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Giant Fluctuations

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ (r)∇c] ,

where χ � 0 is a diffusion tensor.
But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role.
The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η),

χ ≈ kBT

6πση
,

where σ is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [1].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box
scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Fluctuating Hydrodynamics Model

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation, ∇ · v = 0,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W − βρc g, (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
molecular cutoff scale σ (typical size of the tracers).

A. Donev (CIMS) Diffusion 6/2014 6 / 23



Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c + χ0∇2c, (2)

where χ0 is the bare or molecular diffusion coefficient.

Here β is the solutal expansion coefficient, and g is the gravitational
acceleration, and we have used the constant-coefficient Boussinesq
approximation; one can do better using a low Mach approximation
[2].

In the physics literature often written imprecisely as the ill-defined but
nevertheless useful

ρ (∂tv + v ·∇v) + ∇π = η∇2v +
√

2ηkBT ∇ ·W − βρc g

∂tc + v ·∇c = χ0∇2c + ∇ ·
(√

2χ0cWc

)
.
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Fluctuating Hydrodynamics Model

Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations
[3]. These giant fluctuations have been studied experimentally [1] and
with hard-disk molecular dynamics [2].
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Overdamped Limit

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling [4]

χν = const.
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Overdamped Limit

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan’s model
in turbulence),

∂tc = −w �∇c + χ0∇2c, (3)

where � denotes a Stratonovich dot product, and we ignored gravity
[5, 6].

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′,

In the Ito interpretation, there is enhanced diffusion,

∂tc = −w ·∇c + χ0∇2c + ∇ · [χ (r)∇c] (4)

where χ (r) is an analog of eddy diffusivity in turbulence.
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Overdamped Limit

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

χ (r) =
kBT

η

∫
σ
(
r, r′
)

G
(
r′, r′′

)
σT
(
r, r′′

)
dr′dr′′, (5)

where G is the Green’s function for steady Stokes flow.
For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.
The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that χ0 � χ:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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Overdamped Limit

Effective Dissipation

The ensemble mean of concentration follows Fick’s deterministic
law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (6)

which is well-known from stochastic homogenization theory.

The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (χ0) is irreversible and dissipative, but
diffusion by advection (χ) is reversible and conservative.

Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.

This transfer of power is effectively irreversible because power
“disappears”.
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Overdamped Limit

Spectral power cascade
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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Spatial coarse-graining

Linearized Fluctuating Hydrodynamics

In experiments we observe the coarse-grained concentration
cδ = δ ? c, where δ is a filter of mesoscopic width δ � σ.

In three dimensions, we expect that the fluctuations in cδ = c̄ + δc,
where c̄ = 〈c〉 is the solution of the deterministic Fick’s law (LLN),
are small and approximately Gaussian (CLT).

At scales δ � σ we can therefore use linearized fluctuating
hydrodynamics, assuming no macroscopic convection,

∂t c̄ = χeff∇2c̄

∂t (δc) = −v ·∇c̄ + χeff∇2δc + ∇ ·
(√

2χeffc̄Wc

)
ρ∂tv + ∇π = η∇2v − βρ (δc) g +

√
2ηkBT ∇ ·W .

This system of SPDEs can easily be solved numerically once we take
the overdamped limit.

One numerical scheme can simulate both nonlinear (weakly
1st-order), or linearized equations (weakly 2nd-order) [7].
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Spatial coarse-graining

Multiscale Numerical Algorithm

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing,

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
− ρβcng

∇ · vn = 0.

using a staggered finite-volume fluctuating hydrodynamics solver [3],
and compute un = σ ? vn by filtering.

2 Do a predictor advection-diffusion solve for concentration,

c̃n+1 − cn

∆t
= −un ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.
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Spatial coarse-graining

contd.

1 Solve a corrector steady Stokes system for velocity,

∇πn+ 1
2 = η

(
∇2vn+ 1

2

)
+ ∇ ·

(√
2η kBT

∆t∆V
Wn

)
− ρβ

(
cn + c̃n+1

2

)
g

∇ · vn+ 1
2 = 0,

and compute un+ 1
2 = σ ? vn+ 1

2 .

2 Take a corrector step for concentration,

cn+1 − cn

∆t
= −un+ 1

2 ·∇
(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.

This overdamped integrator provides a speedup of O (Sc) over
direct integration of the original inertial equations.
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Spatial coarse-graining

Breakdown of timescale separation

The coupled linearized velocity-concentration system in one
dimension:

vt = νvxx + αc +
√

2νWx

ct = χcxx − hv ,

where h = c̄x = const. is the imposed background concentration
gradient and α > 0.
The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k, consistent with
experimental measurements of giant fluctuations.
But the time-evolution operator exp (Lt), where

L =

[
−νk2 α
−h −χk2

]
,

shows two decay rates that are not separated at small
wavenumbers k for realistic values of ν and χ even though ν � χ!
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Spatial coarse-graining

Where does overdamped apply?

Figure: The overdamped limit is only good for wavenumbers above 50cm−1. At
even larger scales fluid inertia cannot be neglected when there is gravity
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Spatial coarse-graining

(Infinitely) Manyscale dynamics

The deceptively simple fluctuating hydrodynamics equations
describing diffusion in liquids proved to be a grand challenge in
multiscale modeling: manyscale multiphysics dynamics.

Firstly, there several broad ranges of time scales which are often
well-separated from each other for different physical processes.

Secondly, different physics arises at different length scales (and thus
time scales):

1 At microscopic scales ∼ σ nonlinear overdamped dynamics.
2 At mesoscopic scales Lg � δ � σ linearized overdamped dynamics.

Note this includes information from the microscopic scales (effective
diffusion).

3 At macroscopic scales l ∼ Lg linearized inertial dynamics.
4 At human scales nonlinear deterministic dynamics is needed to

describe various fluid instabilities (convection, turbulence).
Fluctuations probably affect the dynamics near instabilities, critical
points, etc.
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Spatial coarse-graining

Manyscale asymptotics

It is interesting to note that all of these regimes are encoded in the
(problematic) system of SPDEs,

ρ (∂tv + v ·∇v) + ∇π = η∇2v +
√

2ηkBT ∇ ·W − βρc g

∂tc + v ·∇c = χ0∇2c + ∇ ·
(√

2χ0cWc

)
.

Numerical methods of fluctuating hydrodynamics attempt to directly
solve these equations but cannot accomplish this over the required
range of space and time scales.

(Stochastic) Asymptotic multiscale analysis is required to obtain
effective dynamics in different regimes.

Can a single numerical method do everything? If not...

How do we patch different regimes when there is a continuous
transition between them?
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Spatial coarse-graining
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