

Fluctuating hydrodynamics of complex fluid flows

Aleksandar Donev

Courant Institute, New York University

CECAM Workshop
Molecular Dynamics meets Fluctuating Hydrodynamics
Madrid, May 11th 2015

Collaborators

- Eric Vanden-Eijden, Courant, New York
- Pep Espanol, UNED, Madrid
- John Bell, Lawrence Berkeley Labs (LBL)
- Alejandro Garcia, San Jose State University
- Andy Nonaka, LBL
- A number of postdocs and graduate students at Courant and LBL.

Uncorrelated Brownian Walkers

- **Fluctuating hydrodynamics** is a coarse-grained description of mass, momentum and energy transport in fluids (gases and liquids).
- Consider **diffusion** of colloidal particles immersed in a viscous liquid; assume the particles are **uncorrelated Brownian walkers**.
- The positions of the N particles $\mathbf{Q}(t) = \{\mathbf{q}_1(t), \dots, \mathbf{q}_N(t)\}$ follow the Ito SDEs

$$d\mathbf{Q} = (2\chi)^{\frac{1}{2}} d\mathcal{B}, \quad (1)$$

where $\mathcal{B}(t)$ is a collection of independent Brownian motions.

- We are interested in describing a spatially coarse-grained **fluctuating empirical concentration field**,

$$c_\xi(\mathbf{r}, t) = \sum_{i=1}^N \delta_\xi(\mathbf{q}_i(t) - \mathbf{r}), \quad (2)$$

where δ_ξ is a smoothing kernel with support $\sim \xi$ that converges to a delta function as $\xi \rightarrow 0$.

No Coarse Graining ala Dean

- Consider first the limit $\xi \rightarrow 0$, which corresponds to **no coarse graining** (no loss of information except particle numbering).
- Dean obtained an SPDE for $c(\mathbf{r}, t) = \sum \delta(\mathbf{q}_i(t) - \mathbf{r})$, using straightforward Ito calculus and properties of the Dirac delta function,

$$\partial_t c = \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi c} \mathcal{W}_c \right), \quad (3)$$

where $\mathcal{W}_c(\mathbf{r}, t)$ denotes a spatio-temporal **white-noise** vector field.

- This is a typical example of a fluctuating hydrodynamics equation, which is deceptively simply, yet extremely subtle from both a physical and mathematical perspective.
- The term $\sqrt{2\chi c} \mathcal{W}_c$ can be thought of as a **stochastic mass flux**, in addition to the “deterministic” **Fickian flux** $\chi \nabla c$.

What is it useful for?

$$\partial_t c = \chi \nabla^2 c + \nabla \cdot \left(\sqrt{2\chi c} \mathcal{W}_c \right) \quad (4)$$

- In principle, the Dean equation is **not really useful**, since it is a **mathematically ill-defined** tautology, a mere rewriting of the original equations for the particles.
- The ensemble average $\bar{c} = \langle c \rangle$ follows **Fick's law**,

$$\partial_t \bar{c} = \nabla \cdot (\chi \nabla \bar{c}) = \chi \nabla^2 \bar{c},$$

which is the **law of large numbers** (most probable path around which all paths concentrate) in the limit of **large coarse-graining scale** ξ .

- The **central limit theorem** describing small Gaussian fluctuations $\delta c = c - \bar{c}$ can be obtained by linearizing,

$$\partial_t (\delta c) = \chi \nabla^2 (\delta c) + \nabla \cdot \left(\sqrt{2\chi \bar{c}} \mathcal{W}_c \right).$$

Note that this equation of **linearized fluctuating hydrodynamics** is mathematically **well-defined**.

What is it useful for?

- Furthermore, and more surprisingly, the Dean equation correctly predicts the **large deviation** action functional for the particle model, and thus correctly gives the probability of observing large deviations from the typical (Fick) behavior.
- This suggests the nonlinear fluct. hydro. equation is **informative and maybe useful**.
- In particular, upon **spatially discretizing** the (formal) SPDE, the resulting system of SODEs can be seen as a spatial coarse-graining of the particle system, which has the right properties.
- **Numerically solving** the discretized Dean equation with **weak noise** gives results in agreement with **all three** mathematically well-defined weak-noise limit theorems: LLN, CLT, and LDT.
No need to perform linearizations manually, or to discretize stochastic path integrals directly.

Brownian Dynamics

- The Ito equations of **Brownian Dynamics** (BD) for the (correlated) positions of the N particles $\mathbf{Q}(t) = \{\mathbf{q}_1(t), \dots, \mathbf{q}_N(t)\}$ are

$$d\mathbf{Q} = -\mathbf{M}(\partial_{\mathbf{Q}} U) dt + (2k_B T \mathbf{M})^{\frac{1}{2}} d\mathcal{B} + k_B T (\partial_{\mathbf{Q}} \cdot \mathbf{M}) dt, \quad (5)$$

where $\mathcal{B}(t)$ is a collection of independent Brownian motions, $U(\mathbf{Q})$ is a conservative interaction potential.

- Here $\mathbf{M}(\mathbf{Q}) \succeq \mathbf{0}$ is a symmetric positive semidefinite **mobility block matrix** for the collection of particles, and introduces **correlations** among the walkers.
- The Fokker-Planck equation (FPE) for the probability density $P(\mathbf{Q}, t)$ corresponding to (5) is

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial \mathbf{Q}} \cdot \left\{ \mathbf{M} \left[\frac{\partial U}{\partial \mathbf{Q}} P + (k_B T) \frac{\partial P}{\partial \mathbf{Q}} \right] \right\}, \quad (6)$$

and is in detailed-balance (i.e., is time reversible) with respect to the **Gibbs-Boltzmann distribution** $\sim \exp(-U(\mathbf{Q})/k_B T)$.

Hydrodynamic Correlations

- Let's start from the (low-density) **pairwise approximation**

$$\forall (i, j) : \mathbf{M}_{ij}(\mathbf{q}_i, \mathbf{q}_j) = \frac{\mathcal{R}(\mathbf{q}_i, \mathbf{q}_j)}{k_B T} = \frac{1}{k_B T} \sum_k \phi_k(\mathbf{q}_i) \phi_k(\mathbf{q}_j),$$

- Here $\mathcal{R}(\mathbf{r}, \mathbf{r}')$ is a **symmetric positive-definite kernel** that is **divergence-free**, and can be diagonalized in an (infinite dimensional) set of divergence-free basis functions $\phi_k(\mathbf{r})$.
- For the **Rotne-Prager-Yamakawa tensor** mobility, $\mathcal{R}(\mathbf{r}', \mathbf{r}'') \equiv \mathcal{R}(\mathbf{r}' - \mathbf{r}'' \equiv \mathbf{r})$,

$$\mathcal{R}(\mathbf{r}) = \chi \begin{cases} \left(\frac{3\sigma}{4r} + \frac{\sigma^3}{2r^3} \right) \mathbf{I} + \left(\frac{3\sigma}{4r} - \frac{3\sigma^3}{2r^3} \right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r > 2\sigma \\ \left(1 - \frac{9r}{32\sigma} \right) \mathbf{I} + \left(\frac{3r}{32\sigma} \right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r \leq 2\sigma \end{cases} \quad (7)$$

where σ is the radius of the colloidal particles and the **diffusion coefficient** χ follows the Stokes-Einstein formula $\chi = k_B T / (6\pi\eta\sigma)$.

Eulerian Overdamped Dynamics

- We can use standard calculus to obtain an equation for the **empirical** or instantaneous **concentration**

$$c(\mathbf{r}, t) = \sum_{i=1}^N \delta(\mathbf{q}_i(t) - \mathbf{r}). \quad (8)$$

- Following a similar procedure to Dean now, we get the **stochastic advection diffusion** equation [1]

$$\partial_t c = \nabla \cdot [\chi(\mathbf{r}) \nabla c] - \mathbf{w} \cdot \nabla c, \quad (9)$$

where the diffusion coefficient $\chi(\mathbf{r}) = \mathcal{R}(\mathbf{r}, \mathbf{r})$ and the random velocity field $\mathbf{w}(\mathbf{r}, t)$ has covariance

$$\langle \mathbf{w}(\mathbf{r}, t) \otimes \mathbf{w}(\mathbf{r}', t') \rangle = 2\mathcal{R}(\mathbf{r}, \mathbf{r}') \delta(t - t'). \quad (10)$$

- This equation is now well-defined mathematically since linear. One can use the same equation (9) to evolve a probability distribution for finding a particle at a given location.

Importance of Hydrodynamics

- For **uncorrelated walkers**, $\mathbf{M}_{ij} = \delta_{ij} (k_B T)^{-1} \chi \mathbf{I}$, the noise is very different, $\nabla \cdot (\sqrt{2\chi c} \mathcal{W}_c)$.
- In both cases (hydrodynamically correlated and uncorrelated walkers) the mean obeys Fick's law but the fluctuations are completely different.
- For uncorrelated walkers, out of equilibrium the fluctuations develop very weak long-ranged correlations.
- For hydrodynamically correlated walkers, **out of equilibrium** the fluctuations exhibit very strong “**giant**” **fluctuations** with a power-law spectrum truncated only by gravity or finite-size effects. These giant fluctuations have been **confirmed experimentally**.

Particle Interactions

$$U(\mathbf{Q}) = \frac{1}{2} \sum_{\substack{i,j=1 \\ i \neq j}}^N U_2(\mathbf{q}_i, \mathbf{q}_j) \quad (11)$$

- Cranking the crank yields the not-so-useful “DDFT” equation

$$\begin{aligned} \partial_t c(\mathbf{r}, t) = & -\nabla \cdot (\mathbf{w}(\mathbf{r}, t) c(\mathbf{r}, t)) + \nabla \cdot (\chi(\mathbf{r}) \nabla c(\mathbf{r}, t)) \\ & + (k_B T)^{-1} \nabla \cdot \left(c(\mathbf{r}, t) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') \nabla' U_2(\mathbf{r}', \mathbf{r}'') c(\mathbf{r}', t) c(\mathbf{r}'', t) d\mathbf{r}' d\mathbf{r}'' \right). \end{aligned}$$

- All of the equations of fluctuating hydrodynamics have the same structure of a generic Langevin equation, including these ones:

$$\partial_t c = -\mathcal{M}[c(\cdot, t)] \frac{\delta H}{\delta c(\cdot, t)} + (2k_B T \mathcal{M}[c(\cdot, t)])^{\frac{1}{2}} \diamond \mathcal{W}(\cdot, t)$$

Generic Structure of Langevin Equations

- Here the **coarse-grained Hamiltonian** is independent of the dynamics,

$$H[c(\cdot)] = k_B T \int c(\mathbf{r}) (\ln(\Lambda^3 c(\mathbf{r})) - 1) d\mathbf{r} + \frac{1}{2} \int U_2(\mathbf{r}, \mathbf{r}') c(\mathbf{r}) c(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

- But the mobility operator depends on dynamics

$$(\mathcal{M} f(\cdot))(\mathbf{r}) = \int d\mathbf{r}' \mathcal{M}[c(\cdot); \mathbf{r}, \mathbf{r}'] f(\mathbf{r}') =$$

$$\begin{aligned} & \equiv \begin{cases} -(k_B T)^{-1} \nabla \cdot (\chi(\mathbf{r}) c(\mathbf{r}) \nabla f(\mathbf{r})) & \text{no hydro} \\ -(k_B T)^{-1} \nabla \cdot (c(\mathbf{r}) \int \mathcal{R}(\mathbf{r}, \mathbf{r}') c(\mathbf{r}') \nabla' f(\mathbf{r}') d\mathbf{r}') & \text{hydro} \end{cases} \end{aligned}$$

Fluctuating Hydrodynamics

- The thermal velocity fluctuations are described by the (unsteady) **fluctuating Stokes equation**,

$$\rho \partial_t \mathbf{v} + \nabla \pi = \eta \nabla^2 \mathbf{v} + \sqrt{2\eta k_B T} \nabla \cdot \mathcal{W}, \quad \text{and} \quad \nabla \cdot \mathbf{v} = 0. \quad (12)$$

where the **stochastic momentum flux** is spatio-temporal **white noise**,

$$\langle \mathcal{W}_{ij}(\mathbf{r}, t) \mathcal{W}_{kl}^*(\mathbf{r}', t') \rangle = (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \delta(t - t') \delta(\mathbf{r} - \mathbf{r}').$$

The solution of this SPDE is a white-in-space distribution (very far from smooth!).

- Define a **smooth advection velocity** field, $\nabla \cdot \mathbf{u} = 0$,

$$\mathbf{u}(\mathbf{r}, t) = \int \boldsymbol{\sigma}(\mathbf{r}, \mathbf{r}') \mathbf{v}(\mathbf{r}', t) d\mathbf{r}' \equiv \boldsymbol{\sigma} \star \mathbf{v},$$

where the smoothing kernel $\boldsymbol{\sigma}$ filters out features at scales below a **cutoff scale** σ .

Reversible Diffusion via Advection

- **Lagrangian** description of a **passive tracer** diffusing in the fluid,

$$\dot{\mathbf{q}} = \mathbf{u}(\mathbf{q}, t). \quad (13)$$

- **Eulerian** description of the **concentration** $c(\mathbf{r}, t)$ with an (additive noise) fluctuating advection-diffusion equation,

$$\partial_t c = -\mathbf{u} \cdot \nabla c. \quad (14)$$

- The two descriptions are **equivalent**.

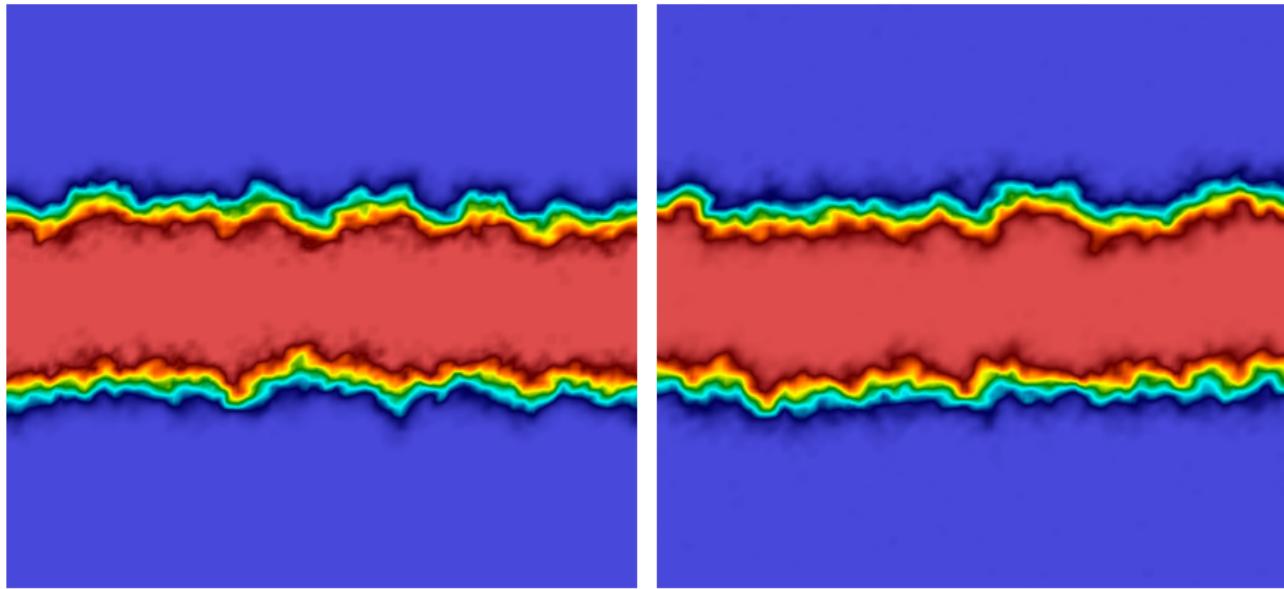
$$c(\mathbf{q}(t), t) = c(\mathbf{q}(0), 0) \text{ or, due to reversibility,}$$

$$c(\mathbf{q}(0), t) = c(\mathbf{q}(t), 0).$$

- One can add additional **bare diffusion** χ_0 in addition to the advection,

$$\partial_t c = -\mathbf{u} \cdot \nabla c + \chi_0 \nabla^2 c.$$

Giant Fluctuations in Diffusive Mixing



Snapshots of concentration in a miscible mixture showing the development of a *rough* diffusive interface due to the effect of **thermal fluctuations**. These **giant fluctuations** have been studied experimentally and with hard-disk molecular dynamics [2].

Separation of Time Scales

- In liquids molecules are caged (trapped) for long periods of time as they collide with neighbors:
Momentum and heat diffuse much faster than does mass.
- This means that $\chi \ll \nu$, leading to a **Schmidt number**

$$S_c = \frac{\nu}{\chi} \sim 10^3 - 10^4.$$

This **extreme stiffness** solving the concentration/tracer equation numerically challenging.

- There exists a **limiting (overdamped) dynamics** for c in the limit $S_c \rightarrow \infty$ in the scaling

$$\chi^\nu = \text{const.}$$

Overdamped Dynamics

- Adiabatic mode elimination gives the following limiting Ito **stochastic advection-diffusion equation** [3],

$$\partial_t c = \nabla \cdot [\chi(r) \nabla c] - \mathbf{w} \cdot \nabla c, \quad (15)$$

which is **exactly the same as** what was derived from **Brownian dynamics** before.

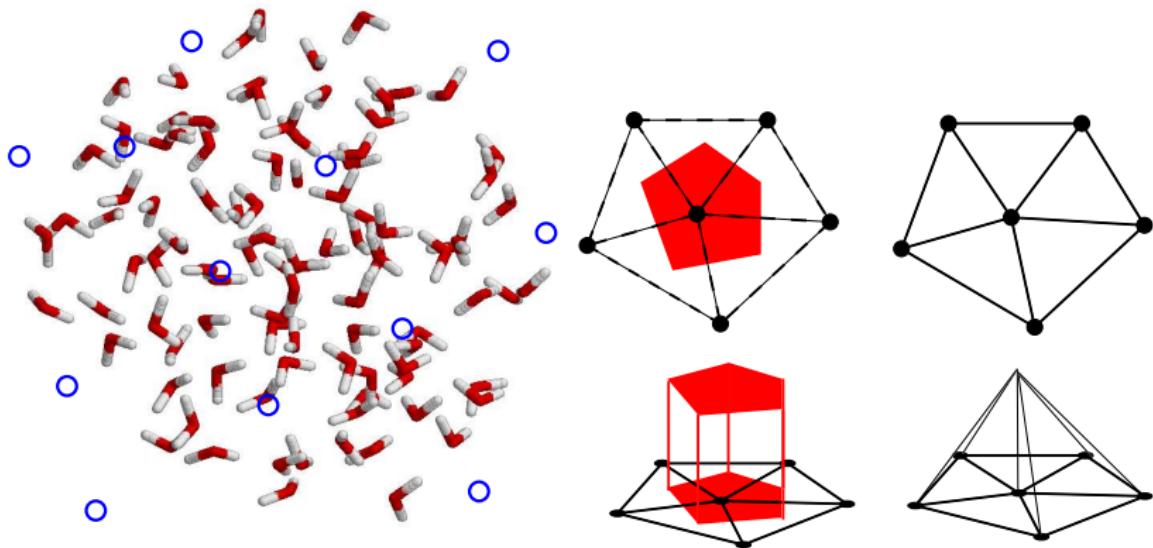
- The advection velocity $\mathbf{w}(r, t)$ is **white in time**, with covariance proportional to a Green-Kubo integral of the velocity auto-correlation function,

$$\begin{aligned} \langle \mathbf{w}(r, t) \otimes \mathbf{w}(r', t') \rangle &= 2\delta(t - t') \int_0^\infty \langle \mathbf{u}(r, t) \otimes \mathbf{u}(r', t + t') \rangle dt' \\ &= 2\mathcal{R}(r, r') \delta(t - t') \\ &= \frac{k_B T}{\eta} \int \boldsymbol{\sigma}(r, \mathbf{q}') \mathbf{G}(r', r'') \boldsymbol{\sigma}^T(r'', \mathbf{q}'') d\mathbf{q}' d\mathbf{q}'', \end{aligned}$$

where \mathbf{G} is the Green's function for steady Stokes flow with the appropriate boundary conditions.

Coarse Graining

- The proper way to interpret fluctuating hydrodynamics is via the **theory of coarse-graining** (here I follow Pep Espanol).
- The first step is to define a discrete set of **relevant variables**, which are **mesoscopic observables**.



Relevant Variables

- How to assign the molecules to the **coarse-grained nodes**?
- If one uses a nearest-node assignment, i.e., **Voronoi cells**, one gets divergent Green-Kubo transport coefficients.
- Instead, one can use the dual **Delaunay cells** to construct coarse-grained variables [4], related to a **finite-element discretization** of the fluctuating hydrodynamic SPDE.

$$c_\mu(\mathbf{Q}) = \sum_i^N \delta_\mu(\mathbf{q}_i) = \sum_i^N \frac{\phi_\mu(\mathbf{q}_i)}{\mathcal{V}_\mu},$$

which follow a **conservation law** since $\sum_\mu \mathcal{V}_\mu c_\mu = N$.

- The key assumption is **infinite separation of timescales**: $c_\mu(\mathbf{Q})$ is much slower than \mathbf{Q} itself.

Mori-Zwanzig Formalism

- One can use the **Mori-Zwanzig formalism** with a **Markovian assumption** (due to separation of timescales) to derive a system of SDEs for the (discrete) coarse-grained variable $\mathbf{c}(\mathbf{Q})$:

$$\frac{d\mathbf{c}}{dt} = -\mathbf{M}(\mathbf{c}) \cdot \frac{\partial F(\mathbf{c})}{\partial \mathbf{c}} + (2k_B T \mathbf{M}(\mathbf{c}))^{\frac{1}{2}} \mathcal{W}(t) + (k_B T) \frac{\partial}{\partial \mathbf{c}} \cdot \mathbf{M}(\mathbf{c}),$$

with the **fluctuation-dissipation balance** $\mathbf{M}^{\frac{1}{2}} \left(\mathbf{M}^{\frac{1}{2}} \right)^* = \mathbf{M}$.

- Here $F(\mathbf{c})$ is the **coarse-grained free energy**

$$P^{\text{eq}}(\tilde{\mathbf{c}}) = \int d\mathbf{Q} \rho^{\text{eq}}(\mathbf{Q}) \delta(\tilde{\mathbf{c}} - \mathbf{c}(\mathbf{Q})) \propto \exp \left\{ -\frac{F(\tilde{\mathbf{c}})}{k_B T} \right\},$$

which is a purely **equilibrium** quantity.

- The dynamics is captured by the **diffusion or mobility** SPD matrix $\mathbf{M}(\mathbf{c})$, for which one can write generalized **Green-Kubo** formulas.

Renormalization

- If one does this for diffusion-type problems one obtains something that looks very much like a **finite-element discretization** of the fluctuating hydrodynamic (formal) SPDE.
The **SPDE is a useful notation** to guide the construction of spatio-temporal discretizations, drawing from years of CFD experience.
- However, if coarse-graining scale becomes **macroscopic**, we get **Fick's law** in the usual local form but with **renormalized free energy and transport coefficients**:

$$\partial_t c = \chi \nabla^2 \Pi(c) = \chi \nabla \cdot \left(\frac{d\Pi(c)}{dc} \nabla c \right),$$

where $\Pi(c) = c(df/dc) - f$ is the osmotic pressure, where $f(c)$ is the thermodynamic **thermodynamic equilibrium** free-energy.

- In-between the microscopic and macroscopic lies a whole continuum of scales: **The free energy and transport coefficients (mobility) must depend on the coarse-graining scale in nonlinear fluctuating hydrodynamics (but not in linearized fluct. hydro).**

Multiphase Systems: Liquid-Vapor

- We will use a **diffusive-interface model** for describing interfaces between two distinct phases such as liquid and vapor of a single species.
- Coarse-grained free energy follows the usual **square-gradient surface tension model**

$$F(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), T(\mathbf{r})) = \int d\mathbf{r} \left(f(\rho(\mathbf{r}), T(\mathbf{r})) + \frac{1}{2} \kappa |\nabla \rho(\mathbf{r})|^2 \right) \quad (16)$$

The **local free energy density** $f(\rho(\mathbf{r}), T(\mathbf{r}))$ includes the hard-core repulsions as well as the short-range attractions.

- Assume a **van der Waals** loop for the equation of state,

$$P(\rho, T) = \frac{nk_B T}{1 - b'n} - a'n^2, \quad (17)$$

$$f = nk_B T \ln \left[\frac{\rho}{1 - b'n} \right] - a'n^2.$$

Fluctuating Hydrodynamics

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0 \quad (18)$$

$$\partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}^T) + \nabla \cdot \boldsymbol{\Pi} = \nabla \cdot (\boldsymbol{\sigma} + \boldsymbol{\Sigma}) \quad (19)$$

$$\partial_t (\rho E) + \nabla \cdot (\rho E \mathbf{v} + \boldsymbol{\Pi} \cdot \mathbf{v}) = \nabla \cdot (\psi + \boldsymbol{\Psi}) + \nabla \cdot ((\boldsymbol{\sigma} + \boldsymbol{\Sigma}) \cdot \mathbf{v}), \quad (20)$$

where the momentum density is $\mathbf{g} = \rho \mathbf{v}$ and
 the total local energy density is $\rho E = \frac{1}{2} \rho \mathbf{v}^2 + \rho e$.

Momentum Fluxes

- The reversible contribution to the stress tensor is [5]

$$\boldsymbol{\Pi} = P\mathbf{I} - \left[\left(\kappa\rho\nabla^2\rho + \frac{1}{2}\kappa|\nabla\rho|^2 \right) \mathbf{I} \right] - (\kappa\nabla\rho \otimes \nabla\rho) + \text{cross term?}$$

- Irreversible contribution to the stress is the viscous stress tensor

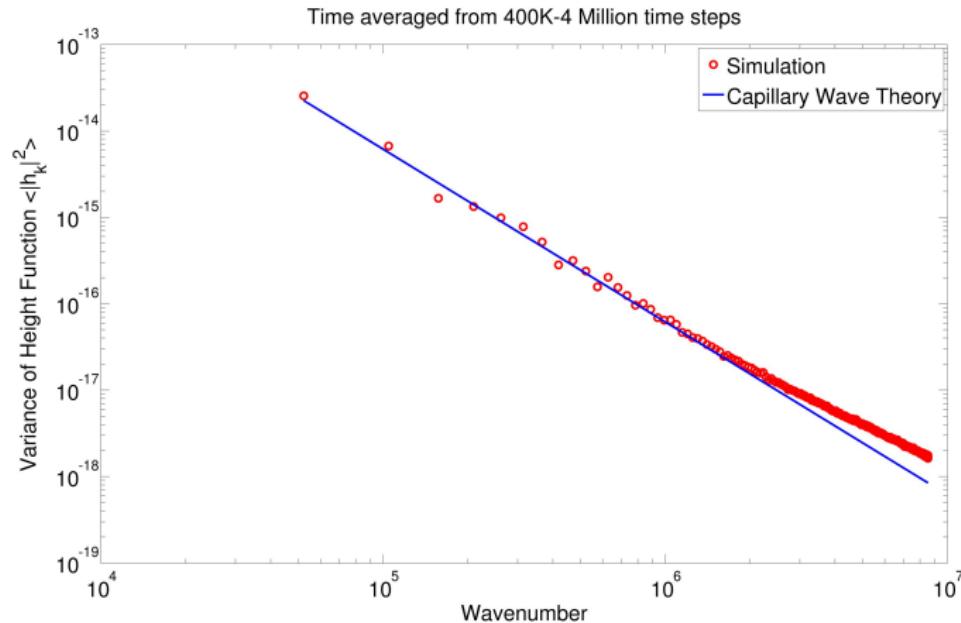
$$\boldsymbol{\sigma} = \eta (\nabla \mathbf{v} + (\nabla \mathbf{v})^T) + \left(\zeta - \frac{2}{3}\eta \right) (\nabla \cdot \mathbf{v}) \mathbf{I} \quad (21)$$

- Stochastic stress tensor obeys fluctuation-dissipation balance

$$\boldsymbol{\Sigma} = \sqrt{2\eta k_B T} \widetilde{\mathcal{W}} + \left(\sqrt{\frac{\zeta k_B T}{3}} - \sqrt{\frac{2\eta k_B T}{3}} \right) \text{Tr}(\widetilde{\mathcal{W}}) \mathbf{I}, \quad (22)$$

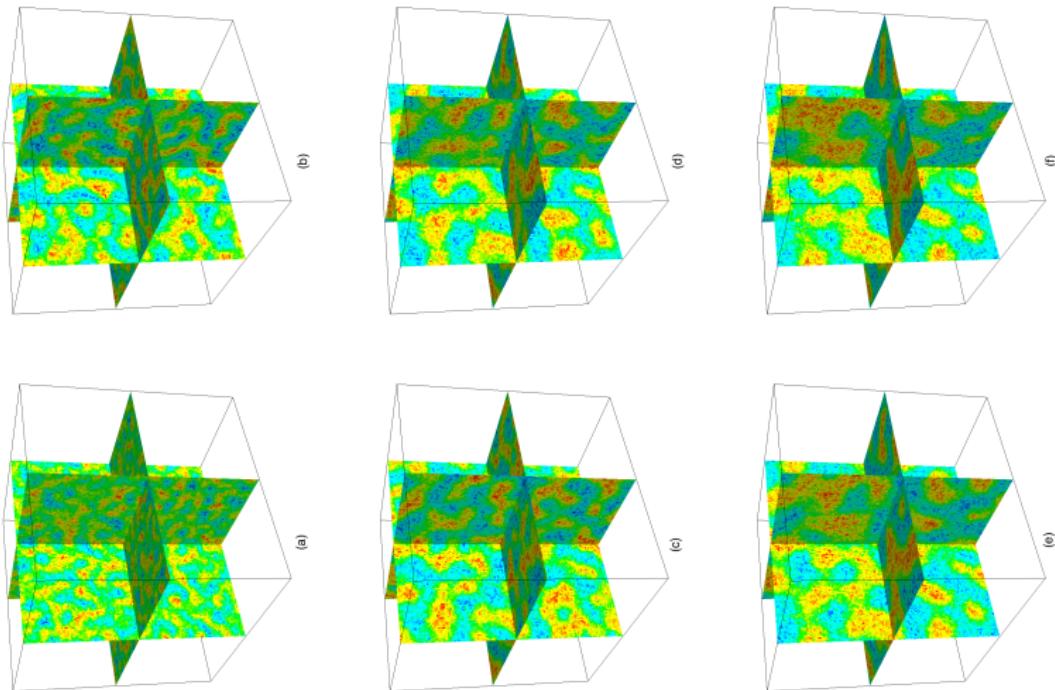
where $\widetilde{\mathcal{W}} = (\mathcal{W} + \mathcal{W}^T)/\sqrt{2}$ is a symmetric white-noise tensor field.

Capillary Waves



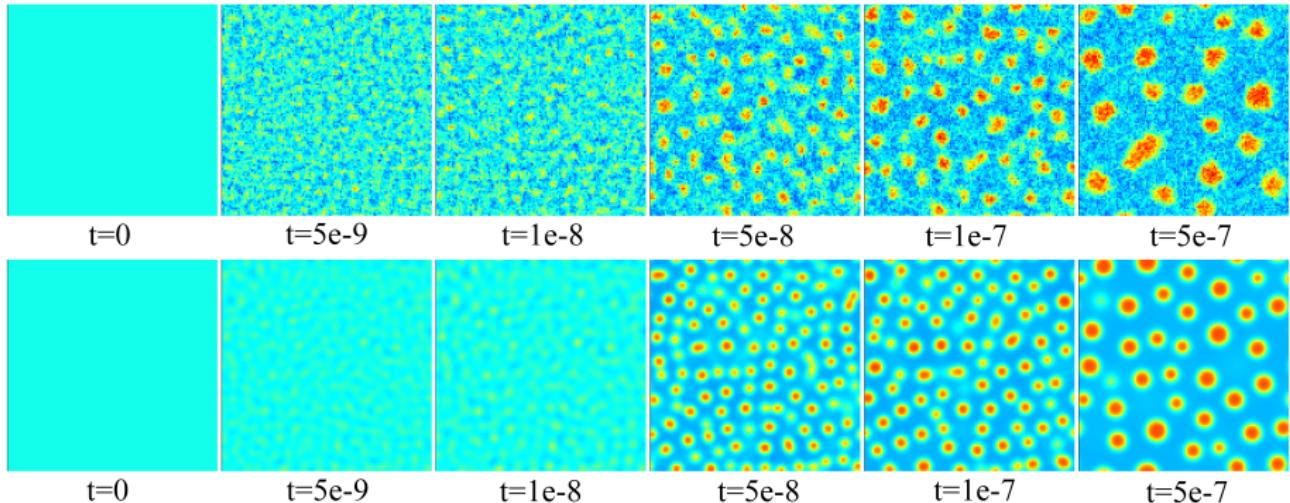
Variance of height fluctuations versus wavenumber comparing 2D simulations (red circles) and **capillary wave theory** (CWT) (black solid line).

Spinodal Decomposition



Spinodal decomposition in a near-critical Argon system at $\rho = 0.416$ g/cc, $T = 145.85$ K leading to a **bicontinuous pattern**.

Condensation



Liquid-vapor spinodal decomposition in a near-critical van der Waals Argon system at $\rho = 0.36$ g/cc, $T = 145.85$ K leading to **droplets** forming in a majority vapor phase.

Chemically-Reactive Mixtures

- The species density equations for a mixture of N_S species are given by

$$\frac{\partial}{\partial t} (\rho_s) + \nabla \cdot (\rho_s \mathbf{v} + \mathbf{F}) = m_s \Omega_s, \quad (s = 1, \dots, N_S) \quad (23)$$

- Due to mass conservation $\rho = \sum_s \rho_s$ follows the continuity equation,

$$\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \mathbf{v}) = 0. \quad (24)$$

- The mass fluxes take the form, excluding barodiffusion and thermodiffusion,

$$\mathbf{F} = \rho \mathbf{W} \left[\chi \Gamma \nabla x + \sqrt{\frac{2}{n}} \chi^{\frac{1}{2}} \mathcal{W}_F (\mathbf{r}, t) \right],$$

where n is the number density, x_s is the mole fraction of species s , and $\mathbf{W} = \text{Diag} \{w_s = \rho_s / \rho\}$ contains the mass fractions.

Multispecies Mass Diffusion

- Γ is a matrix of thermodynamic factors,

$$\Gamma = \mathbf{I} + (\mathbf{X} - \mathbf{x}\mathbf{x}^T) \left(\frac{\partial^2 g_{\text{ex}}}{\partial \mathbf{x}^2} \right),$$

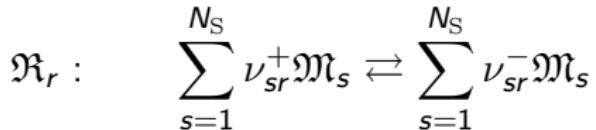
where $g_{\text{ex}}(\mathbf{x}, T, P)$ is the normalized **excess Gibbs energy density** per particle.

- χ is an **SPD diffusion tensor** that can be related to the Maxwell-Stefan diffusion coefficients and Green-Kubo type formulas.
- We, however, do not know values of these for even a single ternary mixture!

We have studied **ideal mixtures**: hard-sphere **gas mixtures** [6] and **dilute solutions** of salt+sugar in water [7].

Chemistry

- Consider a system with N_R **elementary reactions** with reaction r



The **stoichiometric coefficients** are $\nu_{sr} = \nu_{sr}^- - \nu_{sr}^+$ and mass conservation requires that $\sum_s \nu_{sr} m_r = 0$.

- Define the dimensionless **chemical affinity**

$$\mathcal{A}_r = \sum_s \nu_{sr}^+ \hat{\mu}_s - \sum_s \nu_{sr}^- \hat{\mu}_s,$$

where $\hat{\mu}_s = m_s \mu_s / k_B T$ is the dimensionless **chemical potential per particle**.

- Also define the **thermodynamic driving force**

$$\hat{\mathcal{A}}_r = \exp \left(\sum_s \nu_{sr}^+ \hat{\mu}_s \right) - \exp \left(\sum_s \nu_{sr}^- \hat{\mu}_s \right) = \prod_s e^{\nu_{sr}^+ \hat{\mu}_s} - \prod_s e^{\nu_{sr}^- \hat{\mu}_s}$$

Chemistry

- The mass production due to chemistry can take **one of two forms** [8]:

$$\Omega_s = \sum_r \nu_{sr} \left(\frac{P}{\tau_r k_B T} \right) \hat{\mathcal{A}}_r \text{ (deterministic LMA)} \quad (25)$$

$$+ \sum_r \nu_{sr} \begin{cases} \left(2 \frac{P}{\tau_r k_B T} \frac{\hat{\mathcal{A}}_r}{\mathcal{A}_r} \right)^{\frac{1}{2}} \diamond \mathcal{Z}(\mathbf{r}, t) & \text{log-mean eq. (LME)} \\ \left(\frac{P}{\tau_r k_B T} \prod_s e^{\nu_{sr}^+ \hat{\mu}_s} \right)^{\frac{1}{2}} \mathcal{Z}(\mathbf{r}, t) & \text{chemical Langevin eq. (CLE)} \end{cases}$$

- The **LME** follows the correct structure of Langevin equations (GENERIC structure of Ottinger/Grmela). Is **time-reversible** (obeys detailed balance) **at thermodynamic equilibrium** wrt to the Einstein distribution.
- The **CLE** follows from a truncation of the Kramers-Moyal expansion at second order. No true thermodynamic equilibrium since it assumes **one-way reactions**.
- Which one is correct? Neither!**

Nonlinear Chemical Networks

We have studied the Baras-Pearson-Mansour (BPM) model

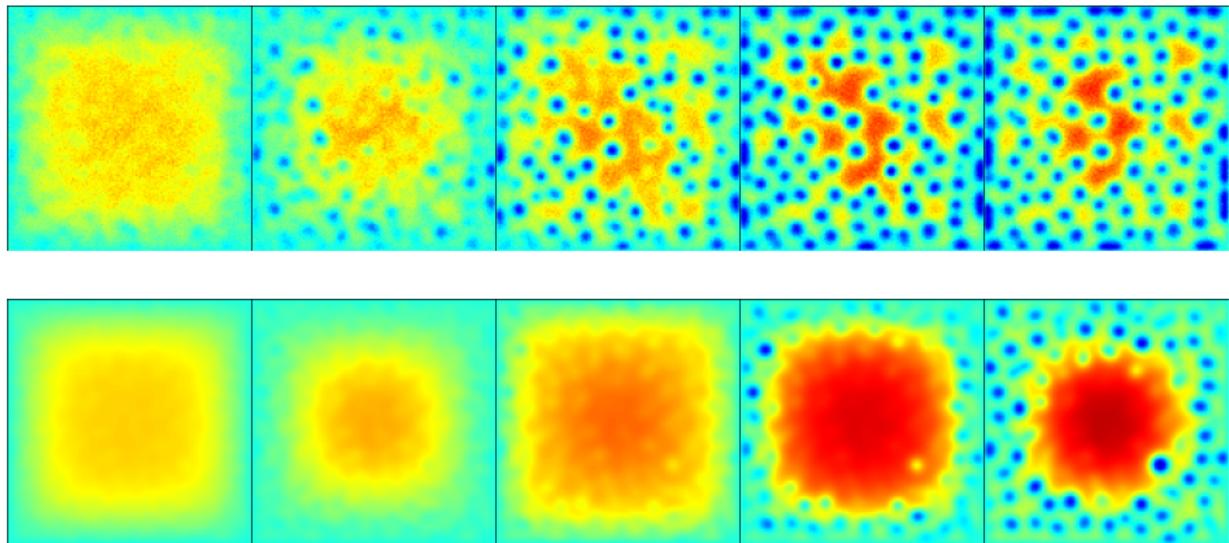
$$\mathfrak{M} = (U, V, W, S, U_f, V_f),$$

$$\begin{aligned}\mathfrak{R}_1 : \quad & U + W \rightleftharpoons V + W \\ \mathfrak{R}_2 : \quad & V + V \rightleftharpoons W + S \\ \mathfrak{R}_3 : \quad & V \rightleftharpoons S \\ \mathfrak{R}_4 : \quad & U \rightleftharpoons U_f \\ \mathfrak{R}_5 : \quad & V \rightleftharpoons V_f\end{aligned}\tag{26}$$

This system can exhibit **limit cycles**, bimodal states (**bistability**), and possibly other nonlinear behavior.

In principle this system can be simulated using **particle methods**!

Turing-like Patterns



Development of an instability in the BPM model with fluctuations (top) and without (bottom) with complete compressible hydrodynamics (not just reaction-diffusion).

Poisson Noise

- The reason neither LME nor CLE are correct is that **there is no S(P)DE** that can correctly describe both the short-time (typical) and long-time (rare event) behavior of the master equation.
- This is related to the fact that the central limit theorem and large-deviation theory are not consistent with the same nonlinear S(P)DE.
- One must either use the **Chemical Master Equation (CME)** with SSA/Gillespie (microscopic rather than macroscopic), **or**
- One can use **Poisson noise** instead of **Gaussian noise** using **tau leaping**.

This can be thought of as a **coarse-graining in time** of the original jump process described by the CME.

- Quite generally the appropriateness of assuming Gaussian white noise for the stochastic fluxes is questionable.

References

A. Donev and E. Vanden-Eijnden.

Dynamic Density Functional Theory with hydrodynamic interactions and fluctuations.
J. Chem. Phys., 140(23), 2014.

A. Donev, A. J. Nonaka, Y. Sun, T. G. Fai, A. L. Garcia, and J. B. Bell.

Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids.
Communications in Applied Mathematics and Computational Science, 9(1):47–105, 2014.

A. Donev, T. G. Fai, and E. Vanden-Eijnden.

A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law.
Journal of Statistical Mechanics: Theory and Experiment, 2014(4):P04004, 2014.

P. Español and I. Zúñiga.

On the definition of discrete hydrodynamic variables.
J. Chem. Phys., 131:164106, 2009.

A. Chaudhri, J. B. Bell, A. L. Garcia, and A. Donev.

Modeling multiphase flow using fluctuating hydrodynamics.
Phys. Rev. E, 90:033014, 2014.

K. Balakrishnan, A. L. Garcia, A. Donev, and J. B. Bell.

Fluctuating hydrodynamics of multispecies nonreactive mixtures.
Phys. Rev. E, 89:013017, 2014.

A. Donev, A. J. Nonaka, A. K. Bhattacharjee, A. L. Garcia, and J. B. Bell.

Low Mach Number Fluctuating Hydrodynamics of Multispecies Liquid Mixtures.
Physics of Fluids, 27(3), 2015.

A. K. Bhattacharjee, K. Balakrishnan, A. L. Garcia, J. B. Bell, and A. Donev.

Fluctuating hydrodynamics of multispecies reactive mixtures.
Submitted to *J. Chem. Phys.*, ArXiv preprint 1503.07478, 2015.