory.

The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (χ0) is irreversible and dissipative, but
diffusion by advection (χ) is reversible and conservative.

Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.

This transfer of power is effectively irreversible because power
“disappears”. Can we make this more precise?

A. Donev (CIMS) Diffusion 5/2014 27 / 34



The Physics of Diffusion

Virtual FREP Experiment (χ0 = 0)

The contour lines become very rough, and eventually fill the whole plane,
unless we put some bare diffusion to smooth things out.
But this generates sub-molecular scale features, compare to hard-disk
molecular dynamics (1M disks):

We should perform spatial coarse-graining to study cδ = δ ? c, where
δ > σ is a mesoscopic measurement (observation) scale.
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The Physics of Diffusion

Lagrangian Tracking of Interfaces
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The Physics of Diffusion

Spatial Coarse-Graining

Split the velocity w into a large-scale component wδ and a small-scale
component w̃,

w = δ ?w + w̃ = wδ + w̃ in law,

where δ is a filter of mesoscopic width δ > σ.

Define c̄δ = 〈c〉w̃ as the conditional ensemble average over the
unresolved w̃ keeping the resolved wδ fixed.

For the Ito equation (11), without any approximations, we obtain,

∂t c̄δ = −wδ ·∇c̄δ + χ0∇2c̄δ + ∇ · [χ (r)∇c̄δ] , (15)

with an identical effective diffusion coefficient χeff = χ0 + χ.

We postulate that this gives a physically reasonable coarse-grained
model for cδ = δ ? c.
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The Physics of Diffusion

Coarse-Grained Equations

In the Stratonovich interpretation the coarse-grained equation is

∂tcδ ≈ −wδ �∇cδ + ∇ · [(χ0 + ∆χδ)∇cδ] , (16)

where the diffusion renormalization ∆χδ (r) [7, 8] is

∆χδ = χ− δ ? χ ? δT . (17)

The coarse-grained equation has true dissipation (irreversibility)
since ∆χδ > 0.

For δ � σ in three dimensions we get ∆χδ ≈ χ and so the
coarse-grained equation becomes Fick’s law with Stokes-Einstein’s
form for the diffusion coefficient. This hints that
In three dimensions (but not in two dimensions!) at
macroscopic scales Fick’s law applies. At mesoscopic scales
fluctuating hydrodynamics with renormalized transport
coefficients is a good model.
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The Physics of Diffusion

Irreversible vs. Reversible Dynamics

Figure: (Top panel) Diffusive mixing studied using the Lagrangian tracer
algorithm. (Bottom) The spatially-coarse grained concentration cδ obtained by
blurring with a Gaussian filter of two different widths.
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The Physics of Diffusion

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics describes these effects.

Due to large separation of time scales between mass and
momentum diffusion we need to find the limiting dynamics to
eliminate the stiffness.

The overdamped equation is a stochastic advection-diffusion
equation with a white-in-time velocity.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy” diffusion is very different from Fickian diffusion: it
is reversible (conservative) rather than irreversible (dissipative)!

At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions.
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The Physics of Diffusion
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