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Fluid-Particle Coupling

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Fluid-Particle Coupling

Incompressible Fluctuating Hydrodynamics

The colloidal are immersed in an incompressible fluid that we assume
can be described by the time-dependent fluctuating incompressible
Stokes equations,

ρ∂tv + ∇π = η∇2v + f +
√

2ηkBT ∇ ·Z (1)

∇ · v = 0,

along with appropriate boundary conditions.

Here the stochastic momentum flux is modeled via a random
Gaussian tensor field Z(r, t) whose components are white in space
and time with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′). (2)

A. Donev (CIMS) FIB 7/2014 5 / 25



Fluid-Particle Coupling

Brownian Particle Model

Consider a Brownian “particle” of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle (as in the Force
Coupling Method (FCM) of Maxey et al).

We will call our particles “blobs” since they are not really point
particles.
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Fluid-Particle Coupling

Local Averaging and Spreading Operators

Postulate a no-slip condition between the particle and local fluid
velocities,

q̇ = u = [J (q)] v =

∫
δa (q− r) v (r, t) dr,

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.
The induced force density in the fluid because of the force F applied
on particle is:

f = −Fδa (q− r) = − [S (q)] F,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).
The physical volume of the particle ∆V is related to the shape and
width of the kernel function via

∆V = (JS)−1 =

[∫
δ2
a (r) dr

]−1

. (3)
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Fluid-Particle Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.

The stationary (equilibrium) distribution must be the Gibbs
distribution

Peq(q) = Z−1 exp (−U(q)/kBT ) , (4)

where F(q) = −∂U(q)/∂q with U(q) a conservative potential.

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

In order to ensure that the dynamics is time reversible with respect to
an appropriate Gibbs-Boltzmann distribution), the thermal or
stochastic drift forcing

fth = (kBT ) ∂q · S (q) (5)

needs to be added to the fluid equation [1, 2, 3].

A. Donev (CIMS) FIB 7/2014 8 / 25



Overdamped Limit

Viscous-Dominated Flows

We consider n spherical neutrally-buoyant particles of radius a in d
dimensions, having spatial positions q = {q1, . . . ,qN} with

qi = (q
(1)
i , . . . , q

(d)
n ).

Let script J and S denote composite fluid-particles interaction
operators.
Let us assume that the Schmidt number is very large,

Sc = η/ (ρχ)� 1,

where χ ≈ kBT/ (6πηa) is a typical value of the diffusion coefficient
of the particles [4].
To obtain the asymptotic dynamics in the limit Sc→∞ heuristically,
we delete the inertial term ρ∂tv in (1), ∇ · v = 0 and

∇π = η∇2v + SF +
√

2ηkBT ∇ ·Z ⇒ (6)

v = η−1L−1
(
SF +

√
2ηkBT ∇ ·Z

)
,

where L−1 � 0 is the Stokes solution operator.
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Overdamped Limit

Overdamped Limit

A rigorous adiabatic mode elimination procedure informs us that the
correct interpretation of the noise term in this equation is the kinetic
stochastic integral,

dq (t)

dt
= J (q)L−1

[
1

η
S(q)F(q) +

√
2kBT

η
∇ �Z (r, t)

]
. (7)

This is equivalent to the standard equations of Brownian Dynamics
(BD),

dq

dt
= MF + (2kBTM)

1
2 W(t)+kBT (∂q ·M), (8)

where M(q) � 0 is the symmetric positive semidefinite (SPD)
mobility matrix

M = η−1JL−1S.
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Overdamped Limit

Brownian Dynamics via Fluctuating Hydrodynamics

It is not hard to show that M is very similar to the Rotne-Prager
mobility used in BD, for particles i and j ,

Mij = η−1

∫
δa(qi − r)K(r, r′)δa(qj − r′) drdr′ (9)

where K is the Green’s function for the Stokes problem (Oseen
tensor for infinite domain).

The self-mobility defines a consistent hydrodynamic radius of a blob,

Mii = Mself =
1

6πηa
I.

For well-separated particles we get the correct Faxen expression,

Mij ≈ η−1

(
I +

a2

6
∇2

r

)(
I +

a2

6
∇2

r′

)
K(r − r′)

∣∣r=qj

r′=qi
.

At smaller distances the mobility is regularized in a natural way and
positive-semidefiniteness ensured automatically.
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Overdamped Limit

Numerical Methods

Both compressible and incompressible, inertial and overdamped,
numerical methods have been implemented by Florencio Balboa
(UAM) on GPUs for periodic BCs (public-domain!), and in the
parallel IBAMR code of Boyce Griffith by Steven Delong for general
boundary conditions (to be made public-domain next fall!).

Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [5] and the immersed-boundary
method kernel functions of Charles Peskin.

Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

We have constructed specialized temporal integrators that ensure
discrete fluctuation-dissipation balance, including for the
overdamped case.
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Overdamped Limit

(Simple) Midpoint Scheme

Fluctuating Immersed Boundary Method (FIBM) method:

Solve a steady-state Stokes problem (here δ � 1)

∇πn = η∇2vn +
√

2ηkBT ∇ ·Zn + SnF (qn)

+
kBT

δ

[
S

(
qn +

δ

2
W̃

n
)
− S

(
qn − δ

2
W̃

n
)]

W̃
n

∇ · vn = 0.

Predict particle position:

qn+ 1
2 = qn +

∆t

2
J nv

Correct particle position,

qn+1. = qn + ∆tJ n+ 1
2 v.
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Results

Slit Channel
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Figure: Probability distribution of the distance H to one of the walls for a
freely-diffusing blob in a two dimensional slit channel.

A. Donev (CIMS) FIB 7/2014 16 / 25



Results

Equilibrium Radial Correlation Function
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Figure: Equilibrium radial distribution function g2 (r) for a suspension of blobs
interacting with a repulsive LJ (WCA) potential.
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Results

Hydrodynamic Interactions
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Figure: Effective hydrodynamic force between two approaching blobs at small
Reynolds numbers, F
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.
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Results

Diffusive Dynamics

At long times, the motion of the particle is diffusive with a diffusion
coefficient χ = limt→∞ χ(t) =

∫∞
t=0 C (t)dt, where

χ(t) =
∆q2(t)

2t
=

1

2dt

〈
[q(t)− q(0)]2

〉
.

The Stokes-Einstein relation predicts

χ =
kBT

µ
(Einstein) and χSE =

kBT

6πηa
(Stokes), (10)

where for our blob a is on the order of the fluid solver grid spacing.

The dimensionless Schmidt number Sc = ν/χSE controls the
separation of time scales.

Self-consistent theory predicts a correction to Stokes-Einstein’s
relation for small Sc ,

χ
(
ν +

χ

2

)
=

kBT

6πρa
.
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Results

Stokes-Einstein Corrections
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Figure: Corrections to Stokes-Einstein with changing viscosity ν = η/ρ,
me = mf = ρ∆V .
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Results

Colloidal Gellation: Cluster collapse
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Figure: Relaxation of the radius of gyration of a colloidal cluster of 13 spheres
toward equilibrium, taken from Furukawa+Tanaka.
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Outlook

Immersed Rigid Blobs

Unlike a rigid sphere, a blob particle would not perturb a pure shear
flow.

In the far field our blob particle looks like a force monopole
(stokeset), and does not exert a force dipole (stresslet) on the fluid.

Similarly, since here we do not include angular velocity degrees of
freedom, our blob particle does not exert a torque on the fluid
(rotlet).

It is possible to include rotlet and stresslet terms, as done in the
fluctuating force coupling method [6] and Stokesian Dynamics in
the deterministic setting.

Maintaining fluctuation-dissipation balance more challenging.
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Outlook

Conclusions

Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, and coupled to immersed particles to model
Brownian suspensions.

The minimally-resolved blob approach provides a low-cost but
reasonably-accurate representation of rigid particles in flow.

We have recently successfully extended the blob approach to
reaction-diffusion problems (with Amneet Bhalla and Neelesh
Patankar).

Particle and fluid inertia can be included in the description, or, an
overdamped limit can be taken if Sc � 1.

More complex particle shapes can be built out of a collection of
blobs to form a rigid body.
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