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Diffusion without Hydrodynamics

Uncorrelated Brownian Walkers

Fluctuating hydrodynamics is a coarse-grained description of mass,
momentum and energy transport in fluids (gases and liquids).

Consider diffusion of colloidal particles immersed in a viscous liquid;
assume the particles are uncorrelated Brownian walkers.

The positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} follow
the Ito SDEs

dQ = (2χ)
1
2 dB, (1)

where B(t) is a collection of independent Brownian motions.

We are interested in describing a spatially coarse-grained fluctuating
empirical concentration field,

cξ (r, t) =
N∑
i=1

δξ (qi (t)− r) , (2)

where δξ is a smoothing kernel with support ∼ ξ that converges to a
delta function as ξ → 0.
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Diffusion without Hydrodynamics

No Coarse Graining ala Dean

Consider first the limit ξ → 0, which corresponds to no coarse
graining (no loss of information except particle numbering).

Dean obtained an SPDE for c (r, t) =
∑
δ (qi (t)− r), using

straightforward Ito calculus and properties of the Dirac delta function,

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
, (3)

where Wc (r, t) denotes a spatio-temporal white-noise vector field.

This is a typical example of a fluctuating hydrodynamics equation,
which is deceptively simply, yet extremely subtle from both a physical
and mathematical perspective.

The term
√

2χcWc can be thought of as a stochastic mass flux, in
addition to the “deterministic” Fickian flux χ∇c.
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Diffusion without Hydrodynamics

What is it useful for?

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
(4)

In principle, the Dean equation is not really useful, since it is a
mathematically ill-defined tautology, a mere rewriting of the
original equations for the particles.

The ensemble average c̄ = 〈c〉 follows Fick’s law,

∂t c̄ = ∇ · (χ∇c̄) = χ∇2c̄,

which is the law of large numbers (most probable path around which
all paths concentrate) in the limit of large coarse-graining scale ξ.

The central limit theorem describing small Gaussian fluctuations
δc = c − c̄ can be obtained by linearizing,

∂t (δc) = χ∇2 (δc) + ∇ ·
(√

2χc̄Wc

)
.

Note that this equation of linearized fluctuating hydrodynamics is
mathematically well-defined.
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Diffusion without Hydrodynamics

What is it useful for?

Furthermore, and more surprisingly, the Dean equation correctly
predicts the large deviation action functional for the particle model,
and thus correctly gives the probability of observing large deviations
from the typical (Fick) behavior.

This suggests the nonlinear fluct. hydro. equation is informative and
maybe useful.

In particular, upon spatially discretizing the (formal) SPDE, the
resulting system of SODEs can be seen as a spatial coarse-graining of
the particle system, which has the right properties.

Numerically solving the discretized Dean equation with weak noise
gives results in agreement with all three mathematically well-defined
weak-noise limit theorems: LLN, CLT, and LDT.
No need to perform linearizations manually, or to discretize stochastic
path integrals directly.
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Diffusion with Hydrodynamics

Brownian Dynamics

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = −M (∂QU) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (5)

where B(t) is a collection of independent Brownian motions, U (Q) is
a conservative interaction potential.

Here M (Q) � 0 is a symmetric positive semidefinite mobility block
matrix for the collection of particles, and introduces correlations
among the walkers.

The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (5) is

∂P

∂t
=

∂

∂Q
·
{

M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (6)

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ∼ exp (−U(Q)/kBT ).
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Diffusion with Hydrodynamics

Hydrodynamic Correlations

Let’s start from the (low-density) pairwise approximation

∀ (i , j) : Mij

(
qi ,qj

)
=

R
(
qi ,qj

)
kBT

=
1

kBT

∑
k

φk (qi )φk

(
qj

)
,

Here R (r, r′) is a symmetric positive-definite kernel that is
divergence-free, and can be diagonalized in an (infinite dimensional)
set of divergence-free basis functions φk (r).

For the Rotne-Prager-Yamakawa tensor mobility,
R(r′, r′′) ≡R(r′ − r′′ ≡ r),

R(r) = χ


(

3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r

r2
, r > 2σ(

1− 9r

32σ

)
I +

(
3r

32σ

)
r ⊗ r

r2
, r ≤ 2σ

(7)

where σ is the radius of the colloidal particles and the diffusion
coefficient χ follows the Stokes-Einstein formula χ = kBT/ (6πησ).
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Diffusion with Hydrodynamics

Eulerian Overdamped Dynamics

We can use standard calculus to obtain an equation for the empirical
or instantaneous concentration

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (8)

Following a similar procedure to Dean now, we get the stochastic
advection diffusion equation [1]

∂tc = ∇ · [χ (r)∇c]−w ·∇c, (9)

where the diffusion coefficient χ (r) = R (r, r) and the random
velocity field w (r, t) has covariance

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2R

(
r, r′
)
δ
(
t − t ′

)
. (10)

This equation is now well-defined mathematically since linear.
One can use the same equation (9) to evolve a probability distribution
for finding a particle at a given location.
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Diffusion with Hydrodynamics

Importance of Hydrodynamics

For uncorrelated walkers, Mij = δij (kBT )−1 χI, the noise is very
different, ∇ ·

(√
2χcWc

)
.

In both cases (hydrodynamically correlated and uncorrelated walkers)
the mean obeys Fick’s law but the fluctuations are completely
different.

For uncorrelated walkers, out of equilibrium the fluctuations develop
very weak long-ranged correlations.

For hydrodynamically correlated walkers, out of equilibrium the
fluctuations exhibit very strong “giant” fluctuations with a power-law
spectrum truncated only by gravity or finite-size effects. These giant
fluctuations have been confirmed experimentally.
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Diffusion with Hydrodynamics

Particle Interactions

U (Q) =
1

2

N∑
i ,j=1
i 6=j

U2(qi ,qj) (11)

Cranking the crank yields the not-so-useful “DDFT” equation

∂tc(r, t) = −∇ · (w (r, t) c(r, t)) + ∇ · (χ(r)∇c(r, t))

+ (kBT )−1∇ ·
(
c(r, t)

∫
R(r, r′)∇′U2(r′, r′′)c(r′, t)c(r′′, t) dr′dr′′

)
.

All of the equations of fluctuating hydrodynamics have the same
structure of a generic Langevin equation, including these ones:

∂tc = −M [c(·, t)]
δH

δc (·, t)
+ (2kBT M [c(·, t)])

1
2 �W(·, t)
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Diffusion with Hydrodynamics

Generic Structure of Langevin Equations

Here the coarse-grained Hamiltonian is independent of the
dynamics,

H [c (·)] = kBT

∫
c (r)

(
ln
(
Λ3c (r)

)
− 1
)
dr

+
1

2

∫
U2(r, r′)c(r)c(r′) drdr′

But the mobility operator depends on dynamics

(M f (·)) (r) =

∫
dr′M

[
c(·); r, r′

]
f (r′) =

≡

{
− (kBT )−1 ∇ · (χ(r)c(r)∇f (r)) no hydro

− (kBT )−1 ∇ ·
(
c(r)

∫
R (r, r′) c(r′)∇′f (r′) dr′

)
hydro
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Fluctuating Hydrodynamics Model

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0. (12)

where the stochastic momentum flux is spatio-temporal white
noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
cutoff scale σ.
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Fluctuating Hydrodynamics Model

Reversible Diffusion via Advection

Lagrangian description of a passive tracer diffusing in the fluid,

q̇ = u (q, t) . (13)

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c. (14)

The two descriptions are equivalent.
c (q(t), t) = c (q(0), 0) or, due to reversibility,
c (q(0), t) = c (q(t), 0).

One can add additional bare diffusion χ0 in addition to the
advection,

∂tc = −u ·∇c + χ0∇2c.
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Fluctuating Hydrodynamics Model

Giant Fluctuations in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with
hard-disk molecular dynamics [2].
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Fluctuating Hydrodynamics Model

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.

A. Donev (CIMS) Fluct Hydro 5/2015 19 / 40



Fluctuating Hydrodynamics Model

Overdamped Dynamics

Adiabatic mode elimination gives the following limiting Ito stochastic
advection-diffusion equation [3],

∂tc = ∇ · [χ (r)∇c]−w ·∇c, (15)

which is exactly the same as what was derived from Brownian
dynamics before.
The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′

= 2R
(
r, r′
)
δ
(
t − t ′

)
=

kBT

η

∫
σ
(
r,q′

)
G
(
r′, r′′

)
σT
(
r′′,q′′

)
dq′dq′′,

where G is the Green’s function for steady Stokes flow with the
appropriate boundary conditions.
One can obtain the RPY tensor by making the filter σ be a surface
delta function over a sphere of radius σ.

A. Donev (CIMS) Fluct Hydro 5/2015 20 / 40



Coarse-Graining

Coarse Graining

The proper way to interpret fluctuating hydrodynamics is via the
theory of coarse-graining (here I follow Pep Espanol).

The first step is to define a discrete set of relevant variables, which
are mesoscopic observables.
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Coarse-Graining

Relevant Variables

How to assign the molecules to the coarse-grained nodes?

If one uses a nearest-node assignment, i.e., Voronoi cells, one gets
divergent Green-Kubo transport coefficients.

Instead, one can use the dual Delaunay cells to construct
coarse-grained variables [4], related to a finite-element
discretization of the fluctuating hydrodynamic SPDE.

cµ(Q) =
N∑
i

δµ(qi ) =
N∑
i

φµ(qi )

Vµ
,

which follow a conservation law since
∑

µ Vµcµ = N.

The key assumption is infinite separation of timescales: cµ(Q) is
much slower than Q itself.
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Coarse-Graining

Mori-Zwanzig Formalism

One can use the Mori-Zwanzig formalism with a Markovian
assumption (due to separation of timescales) to derive a system of
SDEs for the (discrete) coarse-grained variable c (Q):

dc

dt
= −M (c) · ∂F (c)

∂c
+ (2kBT M (c))

1
2 W(t) + (kBT )

∂

∂c
·M (c) ,

with the fluctuation-dissipation balance M
1
2

(
M

1
2

)?
= M.

Here F (c) is the coarse-grained free energy

Peq(c̃) =

∫
dQ ρeq(Q)δ(c̃− c(Q)) ∝ exp

{
−F (c̃)

kBT

}
,

which is a purely equilibrium quantity.

The dynamics is captured by the diffusion or mobility SPD matrix
M (c), for which one can write generalized Green-Kubo formulas.
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Coarse-Graining

Renormalization

If one does this for diffusion-type problems one obtains something
that looks very much like a finite-element discretization of the
fluctuating hydrodynamic (formal) SPDE.
The SPDE is a useful notation to guide the construction of
spatio-temporal discretizations, drawing from years of CFD experience.
However, if coarse-graining scale becomes macroscopic, we get
Fick’s law in the usual local form but with renormalized free
energy and transport coefficients:

∂tc = χ∇2Π(c) = χ∇ ·
(
dΠ(c)

dc
∇c

)
,

where Π(c) = c (df /dc)− f is the osmotic pressure, where f (c) is
the thermodynamic thermodynamic equilibrium free-energy.
In-between the microscopic and macroscopic lies a whole continuum
of scales: The free energy and transport coefficients (mobility)
must depend on the coarse-graining scale in nonlinear
fluctuating hydrodynamics (but not in linearized fluct. hydro).
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Complex Fluid Mixtures

Multiphase Systems: Liquid-Vapor

We will use a diffusive-interface model for describing interfaces
between two distinct phases such as liquid and vapor of a single
species.

Coarse-grained free energy follows the usual square-gradient surface
tension model

F (ρ(r),∇ρ(r),T (r)) =

∫
dr

(
f (ρ(r),T (r)) +

1

2
κ |∇ρ(r)|2

)
(16)

The local free energy density f (ρ(r),T (r)) includes the hard-core
repulsions as well as the short-range attractions.

Assume a van der Waals loop for the equation of state,

P (ρ,T ) =
nkBT

1− b′n
− a′n2, (17)

f = nkBT ln

[
ρ

1− b′n

]
− a′n2.
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Complex Fluid Mixtures

Fluctuating Hydrodynamics

∂tρ+∇ · (ρv) = 0 (18)

∂t (ρv) +∇ ·
(
ρvvT

)
+∇ ·Π = ∇ · (σ + Σ) (19)

∂t (ρE ) +∇ · (ρEv + Π · v) = ∇ · (ψ + Ψ) +∇ · ((σ + Σ) · v) , (20)

where the momentum density is g = ρv and
the total local energy density is ρE = 1

2ρv2 + ρe.

A. Donev (CIMS) Fluct Hydro 5/2015 28 / 40



Complex Fluid Mixtures

Momentum Fluxes

The reversible contribution to the stress tensor is [5]

Π = PI−
[(
κρ∇2ρ+

1

2
κ |∇ρ|2

)
I

]
− (κ∇ρ⊗∇ρ) + cross term?

Irreversible contribution to the stress is the viscous stress tensor

σ = η
(
∇v + (∇v)T

)
+

(
ζ − 2

3
η

)
(∇ · v) I (21)

Stochastic stress tensor obeys fluctuation-dissipation balance

Σ =
√

2ηkBT W̃ +

(√
ζkBT

3
−
√

2ηkBT

3

)
Tr
(
W̃
)

I, (22)

where W̃ = (W + WT )/
√

2 is a symmetric white-noise tensor field.
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Complex Fluid Mixtures

Capillary Waves

Variance of height fluctuations versus wavenumber comparing 2D
simulations (red circles) and capillary wave theory (CWT) (black solid
line).

A. Donev (CIMS) Fluct Hydro 5/2015 30 / 40



Complex Fluid Mixtures

Spinodal Decomposition

Spinodal decomposition in a near-critical Argon system at ρ = 0.416 g/cc,
T = 145.85 K leading to a bicontinuous pattern.
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Complex Fluid Mixtures

Condensation

Liquid-vapor spinodal decomposition in a near-critical van der Waals
Argon system at ρ = 0.36 g/cc, T = 145.85 K leading to droplets
forming in a majority vapor phase.
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Complex Fluid Mixtures

Chemically-Reactive Mixtures

The species density equations for a mixture of NS species are given by

∂

∂t
(ρs) +∇ · (ρsv + F) = msΩs , (s = 1, . . .NS) (23)

Due to mass conservation ρ =
∑

s ρs follows the continuity equation,

∂

∂t
ρ+∇ · (ρv) = 0. (24)

The mass fluxes take the form, excluding barodiffusion and
thermodiffusion,

F = ρW

[
χΓ∇x +

√
2

n
χ

1
2WF (r, t)

]
,

where n is the number density, xs is the mole fraction of species s,
and W = Diag {ws = ρs/ρ} contains the mass fractions.
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Complex Fluid Mixtures

Multispecies Mass Diffusion

Γ is a matrix of thermodynamic factors,

Γ = I +
(
X− xxT

)(∂2gex
∂x2

)
,

where gex (x,T ,P) is the normalized excess Gibbs energy density
per particle.

χ is an SPD diffusion tensor that can be related to the
Maxwell-Stefan diffusion coefficients and Green-Kubo type
formulas.

We, however, do not know values of these for even a single ternary
mixture!
We have studied ideal mixtures: hard-sphere gas mixtures [6] and
dilute solutions of salt+sugar in water [7].
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Complex Fluid Mixtures

Chemistry

Consider a system with NR elementary reactions with reaction r

Rr :

NS∑
s=1

ν+
srMs �

NS∑
s=1

ν−srMs

The stoichiometric coefficients are νsr = ν−sr − ν+
sr and mass

conservation requires that
∑

s νsrmr = 0.

Define the dimensionless chemical affinity

Ar =
∑
s

ν+
sr µ̂s −

∑
s

ν−sr µ̂s ,

where µ̂s = msµs/kBT is the dimensionless chemical potential per
particle.

Also define the thermodynamic driving force

Âr = exp

(∑
s

ν+
sr µ̂s

)
− exp

(∑
s

ν−sr µ̂s

)
=
∏
s

eν
+
sr µ̂s −

∏
s

eν
−
sr µ̂s
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Complex Fluid Mixtures

Chemistry

The mass production due to chemistry can take one of two forms [8]:

Ωs =
∑
r

νsr

(
P

τrkBT

)
Âr (deterministic LMA) (25)

+
∑
r

νsr


(

2 P
τrkBT

Âr
Ar

) 1
2 �Z (r, t) log-mean eq. (LME)(

P
τrkBT

∏
s e

ν+
sr µ̂s
) 1

2 Z (r, t) chemical Langevin eq. (CLE)

The LME follows the correct structure of Langevin equations
(GENERIC structure of Ottinger/Grmela). Is time-reversible (obeys
detailed balance) at thermodynamic equilibrium wrt to the Einstein
distribution.

The CLE follows from a truncation of the Kramers-Moyal expansion
at second order. No true thermodynamic equilibrium since it assumes
one-way reactions.

Which one is correct? Neither!
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Complex Fluid Mixtures

Nonlinear Chemical Networks

We have studied the Baras-Pearson-Mansour (BPM) model
M = (U,V ,W ,S ,Uf ,Vf ),

R1 : U + W � V + W

R2 : V + V � W + S

R3 : V � S (26)

R4 : U � Uf

R5 : V � Vf

This system can exhibit limit cycles, bimodal states (bistability), and
possibly other nonlinear behavior.
In principle this system can be simulated using particle methods!
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Complex Fluid Mixtures

Turing-like Patterns

Development of an instability in the BPM model with fluctuations (top)
and without (bottom) with complete compressible hydrodynamics (not just
reaction-diffusion).
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Complex Fluid Mixtures

Poisson Noise

The reason neither LME nor CLE are correct is that there is no
S(P)DE that can correctly describe both the short-time (typical) and
long-time (rare event) behavior of the master equation.

This is related to the fact that the central limit theorem and
large-deviation theory are not consistent with the same nonlinear
S(P)DE.

One must either use the Chemical Master Equation (CME) with
SSA/Gillespie (microscopic rather than macroscopic), or

One can use Poisson noise instead of Gaussian noise using tau
leaping.
This can be thought of as a coarse-graining in time of the original
jump process described by the CME.

Quite generally the appropriateness of assuming Gaussian white noise
for the stochastic fluxes is questionable.
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Complex Fluid Mixtures
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