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Fluctuating Hydrodynamics

@ Fluctuating hydrodynamics (FHD) is a formalism for accounting
for thermal fluctuations in traditional fluid equations.

@ The key idea, due to Landau & Lifshitz, is to add a stochastic
(momentum, heat, diffusive) flux corresponding to every
dissipative flux.

@ The stochastic fluxes are modeled as space-time white-noise fields
with an amplitude set by fluctuation-dissipation balance.

@ FHD can be justified using the theory of coarse-graining
(Mori-Zwanzig formalism), as most clearly explained in works of Pep
Espanol [1] (review article by two of us is currently in preparation).

@ In this talk | will give some examples of FHD equations that we have
studied numerically using traditional CFD methods with fluctuations
added in a way to obey discrete fluctuation-dissipation balance.
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Fluctuating Hydrodynamics of Diffusion
Hydrodynamic Interactions via FHD

@ The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

pOv + Vi =0V + \/2nkg TV - (6xW), and V-v=0. (1)

where the stochastic momentum flux is spatio-temporal white
noise,

Wi (e, Wi (¥, t1)) = (0 + dudjr) 6(t — t')d(r — r').

and the smoothing kernel o filters out features at scales below a
cutoff scale o.

@ The concentration c (r, t) of a passive tracer follows an (additive
noise) fluctuating advection-diffusion equation,

oic=—u-Vc+ X0V2c. (2)
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Fluctuating Hydrodynamics of Diffusion

Giant Fluctuations in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with

hard-disk molecular dynamics.
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Fluctuating Hydrodynamics of Diffusion

MD vs. Fluct Hydro
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Discrete spatial spectrum of the interface fluctuations, for fluctuating

hydrodynamics (squares) and HD-MD (circles).
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Fluctuating Hydrodynamics of Diffusion
Separation of Time Scales

@ In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

@ This means that x < v, leading to a Schmidt number

5. =2 103 - 10%.
X

This extreme stiffness solving the concentration/tracer equation
numerically challenging.
@ There exists a limiting (overdamped) dynamics for c in the limit

Sc — o0 in the scaling
XV = const.
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Fluctuating Hydrodynamics of Diffusion
Overdamped Dynamics

@ Adiabatic mode elimination gives the following limiting Ito stochastic
advection-diffusion equation,

0rc =V - [x(r)Vc]—w- Ve, (3)

which is exactly the same as what was derived from Brownian
dynamics.

@ The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation

function,
geo.o}

<w(r,t)®w(r’,t/)>:2(5(t—t’)/ (u(r,t)@u(r t+1t))dt’

=2R (r,r') 6 (t—t)

_ ke T /0_ (I’, q/) G (I’/, r//) O_T (r//7 q//) dq’dq",

n
where G is the Green's function for steady Stokes flow with the

appropriate boundary conditions.
A. Donev (CIMS) Giant Fluct 7/2016 9 /40




Fluctuating Hydrodynamics of Diffusion

Stokes-Einstein Relation

@ An explicit calculation for Stokes flow gives the explicit result

X (I’) = Xo + anT ‘0' (r, r’) G (r/, r”) ol (r, r") dr’dr”, (4)

where G is the Green's function for steady Stokes flow.

e For an appropriate filter o, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

kg T {(47r)—1|n§ ifd=2

YT (6ot (1-24) ifd=3.

@ The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that xo < x:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

+3%

+2%

Space

+1%

0%

-1%

Earth

-2%

Relative varation of shadowgraph intensity

-3%

500 s 1000's 2000 s

GRADFLEX results by A. Vailati et al. from a microgravity environment
showing giant fluctuations in the concentration of polystyrene in toluene
in space (box scale is 5mm on the side, Imm thick).

Fluctuations become macrosopically large at macroscopic scales!
These come because of hydrodynamic effects on diffusion in liquids.
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Giant Fluctuations
Linearized Fluctuating Hydrodynamics

@ When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

@ Consider a binary mixture of fluids and consider concentration
fluctuations around a macroscopic state ¢(r, t), c = ¢ + dc.

@ The concentration fluctuations are advected by the random
velocities,

8tE = szf_:
01 (6€) = —v- VE+ X V25 + V- (/2@ W)
pOv 4+ Vo =nV2v — Bp(6c) g+ /2nkg TV - W,

where (3 is the solutal expansion coefficient. This system of SPDEs
can easily be solved numerically once we take the overdamped limit.

@ Note that here x is the deterministic (Fickian) diffusion coefficient
which is larger than the bare xo.
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Giant Fluctuations
Back of the Envelope

@ The coupled linearized velocity-concentration system in one

dimension:
Vi = UV + V20 v Wy
Ct = XCxx — VCx,
where €y is the imposed background concentration gradient.

@ The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

ety =p— BT (@)~ ]
x(x +v)k xnk

@ Concentration fluctuations become long-ranged and are enhanced
as the square of the gradient, to values much larger than equilibrium
fluctuations.

@ In real life the divergence is suppressed by surface tension, gravity,

or boundaries (usually in that order).
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Giant Fluctuations

Simulation versus Theory/Experiment

@ Simulations have the following advantages over analytical theory:

® Numerical linearization around arbitrary time-dependent
macroscopic states including nonlinearities (e.g., chemistry).
@ Nontrivial boundary conditions can be accounted for relatively easily.

@ Simulations have the following advantages over experiments:

@ One can easily turn different effects/terms on and off to understand
what physics is important.

® No measurement noise or contamination, but still includes thermal
fluctuations.

© Disadvantages of simulations include:

® Fluctuations imply statistical noise, so long runs needed to compute
averages (Monte Carlo).

@ Cannot easily handle time and length scale separation.

@ Development of computer codes is like developing a new experimental
apparatus; it takes time!

A. Donev (CIMS) Giant Fluct 7/2016 15 / 40



GRADFLEX transient

@ We numerically solve the equations

POV 4+ Vi =nVv+ V. (\/WW) (5)
V.-v=0

0ic+v-Vec=DV -(Vc+c(1—-¢c)57rVT) (6)

hT +v-VT =xV?T, (7)

@ Our numerical methods perform numerical linearization by solving
the fully nonlinear equations with weak noise.

@ In the linearized regime no difference between 2D and 3D so we
sometimes solve 2D equations to speed up computations.

© Numerically we separately solve (5,6) for concentration
(overdamped), and we separately solve (5,7) for temperature (inertial)

).
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Giant Fluctuations
Comparison to GRADFLEX transient
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Giant Fluctuations
Complex Fluids

We have generalized the models and numerical codes to include more
complex fluids:

o Multispecies mixtures with complete transport including thermo
and barodiffusion and boundary conditions and gravity [4].

We have simulated the development of gravity-driven diffusive
instabilities and compared to experiments.

o Chemically-reacting mixtures [5]. We have studied giant
fluctuations in reactive mixtures and found that the nonlinearity of
the base (macroscopic) state is crucial and not yet captured in theory.

e Multiphase liquids including liquid-vapor coexistence [6]. We have
simulated capillary waves, spinodal decomposition, condensation, and
the piston effect.

e lonic (electrolyte) mixtures including electrostatic effects at length
scales comparable to the Debye length (in preparation).
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Microscopic Justification

Coarse Graining Brownian Motion

@ The proper way to interpret fluctuating hydrodynamics is via the
theory of coarse-graining (here | follow Pep Espanol) [1].

@ The first step is to define a discrete set of relevant variables, which
are mesoscopic observables that evolve slowly
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Microscopic Justification
Fluctuating Hydrodynamics Level

@ Relevant variables for subgrid (nanoscopic) particles associated to
a grid node p are:
o discrete mass p,(t) and momentum density g, (t) (including the
suspended particle!)
e position of the particle (since momentum of particle is not slow!)
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Microscopic Justification

Relevant Variables

@ How to assign the molecules to the coarse-grained nodes?

@ If one uses a nearest-node assignment, i.e., Voronoi cells, one gets
divergent Green-Kubo transport coefficients.

@ Instead, one can use the dual Delaunay cells to construct
coarse-grained variables.

.00
=

g, = 0 mjvod,(q;) follows a conservation law
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Microscopic Justification
Mori-Zwanzig Formalism

One can use the (Mori-)Zwanzig formalism with a Markovian
assumption (due to separation of timescales) to derive a system of
SDEs for the (discrete) coarse-grained variables.

It turns out that these equations are exactly the same as obtained
from a Petrov-Galerkin finite-element discretization of the
fluctuating hydrodynamic SPDEs | wrote earlier, using the same
dual set of basis functions as used for coarse graining.

This provides a link between continuum->discrete and
discrete->continuum approaches.

The TCG gives generalized Green-Kubo formulas for the diffusion
coefficients.

A key difference with the phenomenological equations is that the
discrete delta function or kernel is attached to the grid (artificial!)
rather than to the particle cage (physical),

o(r) = A(nr)=06,(r6" ().
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Microscopic Justification

Renormalization of Diffusion

@ The bare diffusion coefficient concerns near-field hydrodynamics
and can be computed using MD from

X0 = / dt (6V - 5V>eq,
d Jo

where the particle peculiar velocity 6V = V — V(Ifl) is the velocity
relative to the locally-interpolated fluid velocity.
The bare diffusion coefficient depends on the grid resolution as
is not a material constant.

@ Observe that xq is different from the macroscopic or renormalized
diffusion coefficient

1 T>TMD A
X:/ dt (V- V)eq,
d Jo

which is independent of the grid resolution but is essentially
impossible to compute using MD since it includes far-field
hydrodynamics.
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Multispecies Mixtures
Chemically-Reactive Mixtures

@ The species density equations for a mixture of Ng species are given by

%(psHv.(pst) = mQs,  (s=1,...Ns)  (8)

@ Due to mass conservation p = )" _ ps follows the continuity equation,

%anV-(pv) =0. (9)

@ The mass fluxes take the form, excluding barodiffusion and

thermodiffusion,
2 1
xIFVx + \/Z)@WF (r, t)] )

where n is the number density, xs is the mole fraction of species s,
and W = Diag {ws = ps/p} contains the mass fractions.

F =pW
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Multispecies Mixtures
Multispecies Mass Diffusion

o I is a matrix of thermodynamic factors,

2
r=1+ (X —xxT) (%f;x) ,

where gex (X, T, P) is the normalized excess Gibbs energy density
per particle.

e x is an SPD diffusion tensor that can be related to the
Maxwell-Stefan diffusion coefficients and Green-Kubo type
formulas.

@ We, however, do not know values of these for even a single ternary
mixture!
We have studied ideal mixtures: hard-sphere gas mixtures [7] and
dilute solutions of salt+sugar in water [4].
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Multispecies Mixtures
Chemical Reactions

o Consider a system with Ny elementary reactions with reaction r
Ng N
R, : Z y;tims = Z v Ms
s=1 s=1

The stoichiometric coefficients are vs, = v; — v} and mass
conservation requires that > _vsm, = 0.
@ Define the dimensionless chemical affinity

A=) Vs = ) Varls
s s

where [is = msps/kg T is the dimensionless chemical potential per
particle.
@ Also define the thermodynamic driving force

A, =exp <Z y;‘;ﬂs> — exp (Z ys—rﬁs> - H eVarlls _ H eVer fis
s s S S
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Multispecies Mixtures
Chemical Langevin Equation

@ The mass production due to chemistry can be approximated by the
chemical Langevin equation (CLE) [5]:

1
2
Qs = ZVsr <7‘,/(F,;T> Ar + ZVsr (Tr:gT Hel/;;ﬂs> Z (I’, t)
r r S (10)
@ The CLE follows from a truncation of the Kramers-Moyal expansion
at second order.

No true thermodynamic equilibrium since it assumes one-way
reactions.

@ The CLE is not time-reversible (obeys detailed balance) at
thermodynamic equilibrium wrt to the Einstein distribution.
Proper description of chemical reactions requires the use of SDEs
driven by Poisson noise (not Gaussian).
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Multispecies Mixtures
Nonlinear Chemical Networks

We have studied the Baras-Pearson-Mansour (BPM) model
M= (U,V,W,S, U, V¥),

Ry : U+ WsV+W

Ry : V+VSW+S

Rs : VsS (11)
Ry : U s U

Rs : VS Ve

This system can exhibit limit cycles, bimodal states (bistability), and
possibly other nonlinear behavior.

In principle this system can be simulated using particle methods!
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Multispecies Mixtures
Turing-like Patterns

Development of an instability in the BPM model with fluctuations (top)
and without (bottom) with complete compressible hydrodynamics (not just
reaction-diffusion).
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Multispecies Mixtures
Turing-like Patterns

Fluctuations change the dynamics qualitatively in spatially-extended
reactive systems! How do we simulate this?
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Multiphase Liquids

Multiphase Systems: Liquid-Vapor

@ We will use a diffusive-interface model for describing interfaces
between two distinct phases such as liquid and vapor of a single
species.

o Coarse-grained free energy follows the usual square-gradient surface
tension model

F (0. 5o(0). T0) = [ ae (o). Tw) + 3019007) - (12

The local free energy density f (p(r), T(r)) includes the hard-core
repulsions as well as the short-range attractions.
@ Assume a van der Waals loop for the equation of state,

nkg T

P 2
f=nkgTIn L—b’n] —a'n”.
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Multiphase Liquids
Fluctuating Hydrodynamics

Op+V-(pv)=0 (14)
Oe(pv) + V- (pw') +V-N=V (o +X) (15)
Ot (PE)+ V- (pEv+MN-v) =V - (p+ W)+ V- (e +X)-v), (16)

where the momentum density is g = pv and
the total local energy density is pE = pv? + pe.
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Multiphase Liquids
Momentum Fluxes

@ The reversible contribution to the stress tensor is [6]
2 1 2
N=~Pl— ||xpVp+ Sk |Vpol“ | 1| — (kVp ® Vp) + cross term?
@ lIrreversible contribution to the stress is the viscous stress tensor
2
o =n(Vur (W) + (c=Z0) (Vo )

@ Stochastic stress tensor obeys fluctuation-dissipation balance

X = \/2nks TW + ( Ck3BT - \/277"3”) Tr (Vv) I, (18)

where W = (W + WT)/v/2 is a symmetric white-noise tensor field.

A. Donev (CIMS) Giant Fluct 7/2016 36 / 40



Multiphase Liquids

Capillary Waves

Time averaged from 400K-4 Million time steps

© Simulation
—Capillary Wave Theory

Variance of Height Function <|hk| 2
>

4 5 6 7
10 10 10 10
Wavenumber

Variance of height fluctuations versus wavenumber comparing 2D
simulations (red circles) and capillary wave theory (CWT) (black solid
line).
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Multiphase Liquids

Spinodal Decomposition

Spinodal decomposition in a near-critical Argon system at p = 0.416 g/cc,
T = 145.85 K leading to a bicontinuous pattern.
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Multiphase Liquids

Condensation

t=0

t=0 t=5e-9 t=1e-8

Liquid-vapor spinodal decomposition in a near-critical van der Waals
Argon system at p = 0.36 g/cc, T = 145.85 K leading to droplets
forming in a majority vapor phase.
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Multiphase Liquids
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