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We study the contribution of advection by thermal velocity fluctuations to the effective

diffusion coefficient in a mixture of two identical fluids. The steady-state diffusive flux in

a finite system subject to a concentration gradient is enhanced because of long-range cor-

relations between concentration fluctuations and fluctuations of the velocity parallel to the

concentration gradient. The enhancement of the diffusive transport depends on the system

size L and grows as ln(L/L0) in quasi-two dimensional systems, while in three dimensions

it grows as L−1
0 − L−1, where L0 is a reference length. The predictions of a simple fluctu-

ating hydrodynamics theory, closely related to second-order mode-mode coupling analysis,

are compared to results from particle simulations and a finite-volume solver and excellent

agreement is observed. We elucidate the direct connection to the long-time tail of the ve-

locity autocorrelation function in finite systems, as well as finite-size corrections employed

in molecular dynamics calculations. Our results conclusively demonstrate that the nonlinear

advective terms need to be retained in the equations of fluctuating hydrodynamics when

modeling transport in small-scale finite systems.

I. INTRODUCTION

Thermal fluctuations in non-equilibrium systems in which a constant (temperature, concentra-

tion, velocity) gradient is imposed externally exhibit remarkable behavior compared to equilibrium

systems. Most notably, external gradients can lead to enhancement of thermal fluctuations and

to long-range correlations between fluctuations [1–5]. This phenomenon can be illustrated by con-

sidering concentration fluctuations in an isothermal mixture of two miscible fluids, subjected to

a macroscopic concentration gradient ∇c. The solution of the linearized equations of fluctuating
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hydrodynamics shows that concentration and density fluctuations exhibit long-range correlations,

leading to a power-law divergence of the static structure factors for small wavenumbers k. When

the species have different molecular masses and gravity g is present, the analysis predicts that

fluctuations at wavenumbers below kg ∼ (g ·∇c)1/4 are suppressed [6–11], where c is the mass con-

centration of the heavier species. Similar conclusions hold for fluctuations in a single-component

fluid subject to a stabilizing temperature gradient [12].

It is important to emphasize that this enhancement of large-scale (small wavenumber) concen-

tration fluctuations occurs because of the non-equilibrium setting, and not because of the concen-

tration gradient itself. Specifically, the enhancement is related to the dissipative flux through the

system [13], which is zero at thermodynamic equilibrium. The top left panel of Fig. 1 shows a

snapshot of the concentration field for a two-dimensional system in thermodynamic equilibrium in

which there is a concentration gradient because of the sedimentation of the heavier species due

to gravity, but no enhancement of the fluctuations. By comparison, the top right panel of the

figure shows a non-equilibrium system with similar parameters but with an externally-imposed

concentration gradient (via the top and bottom wall boundary conditions) and no gravity, reveal-

ing much-enhanced fluctuations (noise) and large-scale features (clumping). If gravity is included

in addition to the external gradient, the total diffusive flux is reduced and large-scale fluctuations

(wavenumber k . kg) are suppressed, as shown in the bottom left panel of Fig. 1. In fact, if

the same gravity as in the equilibrium case is imposed in addition to the external gradient, the

total diffusive flux is essentially zero and the system is close to equilibrium again, giving no visible

enhancement of the concentration fluctuations over the equilibrium case, as shown in the bottom

right panel of Fig. 1. These illustrative numerical results were obtained using a finite-volume solver

for compressible fluctuating hydrodynamics [14].

The enhancement of concentration fluctuations is even more dramatic if the concentration gra-

dient is at an interface, as in the study of the early stages of diffusive mixing between initially

separated fluid components. As illustrated in Fig. 2, the interface between the fluids, instead of

remaining flat, develops large-scale roughness that reaches a pronounced maximum until gravity

or boundary effects intervene. These giant fluctuations [7, 12, 15] during free diffusive mixing

have been observed using light scattering and shadowgraphy techniques [6, 8–11], finding good

but imperfect agreement between the predictions of a simplified fluctuating hydrodynamic theory

and experiments. In the absence of gravity, the density mismatch between the two fluids does not

change the qualitative nature of the non-equilibrium fluctuations, and in this work we focus on the

case of two dynamically-identical fluids.
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Figure 1: Snapshot of the local concentration for a mixture of two ideal gases in a quasi-two-dimensional

system, as obtained from a long run of a compressible finite-volume solver which includes thermal fluctuations

[14], with constant-temperature walls placed at the top and bottom boundary. The particles of species 1 (red

end of the color scale) are four times heavier than particles of species 2 (blue end of the color scale), and all

systems are in mechanical equilibrium (i.e., the gravity force is balanced by the pressure gradient). (Top left

panel) A system at equilibrium, in the presence of gravity g0, with the heavier particles sedimenting toward

the bottom according to the equilibrium Gibbs-Boltzmann distribution. (Top right panel) No gravity but

a similar non-equilibrium concentration profile as in the top left panel is imposed via Dirichlet boundary

conditions at the top and bottom walls, showing giant concentration fluctuations. (Bottom left panel) The

same boundary conditions for the concentration are imposed as in the top right panel, but with gravity

g = 0.1 g0, showing a suppression of the large-scale giant fluctuations. (Bottom right panel) The same

boundary conditions for the concentration are imposed as in the top right panel, but with the same gravity

g = g0 as in the top left panel, showing no enhancement of the fluctuations.

The giant fluctuation phenomenon arises because of the appearance of long-range correlations

between concentration and velocity fluctuations in the presence of a concentration gradient. Based

on nonlinear fluctuating hydrodynamic theory, it has been predicted that these correlations give rise

to fluctuation-renormalized transport coefficients at larger scales [16–18]. However, the predicted

contribution from fluctuations to transport at mesoscopic and macroscopic scales has only recently

been computationally observed and reported by the authors [19]. This paper presents a detailed

exposition of both the theoretical prediction for the enhancement of diffusion and the numerical

simulations verifying these predictions. In particular, it is important to understand how the effective
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Figure 2: The rough diffusive interface between two miscible fluids at three points in time (top to bottom),

starting from an initially perfectly flat interface (phase separated system), without gravity. Compare to the

top right panel in Fig. 1.

transport coefficients depend on the length scale of observation. This length scale may be related

to the length ∆x of the finite-volume cells used in a fluctuating hydrodynamic solver, or it may be

related to the physical dimensions of a finite system such as a nano-channel transporting liquid or

a nano-wire transporting heat.

We consider diffusion in a mixture of dynamically identical but labeled (as components 1 and

2) fluids [20] enclosed in a box of lengths Lx × Ly × Lz, in the absence of gravity. Periodic

boundary conditions are applied in the x (horizontal) and z (depth) directions, and impermeable

constant-temperature walls are placed at the top and bottom boundaries. A concentration gradient

∇c̄ = (cT − cB)/Ly is imposed along the y axes by enforcing a constant mass concentration cT at

the top wall and cB at the bottom wall. Because the fluids are identical, concentration does not

affect the fluid properties, and the dynamics of the density, temperature and velocity fluctuations

remains as in thermodynamic equilibrium. In this sense, concentration is passively transported by

thermal fluctuations, analogous to diffusion of a passive tracer in a turbulent velocity field [21, 22].

Note that for large Ly the mass flux will be proportional to the self-diffusion coefficient of a tagged

particle, independent of the magnitude of the gradient [20].

Since species are not changed in particle collisions, the diffusive transport of particle label

(concentration) can only occur via advective motion of the particles between collisions. Kinetic

theory shows that at steady state the particles of a given species (denoted either with a subscript

or with a parenthesis superscript) have a non-zero macroscopic momentum density j̄1 = ρ̄1v̄1 =

−j̄2 = −ρ̄2v̄2, where ρ denotes density and v velocity. If the labeling of the species is ignored, the
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system is at equilibrium and the overall center-of-mass velocity vanishes, v̄ = c̄v̄1 + (1− c̄) v̄2 = 0.

More detailed kinetic theory [23, 24] shows that the inter-species velocity v̄12 = v̄1 − v̄2 quickly

relaxes to its equilibrium value,

v̄12 = − χ (∇c̄)

c̄ (1− c̄)
, (1)

giving the Fickian diffusive flux for the mass concentration c = ρ1/ρ [23],

j̄1 = ρ̄1v̄1 = ρ1v̄ − ρ̄χ (∇c̄) = −ρ̄χ (∇c̄) ,

where χ is the mass diffusion coefficient. The local fluctuations around the macroscopic mean,

ρ1 = ρ̄1 +δρ1 and v1 = v̄1 +δv1, can also make a non-trivial contribution to the average mass flux,

〈j1〉 = 〈ρ1v1〉 = −ρ̄χ (∇c̄) + 〈(δρ1) (δv1)〉 , (2)

if they are correlated, which in fact they are in the presence of a concentration gradient.

The fluctuating hydrodynamics formalism [5, 25] is the most direct way to calculate steady-state

correlations between hydrodynamic variables, especially if a spatial Fourier transform is used to

separate different wavenumbers. Converting the correlations from Fourier to real space requires

integrating over all wavenumbers, which gives qualitatively different results in two and in three

dimensions, as detailed in Section II. In two dimensions the average mass flux, or effective diffu-

sion coefficient, is found to grow logarithmically with system size, while in three dimensions an

asymptotic “macroscopic” value is reached for sufficiently large systems.

As seen from (2), the correlation that is needed is that between the density and velocity of a

given species, δρ1 and δv1. However, in the standard “single-fluid” hydrodynamic description of

mixtures, unlike the little-understood “two-fluid” models [23, 24], the individual species velocity v1

(or equivalently, v12) is not maintained as an independent variable and instead only the center-of-

mass velocity v appears [5]. In Section III we report results from simulations based on the Direct

Simulation Monte Carlo (DSMC) particle method [26, 27], in which we calculate the spectral

correlations between δρ1 and δv1 and also the mass flux. The results presented in Section III A

indicate that the correlation between δρ1 and δv1 is well-approximated by the prediction of the

incompressible single-fluid theory presented in Section II. The effective diffusion coefficient is found

to increase with system size in accordance with the theory as well, as detailed in Section III B. For

systems with aspect ratio close to unity the use of the periodic (Fourier-based) theory is not

appropriate and the proper boundary conditions ought to be taken into account, as we do by using

a recently-developed compressible finite-volume solver [14] in Section III B 1. Very good agreement
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is observed between the finite-volume simulations and the particle results over a broad range

of system sizes, once the local diffusion coefficient that appears in the equations of fluctuating

hydrodynamics is adjusted to match particle data for a chosen reference system. This locally-

renormalized diffusion coefficient is also measured in the particle simulations and found to match

the theoretical predictions reasonably well, as discussed in Sec. III B 2.

The present paper builds on an extensive prior literature on the renormalization of the diffusion

coefficient by hydrodynamic fluctuations and interactions. In Section IV we discuss connections

to prior work in more detail, and find that several different theoretical approaches produce the

same results as the very simple, intuitive, yet extensible fluctuating hydrodynamic theory. In

particular, we compare to previous mode-mode coupling theories of the long-time tails in the

velocity autocorrelation function, as well as to theories of finite-size effects on diffusion in periodic

systems. Furthermore, in Section IV A we re-examine existing data from hard-disk molecular

dynamics simulations to find that the simple theory describes the system size dependence of the

long-time diffusion coefficient of hard disks as well, confirming that the phenomenon we study is a

generic property of particle fluids and not an artifact of DSMC. For large system sizes, however,

we find that a more sophisticated self-consistent theory is necessary, and make some preliminary

attempts at an explicit self-consistent calculation in both two and three dimensions, before offering

concluding remarks and discussing future research directions.

II. FLUCTUATING HYDRODYNAMICS

At mesoscopic scales the hydrodynamic behavior of fluids can be described with continuum

stochastic PDEs of the Langevin type [28, 29]. Thermal fluctuations enter as random forcing terms

in the Landau-Lifshitz Navier-Stokes (LLNS) equations of fluctuating hydrodynamics [25, 30]. For

a mixture of two identical fluids, neglecting viscous heating, the compressible LLNS equations are

[5, 31]

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ)

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] , (3)

where Dt� = ∂t�+ v ·∇ (�) is the advective derivative, ∇v = (∇v + ∇vT )− 2 (∇ · v) I/3, and

the pressure is P = ρ (kBT/m) = ρc2
T , where cT is the isothermal speed of sound. The viscosity
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η, thermal conductivity κ, and the mass diffusion coefficient χ may in general depend on the

state. The capital Greek letters denote stochastic fluxes that are modeled as white-noise random

Gaussian tensor and vector fields, with amplitudes determined from the fluctuation-dissipation

balance principle [32],

Σ =
√

2ηkBT W , Ψ =
√

2mχρ c(1− c)W̃ , and Ξ = T
√

2κkB W̆ (4)

where m is the fluid particle mass, and W , W̃ and W̆ are white-noise random Gaussian tensor

and vector fields with covariance〈
Wij(r, t)Wkl(r

′, t′)
〉

= (δikδjl + δilδjk − 2δijδkl/3) δ(t− t′)δ(r − r′),〈
W̃i(r, t)W̃j(r

′, t′)
〉

=
〈
W̆i(r, t)W̆j(r

′, t′)
〉

= (δij) δ(t− t′)δ(r − r′).

The same covariance expressions apply in the Fourier domain as well if position r is replaced by

wavevector k, and 〈WαWβ〉 is replaced by
〈
WαW?

β

〉
, where star denotes complex conjugate (more

generally, we denote an adjoint of a matrix or linear operator by star).

In addition to the usual Fickian contribution, the flux in the equation (3) for c = c̄+δc includes

advection by the fluctuating velocities, v = v̄ + δv = δv. Ignoring density fluctuations,

∂t (δc) + (δv) · (∇c̄) = ∇ · [χ∇ (δc)− (δc) (δv)] + ρ−1 (∇ ·Ψ) . (5)

Interpreting the non-linear stochastic partial differential equation (SPDE) (5) requires some form

of regularization (smoothing) of the stochastic forcing, usually approached using a perturbative

approach [16–18, 33]. To leading order, we can approximate the advective contribution to the aver-

age diffusive mass flux, using the solution of the linearized equations of fluctuating hydrodynamics,

which can be given a precise meaning [34]. Specifically, we anticipate a relation of the form

−〈(δc) (δv)〉 ≈ − 〈(δc) (δv)〉linear = (∆χ)∇c̄,

leading to an effective diffusion coefficient χeff = χ + ∆χ that includes an enhancement ∆χ due

to thermal velocity fluctuations, in addition to the bare diffusion coefficient χ. In Appendix A we

give some simple estimates of the relative magnitude of ∆χ in relation to χ, demonstrating that

the enhancement due to velocity fluctuations is expected to be much larger for dense liquids than

for dilute gases.

A. Fluctuation-Enhanced Diffusion Coefficient

In order to analyze the stationary solution to the linearized equations of fluctuating hydro-

dynamics, we will apply a Fourier transform in all directions as done in Ref. [18], even though
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the direction of the gradient is not periodic. One can justify this approximation by considering a

periodic background concentration field, maintained at steady state via some external potential,

and then calculate the mass flux in the vicinity of the plane y = Ly/2 as a function of the local

concentration gradient in the limit of infinite period Ly [5].

To simplify the analysis, we can neglect density and temperature variations, ρ = ρ0 and T = T0,

to obtain the isothermal incompressible approximation,

∂tv =P
[
−v ·∇v + ν∇2v + ρ−1 (∇ ·Σ)

]
(6)

∂tc =− v ·∇c+ χ∇2c+ ρ−1 (∇ ·Ψ) . (7)

where ν = η/ρ, and v · ∇c = ∇ · (cv) and v · ∇v = ∇ ·
(
vvT

)
because of incompressibility,

∇ · v = 0. Here P is the orthogonal projection onto the space of divergence-free velocity fields,

P̂ = I − k−2(kk?) in Fourier space (denoted with a hat).

The linearized form of (6,7) in the Fourier domain is a collection of stochastic differential equa-

tions, one system of linear additive-noise equations per wavenumber, of the form

d

 δ̂v
δ̂c

 = −

 ν k2P̂ 0

gc χk2

 δ̂v
δ̂c

 dt+

 2ρ−1νkBT k
2P̂ 0

0 2ρ−1χmc(1− c) k2

1/2

dB, (8)

where B is a collection of independent Wiener processes. At steady state the correlations between

the Gaussian fluctuations are described by the matrix of static structure factors (covariance matrix)

S =

 〈(δ̂v)(δ̂v)?
〉 〈

(δ̂v)(δ̂c)?
〉

〈
(δ̂c)(δ̂v)?

〉 〈
(δ̂c)(δ̂c)?

〉
 .

The static structure factor matrix consists of a short-ranged equilibrium contribution and a long-

range non-equilibrium contribution,

S =

 ρ−1kBT P̂ 0

0 mρ−1 c(1− c)

+∇c̄

 0 ∆S?
c,v

∆Sc,v (∆Sc,c)∇c̄

 .
The explicit form of S can be obtained as the solution of a linear system derived from (8) using

the stationarity condition dS = 0 [14]. The concentration fluctuations are enhanced as the square

of the applied gradient [18],〈
(δ̂c)(δ̂c)?

〉
neq

= (∆Sc,c) (∇c̄)2 =
kBT

ρχ(ν + χ)k4

(
sin2 θ

)
(∇c̄)2 , (9)

while the correlation between the concentration fluctuations and the fluctuations of velocity parallel

to the concentration gradient are linear in the applied gradient [18],〈
(δ̂c)(δ̂v

?

‖)
〉

= Sc,v‖ =
(

∆Sc,v‖
)
∇c̄ = − kBT

ρ(ν + χ)k2

(
sin2 θ

)
∇c̄. (10)
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where θ is the angle between k and ∇c̄, sin2 θ = k2
⊥/k

2. The power-law divergence for small

k indicates long ranged correlations between δc and δv and is the cause of both the giant fluc-

tuation phenomenon and the diffusion enhancement. As seen from (2), the actual correlation

that determines the diffusion enhancement is S
ρ1,v

(1)
‖

=

〈
(δ̂c)(δ̂v

(1)

‖ )?
〉

, which is approximated as

S
ρ1,v

(1)
‖
≈ ρ̄Sc,v‖ in (6,7); this approximation is discussed and justified in Section III A.

The mass flux due to advection by the fluctuating velocities can be approximated as

〈δc (r, t) δv (r, t)〉 = (2π)−6
∫
dk dk′

〈
δ̂c (k, t) δ̂v

? (
k′, t

)〉
ei(k−k

′)·r = (2π)−3
∫
k
Sc,v (k) dk,

(11)

which together with (10) gives an estimate of the diffusion enhancement [18],

∆χ = − (2π)−3
∫
k

∆Sc,v‖ (k) dk =
kBT

(2π)3ρ (χ+ ν)

∫
k

(
sin2 θ

)
k−2 dk. (12)

Because of the k−2-like behavior, the integral over all k above diverges unless one imposes a lower

bound, kmin ∼ 2π/L in the absence of gravity, and a phenomenological cutoff kmax ∼ π/Lmol [18]

for the upper bound, where Lmol is an ad-hoc“molecular” length scale. Importantly, the fluctuation

enhancement ∆χ depends on the system size L because of the small wavenumber cutoff.

1. Two Dimensions

For a quasi two-dimensional system, Lz � Lx � Ly, we can replace the integral over kz with

2π/Lz and integrate over all ky. This leads to an average total mass flux that grows logarithmically

with the system width Lx for a fixed height Ly,

∆χ (Lx) ≈ kBT

(2π)2ρ (χ+ ν)Lz

∫ |kx|≤π/Lmol

|kx|≥2π/Lx

k2
x(

k2
x + k2

y

)2 dkydkx =
kBT

4πρ(χ+ ν)Lz
ln

Lx
2Lmol

. (13)

When the system width (perpendicular to the gradient) becomes comparable to the height (parallel

to the gradient), boundaries will intervene and for Lx � Ly the effective diffusion coefficient

must become a constant, which is predicted to be a logarithmically-growing function of Ly in two

dimensions.

It is important to emphasize here that the chosen value of Lmol is arbitrary. The hydrodynamic

theory models the effective diffusion coefficient as the sum of the “bare” diffusion coefficient χ

and the “enhancement” ∆χ, but the two cannot be separated because every measurement must

be performed for some finite Lx. One can thus simply define χ to be the value of the measured

diffusion coefficient for some reference width L0 > 2Lmol, and predict that for Lx ≥ L0,

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln
Lx
L0
. (14)
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For this prediction to be accurate, however, L0 ought to be chosen to not be too large, so that

the enhancement of the diffusion relative to the ”molecular” contributions is small and simple

quasi-linearized theory applies, but also not too small so that fluctuating hydrodynamics applies.

Because we are explicitly concerned with the effect of a finite width Lx, the integral over kx

should be replaced by a discrete sum over the wavenumbers consistent with periodicity, kx =

κx · 2π/Lx, where κx ∈ Z. If one calculates the difference between a system of width 2Lx and a

system of width Lx, then it is easily seen that the integral over kx in Eq. (13) ought to be replaced

with the following sum over κx,

(2π)−1

[∫
|kx|≥π/Lx

f(kx) dkx −
∫
|kx|≥2π/Lx

f(kx) dkx

]
←→ L−1

x

∑
κx 6=0

[f (2κx − 1)− f (2κx)] .

Even though f (κx) ∼ k−1
x in (13) is not integrable, the difference in the square bracket above

goes like κ−2
x and the sum can be done explicitly, giving exactly the same answer as the integral

estimate,

χ
(2D)
eff (2Lx)− χ(2D)

eff (Lx) =
kBT

4πρ(χ+ ν)Lz
ln 2.

2. Three Dimensions

Now we consider a system where Lx = Lz = L � Ly, and study how the effective diffusion

coefficient changes with L. In three dimensions, the relative contribution from large wavenumbers,

i.e., small scales, is larger than in two dimensions. We can use the integral approximation to

examine the asymptotic behavior for large L,

∆χ ≈ kBT

(2π)3ρ (χ+ ν)

∫ |kx/z|≤π/Lmol

|kx/z|≥2π/L

k2
x + k2

z(
k2
x + k2

y + k2
z

)2 dkydkxdkz =
ln
(
1 +
√

2
)
kBT

πρ(χ+ ν)

(
1

2Lmol
− 1

L

)
.

We see that in three dimensions χeff converges as L→∞ to the macroscopic diffusion coefficient,

but for a finite system the effective diffusion coefficient is reduced by an amount ∼ L−1 due to the

truncation of the velocity fluctuations by the confining walls,

χ
(3D)
eff ≈ χ+

αkBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
. (15)

Calculating the exact value of α requires performing a sum over κx and κz instead of integrals over

kx and kz, as we have done numerically. The numerical results suggest that, as in two dimensions,

the difference in χ
(3D)
eff between two systems attains a finite value as Lmol → 0, justifying (15) for

(L0, L)� Lmol.
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III. PARTICLE SIMULATIONS

This sections verifies the predictions of fluctuating hydrodynamics by particle simulations. Here

we employ the Direct Simulation Monte Carlo (DSMC) particle algorithm [26, 27], in which de-

terministic interactions between the particles are replaced with stochastic collisions exchanging

momentum and energy between nearby particles. The collision rules ensure local energy and mo-

mentum conservation and a thermodynamically-consistent fluctuation spectrum [35, 36]. Previous

careful measurements of transport coefficients in DSMC using nonequilibrium methods have been

limited to quasi one-dimensional simulations, in which there is only one collision cell along the

dimensions perpendicular to the gradient [37]. The effect we are exploring here does not appear in

one dimension as it arises because of the presence of vortical modes in the fluctuating velocities.

We have performed DSMC calculations for an ideal hard-sphere gas with molecular diameter

σ = 1 and molecular mass m = 1, at an equilibrium density of ρ0 = 0.06, with the temperature

kept at kBT0 = T0 = 1 via thermal collisions with the top and bottom walls. A uniform concen-

tration gradient along the vertical (y) direction is implemented by randomly selecting the species

of particles to be one with probability cT/B when they collide with the top/bottom wall. Each

DSMC particle represents a single hard sphere so the mean free path is λ = 3.75 and the mean

free collision time is τ = 2.35. The DSMC time step was chosen to be ∆t = τ/2, and the collision

cell size is either ∆xc = λ or ∆xc = 2λ.

The DSMC algorithm simulates a dilute gas, for which the enhancement of diffusion is weaker

than for dense fluids (see Appendix A). Nevertheless, the computational efficiency of DSMC makes

it preferable to molecular dynamics for this study. The DSMC method employed here uses a grid

of collision cells, thus introducing discretization artifacts into the particle dynamics. While it is

possible to eliminate these grid effects entirely [36, 38], the associated increase in computational

cost and the difficulty of parallelization would make some of the large-scale particle simulations

presented here infeasible. Furthermore, decreasing the density in order to increase the mean free

path and reduce the grid effects would make the relative size of the effect we are trying to observe

too small compared to statistical errors. We have verified that quantitatively identical results

are obtained for two different choices of DSMC collision cells, ∆xc = λ or ∆xc = 2λ, once the

discretization correction to Chapman-Enskog kinetic theory for the transport coefficients is taken

into account [39–41].

In addition to the DSMC collision cells, which determine the microscopic dynamics of our

particle simulations, obtaining hydrodynamic quantities such as velocity requires using a grid of
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Nx × Ny × Nz sampling or hydrodynamic cells, each of volume ∆V = |∆V| = ∆x∆y∆z. The

sampling of hydrodynamic quantities is performed every 5 DSMC time steps, at a snapshot time

that is randomly chosen. Sampling at random time intervals ensures that there is no measurement

bias due to the lack of time invariance in the particle dynamics, and gives similar results as sampling

at the mid point of each time step [37]. At each snapshot, we obtain the instantaneous mass m∆V =

(∆V ) ρ∆V and momentum p∆V = (∆V ) j∆V in each sampling cells by adding the contributions

from all particles inside the given sampling cell. We can do this sampling taking into account

either all of the particles, ρ∆V and j∆V , or just particles of the first species, which we indicate by

a species subscript or parenthesis superscript, ρ
(1)
∆V and j

(1)
∆V . For each sampling cell, we obtain an

instantaneous velocity v∆V = j∆V/ρ∆V (similarly for v
(1)
∆V) and mass concentration c = ρ

(1)
∆V/ρ∆V .

We obtain discrete static structure factors (spectral correlations) from time averages of products

of discrete Fourier transforms (DFTs) of the instantaneous variables. For comparison between the

particle simulations and the theory we use a reference length L0 = 16λ.

A. Static Structure Factor

In order to compare the prediction (10) to results from particle simulations, we need to convert

the continuum static structure factor Sc,v‖(k) into a discrete structure factor Sc,v‖(κ) for finite-

volume averages of the continuum fields. Here the set of Nx×Ny×Nz wavenumbers κ ∈ Z3 indexes

the discrete set of wavevectors compatible with periodicity, k (κ) = 2π
(
κxL

−1
x , κyL

−1
y , κzL

−1
z

)
. A

relatively straightforward calculation shows that

Sc,v‖(κ) =
∑
κ′

F∆V
[
k
(
κ′
)]
Sc,v‖

[
k
(
κ′
)]
, (16)

where the sum goes over all resonance modes, κ′ = (κx +Nx∆κx, κy +Ny∆κy, κz +Nz∆κz) for

all ∆κ ∈ Z3, and F∆V(k) = Fx (kx)Fy (ky)Fz (kz) is a product of low-pass filters of the form

Fx(kx) = sinc2 (kx∆x/2) , (17)

where sinc(x) = sin(x)/x. The sum in (16) can easily be evaluated numerically because the terms

decay rapidly [c.f. (10)].

In Fig. 3 we compare the theoretical prediction for ρ̄Sc,v‖(κ) to results from particle simulations

for the discrete structure factor

S
ρ1,v

(1)
‖

(κ) =

〈(
δ̂ρ1

)(
δ̂v

(1)

‖

)?〉
,



13

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

λ ky/(2π)

S
ρ
1
,v

1

 

 

λ kx/(2π) = 0.031
λ kx/(2π) = 0.094
λ kx/(2π) = 0.16
λ kx/(2π) = 0.22

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

λ ky/(2π)

S
ρ
1
,v

1

 

 

λ kx/(2π) = 0.031
λ kx/(2π) = 0.094
λ kx/(2π) = 0.16
λ kx/(2π) = 0.22

Figure 3: (Top) Discrete structure factor S
ρ1,v

(1)

‖
from quasi two-dimensional DSMC runs with Lx = 64λ,

Ly = 512λ and Lz = 2λ, for several wavenumbers kx = κx ·2π/Lx (circles κx = 2, squares κx = 6, diamonds

κx = 10, triangles κx = 14), compared to ρ̄Sc,v‖ (solid lines of the same color) as predicted by the linearized

periodic theory (10,16). The sides of the DSMC collision cells are ∆xc = ∆yc = 2λ = 7.5. Note that for a

fixed kx we expect the structure factor to decay as k−4
y . (Bottom) All the parameters, including the system

and sampling cell size, are as for the system in the top panel, but now the DSMC cells are twice smaller,

∆xc = ∆yc = λ = 3.75. Note that this change of the DSMC cell size changes the kinetic theory prediction

for viscosity by more than 20% [39].
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for two different sizes of the DSMC collision cells. The fact that there is little difference between

the two panels in the figure verifies that the details of the microscopic collision dynamics do not

affect the mesoscopic hydrodynamic behavior. In Fig. 4 we plot the discrete structure factor from

the particle simulations for wavevectors perpendicular to the gradient (i.e., ky = 0), for systems of

different width Lx.
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Theory

Figure 4: Discrete structure factor S
ρ1,v

(1)

‖
from quasi two-dimensional DSMC runs with Ly = 512λ and

Lz = ∆xc = ∆yc = 2λ, for wavevectors perpendicular to the gradient (ky = 0). Results for systems of

different width Lx are shown with symbols (see legend). For comparison, the theoretical prediction for

ρ̄Sc,v‖ for an infinite periodic system (10,16) is shown with a line. Deviations from the predicted k−2
x

power-law divergence are clear for kx . 2π/Ly ≈ 3 · 10−3 due to the influence of the top and bottom walls.

It is expected that compressibility effects would affect S
ρ1,v

(1)
‖

. Indeed, this is what we observe

in simulations, however, as Fig. 3 demonstrates, the incompressible isothermal theory for ρ̄Sc,v‖

is in very good agreement with particle data for S
ρ1,v

(1)
‖

. Good agreement between the simulation

data and the simple theory is also seen in Fig. 4, except for kx comparable to 2π/Ly. As expected,

for the smallest wavenumbers the top and bottom walls intervene and the actual correlation is

smaller than the predicted k−2
x divergence.

In order to construct a theoretical prediction for S
ρ1,v

(1)
‖

, one must not only include the effects

of compressibility but also replace the “one-fluid” approximation (3) with a corresponding “two-

fluid” compressible hydrodynamic theory [23, 24]. This can be seen by noting that the fluctuating

equations (3) assume that relation (1) applies to the fluctuating v12 and c instead of their means.

Such an assumption leads to unphysical bias of order
〈

(δc)2
〉

in the mean inter-species velocity



15

〈v12〉 because of the nonlinearity in the denominator c(1 − c). In fact, the fluctuations δv12

and δc should be uncorrelated, as seen from a two-fluid fluctuating theory. Here we use the

incompressible isothermal approximation for ρ̄Sc,v‖ as a proxy for S
ρ1,v

(1)
‖

in order to construct

theoretical predictions for the diffusion enhancement.

B. Fluctuation-Enhanced Diffusion Coefficient

As we already explained, instantaneous hydrodynamic quantities, denoted with a subscript

∆V, are sampled from the particle data by taking snapshots of the particle state using a grid of

sampling cells of volume ∆V . The ensemble average of a given quantity, which we will denote with

angle brackets, is obtained by averaging over many snapshots once a steady state is reached, and

additional averaging can be performed over all sampling cells with the same y position since the

steady state averages cannot depend on x and z. We estimate the macroscopic mean mass density

ρ̄, partial density ρ̄1, partial momentum density j̄1, partial velocity v̄1 and concentration c̄ as

ρ̄ = ρ0 = 〈ρ∆V〉 , ρ̄1 =
〈
ρ

(1)
∆V

〉
= c̄ρ̄ and j̄1 = j

(1)
0 =

〈
j

(1)
∆V

〉
= ρ̄1v̄1.

We also define the mesoscopic velocity and concentrations to be the ensemble averages of the

instantaneous values,

v
(1)
0 =

〈
v

(1)
∆V

〉
and c0 = 〈c∆V〉 ,

where the subscript zero will be used to simplify the cumbersome notation. It is important to point

out that for non-conserved quantities such as v and c the mesoscopic mean can be different from

the macroscopic mean due to fluctuations [42, 43], v̄1 6= v
(1)
0 and c̄ 6= c0. For conserved quantities

(e.g., j̄1 and j
(1)
0 ), however, the mesoscopic and macroscopic ensemble means are equal and in fact

independent of ∆x and ∆z (but not necessarily ∆y).

In particle simulations, we calculate the effective diffusion coefficient χeff from the momentum

density of one of the species along the vertical direction,

j̄
(1)
‖ = ρ0χeff

c̄T − c̄B
Ly −∆y

≈ ρ0χeff∇c̄, (18)

where we measure c̄T and c̄B in the top and bottom layer of sampling cells (whose centers are a

distance Ly−∆y from each other) to empirically account for the small concentration slip in DSMC

(about 0.5% with these parameters). Numerical experiments have verified that j̄
(1)
‖ matches the flux

obtained from counting the average number of color flips at the top or bottom walls. Furthermore,
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the results verify that χeff is essentially independent of the magnitude of the concentration gradient,

and that the change in the effective gradient ∇c̄ as Lx or Lz is changed, keeping Ly fixed, is much

smaller than the change in χeff.

The traditional definition of a “renormalized” diffusion coefficient [16, 17] as the macroscopic

limit of χeff, only works in three dimensions and is not very useful for confined systems. Instead,

for each sampling cell, we define a locally renormalized diffusion coefficient χ0 via

ρ
(1)
0 v

(1)
0 =

〈
ρ

(1)
∆V

〉〈
v

(1)
∆V

〉
= ρ̄χ0 (∇c̄) , (19)

where we have accounted for the fact that the macroscopic concentration gradient dc̄/dy may

depend on y. In fact, such a dependence is observed in the particle simulations, and we have

approximated the local concentration gradient dc̄/dy by a numerical derivative of a polynomial

fit of degree five to c̄(y). Figure 5 shows that the empirical χ0 is independent of y, except for a

boundary layer close to the top and bottom walls. This is an important finding, since (19) is a

constitutive model that is assumed to hold not just at the macroscale but also at the mesoscale,

notably, χ0 is an input parameter for fluctuating hydrodynamics finite-volume solvers [14].
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Figure 5: The renormalized diffusion coefficient χ0, as defined by Eq. (19), as a function of the y position

of the sampling cell for DSMC systems with several system widths Lx. The estimate of χ0 shown in Fig. 6

is simply the average over all sampling cells further than 10∆y away from the top and bottom walls.

Figure 6a shows how the effective χeff and renormalized χ0 diffusion coefficients change as the

width of the system Lx is increased while keeping the height Ly fixed for two different quasi two-
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dimensional DSMC systems. For System A, the DSMC collision cells are cubes of side ∆xc = 7.5 =

2λ, while each sampling cell contains 2×2×1 collision cells, or Np = 101 particles on average. The

height of the box is Ly = 256λ = 960 and the imposed concentrations at the walls are cB = 0.25

and cT = 0.75. For System B, the DSMC parameters and cT/B are the same as for to System A,

but the sampling cells are twice as large, 4 × 4 × 1 collision cells each, and the system height is

twice as large, Ly = 512λ = 1920. We obtain similar results using twice smaller collision cells (not

shown). For the quasi two-dimensional systems, the thickness is Lz = 7.5 = 2λ and there is only

one DSMC collision cell along the z direction. Figure 6a shows that χeff grows like lnLx, with

a slope that is well-predicted by Eq. (14). For widths larger than about 8 mean free paths, χ0

becomes constant and rather similar to the kinetic theory prediction. It is important to point out

that χ0 is not a fundamental material constant and in fact depends on the shape of the sampling

cells (see Section III B 2).

In Fig. 6b we show results from three dimensional DSMC simulations, in which the system

width (x) and depth (z) directions are equivalent, Lz = Lx = L, and the rest of the parameters

are the same as for System A. Similar behavior is seen as in two dimensions, except that now

the effective diffusion grows as −L−1 and saturates to a constant value for large L, assuming that

Ly � L.

1. Corrections due to finite height

The predictions of the simplified fluctuating hydrodynamic theory, Eqs. (14) and (15), are shown

in Fig. 6 and seen to be in very good agreement with the particle simulations for intermediate

Lx. However, the particle data shown in Fig. 6a shows measurable deviations from the simple

theory for Lx & Ly/2. To understand the discrepancy, recall that the incompressible isothermal

theory assumed that Ly is essentially infinite and thus in two dimensions χeff grows unbounded in

the macroscopic limit. A scaling analysis suggests a modification of (14) to account for the finite

height of the system,

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz

[
ln
Lx
L0
− f(r)

]
, (20)

where r = Lx/Ly is the aspect ratio of the system, and f(r) is some function that is close to zero for

small r and grows asymptotically as ln(r). Therefore, when Lx � Ly, χeff saturates to a constant

value that grows as ln(Ly/L0).

One can extend the theoretical calculations to account for the hard wall boundary conditions
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Figure 6: (Panel a, top) The effective χeff and the renormalized χ0 diffusion coefficients as a function of the

width of the system Lx in two dimensions. Numerical results for System A (DSMC and SPDE) and System

B (DSMC) are shown with symbols (see legend). The error bars for all of the numerical data are comparable

or smaller than the size of the symbols. The theoretical predictions (23) are evaluated numerically and

shown with lines. The bare diffusion in the theory and SPDE calculations is adjusted so that for Lx = 16λ

the effective diffusion is the same as that measured in the particle simulations. (Panel b, bottom) Same as

the top panel but in three dimensions. The inset highlights the L−1 behavior.
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in the y direction [5], however, such a calculation is non trivial. Instead, we have used the finite-

volume solver developed in Ref. [14] to solve the non-linear system of SPDEs (3) for the same

system dimensions as in the particle simulations. The results, shown in Fig. 6, are in excellent

agreement with the particle simulations for the larger system sizes. Note that while our SPDE

solver includes all of the nonlinear terms in (3), we may artificially reduce the amplitude of the

noise and thus the magnitude of the fluctuations by some factor ε� 1. This reduces the effect of

the nonlinearities and effectively gives a quasi-linearized finite-volume SPDE solver. The advective

mass flux due to the velocity fluctuations can be estimated as

∆j̄
(1)
‖ (y) ≈ ε−2

〈
(δρ1)

(
δv

(1)
‖

)〉
≈ ε−2ρ̄

〈
(δc)

(
δv‖
)〉
, (21)

and may depend on y especially close to the walls or when Ly & Lx. The sum of the average

diffusive and advective mass fluxes must be independent of y,

j̄
(1)
‖ = ρ̄χeff

cT − cB
Ly

= ρ̄χ0
dc̄(y)

dy
−∆j̄

(1)
‖ (y), (22)

which implies that the macroscopic concentration profile c̄(y) is affected by the fluctuations as well

and cannot be strictly linear. From the conditions c(0) = cB and c(Ly) = cT and (22) we obtain

the relation

χeff = χ0 − [ρ̄ (cT − cB)]−1
∫ Ly

y=0

[
∆j̄

(1)
‖ (y)

]
dy,

which is how we calculate the effective diffusion coefficient from the numerical SPDE solution. We

have verified that the results are independent of ε to within statistical accuracy for ε ≤ 1/2.

The velocity-concentration correlation ∆j̄
(1)
‖ (y) obtained from the finite-volume solver is shown

in Fig. 7, along with the corresponding particle data for comparison. Excellent agreement is seen,

demonstrating that the finite-volume solution correctly accounts for the influence of the boundaries.

Note that the partial velocity v1 is not included as an independent variable in (3) and the mean

velocity v is used instead. When compressibility effects are included, v, unlike v1, is correlated

with ρ1 even in one dimension. This makes a direct comparison between the effective diffusion

coefficient in the particle and finite-volume simulations difficult. However, the dependence of χeff

on system size should be the same in both types of simulations, once the bare transport coefficient

is adjusted empirically.

2. Renormalized Diffusion Coefficient

The renormalized diffusion coefficient χ0 in the Fickian diffusive flux is an input to the SPDE

calculations and assumed constant. In our calculations we used the prediction of kinetic theory
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Figure 7: The fluctuating contribution to the mean diffusive flux,
〈

(δρ1)
(
δv

(1)
‖

)〉
, as a function of the

height of the sampling cell y, for several system widths Lx, keeping Ly = 256λ. Data from quasi-two

dimensional particle simulations (System A) is shown with symbols, and lines of the same color show data

for ρ̄
〈
(δc)

(
δv‖
)〉

obtained using a two-dimensional finite-volume solver [14] for the LLNS equations (3). The

error bars for the particle data are shown for Lx = 4λ, and are similar or smaller for the remaining systems

and for the finite-volume results.

[39, 40], also shown in Fig. 6. In finite-volume solvers, the spacing of the computational grid plays

the equivalent of the cutoff length Lmol, and therefore the effective mass flux depends on the grid

spacing. Furthermore, there are numerical grid artifacts in the SPDE solution at length and time

scales comparable to the numerical discretization parameters [14]. To correct for these errors, we

have added a constant to the effective diffusion coefficient obtained from SPDE runs to match χeff

from the particle simulations for Lx = L0 = 16λ. This correction essentially renormalizes χ0 based

on the size of the finite-volume hydrodynamic cells.

One can think of χ0 defined via (19) as the fluctuation-renormalized diffusion coefficient at length

scales determined by the shape of the sampling or observation volume ∆V. In this sense, χ0 is the

physical-space equivalent of the wavenumber-dependent diffusion coefficient χ (k, ω = 0) commonly

used in linear response theories [16, 20]. A theoretical prediction for χ0 can be obtained by starting

from linearized theory for the fluctuating fields ρ1 (r, t) = ρ̄1 + δρ1 (r, t) and v1 (r, t) = v̄1 +

δv1 (r, t). The instantaneous velocity in a given sampling cell was defined through the instantaneous
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momentum density j1 = ρ1v1 averaged over the sampling cell,〈
ρ

(1)
∆V

〉〈
v

(1)
∆V

〉
= ρ̄1

〈
v

(1)
∆V

〉
= ρ̄1

〈∫
∆V ρ1v1 dr∫

∆V ρ1 dr

〉
=
〈
ρ

(1)
∆Vv

(1)
∆V

〉
−∆jF ,

where to second order in the fluctuations,

∆jF = ∆V −2

∫
∆V

dr

∫
∆V

dr′
〈
ρ1(r, t)v1(r′, t)

〉
=∆V −2

∫
∆V

dr

∫
∆V

dr′ (2π)−6
∫
k
dk

∫
k′
dk′

〈
δ̂ρ1 (k, t) δ̂v1

? (
k′, t

)〉
ei(k·r−k

′·r′)

= (2π)−3
∫
k

[
∆V −2

∫
∆V

dr

∫
∆V

dr′ eik·(r−r
′)

]
Sρ1,v1 (k) dk

= (2π)−3
∫
k
F∆V (k) Sρ1,v1 (k) dk,

and F∆V (k) is the low pass filter that already appeared in Eq. (17). The result of this calculation

[c.f. Eq. (12)],

χeff = χ− (2π)−3
∫
k

[
ρ−1

0 ∆S
ρ1,v

(1)
‖

(k)

]
dk

χ0 = χ− (2π)−3
∫
k

[1− F∆V (k)]

[
ρ−1

0 ∆S
ρ1,v

(1)
‖

(k)

]
dk, (23)

shows that χeff includes contributions from all wavenumbers present in the system, while χ0 only

includes “sub-grid” contributions, from wavenumbers larger than 2π/∆x. The theoretical predic-

tions shown in Fig. 6 are based on numerically evaluating (23) after replacing the integrals over

kx and kz (23) with the appropriate sums, assuming Sρ1,v1 ≈ ρ̄Sc,v and using Eq. (10). The bare

diffusion coefficient χ is adjusted so that χeff matches the particle result for Lx = L0 = 16λ, and

good agreement is observed between (23) and the particle data for χ0 for all but the smallest Lx.

While it is intuitive to expect that the bare diffusion coefficient should account for molecular,

or non-hydrodynamic, degrees of freedom, the division χeff = χ+ ∆χ is arbitrary, and in fact there

is no unambiguous way to define χ. This is evident in the theory because of the need to introduce

an ad-hoc molecular cutoff as a way to separate the “microscopic” from the “mesoscopic” scales. By

contrast, the locally renormalized diffusion coefficient χ0 defined in (19) explicitly depends on the

size of the sampling (hydrodynamic) cells ∆V = |∆V| used to define the hydrodynamic quantities

from the particle configuration. Combining the two equations in (23) gives the renormalization

relation at large scales,

χeff = χ0 (∆V)− (2π)−3
∫
k
F∆V (k)

[
ρ−1

0 ∆S
ρ1,v

(1)
‖

(k)

]
dk,

which eliminates the dependence on the ad-hoc cutoff wavenumber since F∆V filters contributions

from large wavenumbers, at least within the simple perturbative (quasi-linear) theory.
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IV. CONNECTIONS TO EARLIER WORK

While our computer simulations are the first hydrodynamic study of the dependence of trans-

port on system size, there is a substantial body of literature that has discussed the effect from a

theoretical perspective or studied smaller particle systems. In this section we explicitly connect

our analysis to previous approaches, and discover direct relations with work that might have, at

first sight, been assumed to be unrelated.

A. Relation to Long-Time Tails

It is well known that the self-diffusion coefficient is given by the integral of the equilibrium

velocity autocorrelation function (VACF) C(t) of the fluid particles [3]. The long-time tail of

C(t) has been extensively studied in the literature both computationally and through several

theories, including heuristic hydrodynamic arguments [44, 45], kinetic theory [46] and (second-

order) mode-mode coupling hydrodynamic theory [47]. Ultimately all derivations give the same

result including not just the power-law dependence but also the coefficient of the tail, specifically,

in three dimensions C(t) ≈ kBT/
{

12ρ [π (χ+ ν) t]3/2
}

, while for quasi-two dimensional systems

C(t) ≈ kBT/ [8πρLz (χ+ ν) t].

A crucial point is that the VACF explicitly depends on the system size due to periodic

boundaries, and so its integral, which gives the diffusion coefficient, also depends on system

size. More explicitly, ignoring acoustic effects, the VACF has the power-law dependence only

for L2
mol/ (χ+ ν) � t � L2/ (χ+ ν), and it decays exponentially for large times [48]. Ignoring

prefactors, the contribution of the tail to the diffusion coefficient in three dimensions is estimated

as

∆χtail ∼
∫ L2/(χ+ν)

L2
mol/(χ+ν)

kBT

ρ [(χ+ ν) t]3/2
dt ∼ kBT

ρ (χ+ ν)

(
1

Lmol
− 1

L

)
, (24)

which of exactly the same form as (15). A similar calculation in two dimensions reproduces the

logarithmic dependence in (14).

A more quantitative comparison to the theories for the VACF tail can be made by examining the

predictions of the mode-mode coupling theory for the long-time tail, reviewed in detail in Section

3.2 of Ref. [47]. The relevant formula for the VACF is their Eq. (3.39), which, after integrating

over the Boltzmann velocity distribution, becomes

C(t) =
kBT

12π3ρ

∫
k

exp
[
− (χ+ ν) k2t

]
dk.
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In [47], the integral over k is performed assuming an infinite system and the time dependence kept

in order to see the behavior of the tail at long times. If we integrate over t instead, we get

∆χtail =

∫ ∞
t=0

C(t)dt =
kBT

12π3ρ(χ+ ν)

∫
k
k−2dk, (25)

which is seen to identical to the integral in Eq. (12) under the assumption that all three directions

x, y and z are identical (as done in all VACF calculations),

∆χ =
kBT

(2π)3ρ (χ+ ν)

∫
k

k2
x + k2

z

k4
dk =

kBT

(2π)3ρ (χ+ ν)

2

3

∫
k
k−2 dk = ∆χtail.

Note that for a finite system one ought to replace the integrals over k = κ · 2π/L with sums over

κ ∈ Zd that exclude κ = 0,

∆χtail =
2kBT

3ρ(χ+ ν)L3

∑
κ 6=0

k−2. (26)

In the Molecular Dynamics (MD) literature, the dependence on L−1 in Eq. (24) is considered

a finite-size effect that ought to be removed in order to extract the bulk (L → ∞) limit of the

diffusion coefficient [49–51]. A hydrodynamic theory for the finite-size correction, based on the

Oseen tensor for a finite periodic system, has been developed several times [52] and is confirmed

numerically in Refs. [51]. This theory focuses on viscous effects only, and we will thus replace ν

with ν +D in Eqs. (10,11) in Ref. [51], to obtain

∆χMD =
kBT

6π (χ+ ν)

f̃(kmax) +
∑
κ6=0

4πL−3k−2 exp

(
− k2

4k2
max

) ,
where f̃(k) is some function. Assuming that kmax is large, the system-size dependence is captured

in the last term, which is exactly the same as Eq. (26),

∆χMD ≈
kBT

6π (χ+ ν)

∑
κ 6=0

4πL−3k−2 = ∆χtail = ∆χ.

There are few molecular dynamics studies of the system size dependence of the diffusion coeffi-

cient in sufficiently large two-dimensional systems. Isobe has performed one of the most extensive

hard-disk molecular dynamics studies of the hydrodynamic tail of the VACF [53]. We have per-

formed numerical integration of C(t) using the data of Isobe for hard disks at packing fraction

φ = 0.18, for square systems sizes containing from N = 162 to N = 1282 hard disks. For these

parameters the statistical accuracy of the data appears sufficient to resolve the asymptotic plateau

χeff = limτ→∞ χ(t) of the time-dependent diffusion coefficient

χ(t) =

∫ t

τ=0
C(τ)dτ,
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Figure 8: System-size dependence of the diffusion coefficient for hard disks at volume fraction φ = 0.18 (data

courtesy of Masaharu Isobe [53]). Time and lengths are measured in natural units, or, equivalently, kBT = 1,

m = 1 and disk diameter σ = 1. (Left) The time-dependent diffusion coefficient χ(t), as determined from

a numerical integral of the velocity autocorrelation function, for several system sizes (see legend). (Right)

The observed increase of the effective diffusion coefficient with system size (symbols), as obtained from the

large-time limit of χ(t). Theoretical predictions are shown for comparison, for both the simple theory (27)

(dashed line), as well as for the self-consistent theory (29) with the system size N0 = 162 used to define a

reference length L0. A logarithmic fit with an adjustible slope is also shown (dotted line).

as illustrated in Fig. 8. Since the aspect ratio of all of Isobe’s simulations is fixed at Lx/Ly = 1,

Eq. (20) suggests that the difference between χeff for a system size of N disks and the smallest

system of N0 = 16 disks is

χeff(N)− χeff(N0) ≈ kBT

8πρ(χ+ ν)
ln
N

N0
. (27)

In Fig. 8 we compare this prediction to the numerical integral of Isobe’s data, using Enskog kinetic

theory [54] values for the “bare” transport coefficients χ and ν of the hard disk fluid at this density.

Good agreement is observed, demonstrating that the effect we observe is not an artifact of DSMC

but rather a generic property of fluids.

B. Self-Consistent Theory

The theoretical predictions with which we compared the particle results were based on a leading-

order perturbative theory [16] that relies on the solution of the linearized equations of fluctuating

hydrodynamics. A fully nonlinear theory, however, remains illusive. In the context of infinite

(bulk) systems, a systematic perturbative theory that accounts for corrections of order higher

than quadratic in the fluctuations has been discussed in Refs. [17, 55]. In three dimensions, the
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conclusion of such studies has been that the higher-order terms do not affect the form of (23). In two

dimensions, several calculations [55–57] and numerical simulations [53, 58] suggest that including

higher-order terms changes the logarithmic growth in (14). Specifically, it has been predicted that

the self-consistent power-law decay for the VACF is faster than t−1, C(t) ∼
(
t
√

ln t
)−1

, which

changes the asymptotic growth of χeff from lnLx to
√

lnLx.

In order to obtain a self-consistent form of (14), we reconsider the derivation in Section II A 1.

The cause of the diffusion growth from system width Lx to Lx+dLx is the added contribution to the

integral in Eq. (13) from wavenumbers in the band |kx| ∈ 2πL−1
x · [1− dLx/Lx, 1]. If we postulate

that the concentration fluctuations at wavenumber kx = 2π/Lx evolve with the renormalized

diffusion coefficient χeff (Lx), instead of the bare one, we obtain an ordinary differential equation

for χeff (Lx),

dχeff

dLx
≈ kBT

(2π)2ρ (χeff + ν)Lz

(
2
kx
Lx

)∫
ky

k2
x(

k2
x + k2

y

)2 dky =
kBT

4πρ(χeff + ν)Lz
L−1
x , (28)

where we have assumed that viscosity does not change substantially with system size (consistent

with existing molecular dynamics data). Solving the differential equation (28) with the condition

χeff (L0) = χ leads to a diffusion enhancement that grows slightly slower than logarithmically,

χeff (Lx) ≈ (χ+ ν)

[
1 +

kBT

2πρ(χ+ ν)2Lz
ln
Lx
L0

]1/2

− ν. (29)

Although the self-consistent form (29) still diverges with system length, it is important to observe

that for any finite system χeff is well-defined. The predictions of (29) for a hard-disk system at

packing fraction φ = 0.18 are shown in Fig. 8. We have used the Enskog kinetic theory for the

viscosity, which is in good agreement with published molecular dynamics data at this density, and

set ρLz to be the mass density in the plane. The self-consistent theory is seen to be in better

agreement with the molecular dynamics data than the simple theory (14); however, the difference

between the two is small for the system sizes at which we presently have reliable data for the

effective diffusion coefficient.

Repeating the same self-consistent calculation in three dimensions gives the self-consistent form,

χeff (L) ≈ (χ+ ν)

[
1 +

αkBT

ρ(χ+ ν)2

(
1

L0
− 1

L

)]1/2

− ν, (30)

which happens to be the solution of the consistency condition

χeff = χ+
αkBT

ρ [ν + (χ+ χeff)/2]

(
1

L0
− 1

L

)
,

reminiscent of the form obtained in Ref. [17] except that the arithmetic average of χ and χeff

appears in the denominator instead of just χeff. In three dimensions, the difference between the
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self-consistent (30) and the simple (15) theories is very small and thus rather difficult to observe

computationally.

In both two and three dimensions, the self-consistent predictions (29,30) will only deviate from

the simple theory (14,15) substantially when the diffusion enhancement becomes comparable to

the bare coefficient, that is, when hydrodynamic effects become comparable to molecular ones.

The estimates presented in Appendix A show that reaching the regime where ∆χ & χ is difficult

to achieve with particle simulations. In nonlinear fluctuating hydrodynamics finite-volume solvers

[14], one has the freedom to choose the various parameters so as to make the effect of advection

by velocity fluctuations much more prominent, similarly to what is done in Ref. [58] using a two-

dimensional lattice gas method. Experimentally, two dimensional systems can be realized by using

thin films, for example, liquid or liquid crystal films. In liquid films, however, velocity fluctuations

below a certain cutoff wavenumber are suppressed because of the drag by the surrounding fluid,

and therefore the diffusion enhancement saturates for systems much larger than the cutoff length

scale [15].

V. CONCLUSIONS AND FUTURE DIRECTIONS

The results of our particle simulations confirm that fluctuating hydrodynamics is a powerful

tool for understanding transport at small scales. Our results conclusively demonstrate that the

advection by thermal velocity fluctuations affects the mean transport in nonequilibrium finite

systems and thus the advective nonlinearities, such as the term (δc) (δv) in (5), ought to be retained

in the equations of fluctuating hydrodynamics. We demonstrated explicitly that the correction to

the bare or molecular transport coefficients due to the VACF tail [3], hydrodynamic interactions

with periodic images of a given particle [51], and the contribution due to thermal fluctuations

[16, 18] studied here, are all the same physical phenomenon simply calculated through different

theoretical approaches, all of which are equivalent because of linearity. The advantage of fluctuating

hydrodynamics is that it is simple, and it can take into account the proper boundary conditions

and exact geometry. . Furthermore, other effects such as gravity [18], temperature variations

[12], or time dependence [7, 15], can easily be included. The resulting fluctuating hydrodynamic

equations can be solved computationally using several existing techniques, such as Monte Carlo

simulation [59], the Lattice-Boltzmann method [60], or a finite-volume scheme [14, 31, 61–63]. It

remains as a future challenge to verify the predictions of fluctuating hydrodynamics for the effect

of fluctuations on diffusive transport in spatially non-uniform systems, either through particle
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simulations or laboratory experiments [15].

Renormalization has often been invoked as a way to fold the contribution from fluctuations

into the effective transport coefficients, however, this only works in three dimensions for very large

systems. In two dimensions, a macroscopic limit does not exist, and in three dimensions there are

strong finite-size corrections even for systems with dimensions much larger than molecular scales.

Theoretical modeling of finite systems at the nano or microscale thus requires including nonlin-

ear hydrodynamic fluctuations. However, a complete nonlinear theory has yet to be developed,

and requires detailed understanding of the role of large wavenumber cutoffs (regularizations) that

are necessary to make the SPDEs well-behaved. Furthermore, the proper physical and mathe-

matical interpretation of other types of nonlinearities in (3) and (6,7), notably the dependence of

the transport coefficients and the stochastic forcing amplitude on the fluctuations, remain to be

clarified. Future work should also study momentum and heat transfer in steady states, as well as

time-dependent transport in systems that are far from equilibrium.

Acknowledgments

We are grateful to Masaharu Isobe for sharing his hard-disk MD data and helping us analyze it.

We thank Berni Alder, Doriano Brogioli, Jonathan Goodman and Eric Vanden-Eijnden for informa-

tive discussions and helpful suggestions on improving this work. This work was supported in part

by the DOE Applied Mathematics Program of the DOE Office of Advanced Scientific Computing

Research under the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

Appendix A: ESTIMATES OF THE DIFFUSION ENHANCEMENT

It is instructive to do some scaling analysis of the order of magnitude of ∆χ in realistic fluid

systems. Following (15), the hydrodynamic contribution to the diffusion coefficient for a large three

dimensional system is estimated as

∆χ ∼ kBT

ρ(χ+ ν)Lmol
, (A1)

For gases, ∆χ can be estimated by using Chapman-Enskog values for the transport coefficients for a

hard-sphere gas with molecular collision diameter σ ≈ Lmol, specifically, χ ∼ ν ∼
(
ρσ2
)−1√

mkBT .

For liquids, the Schmidt number is large, Sc = ν/χ > 102, and Stokes-Einstein’s relation suggests

that χ ∼ kBT/ (ρνσ). For both gases and liquids we get that ∆χ/χ ∼
(
nσ3

)
∼ φ, where n = ρ/m
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is the number density and φ is the packing fraction of the particles. We see from this estimate that

the enhancement due to fluctuations is stronger for dense gases and is strongest for liquids.

However, the logarithmic divergence in (14) means that the contribution due to hydrodynamic

fluctuations dominates for sufficiently large (quasi) two-dimensional systems, regardless of the

density,

∆χ

χ
∼ kBT

ρχ(χ+ ν)Lz
ln

Lx
Lmol

∼
(
nσ3

) σ
Lz

ln
Lx
σ
. (A2)

A glance at Fig. 6 shows that the enhancement we measured is only a few percent of the kinetic

theory value (for our DSMC simulations, nσ3 = 0.06), and reaching the system width Lx where

∆χ ∼ χ is impractical with DSMC simulations at the present. In fact, for the parameters used in

typical DSMC applications the enhancement of the transport coefficients relative to the Chapman-

Enskog values is very small. Specifically, assuming an ideal hard-sphere gas collision model and

taking Lmol = ∆xc, for a quasi two-dimensional system of thickness Lz = λ we obtain the estimate

∆χ

χ
=

16

33π2 (nλ3)
lnNx ≈ (20Nλ)−1 lnNx,

where Nλ = nλ3 is the number of particles per cubic mean free path, and Nx = Lx/∆xc is the

number of collision cells along the direction perpendicular to the gradient. In a typical DSMC

simulation Nλ ≈ 100, giving ∆χ/χ ≈ 0.5 · 10−3 lnNx, which is less than 0.5% even for Nx = 100.

While using molecular dynamics instead of DSMC allows one to reach larger densities and thus

enlarge ∆χ/χ, the regime in which ∆χ & χ is difficult to access even using hard-disk MD [53] (see

Fig. 8).

In this work we focused on the correlations between velocity and concentration fluctuations.

Concentration fluctuations also have long ranged self-correlations ∼ k−4 in the presence of a con-

centration gradient, see Eq. (9). Even though the enhancement of the concentration fluctuations is

proportional to the square of the concentration gradient, a two-dimensional calculation [15] similar

to one presented here [see Eqs. (11,13)] leads to the remarkable result,

〈δc (r, t) δc (r, t)〉(2D)
neq =

3kBT

128π3ρχ(χ+ ν)Lz

(
Lx
Ly

)2

(∆c)2 ,

where ∆c = (∇c̄)Ly is the macroscopic concentration variation. Assuming Lx ∼ Ly, we thus obtain

[c.f. Eq. (A2)]

〈(δc)(δc)〉(2D)
neq

(∆c)2 ∼ kBT

ρχ(χ+ ν)Lz
∼
(
nσ3

) σ
Lz
,

where nσ3 ∼ 1 for liquids. We thus see that for systems a few molecules thick, the non-equilibrium

concentration fluctuations can become comparable to the deterministic variation. In this case we
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expect that a perturbative approach based on the linearized theory will not be applicable and the

use of a nonlinear finite-volume solver will be indispensable.
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